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STRONG KARUSH–KUHN–TUCKER OPTIMALITY CONDITIONS
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Abstract. The main aim of this paper is to study strong Karush–Kuhn–Tucker (KKT) optimal-
ity conditions for nonsmooth multiobjective semi-infinite programming (MSIP) problems. By using
tangential subdifferential and suitable regularity conditions, we establish some strong necessary opti-
mality conditions for some types of efficient solutions of nonsmooth MSIP problems. In addition to the
theoretical results, some examples are provided to illustrate the advantages of our outcomes.
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1. Introduction

A simultaneous minimization of a finite number of objective functions over an infinite number of constraints
is called a multiobjective semi-infinite programming (MSIP) problem. Applied and theoretical aspects of semi-
infinite programming problems have been considered by many researchers, see e.g. [16, 43] and references
therein. Recently, Karush–Kuhn–Tucker (KKT) optimality conditions for MSIP have been addressed by many
authors. In [4, 5], optimality conditions for some types of efficient solutions of MSIP were investigated in terms
of Mordukhovich subdifferential. The Mangasarian–Fromovitz and Farkas–Minkowski constraint qualifications
were extended and employed to consider optimality conditions for MSIP in [39]. The papers [17, 18] dealt
with the optimality conditions and constraint qualifications in convex vector semi-infinite optimization. KKT
optimality conditions for weakly efficient solutions and Pareto efficient solutions were obtained in [27] by using
some regularity conditions in the sense of Clarke gradient. The paper [2] considered the necessary optimality
conditions for MSIP via Michel–Penot subdifferential. Strong KKT optimality conditions give more information
than weak KKT optimality conditions since all the multipliers corresponding to the objective functions are
positive. In [36], many regularity conditions for differentiable functions were investigated to establish the strong
KKT optimality conditions for multiobjective optimization problem (MOP) with inequality constraints. Strong
KKT optimality conditions for smooth MOP with mixed constraints were given in [13, 21]. The regularity
conditions in the sense of semidifferentiable function in [41] and in the sense of Clarke gradient in [3, 14, 33, 50]
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were utilized to obtain strong KKT optimality conditions for some types of MOPs. Strong KKT for weakly
efficient solution of MSIP were given in [26] by using some regularity conditions in the sense of Clarke gradient.

The tangential subdifferential including both convex subdifferential and Gâteaux derivative was proposed
and applied to establish optimality conditions for optimization problem in [42]. The papers [15, 22, 23, 41]
applied effectively the tangential subdifferential to establish weak KKT optimality conditions for MOP. In line
of [36], some regularity conditions in the sense of tangential subdifferential were investigated to obtain the
strong KKT optimality conditions for nonsmooth MOP in [14]. In [37], tangential subdifferential was employed
to unify the KKT type theorem of convex optimization with the convex feasible set for differentiable functions
in [31] and for Clarke regular functions in [8]. By using some suitable generalized constraint qualifications in the
sense of tangential subdifferential, we established the necessary and sufficient optimality conditions for some
types of efficient solutions of nonsmooth MSIP in [46]. Observe that the tangential subdifferential also includes
Clarke/Michel-Penot regular gradient. Hence, the optimality conditions in terms of tangential subdifferential
obtain more generalized results than the optimality conditions utilizing Clarke/Michel-Penot regular gradient
such as in [8, 29, 45, 47, 48] and references therein.

To the best of our knowledge, there is no paper studying the strong KKT optimality conditions for MSIP
by using regularity conditions in the sense of tangential subdifferential. Motivated by the above observations,
in this paper, we establish strong KKT optimality conditions for Pareto efficient solutions and weakly efficient
solutions of MSIP in terms of tangential subdifferential. The paper is organized as follows. Section 1 recalls
basic concepts and some preliminaries. Section 2 is devoted to establishing the KKT optimality conditions for
weakly efficient solution and Pareto efficient solution of MSIP. In Section 3, regularity conditions in the sense
of tangential subdifferential and their relations are investigated. Our results not only extend the results in [14]
from MOP to MSIP but also consider the strong KKT for weakly efficient solution, which was not investigated
in [14]. Some examples are provided to illustrate our outcomes.

2. Preliminaries

The following notations and definitions will be used throughout the paper. Let Rn be a finite-dimensional
normed space. The notation 〈·, ·〉 is utilized to denote inner product. For a given x̄, U(x̄) is the system of the
neighborhoods of x̄. For S ⊆ Rn, intS, clS, affS, and coS stand for its interior, closure, affine hull, convex hull
of S, respectively (resp). The cone and the convex cone (containing the origin) generated by S are denoted resp
by C(S), coneS. We denote by riS the relative interior of a convex set S. The negative polar cone and strictly
negative polar cone of S are defined resp by

S− = {x∗ ∈ Rn|〈x∗, x〉 ≤ 0 ∀x ∈ S},
Ss = {x∗ ∈ Rn|〈x∗, x〉 < 0 ∀x ∈ S \ {0}}.

It is easy to check that Ss ⊂ S− and if Ss 6= ∅ then clSs = S−. Moreover, the bipolar theorem, see e.g. [1],
states that S−− = cl coneS.

Definition 2.1 ([1]). Let S be a nonempty subset of Rn.

(i) The contingent (or Bouligand) cone of S at x̄ ∈ clS is

T (S, x̄) := {x ∈ Rn | ∃τk ↓ 0, ∃xk → x, ∀k ∈ N, x̄+ τkxk ∈ S}.

(ii) The adjacent cone of of S at x̄ ∈ clS is

A(S, x̄) := {x ∈ Rn | ∀τk ↓ 0, ∃xk → x, ∀k ∈ N, x̄+ τkxk ∈ S}.
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(iii) The cone of the feasible directions of S at x̄ is

D(S, x̄) := {x ∈ Rn | ∃δ > 0, x̄+ τx ∈ S,∀τ ∈ (0, δ)}.

(iv) The cone of the weak feasible directions of S at x̄ is

F (S, x̄) := {x ∈ Rn | ∃τk ↓ 0, ∀k ∈ N, x̄+ τxk ∈ S}

Remark 2.2. The following properties can be checked directly.

(i) D(S, x̄) ⊂ F (S, x̄) ⊂ T (S, x̄).
(ii) D(S, x̄) ⊂ A(S, x̄) ⊂ T (S, x̄).

(iii) If S is a convex set then A(S, x̄) = T (S, x̄) = clC(S − x̄).
(iv) If S is a convex set then D(S, x̄) = F (S, x̄) = C(S − x̄).

For a nonempty set S ⊆ Rn, the function σ : Rn → R ∪ {+∞}, defined by

σS(x) := sup
s∈S
〈s, x〉 ∀x ∈ Rn,

is called the support function of S. Notice that σ is sublinear and lower semicontinuous, i.e., lim inf
x′→x

σ(x′) = σ(x)

for all x ∈ Rn. Moreover, σ is finite everywhere if and only if S is bounded.

Lemma 2.3 ([19]). If σ : Rn → R ∪ {+∞} is a lower semicontinuous and sublinear function then there exists
a nonempty closed convex set Sσ such that σ is the support function of Sσ, or, equivalently,

Sσ = {x∗ ∈ Rn | σ(d) ≤ 〈x∗, d〉, ∀d ∈ Rn}.

Definition 2.4. Let φ : Rn → R and x̄, d ∈ Rn.

(i) The directional derivative (or Dini derivative) of φ at x̄ in the direction d is

φ′(x̄, d) := lim
τ↓0

φ(x̄+ τd)− φ(x̄)

τ
.

