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e-EFFICIENT SOLUTIONS IN SEMI-INFINITE MULTIOBJECTIVE
OPTIMIZATION

TATIANA SHITKOVSKAYA AND Do Sancg Kim*

Abstract. In this paper we apply some tools of nonsmooth analysis and scalarization method due to
Chankong—Haimes to find e-efficient solutions of semi-infinite multiobjective optimization problems
(MP). We establish e-optimality conditions of Karush-Kuhn-Tucker (KKT) type under Farkas—
Minkowski (FM) constraint qualification by using e-subdifferential concept. In addition we propose
mixed type dual problem (including dual problems of Wolfe and Mond—Weir types as special cases) for
e-efficient solutions and investigate relationship between mentioned (MP) and its dual problem as well
as establish several e-duality theorems.
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1. INTRODUCTION

Multiobjective optimization is a process of simultaneous optimization of more than one objective function in
the given domain. This discipline along with decision-making theory has been applied in such fields of science as
engineering, economics, logistics and etc where optimal decisions need to be taken in the presence of trade-offs
between two or more conflicting objectives. It is reasonable to use scalarization methods for finding solutions
of multiobjective problems, for example, see Chankong and Haimes [1] and references therein. Our aim of this
paper is to establish results on e-optimality conditions and e-duality theorems for a multiobjective nonconvex
optimization problem which has an infinite number of constraints by solving the corresponding scalar problem.

First, e-optimality conditions for multiobjective problems have been studied by Kutateladze [10] and inde-
pendently by Loridan [14]. Later, e-solutions in vector optimization problems got a keen interest by a lot of
authors, for example, see [5, 11, 13]. In this paper we explore e-efficient solutions by establishing e-optimality
conditions. This concept was extended from the one for scalar optimization problem given by Strodiot et al. [17].
Later, Liu [13] considered multiobjective programming problems by using well-known weighted-sum scalariza-
tion method. However, the mentioned method is used for exploring properly efficient solutions but not efficient
ones. Motivated by this fact, we suggest another scalarization method to establish e-optimality conditions for
multiobjective optimization problem by providing relationship between its e-efficient solution and corresponding
¢;-optimal solution and using this equivalence. Since, one of the main tools for establishing e-optimality condi-
tions is e-subdifferential concept, we would like to refer the reader to Dhara and Dutta [3] and Hiriart-Urruty
[8] for better understanding.
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In more recent time optimization problems including infinite number of constraints have been studied by
several authors (see [2, 4, 6]). Moreover, e-duality theorems of a class of nonconvex problems with an infinite
number of constraints were established in [16].

We now describe the contents of the paper. Logically, our results can be divided into two parts. In the first one,
we would like to propose e-optimality conditions for semi-infinite multiobjective programming problems using
scalar problem due to Chankong and Haimes [1]. It should be mentioned that in spite the fact that Chankong—
Haimes scalarization method was described in 1983 in [1], there are not so many papers focused on it. Another
e-sufficient optimality condition under generalized convexity assumption was also considered. Moreover, for our
semi-infinite programming problem we use Farkas—Minkowski constraint qualification described in [7] and, later,
extended in [4]. The second part of this paper is dedicated to e-duality theorems for mixed type of Wolfe and
Mond—Weir types dual problem.

The paper is organized as follows. In Section 2, problem statement and main notions are described. Section 3
deduces e-optimality conditions to semi-infinite multiobjective optimization problem, which are meant to be
our main result. Section 4 is devoted to describing duality relations. Namely, both weak and strong e-duality
theorems for mixed type dual problem, including dual problems of Wolfe type and Mond—Weir type as special
cases (see [12, 15]) are considered. Finally, Section 5 provides conclusions in brief.

2. PRELIMINARIES
Let us consider the following semi-infinite multiobjective optimization problem:
(MP) Minimize f(z):

subject to  g¢(z) <
xz el

(fl('r)7f2(m)7 . 7fm(x))
0,teT

where f;(z) : R" - RU{+o0},i € M :={1,2,...,m} and ¢g:(z) : R® - RU{+o0}, t € T (possible infinite) are
proper lower semiconscious functions (1.s.c.), and C'is a closed convex subset of R™. The feasible set of (MP) is
denoted by Fy :={z € C | gs(x) £0,t € T}.

