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ε-EFFICIENT SOLUTIONS IN SEMI-INFINITE MULTIOBJECTIVE

OPTIMIZATION

Tatiana Shitkovskaya and Do Sang Kim*

Abstract. In this paper we apply some tools of nonsmooth analysis and scalarization method due to
Chankong–Haimes to find ε-efficient solutions of semi-infinite multiobjective optimization problems
(MP). We establish ε-optimality conditions of Karush–Kuhn–Tucker (KKT) type under Farkas–
Minkowski (FM) constraint qualification by using ε-subdifferential concept. In addition we propose
mixed type dual problem (including dual problems of Wolfe and Mond–Weir types as special cases) for
ε-efficient solutions and investigate relationship between mentioned (MP) and its dual problem as well
as establish several ε-duality theorems.
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1. Introduction

Multiobjective optimization is a process of simultaneous optimization of more than one objective function in
the given domain. This discipline along with decision-making theory has been applied in such fields of science as
engineering, economics, logistics and etc where optimal decisions need to be taken in the presence of trade-offs
between two or more conflicting objectives. It is reasonable to use scalarization methods for finding solutions
of multiobjective problems, for example, see Chankong and Haimes [1] and references therein. Our aim of this
paper is to establish results on ε-optimality conditions and ε-duality theorems for a multiobjective nonconvex
optimization problem which has an infinite number of constraints by solving the corresponding scalar problem.

First, ε-optimality conditions for multiobjective problems have been studied by Kutateladze [10] and inde-
pendently by Loridan [14]. Later, ε-solutions in vector optimization problems got a keen interest by a lot of
authors, for example, see [5, 11, 13]. In this paper we explore ε-efficient solutions by establishing ε-optimality
conditions. This concept was extended from the one for scalar optimization problem given by Strodiot et al. [17].
Later, Liu [13] considered multiobjective programming problems by using well-known weighted-sum scalariza-
tion method. However, the mentioned method is used for exploring properly efficient solutions but not efficient
ones. Motivated by this fact, we suggest another scalarization method to establish ε-optimality conditions for
multiobjective optimization problem by providing relationship between its ε-efficient solution and corresponding
εj-optimal solution and using this equivalence. Since, one of the main tools for establishing ε-optimality condi-
tions is ε-subdifferential concept, we would like to refer the reader to Dhara and Dutta [3] and Hiriart-Urruty
[8] for better understanding.
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In more recent time optimization problems including infinite number of constraints have been studied by
several authors (see [2, 4, 6]). Moreover, ε-duality theorems of a class of nonconvex problems with an infinite
number of constraints were established in [16].

We now describe the contents of the paper. Logically, our results can be divided into two parts. In the first one,
we would like to propose ε-optimality conditions for semi-infinite multiobjective programming problems using
scalar problem due to Chankong and Haimes [1]. It should be mentioned that in spite the fact that Chankong–
Haimes scalarization method was described in 1983 in [1], there are not so many papers focused on it. Another
ε-sufficient optimality condition under generalized convexity assumption was also considered. Moreover, for our
semi-infinite programming problem we use Farkas–Minkowski constraint qualification described in [7] and, later,
extended in [4]. The second part of this paper is dedicated to ε-duality theorems for mixed type of Wolfe and
Mond–Weir types dual problem.

The paper is organized as follows. In Section 2, problem statement and main notions are described. Section 3
deduces ε-optimality conditions to semi-infinite multiobjective optimization problem, which are meant to be
our main result. Section 4 is devoted to describing duality relations. Namely, both weak and strong ε-duality
theorems for mixed type dual problem, including dual problems of Wolfe type and Mond–Weir type as special
cases (see [12, 15]) are considered. Finally, Section 5 provides conclusions in brief.

2. Preliminaries

Let us consider the following semi-infinite multiobjective optimization problem:

(MP) Minimize f(x) :=
(
f1(x), f2(x), . . . , fm(x)

)
subject to gt(x) 5 0, t ∈ T,

x ∈ C,

where fi(x) : Rn → R∪{+∞}, i ∈M := {1, 2, . . . ,m} and gt(x) : Rn → R∪{+∞}, t ∈ T (possible infinite) are
proper lower semiconscious functions (l.s.c.), and C is a closed convex subset of Rn. The feasible set of (MP) is
denoted by FM := {x ∈ C | gt(x) 5 0, t ∈ T}.

Due to Chankong–Haimes method for j ∈M and x̄ ∈ C we associated to (MP) the following scalar problem,

(Pj(x̄)) Minimize fj(x)
subject to fi(x) 5 fi(x̄), i ∈M j := M \ {j},

gt(x) 5 0, t ∈ T
x ∈ C.