For d = 0, define φ′(x̄, 0) = 0. We say that φ is directionally differentiable at x̄ if its directional derivative
exists in all directions d.

(ii) The Hadamard directional derivative of φ at x̄ in the direction d is x̄ in the direction d is

φH(x̄, d) := lim
τ↓0,d′→d

φ(x̄+ τd′)− φ(x̄)

τ
.

We say that φ is Hadamard directionally differentiable at x̄ if its Hadamard directional derivative exists
in all directions d.

Note that if φH(x̄, d) exists, then φ′(x̄, d) also exists and they are equal. Conversely, if φ is Lipschitzian on a
neighborhood U of x̄ , then φ is Hadamard directionally differentiable at x̄ in every direction d in which φ is
directionally differentiable.

Definition 2.5 ([32, 37]). A function φ : Rn → R is called tangentially convex at x̄ ∈ Rn if for every d ∈ Rn,
φ′(x̄, d) exists, is finite and the function φ′(x̄, .) : Rn → R is a convex function of d.
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Since φ′(x̄, .) is positively homogeneous, if φ is tangentially convex at x̄ then φ′(x̄, .) is sublinear. Then, by
Lemma 2.3, there exists a nonempty compact convex set of Rn such that φ′(x̄, .) is the support function of that
set.

Definition 2.6 ([37, 42]). Let φ : Rn → R be tangentially convex at x̄ ∈ Rn. The nonempty compact convex
∂Tφ(x̄) of Rn is called the tangential subdifferential of φ at x̄ if φ′(x̄, d) = max

x∗∈∂Tφ(x̄)
〈x∗, d〉, which is equivalent to

∂Tφ(x̄) = {x∗ ∈ Rn | 〈x∗, d〉 ≤ φ′(x̄, d), ∀d ∈ Rn}.

Definition 2.7 ([6]). Let x̄ ∈ Rn and φ : Rn → R be a locally Lipschitz function. The Clarke directional
derivative of φ at x̄ in direction d is defined by

φo(x̄, d) := lim sup
τ↓0,x→x̄

φ(x+ τd)− φ(x)

τ
.

The Clarke gradient of φ at x̄ is

∂Cφ(x̄) = {x∗ ∈ Rn | 〈x∗, d〉 ≤ φo(x̄, d), ∀d ∈ Rn}.

We say that φ is Clarke regular at x̄ if φ′(x̄, d) exists and φo(x̄, d) = φ′(x̄, d) for all d ∈ Rn.

Definition 2.8 ([38]). Let x̄ ∈ Rn and φ : Rn → R be a locally Lipschitz function. The Michel-Penot (MP)
directional derivative of φ : Rn → R at x̄ in direction u is defined by

φ�(x̄, u) := sup
v∈Rn

lim sup
τ↓0

φ(x̄+ τ(u+ v))− φ(x̄+ τv)

τ
.

The MP subdifferential of φ at x̄ is

∂MPφ(x̄) := {x∗ ∈ Rn|〈x∗, d〉 ≤ φ�(x̄, d), ∀d ∈ Rn}.

We say that φ is MP regular at x̄ if φ′(x̄, d) exists and φ�(x̄, d) = φ′(x̄, d) for all d ∈ Rn.

Remark 2.9. Let φ be a function from Rn to R and x̄ ∈ Rn. Some important classes of tangentially convex
functions are considered as follows.

(i) If φ is Gâteaux differentiable at x̄ then φ is tangentially convex at x̄ and ∂Tφ(x̄) = {∇φ(x̄)}.
(ii) If φ is convex then φ is tangentially convex at x̄ and ∂Tφ(x̄) = ∂φ(x̄), where ∂ denotes the subdifferential

in the sense of convex analysis.
(iii) If φ is locally Lipschitz at x̄ and Clarke regular at x̄, then φ is tangentially convex at x̄ and ∂Tφ(x̄) =

∂Cφ(x̄).
(iv) If φ is locally Lipschitz at x̄ and MP regular at x̄, then φ is tangentially convex at x̄ and ∂Tφ(x̄) = ∂MPφ(x̄).
(v) If φH(x̄, d) exists, is finite and the function φH(x̄, .) : Rn → R is a convex function of d, then φ is

tangentially convex at x̄ and ∂Tφ(x̄) = ∂Hφ(x̄), where ∂Hφ(x̄) := {x∗ ∈ Rn|〈x∗, d〉 ≤ φH(x̄, d), ∀d ∈ Rn}.

Now, we give some examples to illustrate some advantages of tangential subdifferential in some cases.

Example 2.10. Let x̄ = 0 and φ : R→ R be defined by φ(x) = max{x3, x}+ x. Then, φ′(0, u) = max{u, 2u} is
a convex function, and hence, ∂T (x̄) = [1, 2]. Note that φ is not is Gâteaux differentiable at x̄, while it is locally
Lipschitz at x̄ and Clarke regular at x̄.
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Example 2.11. Let x̄ = 0 and φ : R→ R be defined as follows

φ(x) =

{
x2 sin 2

x , if x 6= 0,
0, if x = 0.

Then, φ is locally Lipschitz at x̄ and φ�(x̄, u) = φ′(x̄, u) = {0} for all u ∈ Rn. Hence, φ is MP regular at x̄ and
∂Tφ(x̄) = {0} & ∂Cφ(x̄) = [−2, 2].

Example 2.12. Let x̄ = (0, 0) and φ : R2 → R be defined as follows

φ(x) =

{
x3
1

x2
+ x1, if x 6= 0,

0, if x1 = 0 or x2 = 0.

Then, φ is not continuous at x̄. Since φ′(x̄, u) = lim
τ↓0

τu3
2

u1
= 0, φ is Gâteaux differentiable at x̄ and ∂Tφ(x̄) = {0}.

Definition 2.13 ([14]). Let S ⊂ Rn be a convex set, φ : Rn → R and x̄ ∈ S.

(i) φ is quasiconvex at x̄ if

∀x ∈ S, φ(x) ≤ φ(x̄)⇒ φ(λx+ (1− λ)x̄) ≤ φ(x̄) ∀λ ∈ (0, 1).

(ii) φ is Dini-convex at x̄ if ∀x ∈ S, φ(x) ≥ φ(x̄) + φ′(x̄, x− x̄).
(iii) φ is strictly Dini-convex at x̄ if ∀x ∈ S \ {x̄}, φ(x) > φ(x̄) + φ′(x̄, x− x̄).
(iv) φ is Dini-pseudoconvex at x̄ if ∀x ∈ S, φ(x) < φ(x̄)⇒ φ′(x̄, x− x̄) < 0.
(v) φ is strictly Dini-pseudoconvex at x̄ if

∀x ∈ S \ {x̄}, φ(x) ≤ φ(x̄)⇒ φ′(x̄, x− x̄) < 0.

(vi) φ is Dini-quasiconvex at x̄ if ∀x ∈ S, φ(x) ≤ φ(x̄)⇒ φ′(x̄, x− x̄) ≤ 0.
(vii) φ is Dini-linearlike at x̄ if ∀x ∈ S, φ(x) = φ(x̄) + φ′(x̄, x− x̄).

(viii) φ is quasilinear, Dini-pseudolinear or Dini-quasilinear at x̄, if φ and−φ are quasiconvex, Dini-pseudoconvex
or Dini-quasiconvex at x̄, resp.