Due to Chankong—Haimes method for j € M and z € C we associated to (MP) the following scalar problem,

(Pj(x)) Minimize f;(z _
fi(@),i e M7= M\ {j},
t

For the problem
min{f;(z) | z € C,G¢(z) £0,t € T}

we define Gy as follows (with the assumption that TN M = 0):

6= { 501D LN T o o

We now give some basic concepts and notions. The following linear space is used for semi-infinite programming

[6].
RT := {A = (M)er | Ae =0, for all t € T but only finitely many X\, # 0}.

With A € R, its supporting set, T(\) = {t € T | \; # 0}, is a finite subset of T'.
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The nonnegative cone of R(") is denoted by:
T T
R = A= A)ier eRT) | X, 20, € T}

With A € R and ¢, t € T, we understand that

Z)\tgt = { 2ieroy Mg i T(A) i g’

s 0, it T(\) = 0.

To establish e-optimality conditions of KKT-type we need the following notions.

1399

Definition 2.1. Let ¢ : R” — R|J{+o0} be a proper convex function. The e-subdifferential of ¢ at € dom ¢

is the set J.¢(Z) defined by
0:4(7) = {€ € R | §(x) 2 §(7) — e+ (6,2 —7), Va € dom @},

In particular, if e = 0, then Jy¢p = 0¢.

Definition 2.2. Consider a function ¢ : R — R|J{+o00}. The conjugate of ¢, ¢* : R — R J{+o0} is defined

as

¢"(€) = sup {(¢,z) — ¢(z)}.

z€RM
The e-subdifferential definition in term of conjugate function ¢* of ¢ is as follows:
9ep(7) ={§ € R" [ ¢7(§) + ¢(7) = (€, 7) + €}
Definition 2.3. The epigraph of a function ¢ : R” — R|J{+o0o} is defined by
epi ¢ = {(z,r) e R" xR | ¢(x) < r}.

It is worth to observe that if ¢ is a proper ls.c. convex function and Z € dom ¢, then [9]

epi 6" = |J{(& (6,2) + e — 6(2)) | € € D0(2)}.

€20
Definition 2.4. Let C be a subset of R™. A function f: R™ — R is said to be:
(i) convex at z € C if
fy) = f@) Zuly—z), uwedf(z), yeC.

And the function f is said to be convex on C if it is convex at every = € C.
(ii) pseudoconvex at x € C' if

fly) < f@) = uly—2) <0, wedf(z), yel,

equivalently,

wy—z) 2 0= f(y) 2 f(x), uwedf(z), yeCl.
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And the function f is said to be pseudoconvex on C if it is pseudoconvex at every x € C. Moreover, the
function f is said to be strictly pseudoconvex at = € C' if

uwy—z) 20= fly) > f(z), wedf(x), y#xz yeC.
(iii) quasiconvex at z € C' if
fy) s fl@)=uy—=2) =0, uwedf(z), yel,
equivalently,
uw(y —x) > 0= f(y) > f(z), uwedf(x), yeC.

And the function f is said to be quasiconvex on C if it is quasiconvex at every x € C.

Minimization means obtaining efficient solutions in the following sense. A point Z € F); is said to be an
efficient solution for (MP) if there is no « € Fjs such that

filz) £ fi(z), forallie M.

with at least one strict inequality.
Let € be an element of R’'. A point Z € F); is said to be an e-efficient solution for (MP) if there is no x € Fi
such that

fl(l’) § fz(f) — €4, for all i € M.
with at least one strict inequality.

3. eOPTIMALITY CONDITIONS

Definition 3.1. The indicator function dg of a subset K C R"™ is the function defined as follows:

s _ [0 ifzek
E7 400, if z € RM\K.

Definition 3.2. Let C be a nonempty closed convex subset of R", ¢ > 0, T € C. The e-normal set of C' at T is
the set

N(C;z)={(eR" |,z —T)Se, VreC}
If € = 0, the e-normal set reduces to the normal cone N(C;Z) to C at T that is
N(C;z)={¢eR" | {{,2—T) 20, VzxeC(l}.
Let us define the following sets:

S; ={x cR"| f; — fi(z) £0}, forie M,
Si={zx eR" | gi(x) £0}, forteT.
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It is easy to check that
6660(56) = Ne(c; j:)

Using the indicator functions §;,8;, 6c of the subsets S;, i € M7,S;,t € T(v) and C we can rewrite our
problem (P;(Z)) as unconstrained problem PJQ(:E)) in the entire space R™ as follows:

(P(x)) Minimize f;(2) + Yicprs 05, + Xier(w) 0s: () + dc(x)
subject to = € R™.

