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EFFECTS OF DOMINANCE ON OPERATION POLICIES IN A

TWO-STAGE SUPPLY CHAIN IN WHICH MARKET DEMANDS

FOLLOW THE BASS DIFFUSION MODEL

Phan Nguyen Ky Phuc1, Vincent F. Yu2,*, Shuo-Yan Chou2

and Yu-Chung Tsao2

Abstract. The Bass model offers several successful applications in forecasting the diffusion process of
new products. Due to its potential and flexibilities, the application of this model is not only limited now
to forecasting, but also extends to other fields such as analyzing a supply chain’s responses, optimizing
production plans, and so forth. This study investigates inventory and production policies in a two-stage
supply chain with one manufacturer and one retailer, in which the market demand process follows the
Bass diffusion model. The model assumes the market parameters and essential information are available
and ready for access. This study then applies dynamic programming and heuristic algorithm to find
the optimal policies for each stage under different scenarios.
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1. Introduction

Developments in technology and engineering in the last few decades have laid a strong foundation for modern
gadgets. However, when a new product is introduced to the market, customers do not immediately accept it,
because potential customers have to wait to be sure about the product’s effectiveness. Customers’ adoption
process occurs gradually and is known as the diffusion phenomenon. Real data demonstrating such diffusion
can be found through a wide range of products such as color televisions, air conditioners, and refrigerators to
name a few. Although the diffusion process depends heavily on potential markets, it is influenced by product
advertisement. Deciding an appropriate advertisement rate helps managers optimize their inventory policies,
which provide various benefits for the company. Aside from advertising, the dominant property also plays an
important role in contributing to the benefit of an optimal inventory policy, especially when the interactions
between different stages of the supply chain are complicated.

In this study the dominant property means that, if one stage dominates other stages, then that stage just
focuses on maximizing its own profits while ignoring the strategies or actions of other stages. This dominant
property can be illustrated through a push or pull system. In such a system, the dominating stage is the
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manufacturer that tries to produce as much as possible and push the items to the retailer without considering
the retailer’s strategy. On the other hand, the retailer is the dominating stage in a pull system and places
orders, ignoring the manufacturer’s strategy. This research extends previous studies to consider the impacts of
advertising and the dominant relationship in a two-stage supply chain, given that customer demands follow the
Bass model. We also develop a mathematical model and a corresponding dynamic programming and genetic
heuristic algorithm approach to validate our model.

The rest of the paper is organized as follows. Section 2 is the literature review. Section 3 discusses the
development of the proposed model. Section 4 gives an illustrative example of the proposed model. Finally,
Section 5 draws conclusions.

2. Literature review

Diffusion of innovation is an important and commonly researched issue in marketing science. Over the years,
several studies have modeled this process [2, 5, 13, 16, 17], with Bass [2] suggesting a diffusion of the innovation
model and providing extensive empirical evidence to support it. According to Bass, the diffusion of a new
product is a combination of two different procedures – innovation and imitation – that describe two adoption
processes of potential customers. The standard Bass model can be expressed through the following differential
equation.

dD(t)

dt
= p (M −D (t)) +

q

M
D (t) (M −D (t)). (2.1)

The terms D(t), M, p, and q are cumulative adopters, the potential market, the coefficient of innovation, and
the coefficient of imitation, respectively. Following its introduction, the Bass model has been extensively used in
modeling the diffusion of a wide range of products and has proved its validation and success well in fitting real
data. The success of the Bass model in forecasting a market’s adoption rate and its simplicity in application
have led to a number of further enhancements by adding realistic constraints and effects in order to achieve
better insights and approximation of real marketing issues.

A realistic important issue that has attracted the attention of many scholars when studying the Bass model
is the advertisement effect. A large number of studies has targeted the effect of advertisement on this process
[3, 7, 11, 15]. Horsky and Simon [7] presented a diffusion model under the effects of advertising. According to
them, advertising improves the diffusion process, and an optimal advertisement policy is to advertise intensively
in the first stages of the product life cycle and to reduce the advertisement rate when sales increase. Bass et al.
[3] suggested a general Bass model that is now widely accepted by other scholars. This model poses the effect
from a current marketing effort that presents validation through empirical data and that is consistent with
diffusion properties. Based on the general Bass model, Krishnan and Jain [11] verified an optimal advertise-
ment policy under different correlations between the discounted advertising coefficient and the advertising-sales
ratio. Nikolopoulos and Yannacopoulos [15] studied the optimal advertising for the Bass diffusion model under
stochastic dependence of environmental pressure and recommended the optimal stopping rule and the expected
length of time for an advertisement campaign.