(ix) φ is quasiconvex on S if φ is quasiconvex on each point of S. The other concepts here introduced can be
defined on a set in a similar way.

Remark 2.14 ([12, 14]). Let S ⊂ Rn be a convex set, φ : Rn → R and x̄ ∈ S. Some properties of generalized
convex functions are summarized as follows.

(i) Let φ be directional differentiable at x̄. If φ is quasiconvex at x̄ then φ is Dini-quasiconvex at x̄.
(ii) If φ is Dini-pseudoconvex at x̄ and continuous on S, then φ is quasiconvex at x̄.

(iii) If φ is Dini-quasiconvex on S and continuous on S, then φ is quasiconvex on S.
(iv) If φ is Dini-linearlike at x̄, then φ is Dini-pseudolinear and Dini-quasilinear at x̄.
(v) If φ is quasilinear and directional differentiable at x̄, then φ is is Dini-quasilinear at x̄.

(vi) If φ is Dini-convex at x̄ then φ is both Dini-pseudoconvex and Dini-quasiconvex at x̄.

Remark 2.15. Let S ⊂ Rn be a convex set, φ : Rn → R and x̄ ∈ S. Suppose that φ is tangentially convex at
x̄.

(i) If φ is Dini-convex at x̄ and x ∈ S, then

φ(x) ≥ φ(x̄) + 〈∂Tφ(x̄), x− x̄〉,
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where φ(x) ≥ φ(x̄) + 〈∂Tφ(x̄), x− x̄〉 denotes φ(x) ≥ φ(x̄) + 〈x∗, x− x̄〉 for all x∗ ∈ ∂Tφ(x̄).
(ii) If φ is strictly Dini-convex at x̄ and x ∈ S \ {x̄}, then

φ(x) > φ(x̄) + 〈∂Tφ(x̄), x− x̄〉.

(iii) If φ is Dini-pseudoconvex at x̄ and x ∈ S, φ(x) < φ(x̄), then

〈∂Tφ(x̄), x− x̄〉 < 0.

(iv) If φ is strictly Dini-pseudoconvex at x̄ and x ∈ S \ {x̄}, φ(x) ≤ φ(x̄), then

〈∂Tφ(x̄), x− x̄〉 < 0.

(v) If φ is Dini-quasiconvex at x̄ and x ∈ S, φ(x) ≤ φ(x̄), then

〈∂Tφ(x̄), x− x̄〉 ≤ 0.

Lemma 2.16 ([44]). Let {Ci|i = 1, . . . ,m} be a collection of nonempty convex sets in Rn and K = co

(
m⋃
i=1

Ci

)
.

Then,

riK =
⋃{

m∑
i=1

λiriCi |
m∑
i=1

λi = 1, λi > 0, i = 1, . . . ,m

}
.

Lemma 2.17 ([44]). Let C1 and C2 be non-empty convex sets in Rn. In order that there exist a hyperplane
separating C1 and C2 properly, it is necessary and sufficient that riC1 and riC2 have no point in common.

Lemma 2.18 ([44]). Let {Ct|t ∈ Γ} be an arbitrary collection of nonempty convex sets in Rn and K =

cone

( ⋃
t∈Γ

Ct

)
. Then, every nonzero vector of K can be expressed as a non-negative linear combination of

n or fewer linear independent vectors, each belonging to a different Ct.

Lemma 2.19 ([16]). Suppose that S, P are arbitrary (possibly infinite) index sets, as = a(s) = (a1(s), . . . , an(s))
maps S onto Rn, and so does ap. Suppose that the set co{as, s ∈ S} + cone{ap, p ∈ P} is closed. Then the
following statements are equivalent:

I :

{
〈as, x〉 < 0, S 6= ∅
〈ap, x〉 ≤ 0, p ∈ P has no solution x ∈ Rn;

II : 0 ∈ co{as, s ∈ S}+ cone{ap, p ∈ P}.

Lemma 2.20 ([19]). If S is a nonempty compact subset of Rn, then,

(i) coS is a compact set.
(ii) If 0 6∈ coS, then coneS is a closed cone.

3. Strong KKT optimality conditions

In this section, we consider the following multiobjective semi-infinite programming
(P) minRm

+
f(x) := (f1(x), . . . , fm(x))

s.t. gt(x) ≤ 0, t ∈ T, x ∈ Rn,
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where fi, i = 1, . . . ,m, gt, t ∈ T are functions from Rn to R. The index set T is an arbitrary nonempty set, not
necessary finite. Set I := {1, . . . ,m}, f := (f1, . . . , fm) and g := (gt)t∈T . Denote the feasible solution set of (P)

Ω := {x ∈ Rn | gt(x) ≤ 0, t ∈ T}.

Definition 3.1. For problem (P), let x̄ ∈ Ω.

(i) x̄ is a locally weakly efficient solution of (P), denoted by x̄ ∈ LWE(P), if there exists U ∈ U(x̄) such that

f(x̄)− f(x) 6∈ intRm+ , ∀x ∈ Ω ∩ U.

(ii) x̄ is a locally (Pareto) efficient solution of (P), denoted by x̄ ∈ LE(P), if there exists U ∈ U(x̄) such that

f(x̄)− f(x) 6∈ Rm+ \ {0}, ∀x ∈ Ω ∩ U.

If U = Rn, the word “locally” is omitted. In this case, the weakly efficient solution sets/the weakly efficient
solution sets are denoted by WE(P)/E(P). It is easy to check that LE(P) ⊂ LWE(P); see e.g. [35] for more
details.

Denote R|T |+ the collection of all the functions λ : T → R taking values λt’s positive only at finitely many
points of T , and equal to zero at the other points. For a given x̄ ∈ Ω, denote T (x̄) := {t ∈ T |gt(x̄) = 0} the
index set of all active constraints at x̄. The set of active constraint multipliers at x̄ ∈ Ω is

Λ(x̄) := {λ ∈ R|T |+ |λtgt(x̄) = 0, ∀t ∈ T}.

Notice that λ ∈ Λ(x̄) if there exists a finite index set I ⊂ T (x̄) such that λt > 0 for all t ∈ I and λt = 0 for all
t ∈ T \ I. For a given x̄ ∈ Ω, define the extension of constraints system of (P)

Qi :=
{
x ∈ Rn | fj(x) ≤ fj(x̄), gt(x) ≤ 0, j ∈ I \ {i}, t ∈ T

}
, i ∈ I.

Setting Q :=
⋂
i∈I

Qi, we have Q = Ω.

Definition 3.2. Let x̄ ∈ Ω.

(i) We say that the Assumption (A1) holds at x̄ ∈ Ω if fi, i ∈ I, is Hadamard differentiable at x̄, the function
fHi (x̄, .) : Rn → R is a convex function for all i ∈ I and gt, t ∈ T , are tangentially convex at x̄.

(ii) We say that the Assumption (A2) holds at x̄ ∈ Ω if fi, i ∈ I, and gt, t ∈ T , are tangentially convex at x̄.

3.1. Strong KKT optimality conditions for weakly efficient solution

Lemma 3.3. Let x̄ ∈ LWE(P).

(i) If (A1) holds, then
(⋃m

i=1 ∂
T fi(x̄)

)s ∩ T (Ω, x̄) = ∅.
(ii) If (A2) holds, then

(⋃m
i=1 ∂

T fi(x̄)
)s ∩ F (Ω, x̄) = ∅.