We can obtain the following lemma for establishing e-complementary slackness condition by using (Prop. 2.2.
in Strodiot et al. [17]) (possible since G is defined by (2.1)):
Lemma 3.3. Let ¢ 2 0 and suppose [ and g are convex functions. Let T € S = (OteT(U) St) N (ﬂieMj Si) and
the following constraint qualification of the Slater type holds true:
(CQ), FzoeC: G(xg) <0, x9€C,

where G = sup, 7 G-
Then x* € N(S;T), iff there exist v =2 0 and € = 0 such that

¥ € 0:(vG)(Z) and €—e€ < (VG)(T) 0.

Now we would like to derive one useful lemma for obtaining our main result viz e-optimality condition for
(MP). It should be noticed that the proof method is similar to Strodiot et al. [17] or Liu [13] but our goal is
to establish e-optimality condition for (P;(Z)) problem with infinite number of constraints, which is the main
difference. But first, Slater type (CQ) should be replaced by another one suitable for semi-infinite programming
(see [7]).

Definition 3.4. The convex semi-infinite programming problem is said to satisfy the Farkas—Minkowski (FM)
constraint qualification if

{vege(z),t € T(v), x€C}

is a (FM) system, i.e. its characteristic cone K := cone{{;c7(,) epi(vige)” + epid } is closed.
Remark 3.5. According to (Prop. 11.16 in [3]) if (CQ) holds then (FM) is also satisfied.

Lemma 3.6. Let ¢; 2 0, T be a feasible point of (P;(z)) and f;, i € M and g¢, t € T be convex functions.
Suppose that (FM) holds then & is an €j-optimal solution to (P;(z)) iff there exist scalars €; 2 0, €; = 0 for
i€EMI, e =20 forteT, 620, >0 forieM andvﬁeRf), such that

0 € Oz f5(@) + Y Oee Nfi)@) + D O (ige) () + Ney(Cs 2), (3.1)
i€Mi teT (v)
it > NEmit+ > e+ -6 = Y TGy(E) £ 0. (3:2)
i€ M teT (v) teT (v)

(We call the condition (3.2) the e-complementary slackness condition.)
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Proof. It is obviously that (P;(Z)) and (Pjo(i)) have the same ¢;-solutions. Z is an €;-optimal solution if and
only if

0€de, | fi+ D bs,+ Y. bs.(x)+dc | (2).

i€MI teT (v)

Since there is at least one point xg € int S; [)int S¢ () int C and (FM) holds then, according to Hirriart-Urruty
8],

( > bs+ Y sl +5C)()

i€MI teT (v)
- U (om0 + ¥ omts @)+ 3 0 @)+ 0m0c@) .
€0, 20,€0;20,61;20,6420 i€ MI teT (v)
€052 e mi €0i T2 et () ELETEG=E;
(3.2) follows from Lemma 2.3. O

Now, for obtaining e-optimality conditions for (MP) we would like to mention the following lemma, which is
an approximate version of Chankong-Haimes characterization [1].

Lemma 3.7. Let z € C and € € R, A feasible point T is an e-efficient solution of (MP) if and only of % is an
e;-optimal solution of (P;(Z)) for each j € M.

Proof. Let T be an ej-optimal solution of (P;(z)) for each j € M. Hence,
[i(@) = fi(z) +¢5, forall je M.
If Z is not an e-efficient solution of (MP) then there exists © € Fj; such that:
filz) £ fi(z) —€;, forallie M
with at least one strict inequality. Suppose that the strict inequality takes place at k. We get fi(z) < fx(Z) — e,
i.e. fr(r) + e < fr(ZT). Hence, there exists k € M such that Z is not an e;-optimal solution of (Py(Z)) that is

a contradiction.
Conversely, let T be an e-efficient solution of (MP). Hence, there exists no such x € Fj; that

filx) £ fi(z) —¢;, forallie M

with at least one strict inequality. If there exists j € M such that Z is not an e;-optimal solution of (P;(Z)) then
there exists « € Fj(Z) such that

fi(x) +¢; < f5(2),
which is a contradiction. O

Now, we give an example to illustrate the aforesaid lemma.
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Example 3.8.