For the problem

min{fj(x) | x ∈ C,Gt(x) 5 0, t ∈ T}

we define Gt as follows (with the assumption that T ∩M = ∅):

Gt(·) =

{
ft(·)− ft(x̄), t ∈M j ,
gt(·), t ∈ T, and T = T ∪M j . (2.1)

We now give some basic concepts and notions. The following linear space is used for semi-infinite programming
[6].

R(T ) := {λ = (λt)t∈T | λt = 0, for all t ∈ T but only finitely many λt 6= 0}.

With λ ∈ R(T ), its supporting set, T (λ) = {t ∈ T | λt 6= 0}, is a finite subset of T .
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The nonnegative cone of R(T ) is denoted by:

R(T )
+ = {λ = (λt)t∈T ∈ R(T ) | λt = 0, t ∈ T}.

With λ ∈ R(T ) and gt, t ∈ T , we understand that

∑
t∈T

λtgt =

{ ∑
t∈T (λ) λtgt, if T (λ) 6= ∅,

0, if T (λ) = ∅.

To establish ε-optimality conditions of KKT-type we need the following notions.

Definition 2.1. Let φ : Rn → R
⋃
{+∞} be a proper convex function. The ε-subdifferential of φ at x̄ ∈ dom φ

is the set ∂εφ(x̄) defined by

∂εφ(x̄) = {ξ ∈ Rn | φ(x) = φ(x̄)− ε+ 〈ξ, x− x̄〉, ∀x ∈ dom φ}.

In particular, if ε = 0, then ∂0φ = ∂φ.

Definition 2.2. Consider a function φ : Rn → R
⋃
{+∞}. The conjugate of φ, φ∗ : Rn → R

⋃
{+∞} is defined

as

φ∗(ξ) = sup
x∈Rn

{〈ξ, x〉 − φ(x)}.

The ε-subdifferential definition in term of conjugate function φ∗ of φ is as follows:

∂εφ(x̄) = {ξ ∈ Rn | φ∗(ξ) + φ(x̄) 5 〈ξ, x̄〉+ ε}.

Definition 2.3. The epigraph of a function φ : Rn → R
⋃
{+∞} is defined by

epi φ = {(x, r) ∈ Rn × R | φ(x) 5 r}.

It is worth to observe that if φ is a proper l.s.c. convex function and x̄ ∈ dom φ, then [9]

epi φ∗ =
⋃
ε=0

{(ξ, 〈ξ, x̄〉+ ε− φ(x̄)) | ξ ∈ ∂εφ(x̄)}.

Definition 2.4. Let C be a subset of Rn. A function f : Rn → R is said to be:

(i) convex at x ∈ C if

f(y)− f(x) = u〈y − x〉, u ∈ ∂f(x), y ∈ C.

And the function f is said to be convex on C if it is convex at every x ∈ C.
(ii) pseudoconvex at x ∈ C if

f(y) < f(x)⇒ u〈y − x〉 < 0, u ∈ ∂f(x), y ∈ C,

equivalently,

u〈y − x〉 = 0⇒ f(y) = f(x), u ∈ ∂f(x), y ∈ C.
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And the function f is said to be pseudoconvex on C if it is pseudoconvex at every x ∈ C. Moreover, the
function f is said to be strictly pseudoconvex at x ∈ C if

u〈y − x〉 = 0⇒ f(y) > f(x), u ∈ ∂f(x), y 6= x, y ∈ C.

(iii) quasiconvex at x ∈ C if

f(y) 5 f(x)⇒ u〈y − x〉 5 0, u ∈ ∂f(x), y ∈ C,

equivalently,

u〈y − x〉 > 0⇒ f(y) > f(x), u ∈ ∂f(x), y ∈ C.

And the function f is said to be quasiconvex on C if it is quasiconvex at every x ∈ C.

Minimization means obtaining efficient solutions in the following sense. A point x̄ ∈ FM is said to be an
efficient solution for (MP) if there is no x ∈ FM such that

fi(x) 5 fi(x̄), for all i ∈M.

with at least one strict inequality.
Let ε be an element of Rm+ . A point x̄ ∈ FM is said to be an ε-efficient solution for (MP) if there is no x ∈ FM

such that

fi(x) 5 fi(x̄)− εi, for all i ∈M.

with at least one strict inequality.

3. ε-Optimality conditions

Definition 3.1. The indicator function δK of a subset K ⊂ Rn is the function defined as follows:

δK =

{
0, if x ∈ K,
+∞, if x ∈ Rn\K.

Definition 3.2. Let C be a nonempty closed convex subset of Rn, ε > 0, x̄ ∈ C. The ε-normal set of C at x̄ is
the set

Nε(C; x̄) = {ξ ∈ Rn | 〈ξ, x− x̄〉 5 ε, ∀x ∈ C}.