Proof. (i) Suppose to the contrary that there exists d ∈
(
m⋃
i=1

∂T fi(x̄)

)s
∩ T (Ω, x̄). It follows from d ∈(

m⋃
i=1

∂T fi(x̄)

)s
that

〈x∗, d〉 < 0, ∀x∗ ∈ ∂T fi(x̄), ∀i ∈ I.
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Since the function φ : ∂T fi(x̄) ⊂ Rn → R, defined by φ(x∗) = 〈x∗, d〉, is continuous on the compact set ∂T fi(x̄),
there exists a point x̄∗ ∈ ∂T fi(x̄) such that φ(x̄∗) = max

x∗∈∂T fi(x̄)
〈x∗, d〉. This implies that

f ′i(x̄, d) = max
x∗∈∂T fi(x̄)

〈x∗, d〉 = 〈x̄∗, d〉 < 0, ∀i ∈ I. (3.1)

By d ∈ T (Ω, x̄), there exist τk ↓ 0 and dk → d such that x̄+ τkdk ∈ Ω for all k. Since x̄ ∈ LWE(P), there exists,
taking subsequence if necessary, an index i0 ∈ I such that

f ′i0(x̄, d) = fHi0 (x̄, d) = lim
k→∞

f(x̄+ τkdk)− f(x̄)

τk
≥ 0,

which contradicts (3.1).

(ii) Reasoning by contraposition, assume the existence of d ∈
(
m⋃
i=1

∂T fi(x̄)

)s
∩ F (Ω, x̄). Hence, 〈x∗, d〉 <

0, ∀x∗ ∈ ∂T fi(x̄), ∀i ∈ I. Since the function φ : ∂T fi(x̄) ⊂ Rn → R, defined by φ(x∗) = 〈x∗, d〉, is con-
tinuous on the compact set ∂T fi(x̄), there exists a point x̄∗ ∈ ∂T fi(x̄) such that φ(x̄∗) = max

x∗∈∂T fi(x̄)
〈x∗, d〉. This

shows that

f ′i(x̄, d) = max
x∗∈∂T fi(x̄)

〈x∗, d〉 = 〈x̄∗, d〉 < 0, ∀i ∈ I. (3.2)

By d ∈ F (Ω, x̄), there exists τk ↓ 0 such that x̄ + τkd ∈ Ω for all k. Since x̄ ∈ LWE(P), there exists, taking
subsequence if necessary, an index i0 ∈ I such that

f ′i0(x̄, d) = lim
k→∞

f(x̄+ τkd)− f(x̄)

τk
≥ 0,

which contradicts (3.2).

Now, we establish some strong KKT necessary optimality conditions for locally weakly efficient solutions of
MSIP under the following regularity conditions (RCs):

(EARC) :

(
m⋃
i=1

∂T fi(x̄)

)s
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− ⊆ T (Ω, x̄),

(EFRC) :

(
m⋃
i=1

∂T fi(x̄)

)s
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− ⊆ clF (Ω, x̄),

(GCRC) :

 ⋃
j∈I\{i}

∂T fi(x̄)

s

∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

= ∅, ∀i ∈ I.
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Proposition 3.4. Let x̄ ∈ LWE(P). Suppose that (A1) holds at x̄. If (EARC) holds at x̄ and

cone
(⋃

t∈T (x̄) ∂
T gt(x̄)

)
is closed, then there exist α ∈ Rm+ with

∑m
i=1 αi = 1 and λ ∈ Λ(x̄) such that

0 ∈
m∑
i=1

αi∂
T fi(x̄) +

∑
t∈T

λt∂
T gt(x̄).

Moreover, if (GCRC) holds, then αi > 0 for all i ∈ I.

Proof. It follows from Lemma 3.3 (i) that

(
m⋃
i=1

∂T fi(x̄)

)s
∩ T (Ω, x̄) = ∅. (3.3)

The above equation together with (EARC) implies that

(
m⋃
i=1

∂T fi(x̄)

)s
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− ⊆ ( m⋃
i=1

∂T fi(x̄)

)s
∩ T (Ω, x̄) = ∅. (3.4)

Hence,

(
co

m⋃
i=1

∂T fi(x̄)

)s
∩

cone
⋃

t∈T (x̄)

∂T gt(x̄)

− =

(
m⋃
i=1

∂T fi(x̄)

)s
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− = ∅.

Now, we prove that

(
co

m⋃
i=1

∂T fi(x̄)

)
∩

−cone
⋃

t∈T (x̄)

∂T gt(x̄)

 6= ∅. (3.5)

Suppose to the contrary that (3.5) does not hold. Since co
m⋃
i=1

∂T fi(x̄) is a nonempty compact set and

−cone
⋃

t∈T (x̄)

∂T gt(x̄) is a closed convex cone, by the strong separation theorem, there exists x ∈ Rn such that


〈x∗, x〉 < 0, ∀x∗ ∈ co

m⋃
i=1

∂T fi(x̄),

〈x∗, x〉 ≥ 0, ∀x∗ ∈ −cone
⋃

t∈T (x̄)

∂T gt(x̄).

This yields that

x ∈

(
co

m⋃
i=1

∂T fi(x̄)

)s
∩

cone
⋃

t∈T (x̄)

∂T gt(x̄)

− ,
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which contradicts (3.4). Therefore, (3.5) holds, leading to

0 ∈ co

m⋃
i=1

∂T fi(x̄) + cone
⋃

t∈T (x̄)

∂T gt(x̄).

It follows from the above inclusion and Lemma 2.18 that there exists α ∈ Rm+ with
∑m
i=1 αi = 1, λ ∈ Λ(x̄),

x∗i ∈ ∂T fi(x̄) and y∗j ∈ ∂T gj(x̄) with (i, j) ∈ I × J , where J is a finite subset of T (x̄), such that

m∑
i=1

αix
∗
i +

∑
j∈J

λjy
∗
j = 0. (3.6)

Suppose to the contrary that αi = 0 for some i ∈ I. As (GCRC) holds, there exists u such that{
〈x∗j , u〉 < 0, j ∈ I \ {i},
〈y∗t , u〉 < 0, t ∈ T (x̄).

The above inequalities together with (3.6) deduces that

0 =

m∑
i=1

αi〈x∗i , u〉+
∑
j∈J

λj〈y∗j , u〉 < 0,

which is absurd. Hence, αi > 0,∀i ∈ I and the conclusion is obtained.

Proposition 3.5. Let x̄ ∈ LWE(P). Suppose that (A2) holds at x̄. If (EFRC) holds at x̄ and

cone
(⋃

t∈T (x̄) ∂
T gt(x̄)

)
is closed, then there exist α ∈ Rm+ with

∑m
i=1 αi = 1 and 2λ ∈ Λ(x̄) such that

0 ∈
m∑
i=1

αi∂
T fi(x̄) +

∑
t∈T

λt∂
T gt(x̄).

Moreover, if (GCRC) holds, then αi > 0 for all i ∈ I.

Proof. It follows from Lemma 3.3 (ii) that(
m⋃
i=1

∂T fi(x̄)

)s
∩ F (Ω, x̄) = ∅. (3.7)

This clearly leads that

int

((
m⋃
i=1

∂T fi(x̄)

)s)
∩ clF (Ω, x̄) =

(
m⋃
i=1

∂T fi(x̄)

)s
∩ clF (Ω, x̄) = ∅.

The above equation together with (EFRC) ensures that

(
m⋃
i=1

∂T fi(x̄)

)s
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− ⊆ ( m⋃
i=1

∂T fi(x̄)

)s
∩ clF (Ω, x̄) = ∅.
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The proof is continued just as in the proof of Proposition 3.4.