It is well-known that the type of relationship in a common supply chain is often a dominated relationship
where the dominating stages try to maximize their own profit. This issue has been described and studied by
many scholars. Lu [12] presented an optimal solution for a one-vendor, one-buyer inventory model, whereby
the demand from the buyer has unchanged quantity and frequency. The heuristic approach was also proposed
for the case of one vendor as well as multi-players. Almehdawe and Mantin [1] introduced a Stackelberg game
between a single manufacturer and multiple retailers. Their study assumed that demand follows an elastic
pattern. Changing the role of the dominating player clarifies the efficiency of the supply chain and the benefit
for each retailer. Yu et al. [19] investigated the vendor inventory management system with the vendor taking
up responsibilities for procuring raw materials and supplying the finished product. They found the equilibrium
point at which the retailer profit is maximized.
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3. Model development

In the generalized Bass model, the adoption rate can be controlled through the current marketing effort. This
“current marketing effort” describes the impacts of the dynamic marketing decision variables on the adoption
rate at time t [3]. Let x (t) be the current marketing effort at time t :

x(t) = 1 + βv
v
′
(t)

v(t)
+ βa

a
′
(t)

a(t)
, (3.1)

where v(t) and a(t) are the price and advertisement expenditure at time t, respectively; v’(t) and a’(t) are the
instantaneous changes in price and advertisement at time t, respectively; and βvS and βa are the coefficients
of price and advertisement, respectively. This study keeps the price constant, and only the advertisement expen-
diture changes. Using these notations and the initial condition a(ti) = ai, the explicit formula for advertisement
expenditure given that x(t) is unchanged and equal to xi is:

a (t) = aiexp

[
(t− ti) (xi − 1)

βa

]
. (3.2)

We make a few assumptions in this study. First, the system is transparent, meaning that the data of all
stages are available for other stages. Due to a transparent system, the manufacturer can be an observer and
obtain parameters of the market. Using these parameters, the manufacturer determines the default value for
the production rate, which is preferable to other values. We also assume that the number of replenishments
between two stages is predetermined. The lead time is zero, and shortages are not allowed. Fixed costs that
occur with orders are identical functions of the order quantity. Under these assumptions, two scenarios can
model the interaction within the supply chain system. In the 1st scenario, the manufacturer stage dominates
the retailer stage. In the 2nd scenario, the retailer is the dominating stage of the supply chain.

In our annotations the superscripts A and B represent the manufacturer and the retailer, respectively. The
following annotations are used in our model formulations.
M Potential market size (ultimate number of adopters)
p Coefficient of innovation
q Coefficient of imitation
k Fixed portion of the market to be satisfied
m Number of replenishments
DB
i (t) The cumulative demand function appears at the retailer stage between [ti, ti+1]

dBi (t) The demand rate function appears at the retailer stage between [ti, ti+1]
cB Retailer capacity
xi Current marketing effort between [ti, ti+1]
βa Coefficient of advertisement
ar Normal advertisement cost rate
ai Advertisement cost rate at ti
ti Time when the ith replenishment arrives at the retailer stage
qi Quantity of the ith replenishment
Qi Cumulative quantity up to the ith replenishment
vA Unit variable cost of raw material for manufacturing one item
vB Retailer’s unit purchasing cost
sA Manufacturer’s predetermined unit selling price
sB Retailer’s predetermined unit selling price
fA Associated cost per unit time when the production rate is greater than pAd
wA Associated cost per unit time when the production rate is less than pAd
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hA Manufacturer’s unit holding cost, i.e. the cost of having one dollar of the item tied up in inventory for a
unit time interval
hB Retailer’s unit holding cost
ABi Set-up cost incurred when the retailer receives the ith replenishment from the manufacturer; it is assumed

that this function satisfies ABi (a+ b) ≤ ABi (a) +ABi (b).
pAd Manufacturer’s default production rate
pAi Manufacturer’s production rate between [ti, ti+1]
4Ap Maximum increases of the production rate from pAd
IAi Inventory on hand at the manufacturer just before the ith replenishment is delivered
IBi Inventory on hand at the retailer just before the ith replenishment is delivered

3.1. Scenario 1: manufacturer stage dominates retailer stage

When dominating the supply chain system, the manufacturer would rather maintain the production rate at
the default value than vary it. Consequently, the manufacturer’s decision variables are time, quantity of each
delivery, and inventory on hand just before each replenishment is delivered. The retailer’s decision variables are
inventories on hand at each time when the replenishment arrives as well as the final marketing effort.