(MP) Minimize (f1(z), f2(z))
subject to  gi(z) <0,t € T :=[1,2],
r €R,

where f1 =z, fo = 5332 and g; = tz? — 2tz. Let us put ¢ = 1 and €3 = —

1 1
Hence, the feasible set of (MP) is equal to [0,2]. Since f; = z and fy = §x2, we have fo(f1) = i(fl)z. We

can check that e-solution set is as follows: (—oo, 1] N [0,2] = [0, 1]. And set of e-objective values

{(fl’fQ) €ER?| fie0,1], fo= %(fl —1)%+ ;}

We can easily check that the point Z = 1 is the e-efficient solution of (MP) by using scalarization method due
to Chankhong—Haimes. However, if one choose point z = 1.01 it is not e-efficient solution. For example, from
the definition of €;-solution for (Pi(1)) we can check that

1.01 £x+1, for any z in feasible set

fails if x = 0.
By using Lemmas 3.6 and 3.7 we can derive the following theorem, which is meant to be our main result.

Theorem 3.9 (e-Optimality condition). Let & € C and € € R'}'. Suppose that f;, i € M and g;, t €T are
convex functions and (FM) holds then T is an e-efficient solution for (MP) iff there exist scalars eg; = 0 and

)Ti>0f07"i€M, ZieM/\:-:l,Eﬁzo, forteT,e}iOanvatERSrT),suchthat

06> Ndg fil®) + > 0da00(7) + N (Cy3), (3.3)
€M teT (v)

ST X+ Y vt -ATes Y Gg(@) 0. (3.4)

€M teT (v) teT (v)

Proof. By Lemma 3.7, T is an e-efficient solution to (MP) iff Z is an ¢;-optimal solution for (P;(z)) for all j € M.
According to Lemma 3.6 there exist €y; = 0, €; =2 0,1 € M7, e; 20,t €T, ¢, =20, v € RSFT) and \;, i € M
such that (3.1) and (3.2) holds.

First, let us focus on (3.1). Due to scalar product rule (Thm. 2.117 in [3]) 0cA@(&) = ADe/n0(€):

0 € Og; f5(x Z AiOes: 5. fi(T) Z V0cr7/3:9¢(2) + Neg(C, 7).
1eEMI teT(v)
It implies that
1 _ _ _
06— (Ot + X Mo @)+ Y W@ + Ne(C0). (35)
+ 2 iemi A i€ M teT(v)
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1

Note that Ng (C;7) = ———=——=Ng(C;T) C Ne,;(C;Z) and set
1 +Z'L€MJ 7
—~ 1
Aj=———;
1 + ZiEMj )\Z
- by o
= T = = S ]\4-]7
1 + ZiEMj )\7]
Ut i teT
V= — s
1+ e A
€0j = €0
@i/ N = €0, i€ M,
e/ =en, teT, (3.6)

from (3.5) we deduce

0> N0 fi@ + > 60a:0(F) + Ny (C; 7).

ieM teT(v)

It is easy to check that ), ,, Xi=1.
Since the feasible set of (MP) is Fis := {x € C | g+(x) £ 0,¢ € T}, without loss of generality, we can reduce
ZteT(v) 7:G, to ZteT(v) Ttg:. Hence from (3.2) and (3.6) we have:

. — _ ~T
€t Y N+ Y T tg A e Y Tg(r) 0.

i€MI teT (v) teT (v)

Using the same method, we get

Z)\eomL Z Greny + 6 — ATe < Z 0:9¢(Z) £ 0,

€M teT (v) teT (v)

€
L+ Pieas A
Remark 3.10. Condition (3.3) in Theorem 3.9 seems similar to (Thm. 4 in [13]) but we derived it using
relationship between e-efficient solutions of (MP) and e;-efficient solution of P;(Z). Moreover, we deal with

semi-infinite (MP). The other difference is in the fact that we consider not (AT f) and (vg) functions but move
multipliers out of e-subdifferential.

where €, = O

We establish another e-sufficient optimality condition with generalized convexity assumption.