Example 3.6. Let n = 2, T = [0, 1] and f : R2 → R, gt : R2 → R be defined as

f1(x) =

{
x3
1

x2
− x1, if x 6= 0,

0, if x1 = 0 or x2 = 0,
f2(x) = −2x1, gt(x) = x2 − t, t ∈ T.

Then, Ω = {x ∈ R2 | x2 ≤ 0} and for x̄ = (0, 0) ∈ Ω, one has

∂T f1(x̄) = {(−1, 0)}, ∂T f2(x̄) = {(−2, 0)}, T (x̄) = {0},
⋃

t∈T (x̄)

∂T gt(x̄) = {(0, 1)}.

Hence, by some calculations, we have clF (Ω, x̄) = F (Ω, x̄) = {x ∈ R2 | x2 ≤ 0},

 ⋃
j∈I\{i}

∂T fj(x̄)

s

= intR+ × R, i ∈ I = {1, 2},

(
2⋃
i=1

∂T fi(x̄)

)s
= intR+ × R,

 ⋃
t∈T (x̄)

∂T gt(x̄)

− = R× (−R+),

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

= R× (−intR+).

Thus, cone
⋃

t∈T (x̄)

∂T gt(x̄) is closed and (EFRC) holds at x̄. Moreover,

 ⋃
j∈I\{i}

∂T fi(x̄)

s

∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

= ∅, ∀i ∈ I,

which justifies that (GCRC) holds. It is easy to check that there are no α ∈ intR2
+ (or α ∈ R2

+) with α1 +α2 = 1
and λ ∈ Λ(x̄) such that

(0, 0) ∈ α1(−2, 0) + α2(−1, 0) +
∑
t∈T

λt∂
T gt(x̄) = α1(−2, 0) + α2(−1, 0) + λ0(0, 2).

Hence, Proposition 3.5 asserts that x̄ is not a locally weakly efficient solution of (P). Since f1 is not locally
Lipschitz at x̄, Theorem 3.1 in [4, 5], Theorem 6 in [2], Theorem 3.4 in [27] and Theorem 4 in [26] cannot be
used to reject x̄.

Remark 3.7. Note that the tangential subdifferential is also an upper regular convexificators, see [7, 20, 25].
The convexificators were used to investigate the optimality conditions for SIP in [28, 40]. Recently, the KKT
conditions for (weakly) efficient solutions of a nonsmooth MSIP utilizing convexificators have been established
in [24]. However, our approach in this paper is different from that of [24]. Moreover, we also consider the strong
KKT conditions for (weakly) efficient solutions of a nonsmooth MSIP, which were not investigated in [24].
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3.2. Strong KKT optimality conditions for efficient solution

Lemma 3.8. Let x̄ ∈ LE(P). Suppose that (A1) holds at x̄. Then,(
m⋃
i=1

∂T fi(x̄)s

)
∩

(
m⋂
i=1

T (Qi, x̄)

)
= ∅.

Proof. It suffices only to prove that

(∂T fi(x̄))s ∩ T (Qi, x̄) = ∅, ∀i ∈ I.

Suppose to the contrary that there exist i0 ∈ I and a vector d such that

d ∈ (∂T fi0(x̄))s ∩ T (Qi0 , x̄). (3.8)

Since d ∈ (∂T fi0(x̄))s, one has 〈x∗, d〉 < 0,∀x∗ ∈ ∂T fi0(x̄). This gives us the inequality

f ′i0(x̄, d) = max
x∗∈∂T fi0 (x̄)

〈x∗, d〉 < 0. (3.9)

As d ∈ T (Qi0 , x̄), there exist τk ↓ 0, dk → d such that x̄+ τkdk ∈ Qi0 for all k, i.e.,{
fi(x̄+ τkdk) ≤ fi(x̄), ∀i ∈ I \ {i0},
x̄+ τkdk ∈ Ω, ∀k. (3.10)

Moreover, it follows from (3.9) that

lim
k→∞

fi0(x̄+ τkdk)− fi0(x̄)

τk
= fHi0 (x̄, d) = f ′i0(x̄, d) < 0.

This derives that, for k large enough,

fi0(x̄+ τkdk) < fi0(x̄),

which together with (3.10) contradicts the efficiency of x̄.

Now, we establish some strong KKT necessary optimality conditions for locally efficient solutions of MSIP
under the following regularity conditions:

(GARC) :

(
m⋃
i=1

∂T fi(x̄)

)−
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− ⊆ m⋂
i=1

T (Qi, x̄),

(GGRC) :

(
m⋃
i=1

∂T fi(x̄)

)−
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− ⊆ m⋂
i=1

cl coT (Qi, x̄).
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Lemma 3.9. Suppose that (A1)and (GARC) holds at x̄. If x̄ ∈ LE(P), then for each i ∈ I, the following system
has no solution d ∈ Rn:  〈∂

T fi(x̄), d〉 < 0,
〈∂T fj(x̄), d〉 ≤ 0, ∀j ∈ I \ {i},
〈∂T gt(x̄), d〉 ≤ 0, ∀t ∈ T (x̄).

(3.11)

Proof. Reasoning by contraposition, suppose the existence of i0 ∈ I such that (3.11) has a solution d ∈ Rn.

Then, we get from (3.11) that d ∈
(
m⋃
i=1

∂T fi(x̄)

)−
∩

( ⋃
t∈T (x̄)

∂T gt(x̄)

)−
. Since (GARC) holds, for any i ∈ I,

one has d ∈ T (Qi, x̄). Hence, for i0 ∈ I, there exist τk ↓ 0, dk → d such that x̄+ τkdk ∈ Qi0 for all k, i.e.,{
fi(x̄+ τkdk) ≤ fi(x̄), ∀i ∈ I \ {i0},∀k,
x̄+ τkdk ∈ Ω, ∀k. (3.12)

It follows from (3.11) with i = i0 that

fHi (x̄, d) = f ′i0(x̄, d) = max
x∗∈∂T fi0 (x̄)

〈x∗, d〉 < 0.

Therefore,

fHi0 (x̄, d) = lim
k→∞

f(x̄+ τkdk)− f(x̄)

τk
< 0,

and thus, for k large enough,

fi0(x̄+ τkdk) < fi0(x̄).

The above inequality together with (3.12) contradicts local efficiency of x̄.

Proposition 3.10. Let x̄ ∈ LE(P). Suppose that (A1) and (GARC) hold at x̄. Let one of the following conditions
hold

(i) (C1) :

(
m⋃
i=1

∂T fi(x̄)

)−
\ {0} ⊆

m⋃
i=1

(∂T fi(x̄))s,

(ii) (C2) : For each i ∈ I, the set

Di := ∂T fi(x̄) + cone

 ⋃
j∈I\{i}

∂T fj(x̄) ∪
⋃

t∈T (x̄)

∂T gt(x̄)


are closed.

Then, there exist α ∈ intRm+ and λ ∈ Λ(x̄) such that

0 ∈
m∑
i=1

αi∂
T fi(x̄) +

∑
t∈T

λt∂
T gt(x̄).
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Proof. (i) Let (C1) hold. We first prove that

0 ∈ ri

(
co

m⋃
i=1

∂MP fi(x̄)

)
+ cone

⋃
t∈T (x̄)

∂T gt(x̄). (3.13)

Suppose to the contrary that (3.13) does not hold. Then,

ri

(
co

m⋃
i=1

∂T fi(x̄)

)
∩

−cone
⋃

t∈T (x̄)

∂T gt(x̄)

 = ∅.