If ε = 0, the ε-normal set reduces to the normal cone N(C; x̄) to C at x̄ that is

N(C; x̄) = {ξ ∈ Rn | 〈ξ, x− x̄〉 5 0, ∀x ∈ C}.

Let us define the following sets:

Si = {x ∈ Rn | fi − fi(x̄) 5 0}, for i ∈M j ,

St = {x ∈ Rn | gt(x) 5 0}, for t ∈ T.



ε-EFFICIENT SOLUTIONS IN SEMI-INFINITE MULTIOBJECTIVE OPTIMIZATION 1401

It is easy to check that

∂εδC(x̄) = Nε(C; x̄).

Using the indicator functions δi, δt, δC of the subsets Si, i ∈ M j , St, t ∈ T (v) and C we can rewrite our
problem (Pj(x̄)) as unconstrained problem P 0

j (x̄)) in the entire space Rn as follows:

(P0
j (x̄)) Minimize fj(x) +

∑
i∈Mj δSi

+
∑
t∈T (v) δSt

(x) + δC(x)

subject to x ∈ Rn.

We can obtain the following lemma for establishing ε-complementary slackness condition by using (Prop. 2.2.
in Strodiot et al. [17]) (possible since Gt is defined by (2.1)):

Lemma 3.3. Let ε = 0 and suppose f and g are convex functions. Let x̄ ∈ S =
(
∩t∈T (v) St

)
∩
(
∩i∈Mj Si

)
and

the following constraint qualification of the Slater type holds true:

(CQ), ∃x0 ∈ C : G(x0) < 0, x0 ∈ C,

where G = supt∈T Gt.
Then x∗ ∈ Nε(S; x̄), iff there exist v = 0 and ε̄ = 0 such that

x∗ ∈ ∂ε̄(vG)(x̄) and ε̄− ε 5 (vG)(x̄) 5 0.

Now we would like to derive one useful lemma for obtaining our main result viz ε-optimality condition for
(MP). It should be noticed that the proof method is similar to Strodiot et al. [17] or Liu [13] but our goal is
to establish ε-optimality condition for (Pj(x̄)) problem with infinite number of constraints, which is the main
difference. But first, Slater type (CQ) should be replaced by another one suitable for semi-infinite programming
(see [7]).

Definition 3.4. The convex semi-infinite programming problem is said to satisfy the Farkas–Minkowski (FM)
constraint qualification if

{vtgt(x), t ∈ T (v), x ∈ C}

is a (FM) system, i.e. its characteristic cone K := cone{
⋃
t∈T (v) epi(vtgt)

∗ + epiδ∗C} is closed.

Remark 3.5. According to (Prop. 11.16 in [3]) if (CQ) holds then (FM) is also satisfied.

Lemma 3.6. Let εj = 0, x̄ be a feasible point of (Pj(x̄)) and fi, i ∈ M and gt, t ∈ T be convex functions.
Suppose that (FM) holds then x̄ is an εj-optimal solution to (Pj(x̄)) iff there exist scalars ε0j = 0, ε0i = 0 for

i ∈M j, ε1t = 0 for t ∈ T , εq = 0, λi > 0 for i ∈M and vt ∈ R(T )
+ , such that

0 ∈ ∂ε0jfj(x) +
∑
i∈Mj

∂ε0i(λifi)(x̄) +
∑
t∈T (v)

∂ε1t(vtgt)(x̄) +Nεq (C; x̄), (3.1)

ε0j +
∑
i∈Mj

λiε0i +
∑
t∈T (v)

vtε1t + εq − εj 5
∑
t∈T (v)

vtGt(x̄) 5 0. (3.2)

(We call the condition (3.2) the ε-complementary slackness condition.)



1402 T. SHITKOVSKAYA AND D.S. KIM

Proof. It is obviously that (Pj(x̄)) and (P 0
j (x̄)) have the same εj-solutions. x̄ is an εj-optimal solution if and

only if

0 ∈ ∂εj

fj +
∑
i∈Mj

δSi +
∑
t∈T (v)

δSt(x) + δC

 (x̄).

Since there is at least one point x0 ∈ int Si
⋂
int St

⋂
int C and (FM) holds then, according to Hirriart-Urruty

[8],

∂εj

(
fj +

∑
i∈Mj

δSi +
∑
t∈T (v)

δSt(x) + δC

)
(x̄)

=
⋃

ε0j=0,ε0i=0,ε1t=0,εq=0
ε0j+

∑
i∈Mj ε0i+

∑
t∈T (v) ε1t+εq=εj

{
∂ε0jfi(x) +

∑
i∈Mj

∂ε0iδSi(x̄) +
∑
t∈T (v)

∂ε1tδSt(x̄) + ∂εqδC(x̄)

}
,

(3.2) follows from Lemma 2.3.