Theorem 3.11 (e-Sufficient optimality condition). Let € C' and € € R'. Assume that AT f s pseudoconvex
and 97 g is quasiconvex functzons If there exist scalars eg; 2 0, i 20 forie M,y .y X = =1, e 20 for
teT, 6,20 and v, € R+ , such that (3.3) and (3.4) then T is an e-efficient solution for (MP).

Proof. Suppose that Z is not e-efficient solution to (MP). Then there is such x € C that

filx) £ fi(z) —€;, forallie M
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with at least one strict inequality. Multiplying by X we have
N () SN f(z) — M.
If (3.3) holds then there exist u; € O, fi, i € M, py € 0,9, t € T(v) and w € N, (C;7) such that
S Nui(z—3)+ Y Gyl — ) +w(z — 1) =0.
€M teT (v)
By the definition of Ne (C;7) we have w(z — 7) = €, for all x € C'. Hence,
S Al -0)+ Y e - ) 2 -4,
€M teT(v)
Since ),y U:g¢ is quasiconvex and g(Z) < 0, t € T' and the definition of e-subdifferential, we have
Z ’Ut Tr — .13 Z 'Utflt
teT (v) teT (v)
Hence,

Z/iul(x—x > — Z vt€1t—z>\€01

ieM teT (v) ieM

By pseudoconvexity of A\ f and the definition of e-subdifferential it follows

XTf( ) )\Tfi’ 2 - Z Utﬁlt—z)\ﬁm

teT (v) ieM

From (3.4)

—6 = Y WEn— Y Ao 2 -

teT (v) 1€M

So we can rewrite
N f() 2 X f(z) — N,
which contradicts our supposition that Z is not an e-efficient solution to (MP). O

4. e-DuALITY
In this section, we introduce a mixed dual programming problem and establish weak and strong e-duality
theorems. Now we propose the mixed type dual problem due to (MP), which combines Wolfe type and Mond—
Weir type as follows:

(MD) Maximize f(y) + > crvi:(y)e
subject to 0 € Y ;cay Ai0g; fi(y) + D e (Ve + 14)0a,9:(y) + Ne, (Cy),
D ien Ni€0i + Do Vi€l + €g — Me=0
vige(y) 2 0,
A>0, e=1e=(1,...,1) e R™,

m (T) (1)
(y, \,v,v) € C x R™ x R’ x RY
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Now we derive e-weak duality theorem under convexity assumption.

Theorem 4.1 (e-Weak duality). Let z and (y, A\,v,v) be a feasible solution to (MP) and (MD) respectively.
Assume that f;, i € M and gy, t €T are convex on C. Then the following cannot hold:

filz) < fily) + thgt(y) —¢€;, forallie M
teT

with at least one strict inequality.

Proof. Suppose contrary to result that it holds. Multiplying by A > 0 with ATe = 1, we have

N @) <N f)+ Y vgely) — ATe
teT (v)

Hence z € C and ZteT(v)(Ut +v)gi(x) £ 0 and vg¢(y) = 0, we obtain x # y and,

A f(x) + Z (ve +vi)ge(x) < AT f(y) + Z (ve +v)ge(y) — ATe.

teT (v) teT (v)

Since (y, A, v,v) is a feasible solution to (MD), there exists u; € O fi(y), ¢ € M, i € 0,61, t € T(v) and
w € Ng (C;y) such that:

Do Nuile—y)+ Y (v Fv)mle —y) +w(z —y) =0.

i€M teT (v)

So, using the convexity of f;, i € M and ¢, t € T, we can obtain:

Nh) + 3 Gt vdade) = (V) + 3 (+ mailn) - A7)

teT (v) teT(v)

S (ﬁ-(x) - ﬁ(y)) CY (et ut><gt<x> —gt<y>> AT

€M teT (v)
2 Nuwi—y)+ Y (et vm@—y) + A e= > Neoi — Y wvien

ieM teT(v) ieM teT(v)
:—w(x—y)—&—)\Te—Z)\i?o;— tha“tz)\Te—Z)\i?o}— tha’t—é;z(),

€M teT (v) €M teT (v)
that is contradiction. O

Using Theorems 3.9 and 4.1, we establish e-strong duality theorem.