Thus, by Lemma 2.17, there exists d ∈ Rn \ {0} such that

d ∈

(
co

m⋃
i=1

∂T fi(x̄)

)−
∩

cone
⋃

t∈T (x̄)

∂T gt(x̄)

− =

(
m⋃
i=1

∂T fi(x̄)

)−
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− ,
which together with (C1) and (GARC) contradicts Lemma 3.8. Hence, the validity of (3.13) yields. Then, it
follows from (3.13), Lemmas 2.16 and 2.18 that there exist α ∈ intRm+ with

∑m
i=1 αi = 1 and λ ∈ Λ(x̄) such that

0 ∈
m∑
i=1

αi∂
T fi(x̄) +

∑
t∈T

λt∂
T gt(x̄).

(ii) Let (C2) hold. Employing Lemma 3.9, one gets that, for each i ∈ I, the following system has no solution 〈∂
T fi(x̄), d〉 < 0,
〈∂T fj(x̄), d〉 ≤ 0, ∀j ∈ I \ {i},
〈∂T gt(x̄), d〉 ≤ 0, ∀t ∈ T (x̄).

Hence, by applying Lemma 2.19 with the sets S = ∂T fi(x̄) = co∂T fi(x̄) and P =
⋃

j∈I\{i}
∂T fj(x̄) ∪⋃

t∈T (x̄)

∂T gt(x̄), one has, for each i ∈ I,

0 ∈ co∂T fi(x̄) + cone

 ⋃
j∈I\{i}

∂T fj(x̄) ∪
⋃

t∈T (x̄)

∂T gt(x̄)

 .

Now, according to Lemma 2.18, there exist αij ≥ 0, j ∈ I \ {i} and λi ∈ Λ(x̄) such that

0 ∈ ∂T fi(x̄) +
∑

j∈I\{i}

αij∂
T fj(x̄) +

∑
t∈T

λit∂
T gt(x̄), ∀i ∈ I.

Consequently,

0 ∈
m∑
i=1

∂T fi(x̄) +
∑

j∈I\{i}

αij∂
T fj(x̄) +

∑
t∈T

λit∂
T gt(x̄)

 .
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Setting αi := 1+
∑

j∈I\{i}
αij , i = 1, . . . ,m and λt :=

m∑
i=1

λit, t ∈ T , we arrive at the existence of αi > 0 and λ ∈ Λ(x̄)

such that

0 ∈
m∑
i=1

αi∂
T fi(x̄) +

∑
t∈T

λt∂
T gt(x̄).

This completes the proof.

The following examples show that the condition (C1) or (C2) is essential.

Example 3.11. Let T = [0, 1], D = {a ∈ R2 | −1 ≤ a1 ≤ −a2
2,−1 ≤ a2 ≤ 1} and fi : R2 → R, i = 1, 2, gt :

R2 → R, t ∈ T be defined as follows

f1(x) = x2, f2(x) = σD(x) = sup
a∈D
〈a, x〉, gt(x) = −x2 − t, t ∈ T.

Then, Ω = {x ∈ R2 | x2 ≥ 0} and, for x̄ = (0, 0) ∈ Ω, one has

Q1 = R+ × {0}, Q2 = R× R+, ∂
T f1(x) = {(0,−2)}, ∂T f2(x) = D,

T (x̄) = {0},
⋃

t∈T (x̄)

∂T gt(x) = {(0,−1)}.

Hence, by some calculations, we get that T (Q1, x̄) = Q1, T (Q2, x̄) = Q2 and(
2⋃
i=1

∂T fi(x)

)−
= R+ × {0}, (∂T f1(x̄))s = R× intR+,

(∂T f1(x̄))s = ∅,

 ⋃
t∈T (x̄)

∂T gt(x)

− = R× R+.

Thus, (GARC) holds at x̄. However, (C1) does not hold at x̄ since

(1, 0) ∈

(
2⋃
i=1

∂T fi(x̄)

)−
\ {0}, (1, 0) 6∈

2⋃
i=1

(∂T fi(x̄))s.

It is easy to check that there are no α ∈ intR2
+ with α1 + α2 = 1 and λ ∈ Λ(x̄) such that

(0, 0) ∈ α1(0,−2) + α2D +
∑
t∈T

λt∂
T gt(x̄) = α1(0,−2) + α2D + λ0(0,−1).

Example 3.12. Let T = N = {1, 2, . . .}, fi : R2 → R, i = 1, 2, and gt : R2 → R, t ∈ T, be defined as follows

f1(x1, x2) = 2x1, f2(x1, x2) = x1, gt(x1, x2) = sup
(a1,a2)∈Dt

a1x1 + a2x2,

where Dt = co{(−ξ,−ξt+1) | 0 ≤ ξ ≤ 1}.
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Then, Ω = {x ∈ R2 | x1 ≥ 0, x1 + x2 ≥ 0} and, for x̄ = (0, 0) ∈ Ω, we have

Q1 = Q2 = {x ∈ R2 | x1 = 0, x2 ≥ 0}, f ′1(x̄, d) = 2d, f ′2(x̄, d) = d, ∂T f1(x̄) = {(2, 0)},

∂T f2(x̄) = {(1, 0)}, T (x̄) = N, g′t(x̄, d) = gt(d), ∂T gt(x̄) = Dt, ∀t ∈ T (x̄).

Hence,

(
2⋃
i=1

∂T fi(x̄)

)−
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− = {x ∈ R2 | x1 = 0, x2 ≥ 0},

T (Q1, x̄) = T (Q1, x̄) = {x ∈ R2 | x1 = 0, x2 ≥ 0},

which confirm (GARC). However,

D1 = R× (−R+) \ {(x1, 0), x1 < 2}, D2 = R× (−R+) \ {(x1, 0), x1 < 1},

and hence, D1, D2 are not closed. We can check that x̄ is a locally efficient solution of (P) and there is no
α ∈ intR2

+ with α1 + α2 = 1 and λ ∈ Λ(x̄) such that

(0, 0) ∈ α1(2, 0) + α2(1, 0) +
∑
t∈T

λtDt.

Lemma 3.13. Suppose that x̄ ∈ LE(P), (A2) and (GGRC) hold at x̄. Assume further that, for each i ∈ I,

(i) fj , j ∈ I \ {i}, gt, t ∈ T (x̄) are quasiconvex at x̄ and −fi is quasiconvex at x̄.
(ii) f ′i(x̄, .) is a linear function on Rn.

Then, for each i ∈ I, the following system has no solution d ∈ Rn:

 〈∂
T fi(x̄), d〉 < 0,
〈∂T fj(x̄), d〉 ≤ 0, ∀j ∈ I \ {i},
〈∂T gt(x̄), d〉 ≤ 0, ∀t ∈ T (x̄).

(3.14)

Proof. Reasoning ad absurdum, suppose the existence of i0 ∈ I such that (3.15) has a solution d ∈ Rn. This
implies that


f ′i0(x̄, d) = max

x∗∈∂T fi0 (x̄)
〈x∗, d〉 < 0,

f ′j(x̄, d) = max
x∗∈∂T fj(x̄)

〈x∗, d〉 ≤ 0, ∀j ∈ I \ {i},

g′T (x̄, d) = max
x∗∈∂T gt(x̄)

〈x∗, d〉 ≤ 0, ∀t ∈ T (x̄).