Now, for obtaining ε-optimality conditions for (MP) we would like to mention the following lemma, which is
an approximate version of Chankong–Haimes characterization [1].

Lemma 3.7. Let x̄ ∈ C and ε ∈ Rm+ . A feasible point x̄ is an ε-efficient solution of (MP) if and only of x̄ is an
εj-optimal solution of (Pj(x̄)) for each j ∈M .

Proof. Let x̄ be an εj-optimal solution of (Pj(x̄)) for each j ∈M . Hence,

fj(x̄) 5 fj(x) + εj , for all j ∈M.

If x̄ is not an ε-efficient solution of (MP) then there exists x ∈ FM such that:

fi(x) 5 fi(x̄)− εi, for all i ∈M

with at least one strict inequality. Suppose that the strict inequality takes place at k. We get fk(x) < fk(x̄)− εk,
i.e. fk(x) + εk < fk(x̄). Hence, there exists k ∈ M such that x̄ is not an εk-optimal solution of (Pk(x̄)) that is
a contradiction.

Conversely, let x̄ be an ε-efficient solution of (MP). Hence, there exists no such x ∈ FM that

fi(x) 5 fi(x̄)− εi, for all i ∈M

with at least one strict inequality. If there exists j ∈M such that x̄ is not an εj-optimal solution of (Pj(x̄)) then
there exists x ∈ Fj(x̄) such that

fj(x) + εj < fj(x̄),

which is a contradiction.

Now, we give an example to illustrate the aforesaid lemma.
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Example 3.8.

(MP) Minimize
(
f1(x), f2(x)

)
subject to gt(x) 5 0, t ∈ T := [1, 2],

x ∈ R,

where f1 = x, f2 =
1

2
x2 and gt = tx2 − 2tx. Let us put ε1 = 1 and ε2 =

1

2
.

Hence, the feasible set of (MP) is equal to [0, 2]. Since f1 = x and f2 =
1

2
x2, we have f2(f1) =

1

2
(f1)2. We

can check that ε-solution set is as follows: (−∞, 1] ∩ [0, 2] = [0, 1]. And set of ε-objective values

{
(f1, f2) ∈ R2 | f1 ∈ [0, 1], f2 =

1

2
(f1 − 1)2 +

1

2

}
.

We can easily check that the point x̄ = 1 is the ε-efficient solution of (MP) by using scalarization method due
to Chankhong–Haimes. However, if one choose point x̄ = 1.01 it is not ε-efficient solution. For example, from
the definition of εj-solution for (P1(1)) we can check that

1.01 5 x+ 1, for any x in feasible set

fails if x = 0.

By using Lemmas 3.6 and 3.7 we can derive the following theorem, which is meant to be our main result.

Theorem 3.9 (ε-Optimality condition). Let x̄ ∈ C and ε ∈ Rm+ . Suppose that fi, i ∈ M and gt, t ∈ T are
convex functions and (FM) holds then x̄ is an ε-efficient solution for (MP) iff there exist scalars ε̃0i = 0 and

λ̃i > 0 for i ∈M ,
∑
i∈M λ̃i = 1, ε̃1t = 0, for t ∈ T , ε̃q = 0 and ṽt ∈ R(T )

+ , such that

0 ∈
∑
i∈M

λ̃i∂ε̃0ifi(x̄) +
∑
t∈T (v)

ṽt∂ε̃1tgt(x̄) +Nε̃q (C; x̄), (3.3)

∑
i∈M

λ̃iε̃0i +
∑
t∈T (v)

ṽtε̃1t + ε̃q − λ̃T ε 5
∑
t∈T (v)

ṽtgt(x̄) 5 0. (3.4)

Proof. By Lemma 3.7, x̄ is an ε-efficient solution to (MP) iff x̄ is an εj-optimal solution for (Pj(x̄)) for all j ∈M .

According to Lemma 3.6 there exist ε0j = 0, ε0i = 0, i ∈M j , ε1t = 0, t ∈ T , εq = 0, vt ∈ R(T )
+ and λi, i ∈M j

such that (3.1) and (3.2) holds.
First, let us focus on (3.1). Due to scalar product rule (Thm. 2.117 in [3]) ∂ελφ(ξ) = λ∂ε/λφ(ξ):

0 ∈ ∂ε0jfj(x̄) +
∑
i∈Mj

λi∂ε0i/λi
fi(x̄) +

∑
t∈T (v)

vt∂ε1t/vtgt(x̄) +Nεq (C, x̄).