Theorem 4.2 (e-Strong duality). Let e € RT'. Assume that f;, i € M and g¢, t € T are convex functions, (FM)
and e-weak duality hold. If T € C is an e-efficient solution of (MP) then (T, A, v,v) is 2e-efficient solution for
(MD).
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Proof. Since Z is an e-efficient solution for (MP), then by Theorem 3.9, there exist A;, i € M and v € RSFT) such
that

0€ > XNl fi(T) + D v0e,0:(T) + Ne, (C; )

€M teT (v)
C Z NiOg: [i(ZT) + Z (vt + 14)0,9:(T) + Ne, (C; )
€M teT (v)

holds, then (z, A, v,v) is feasible for (MD).
Suppose that (Z, A, v,v) is not 2e-efficient solution for (MD), then there exists (x*, \*, v*, v*) such that the
following cannot hold:

file) + Y (o +v)ge(a")e =26 S fi(@) + Y (v 1)gu(@)e,

teT(v) teT (v)

with at least on strict inequality.
Taking strict inequality at jth place, we get

F@)+ D0 W +v)ga”) =26 > [i@) + Y (v v)a(@)

teT (v) teT (v)

Or fi(Z) + 2serw) (v +v0)9:(T) = f3(27) = 2serp) (v +v1)ge(a") < —2¢;.
On the other hand, by e-weak duality (Thm. 4.1)

fj(f)<fj(x*) > <vr+v:>gt<x*>)+ S Wt v)g(@) > 6+ Y (v +m)g(T) > —¢;

teT (v) teT (v) teT (v)

+ ZAE&—I—ZU&E—FG}—Q > —26j,
€M teT

so we get contradiction. O

We can derive another e-weak duality theorem under the generalized convexity assumptions.

Theorem 4.3 (e-Weak duality). Let z and (y,\,v,v) be a feasible solution to (MP) and (MD) respectively.
Assume that ()\Tf + D er(ve + Vt)gt) is pseudoconvex on C, f;, i € M and g;, t € T are regular on C. Then
the following cannot hold:

filz) < fily) + thgt(y) —€, forallieM
teT

with at least one strict inequality.

Proof. Suppose contrary to result that it holds. Multiplying by A > 0, we have

@) < A7) + D vige(y) = e
teT (v)
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Hence z € C and } -, (ve + v¢)gi(2) = 0 and 149:(y) 2 0, we obtain z # y and,

A f(x) + Z (ve +vi)ge(x) < AT f(y) + Z (ve + ) ge(y) — ATe. (4.1)

teT (v) teT (v)

Since (y, A, v,v) is a feasible solution to (MD)yy, there exists u; € 0g; fi(y), ¢ € M, p1p € 05,9+, t € T(v) and
w € Ne (C;y) such that:

Yo duwi(z—y)+ > (vt v —y) +wlw —y) = 0.
ieM t€T(v)

By definition of Ng, we get

( S hui+ Y (w+ Vt)ut)(w —y) 2 -6

€M teT (v)

Since (AT f + >, cq(ve + 11)g¢) is pseudoconvex and f;, i € M and g, t € T are regular on C and using
e-subdifferential definition, we have:

<>\Tfi + > (vt Vt)gt)(z) 2 ()\sz' + Y (ot Vt)9t> (y) =€ — Y New — Y wven.

teT(v) teT (v) ieM teT (v)

Hence —¢€; — i py Ai€oi — ZteT(u) vierr = —ATe we get

Nfi(@)+ Y (v w)ge(e) Z X fily) + Y (v +v)ge(y) = Ae,

teT (v) teT (v)
that is a contradiction. O

Special case 1. It is obvious that if ¥ = 0, the problem (MD) is reduced to Wolfe type dual problem, which
is denoted as follows:

(MD)y,,  Maximize f(y) + > ;cq vtg:(y)e
subject to 0 € Zie%/\iﬁg&fi(y) tZteT 019, 9t (y) + N& (Cs ),
ZieM )\ie()i + ZtET V€1t + é:I — )\TE § O
A>0, M e=1e=(1,...,1) € R™,
(y, \,v) € C x R™ x RSFT).

We can also obtain the following three theorems immediately.