(3.15)
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Moreover, (3.15) deduces that d ∈
(
m⋃
i=1

∂T fi(x̄)

)−
∩

( ⋃
t∈T (x̄)

∂T gt(x̄)

)−
. Since (GGRC) holds, for any i ∈ I,

one has d ∈ cl coT (Qi, x̄). Then, there exists a sequence {dp} in coT (Qi, x̄) such that

lim
p→∞

dp = d, (3.16)

and, for any dp, p = 1, 2, . . ., there exist numbers kp, λpl ≥ 0 and dpl ∈ T (Qi, x̄), where l = 1, . . . , kp, such that

kp∑
l=1

λpl = 1,

kp∑
l=1

λpldpl = dp.

We get from dpl ∈ T (Qi, x̄) the existence of τkpl ↓ 0 and xkpl ⊂ Qi such that

lim
k→∞

xkpl = x̄ and lim
k→∞

xkpl − x̄
τkpl

= dpl. (3.17)

Setting dkpl :=
xk
pl−x̄
τk
pl

, we deduce from xkpl ⊂ Qi that, for any k,

fj(x
k
pl) = fj(x̄+ τkpld

k
pl) ≤ fj(x̄), ∀j ∈ I \ {i}, (3.18)

gt(x
k
pl) = gt(x̄+ τkpld

k
pl) ≤ gt(x̄), ∀t ∈ T. (3.19)

Let i0 ∈ I. As x ∈ LP(E), for any k, one gets

fi0(xkpl) = fi0(x̄+ +τkpld
k
pl) ≥ fi0(x̄). (3.20)

Combining (3.18)–(3.20) and the assumption (i), we obtain

f ′i0(x̄, dkpl) ≥ 0, (3.21)

f ′j(x̄, d
k
pl) ≤ 0, ∀k ∈ I \ {i0}, (3.22)

g′t(x̄, d
k
pl) ≤ 0, ∀t ∈ T (x̄). (3.23)

Hence, we deduce from (3.16)–(3.18) and the assumption (ii) that

f ′i0(x̄, d) ≥ 0. (3.24)

Also by (3.16)–(3.18), (3.22), (3.23) and (A2), it follows that

f ′j(x̄, d) ≤ 0, ∀j ∈ I \ {i0}, (3.25)

g′t(x̄, d) ≤ 0, ∀t ∈ T (x̄). (3.26)

Thus, (3.24)–(3.26) contradicts (3.14). Hence, the conclusion is verified.

Proposition 3.14. Let x̄ ∈ LP(E). Suppose that (A2) and (GGRC) hold at x̄. Assume further that, for each
i ∈ I,

(i) fj , j ∈ I \ {i}, gt, t ∈ T (x̄) are quasiconvex at x̄ and −fi is quasiconvex at x̄.
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(ii) f ′i(x̄, .) is a linear function on Rn,

and, for each i ∈ I, the sets

Di := ∂T fi(x̄) + cone

 ⋃
j∈I\{i}

∂T fj(x̄) ∪
⋃

t∈T (x̄)

∂T gt(x̄)


are closed. Then, there exist α ∈ intRm+ and λ ∈ Λ(x̄) such that

0 ∈
m∑
i=1

αi∂
T fi(x̄) +

∑
t∈T

λt∂
T gt(x̄).

Proof. The proof is similar to the proof of Proposition 3.10 (ii).

The following example shows that the closedness of Di, i ∈ I, can not be dropped.

Example 3.15. Let T = N = {1, 2, . . .}, fi : R2 → R and gt : R2 → R, t ∈ T be defined as follows

f1(x1, x2) = x1, f2(x1, x2) = 2x1, gt(x1, x2) = sup
(a1,a2)∈Dt

a1x1 + a2x2,

where Dt = {a ∈ R2 | a2
1 + a2

2 + 2ta2 ≤ 0, a1 ≤ 0}.
Then, Ω = {x ∈ R2 | x1 ≥ 0, x2 ≥ 0} and, for x̄ = (0, 0) ∈ Ω, we have

Q1 = Q2 = {x ∈ R2 | x1 = 0, x2 ≥ 0}, f ′1(x̄, d) = 2d, f ′2(x̄, d) = d,

∂T f1(x̄) = {(1, 0)}, ∂T f2(x̄) = {(2, 0)}, T (x̄) = N,
g′t(x̄, d) = gt(d), ∂T gt(x̄) = Dt, ∀t ∈ T (x̄).

Hence,

(
2⋃
i=1

∂T fi(x̄)

)−
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− = {x ∈ R2 | x1 = 0, x2 ≥ 0},

T (Q1, x̄) = T (Q1, x̄) = {x ∈ R2 | x1 = 0, x2 ≥ 0}.

Thus, (GGRC) holds. Moreover, we can justify that assumptions (i), (ii) in Proposition 3.14 are fulfilled.
However,

D1 = R× (−R+) \ {(x1, 0), x1 < 1}, D2 = R× (−R+) \ {(x1, 0), x1 < 2},

and hence, D1, D2 are not closed. We can check that x̄ is a locally efficient solution of (P) and there is no
α ∈ intR2

+ with α1 + α2 = 1 and λ ∈ Λ(x̄) such that

(0, 0) ∈ α1(2, 0) + α2(1, 0) +
∑
t∈T

λtDt.
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4. Regularity conditions

In this section, we investigate some sufficient conditions for regularity conditions in Section 2.

Definition 4.1. Suppose that (A2) holds and G(x) = sup
t∈T

gt(x) for all x ∈ Ω. The Pshenichnyi–Levin–Valadier

(PLV) condition holds at x̄ ∈ Ω if G(.) is tangential convex at x̄ and

∂TG(x̄) ⊂ co

 ⋃
t∈T (x̄)

∂T gt(x̄)

 .

Note that (PLV) conditions were proposed in [34] for the convex semi-infinite system and in [26] for the
Lipschitz semi-infinite system. The following example illustrates that (PLV) condition does not hold in general.

Example 4.2. Let T = N, x̄ = 0 and gt : R→ R, t ∈ T, be defined by

gt(x) =


4x, t = 0,
3x− 1

k+1 , t = 2k − 1, k = 1, 2, . . .

5x− 1
k+2 , t = 2k, k = 1, 2, . . .

Then, Ω = (−∞, 0], T (x̄) = {0} and G(x) = max{3x, 5x}. Hence G is tangential convex at x̄ ∈ Ω. However,
(PLV) condition does not hold at x̄ since

∂TG(x̄) = [3, 5] 6⊂ co

 ⋃
t∈T (x̄)

∂T gt(x̄)

 = {4}.

Proposition 4.3 ([42]). Let x̄ ∈ Ω. If the following conditions satisfy:

(i) T is a compact set,
(ii) the function gt(x) is continuous jointly in both variables in Rn × T ,

(iii) for all d, gt(x̄+ λd) = gt(x̄) + λg′t(x̄, d) + γt(λ), where γt(λ)→ 0 uniformly in t when λ ↓ 0,

(iv) co

( ⋃
t∈T (x̄)

∂T gt(x̄)

)
is closed,

then, (PLV) holds at x̄.

Now, we present some regularity conditions in terms of tangential subdifferential.

Definition 4.4. Suppose that (A2) holds at x̄. We consider the following regularity conditions (with the
convention ∪α∈∅Xα = ∅).