It implies that

0 ∈ 1

1 +
∑
i∈Mj λi

(
∂ε0jfj(x̄) +

∑
i∈Mj

λi∂ε0i/λi
fi(x̄) +

∑
t∈T (v)

vt∂ε1t/vtgt(x̄) +Nεq (C, x̄)

)
. (3.5)
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Note that Nε̃q (C; x̄) =
1

1 +
∑
i∈Mj λi

Nεq (C; x̄) ⊂ Nεq (C; x̄) and set

λ̃j =
1

1 +
∑
i∈Mj λi

;

λ̃i =
λi

1 +
∑
i∈Mj λi

, i ∈M j ,

ṽt =
vt

1 +
∑
i∈Mj λi

, t ∈ T,

ε0j = ε̃0j ,

ε0i/λi = ε̃0i, i ∈M j ,

ε1t/vt = ε̃1t, t ∈ T, (3.6)

from (3.5) we deduce

0 ∈
∑
i∈M

λ̃i∂ε̃0ifi(x̄) +
∑
t∈T (v)

ṽt∂ε̃1tgt(x̄) +Nε̃q (C; x̄).

It is easy to check that
∑
i∈M λ̃i = 1.

Since the feasible set of (MP) is FM := {x ∈ C | gt(x) 5 0, t ∈ T}, without loss of generality, we can reduce∑
t∈T (v) vtGt to

∑
t∈T (v) vtgt. Hence from (3.2) and (3.6) we have:

ε̃0j +
∑
i∈Mj

λiε̃0i +
∑
t∈T (v)

vtε̃1t + εq − λ
T
ε 5

∑
t∈T (v)

vtgt(x̄) 5 0.

Using the same method, we get∑
i∈M

λ̃iε̃0i +
∑
t∈T (v)

ṽtε̃1t + ε̃q − λ̃T ε 5
∑
t∈T (v)

ṽtgt(x̄) 5 0,

where ε̃q =
εq

1 +
∑
i∈Mj λi

.

Remark 3.10. Condition (3.3) in Theorem 3.9 seems similar to (Thm. 4 in [13]) but we derived it using
relationship between ε-efficient solutions of (MP) and εj-efficient solution of Pj(x̄). Moreover, we deal with
semi-infinite (MP). The other difference is in the fact that we consider not (λT f) and (vT g) functions but move
multipliers out of ε-subdifferential.

We establish another ε-sufficient optimality condition with generalized convexity assumption.

Theorem 3.11 (ε-Sufficient optimality condition). Let x̄ ∈ C and ε ∈ Rm+ . Assume that λ̃T f is pseudoconvex

and ṽT g is quasiconvex functions. If there exist scalars ε̃0i = 0, λ̃i = 0 for i ∈ M ,
∑
i∈M λ̃i = 1, ε̃1t = 0 for

t ∈ T , ε̃q = 0 and ṽt ∈ R(T )
+ , such that (3.3) and (3.4) then x̄ is an ε-efficient solution for (MP).

Proof. Suppose that x̄ is not ε-efficient solution to (MP). Then there is such x ∈ C that

fi(x) 5 fi(x̄)− εi, for all i ∈M
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with at least one strict inequality. Multiplying by λ̃ we have

λ̃T f(x) 5 λ̃T f(x̄)− λ̃T ε.

If (3.3) holds then there exist ui ∈ ∂ε̃0ifi, i ∈M, µt ∈ ∂ε̃1tgt, t ∈ T (v) and w ∈ Nε̃q (C; x̄) such that∑
i∈M

λ̃iui(x− x̄) +
∑
t∈T (v)

ṽtµt(x− x̄) + w(x− x̄) = 0.

By the definition of Nε̃q (C; x̄) we have w(x− x̄) 5 ε̃q for all x ∈ C. Hence,∑
i∈M

λ̃iui(x− x̄) +
∑
t∈T (v)

ṽtµt(x− x̄) = −ε̃q.

Since
∑
t∈T ṽtgt is quasiconvex and gt(x̄) 5 0, t ∈ T and the definition of ε-subdifferential, we have∑

t∈T (v)

ṽt(x− x̄) 5
∑
t∈T (v)

ṽtε̃1t.

Hence, ∑
i∈M

λ̃iui(x− x̄) = −ε̃q −
∑
t∈T (v)

ṽtε̃1t −
∑
i∈M

λ̃iε̃0i.

By pseudoconvexity of λ̃T f and the definition of ε-subdifferential it follows

λ̃T f(x)− λ̃T f(x̄) = −ε̃q −
∑
t∈T (v)

ṽtε̃1t −
∑
i∈M

λ̃iε̃0i.