Theorem 4.4 (e-Weak Duality). Let z and (y, \,v) be a feasible solution to (MP) and (MD)y respectively.
Assume that f;,1 € M and g¢,t € T are convex on C. Then the following cannot hold:

fil) £ fiw) + > vigi(y) — e, forall i € M
teT

with at least one strict inequality.
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Remark 4.5.

1. The Theorem 4.4 also holds true under generalized convexity assumptions, i.e. (/\T F+2er vtgt) is
pseudoconvex on C, f;,7 € M and ¢;,t € T are regular on C.
2. If A 2 0, the pseudoconvex assumption mentioned above is replaced by strict pseudoconvexity.

Using Theorems 3.9 and 4.4, we establish e-strong duality between (MP) and (MD)y .

Theorem 4.6 (e-Strong duality). Let e € R, Assume that f;, i € M and g, t € T are convex functions,
(FM) and e-weak duality hold. If z € C is an e-efficient solution of (MP) then (T, \,v) is 2e-efficient solution
for (M D)y .

Special case 2. The other special case is v = 0. Then (MD) is equal to Mond—Weir type dual problem which
is denoted as follows:

(MD)y Maximize  f(y)
subject to 0 € ZieM\?\iag(;’ifi(y) t/ZteT w0 g1(y) + Ne (Csy),
Diens Ni€oi + Yoper vier + e — ATe 20
Utgt(y) 2 Oa
A>0, 0 e=1e=(1,...,1) €R™,

(y,\,v) € C x R™ x Rf).
We can also obtain the following three theorems immediately.
Theorem 4.7 (e-Weak duality). Let z and (y, A\,v) be a feasible solution to (MP) and (MD)y respectively.
Assume that f;, i € M and g;, t € T are conver on C. Then the following cannot hold
fi(x) = fiy) —e;, forallie M
with at least one strict inequality.

Remark 4.8. Theorem 4.7 holds true under generalized convexity assumptions, i.e. AT f is pseudoconvex
and ), vig: is quasiconvex on C. It should be noticed that here we consider not sum of functions like in
Theorem 4.3 but make different assumption for A” f and > T Vi Gt

Using Theorems 3.9 and 4.7, we can establish e-strong duality. It should be mentioned that in contrast to
e-strong duality of mixed type and Wolfe type, Z is an e-efficient solution for (M D)y, not 2e-efficient. To show
that, we provide the proof.

Theorem 4.9 (e-Strong duality). Let e € RT'. Assume that f;, i € M and g¢, t € T are convex functions, (FM)
and e-weak duality hold. If T € C is an e-efficient solution of (MP) then (Z,\,v) is an e-efficient solution for
(MD)a.

Proof. Since T is an e-efficient solution for (MP), then by Theorem 3.9, there exist A;, i € M and v € Rf) such
that

0€ > XNl fi(®) + D 0:05,0:(%) + N (C; )

i€M teT (v)

holds, then (Z, A\, v) is feasible for (MD) ;.
Suppose that (Z, A, v) is not e-efficient solution for (MD),s, then there exists (x*, A*, v*) such that:

f@") —e= f(z)

cannot hold which contradicts e-weak duality (Thm. 4.7). O
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Remark 4.10. Compare to Liu [12] who established Wolfe type e-duality, we derived mixed type e-duality,
that covers both Wolfe and Mond—Weir types. We established e-weak duality and, by using our main result, i.e.
Theorem 3.9, e-strong duality for mentioned (MP) and (MD), including duality results for (MD)y and (MD) .

5. CONCLUSIONS

In this paper we established necessary and sufficient conditions for (P;(z)) and then, by using scalarization
method due to Chankong and Haimes [1], we could derive e-optimality conditions for (MP) as well as extended
to semi-infinite case under FM constraint qualification due to Goberna et al. [7] and convexity assumptions.
Moreover, we established another sufficient condition for (MP) with less strict assumption, i.e. generalized
convexity. In addition we proposed both weak and strong e-duality theorem under convexity assumption for
mixed type dual problem. Wolfe type and Mond—Weir type dual problems were also considered as special cases.
In addition, we gave another e-weak duality theorems under generalized convexity assumption.

Acknowledgements. This work was supported by the National Research Foundation of Korea Grant funded by the Korean
Government (NRF-2016R1A2B4011589).
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