(i) (CRC) :

(
m⋃
i=1

∂T fi(x̄)

)s
∩

( ⋃
t∈T (x̄)

∂T gt(x̄)

)s
= ∅.

(ii) (GCRC) :

( ⋃
j∈I\{i}

∂T fj(x̄)

)s
∩

( ⋃
t∈T (x̄)

∂T gt(x̄)

)s
= ∅, ∀i ∈ I.

(iii) (SRC) : fi, i ∈ I, gt, t ∈ T, are Dini-pseudoconvex at x̄ and there exists x̃ ∈ Rn such that

fi(x̃) < fi(x̄) ∀i ∈ I, gt(x̃) < 0 ∀t ∈ T (x̄).
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(iv) (GSRC) : fi, i ∈ I, gt, t ∈ T, are Dini-pseudoconvex at x̄ and for each i ∈ I, there exists x̃i ∈ Rn such that

fj(x̃) < fj(x̄) ∀j ∈ I \ {i}, gt(x̃i) < 0∀t ∈ T (x̄).

(v) (EZRC) :

(
m⋃
i=1

∂T fi(x̄)

)s
∩

( ⋃
t∈T (x̄)

∂T gt(x̄)

)s
⊆ clD(Ω, x̄).

(vi) (GZRC) :

(
m⋃
i=1

∂T fi(x̄)

)−
∩

( ⋃
t∈T (x̄)

∂T gt(x̄)

)s
⊆

m⋂
i=1

D(Qi, x̄).

(vii) (EKTRC) :

(
m⋃
i=1

∂T fi(x̄)

)−
∩

( ⋃
t∈T (x̄)

∂T gt(x̄)

)s
⊆ A(Ω, x̄).

(viii) (GFRC) :

(
m⋃
i=1

∂T fi(x̄)

)−
∩

( ⋃
t∈T (x̄)

∂T gt(x̄)

)s
⊆

m⋂
i=1

clF (Qi, x̄).

Proposition 4.5. Suppose that (A2) holds at x̄ ∈ Ω. The following implications are verified.

(i) (SRC)⇒ (GSRC)⇒ (GCRC) and (SRC)⇒ (CRC)⇒ (GCRC).
(ii) (CRC) + (PLV)⇒ (EZRC) and (GCRC) + (PLV)⇒ (GZRC).

(iii) (EZRC)⇒ (EFRC)⇒ (EARC) and (EZRC)⇒ (EKTRC)⇒ (EARC).
(iv) (GZRC)⇒ (GFRC)⇒ (GARC)⇒ (GGRC).

Proof. (i) (SRC)⇒ (GSRC). The proof is trivival.
(GSRC) ⇒ (GCRC). Suppose that (GSRC) holds. Then, for each i ∈ I, there exists ?x̃i ∈ Rn such that

fj(x̃) < fj(x̄) ∀j ∈ I \ {i}, gt(x̃i) < 0 ∀t ∈ T (x̄). Since fi, i ∈ I, gt, t ∈ T, are Dini-pseudoconvex at x̄, we deduce
from the above inequalities that

〈∂T fj(x̄), x̃i − x̄〉 < 0 ∀j ∈ I \ {i}, 〈∂Tt g(x̄), x̃i − x̄〉 < 0 ∀t ∈ T (x̄).

Setting di := x̃i − x̄, then for each i ∈ I,

di ∈

 ⋃
j∈I\{i}

∂T fj(x̄)

s

∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

.

(SRC)⇒ (CRC). The proof is similar to the proof of (GSRC)⇒ (GCRC).

(CRC)⇒ (GCRC). Since

(
m⋃
i=1

∂T fi(x̄)

)s
⊂

( ⋃
j∈I\{i}

∂T fj(x̄)

)s
, the conclusion is obtained.

(ii) (CRC) + (PLV)⇒ (EZRC). Suppose that (CRC) holds. Then, ⋃
t∈T (x̄)

∂T gt(x̄)

s

⊂

(
m⋃
i=1

∂T fi(x̄)

)s
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

6= ∅.

Combining the above relation with (PLV) give us the existence of d such that

d ∈

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

=

co
⋃

t∈T (x̄)

∂T gt(x̄)

s

⊂ (∂TG(x̄))s.
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Hence, G′(x̄, d) < 0, and consequently, there exists δ > 0 such that

G(x̄+ τd) < G(x̄), ∀τ ∈ (0, δ).

This leads that, for all t ∈ T and for all τ ∈ (0, δ), one has gt(x̄+ τd) < 0. Hence, x̄+ τd ∈ Ω for all τ ∈ (0, δ),
i.e., x̄+ τd ∈ D(Ω, x̄). This implies that

(
m⋃
i=1

∂T fi(x̄)

)s
∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

− =

(
m⋃
i=1

∂T fi(x̄)

)s
∩ cl

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

⊂ clD(Ω, x̄).

(GCRC) + (PLV)⇒ (GZRC). Suppose that (GCRC) holds. Then, ⋃
t∈T (x̄)

∂T gt(x̄)

s

⊂

 ⋃
j∈I\{i}

∂T fj(x̄)

s

∩

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

6= ∅.

It follows from (PLV) and the above relation that there exists d such that

d ∈

 ⋃
j∈I\{i}

∂T fj(x̄)

s

, (4.1)

d ∈

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

=

co
⋃

t∈T (x̄)

∂T gt(x̄)

s

⊂ (∂TG(x̄))s.

Hence, G′(x̄, d) < 0, and consequently, there exists δ > 0 such that

G(x̄+ τd) < G(x̄), ∀τ ∈ (0, δ).

This ensures that, for all t ∈ T and for all τ ∈ (0, δ), one has gt(x̄ + τd) < 0. Moreover, it follows from (4.1)
that 〈∂T fj(x̄), d〉 < 0, ∀j ∈ I \ {i}, and hence, f ′j(x̄, d) < 0,∀j ∈ I \ {i}. This allows us to justify the existence
of δ′ > 0 such that

fj(x̄+ τd) < fj(x̄), ∀τ ∈ (0, δ′), ∀j ∈ I \ {i}.

Setting δ̄ := min{δ, δ′}, one has, for all τ ∈ (0, δ̄),{
gt(x̄+ τd) < 0, ∀t ∈ T,
fj(x̄+ τd) < fj(x̄), ∀j ∈ I \ {i},

i.e., x̄+ τd ∈ Qi for all τ ∈ (0, δ̄), or equivalently, d ∈ D(Qi, x̄). This verifies that, for all i ∈ I,

(
m⋃
i=1

∂T fi(x̄)

)−
⊂

 ⋃
j∈I\{i}

∂T fj(x̄)

− = cl

 ⋃
j∈I\{i}

∂T fj(x̄)

s

⊂ clD(Qi, x̄),
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 ⋃
t∈T (x̄)

∂T gt(x̄)

− = cl

 ⋃
t∈T (x̄)

∂T gt(x̄)

s

⊂ clD(Qi, x̄).

So, (GZRC) holds.
(iv) Since clD(Qi, x̄) ⊂ clF (Qi, x̄) ⊂ T (Qi, x̄) ⊂ cl coT (Qi, x̄),∀ ∈ I, the conclusion is obtained.

Remark 4.6. Characterizing properly efficient solutions and robust solutions, see e.g. [9–11, 30, 49], in terms
of tangential subdifferential can be worth studying, as a future research direction. Notice that proper efficiency
and robust efficiency are very important practically, because the former is concerning the boundedness of the
trade-offs and the later refers to stability of the solution against changes in the problem data.
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