From (3.4)

−ε̃q −
∑
t∈T (v)

ṽtε̃1t −
∑
i∈M

λ̃iε̃0i = −λ̃T ε.

So we can rewrite

λ̃T f(x) = λ̃T f(x̄)− λ̃T ε,

which contradicts our supposition that x̄ is not an ε-efficient solution to (MP).

4. ε-Duality
In this section, we introduce a mixed dual programming problem and establish weak and strong ε-duality

theorems. Now we propose the mixed type dual problem due to (MP), which combines Wolfe type and Mond–
Weir type as follows:

(MD) Maximize f(y) +
∑
t∈T vtgt(y)e

subject to 0 ∈
∑
i∈M λi∂ε̃0ifi(y) +

∑
t∈T (vt + νt)∂ε̃1tgt(y) +Nε̃q (C; y),∑

i∈M λiε̃0i +
∑
t∈T vtε̃1t + ε̃q − λT ε 5 0

νtgt(y) = 0,
λ > 0, λT e = 1, e = (1, . . . , 1) ∈ Rm,
(y, λ, v, ν) ∈ C × Rm × R(T )

+ × R(T )
+ .
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Now we derive ε-weak duality theorem under convexity assumption.

Theorem 4.1 (ε-Weak duality). Let x and (y, λ, v, ν) be a feasible solution to (MP) and (MD) respectively.
Assume that fi, i ∈M and gt, t ∈ T are convex on C. Then the following cannot hold:

fi(x) 5 fi(y) +
∑
t∈T

vtgt(y)− εi, for all i ∈M

with at least one strict inequality.

Proof. Suppose contrary to result that it holds. Multiplying by λ > 0 with λT e = 1, we have

λT f(x) < λT f(y) +
∑
t∈T (v)

vtgt(y)− λT ε.

Hence x ∈ C and
∑
t∈T (v)(vt + νt)gt(x) 5 0 and νtgt(y) = 0, we obtain x 6= y and,

λT f(x) +
∑
t∈T (v)

(vt + νt)gt(x) < λT f(y) +
∑
t∈T (v)

(vt + νt)gt(y)− λT ε.

Since (y, λ, v, ν) is a feasible solution to (MD), there exists ui ∈ ∂ε̃0ifi(y), i ∈ M , µt ∈ ∂ε̃1tgt, t ∈ T (v) and
w ∈ Nε̃q (C; y) such that:

∑
i∈M

λiui(x− y) +
∑
t∈T (v)

(vt + νt)µt(x− y) + w(x− y) = 0.

So, using the convexity of fi, i ∈M and gt, t ∈ T , we can obtain:

λT fi(x) +
∑
t∈T (v)

(vt + νt)gt(x)−
(
λT fi(y) +

∑
t∈T (v)

(vt + νt)gt(y)− λT ε
)

=
∑
i∈M

λi

(
fi(x)− fi(y)

)
+
∑
t∈T (v)

(vt + νt)

(
gt(x)− gt(y)

)
+ λT ε

=
∑
i∈M

λiui(x− y) +
∑
t∈T (v)

(vt + νt)µt(x− y) + λT ε−
∑
i∈M

λiε̃0i −
∑
t∈T (v)

vtε̃1t

= −w(x− y) + λT ε−
∑
i∈M

λiε̃0i −
∑
t∈T (v)

vtε̃1t = λT ε−
∑
i∈M

λiε̃0i −
∑
t∈T (v)

vtε̃1t − ẽq = 0,

that is contradiction.

Using Theorems 3.9 and 4.1, we establish ε-strong duality theorem.

Theorem 4.2 (ε-Strong duality). Let ε ∈ Rm+ . Assume that fi, i ∈M and gt, t ∈ T are convex functions, (FM)
and ε-weak duality hold. If x̄ ∈ C is an ε-efficient solution of (MP) then (x̄, λ, v, ν) is 2ε-efficient solution for
(MD).
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Proof. Since x̄ is an ε-efficient solution for (MP), then by Theorem 3.9, there exist λi, i ∈M and v ∈ R(T )
+ such

that

0 ∈
∑
i∈M

λi∂ε̃0ifi(x̄) +
∑
t∈T (v)

vt∂ε̃1tgt(x̄) +Nε̃q (C; x̄)

⊂
∑
i∈M

λi∂ε̃0ifi(x̄) +
∑
t∈T (v)

(vt + νt)∂ε̃1tgt(x̄) +Nε̃q (C; x̄)

holds, then (x̄, λ, v, ν) is feasible for (MD).
Suppose that (x̄, λ, v, ν) is not 2ε-efficient solution for (MD), then there exists (x∗, λ∗, v∗, ν∗) such that the

following cannot hold:

fi(x
∗) +

∑
t∈T (v)

(v∗t + ν∗t )gt(x
∗)e− 2εi 5 fi(x̄) +

∑
t∈T (v)

(vt + νt)gt(x̄)e,

with at least on strict inequality.
Taking strict inequality at jth place, we get

fj(x
∗) +

∑
t∈T (v)

(v∗t + ν∗t )gt(x
∗)− 2εj > fj(x̄) +

∑
t∈T (v)

(vt + νt)gt(x̄)

Or fj(x̄) +
∑
t∈T (v)(vt + νt)gt(x̄)− fj(x∗)−

∑
t∈T (v)(v

∗
t + ν∗t )gt(x

∗) < −2εj .

On the other hand, by ε-weak duality (Thm. 4.1)

fj(x̄)−
(
fj(x

∗)−
∑
t∈T (v)

(v∗t + ν∗t )gt(x
∗)

)
+
∑
t∈T (v)

(vt + νt)gt(x̄) > −εj +
∑
t∈T (v)

(vt + νt)gt(x̄) > −εj

+
∑
i∈M

λiε̃0i +
∑
t∈T

vtε̃1t + ε̃q − εi > −2εj ,

so we get contradiction.

We can derive another ε-weak duality theorem under the generalized convexity assumptions.

Theorem 4.3 (ε-Weak duality). Let x and (y, λ, v, ν) be a feasible solution to (MP) and (MD) respectively.
Assume that

(
λT f +

∑
t∈T (vt + νt)gt

)
is pseudoconvex on C, fi, i ∈M and gt, t ∈ T are regular on C. Then

the following cannot hold:

fi(x) 5 fi(y) +
∑
t∈T

vtgt(y)− εi, for all i ∈M

with at least one strict inequality.

Proof. Suppose contrary to result that it holds. Multiplying by λ > 0, we have

λT f(x) < λT f(y) +
∑
t∈T (v)

vtgt(y)− λT ε.
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Hence x ∈ C and
∑
t∈T (v)(vt + νt)gt(x) 5 0 and νtgt(y) = 0, we obtain x 6= y and,

λT f(x) +
∑
t∈T (v)

(vt + νt)gt(x) < λT f(y) +
∑
t∈T (v)

(vt + νt)gt(y)− λT ε. (4.1)

Since (y, λ, v, ν) is a feasible solution to (MD)W , there exists ui ∈ ∂ε̃0ifi(y), i ∈M , µt ∈ ∂ε̃1tgt, t ∈ T (v) and
w ∈ Nε̃q (C; y) such that: ∑

i∈M
λiui(x− y) +

∑
t∈T (v)

(vt + νt)µt(x− y) + w(x− y) = 0.

By definition of Nε̃q , we get (∑
i∈M

λiui +
∑
t∈T (v)

(vt + νt)µt

)
(x− y) = −ε̃q.

Since
(
λT f +

∑
t∈T (vt + νt)gt

)
is pseudoconvex and fi, i ∈ M and gt, t ∈ T are regular on C and using

ε-subdifferential definition, we have:(
λT fi +

∑
t∈T (v)

(vt + νt)gt

)
(x) =

(
λT fi +

∑
t∈T (v)

(vt + νt)gt

)
(y)− ε̃q −

∑
i∈M

λiε̃0i −
∑
t∈T (v)

vtε̃1t.

Hence −ε̃q −
∑
i∈M λiε̃0i −

∑
t∈T (v) vtε̃1t = −λT ε we get

λT fi(x) +
∑
t∈T (v)

(vt + νt)gt(x) = λT fi(y) +
∑
t∈T (v)

(vt + νt)gt(y)− λT ε,

that is a contradiction.

Special case 1. It is obvious that if ν = 0, the problem (MD) is reduced to Wolfe type dual problem, which
is denoted as follows:

(MD)W Maximize f(y) +
∑
t∈T vtgt(y)e

subject to 0 ∈
∑
i∈M λi∂ε̃0ifi(y) +

∑
t∈T vt∂ε̃1tgt(y) +Nε̃q (C; y),∑

i∈M λiε̃0i +
∑
t∈T vtε̃1t + ε̃q − λT ε 5 0

λ > 0, λT e = 1, e = (1, . . . , 1) ∈ Rm,
(y, λ, v) ∈ C × Rm × R(T )

+ .

We can also obtain the following three theorems immediately.

Theorem 4.4 (ε-Weak Duality). Let x and (y, λ, v) be a feasible solution to (MP) and (MD)W respectively.
Assume that fi, i ∈M and gt, t ∈ T are convex on C. Then the following cannot hold:

fi(x) 5 fi(y) +
∑
t∈T

vtgt(y)− εi, for all i ∈M

with at least one strict inequality.
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Remark 4.5.

1. The Theorem 4.4 also holds true under generalized convexity assumptions, i.e.
(
λT f +

∑
t∈T vtgt

)
is

pseudoconvex on C, fi, i ∈M and gt, t ∈ T are regular on C.
2. If λ = 0, the pseudoconvex assumption mentioned above is replaced by strict pseudoconvexity.

Using Theorems 3.9 and 4.4, we establish ε-strong duality between (MP) and (MD)W .

Theorem 4.6 (ε-Strong duality). Let ε ∈ Rm+ . Assume that fi, i ∈ M and gt, t ∈ T are convex functions,
(FM) and ε-weak duality hold. If x̄ ∈ C is an ε-efficient solution of (MP) then (x̄, λ, v) is 2ε-efficient solution
for (MD)W .

Special case 2. The other special case is v = 0. Then (MD) is equal to Mond–Weir type dual problem which
is denoted as follows:

(MD)M Maximize f(y)
subject to 0 ∈

∑
i∈M λi∂ε̃0ifi(y) +

∑
t∈T vt∂ε̃1tgt(y) +Nε̃q (C; y),∑

i∈M λiε̃0i +
∑
t∈T vtε̃1t + ε̃q − λT ε 5 0

vtgt(y) = 0,
λ > 0, λT e = 1, e = (1, . . . , 1) ∈ Rm,
(y, λ, v) ∈ C × Rm × R(T )

+ .

We can also obtain the following three theorems immediately.

Theorem 4.7 (ε-Weak duality). Let x and (y, λ, v) be a feasible solution to (MP) and (MD)M respectively.
Assume that fi, i ∈M and gt, t ∈ T are convex on C. Then the following cannot hold

fi(x) 5 fi(y)− εi, for all i ∈M

with at least one strict inequality.

Remark 4.8. Theorem 4.7 holds true under generalized convexity assumptions, i.e. λT f is pseudoconvex
and

∑
t∈T vtgt is quasiconvex on C. It should be noticed that here we consider not sum of functions like in

Theorem 4.3 but make different assumption for λT f and
∑
t∈T vtgt.

Using Theorems 3.9 and 4.7, we can establish ε-strong duality. It should be mentioned that in contrast to
ε-strong duality of mixed type and Wolfe type, x̄ is an ε-efficient solution for (MD)M , not 2ε-efficient. To show
that, we provide the proof.

Theorem 4.9 (ε-Strong duality). Let ε ∈ Rm+ . Assume that fi, i ∈M and gt, t ∈ T are convex functions, (FM)
and ε-weak duality hold. If x̄ ∈ C is an ε-efficient solution of (MP) then (x̄, λ, v) is an ε-efficient solution for
(MD)M .

Proof. Since x̄ is an ε-efficient solution for (MP), then by Theorem 3.9, there exist λi, i ∈M and v ∈ R(T )
+ such

that

0 ∈
∑
i∈M

λi∂ε̃0ifi(x̄) +
∑
t∈T (v)

vt∂ε̃1tgt(x̄) +Nε̃q (C; x̄)

holds, then (x̄, λ, v) is feasible for (MD)M .
Suppose that (x̄, λ, v) is not ε-efficient solution for (MD)M , then there exists (x∗, λ∗, v∗) such that:

f(x∗)− ε 5 f(x̄)

cannot hold which contradicts ε-weak duality (Thm. 4.7).
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Remark 4.10. Compare to Liu [12] who established Wolfe type ε-duality, we derived mixed type ε-duality,
that covers both Wolfe and Mond–Weir types. We established ε-weak duality and, by using our main result, i.e.
Theorem 3.9, ε-strong duality for mentioned (MP) and (MD), including duality results for (MD)W and (MD)M .

5. Conclusions

In this paper we established necessary and sufficient conditions for (Pj(x̄)) and then, by using scalarization
method due to Chankong and Haimes [1], we could derive ε-optimality conditions for (MP) as well as extended
to semi-infinite case under FM constraint qualification due to Goberna et al. [7] and convexity assumptions.
Moreover, we established another sufficient condition for (MP) with less strict assumption, i.e. generalized
convexity. In addition we proposed both weak and strong ε-duality theorem under convexity assumption for
mixed type dual problem. Wolfe type and Mond–Weir type dual problems were also considered as special cases.
In addition, we gave another ε-weak duality theorems under generalized convexity assumption.

Acknowledgements. This work was supported by the National Research Foundation of Korea Grant funded by the Korean
Government (NRF-2016R1A2B4011589).
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