3.1.1. Manufacturer stage

The manufacturer’s profit is the difference between total sales and total operation costs. The total sales of
the manufacturer are given by:

Total sales =

n∑
i=1

(sA − vA)qi. (3.3)

Because
∑n
i=1 qi = kM , or is a constant, the amount of total sales is also a constant. Maximizing profit

now becomes an issue of minimizing the manufacturer’s holding cost. Given a set of replenishment quantities,
{q1, q2, . . . qm}, let Ki denote the manufacturer’s holding cost between ti and ti + 1. Figure 1 illustrates the
manufacturer’s inventory level.

Since
IAi+1−I

A
i +qi

pAd
= ti+1 − ti and the inventory holding cost for one period is equal to the shaded area

multiplied by the corresponding scale, in this case we have:

Ki = 0.5
(
IAi+1 + IAi − qi

)
(ti+1 − ti)hAvA.

Plugging
IAi+1−I

A
i +qi

pAd
= ti+1 − ti into the above formula, the final form of the inventory holding cost for a period

is given as equation (3.4). Because after the last delivery the manufacturing inventory level is equal to zero, the
inventory level of the manufacturer at that time must be equal to the delivery quantity qm. As a result, the
holding cost for the last period is given by equation (3.5).

Ki = 0.5
(
IAi+1

2 −
(
IAi − qi

)2)
hAvA/pAd , (3.4)

Km−1 = 0.5
(
qm

2 −
(
IAm−1 − qm−1

)2)
hAvA/pAd . (3.5)

The total holding cost L is:

L =

m∑
i=1

Ki = 0.5hAvA/pAd ×

[
m−1∑
i=1

(2IAi qi − qi2) + qm
2

]
. (3.6)
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Figure 1. Manufacturer’s inventory level versus time in the first scenario.

Because IAi ≥ qi, in order to miminize L, all IAi must be equal to qi. Equation (3.6) is hence:

L =

m∑
i=1

Ki = 0.5hAvA/pAd ×

[
m∑
i=1

qi
2

]
, (3.7)

where 0 ≤ qi ≤ cB and
∑m
i=1 qi = kM . To minimize L, we get the following result:

qi =
kM

m
. (3.8)

The optimal replenishment cycle with respect to this manufacturing scheme is:

ti+1 − ti =
kM

pAdm
. (3.9)

3.1.2. Retailer stage

The customer demand that the retailer has to face is assumed to follow the Bass model [3] and has the form:

dBi (t) =
[
p
(
M−DB

i (t)
)

+
q

M
DB
i (t)

(
M−DB

i (t)
)]
xi. (3.10)

Because of being the dominated stage, the retailer at each specific time ti, which is decided by the manufacturer,
receives a replenishment quantity qi from the manufacturer. To maximize profit, the retailer has to decide the
inventory on hand at each ti and IBi , where 0 ≤ IBi ≤ cB − qi. In addition, after receiving the last replenishment,
qm, the retailer is able to set up the final marketing effort to obtain optimal profit. Consequently, the retailer’s
decision variables are IB1 , I

B
2 , . . . , I

B
m , and xm.

The retailer’s profit is the difference between the retailer’s total sales and the total relevant cost, where the
retailer’s total sales are a constant and given by:

Total sales =

n∑
i=1

(sB − vB)qi = (sB − vB)kM. (3.11)
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In order to maximize profit, the retailer must minimize the total relevant cost. For the time period i, the relevant
cost comprises three components: advertisement cost,

∫ ti+1

ti
a (t) dt; fixed set-up cost, ABi ; and inventory holding

cost, hBvB
∫ ti+1

ti

[
ikM
m −D

B
i (t)

]
dt. Thus, we have:

Total relevant cost =

m∑
i=1

[∫ ti+1

ti

a (t) dt+ABi + hBvB
∫ ti+1

ti

[
ikM

m
−DB

i (t)

]
dt

]
. (3.12)

Since the retailer’s decision variables are IB1 , I
B
2 , . . . , I

B
m , and xm, it is necessary to convert the total relevant

cost into a function that depends on these variables. Due to being dominated, from the retailer’s view, the
values of ti in equation (3.12) are constants and determined by the manufacturer via equation (3.9). In order to
calculate the retailer’s total relevant cost, the functions a(t) and DB

i (ti) depending on IB1 , I
B
2 , . . . , I

B
m, and xm

must be identified. Since the function a(t) can be easily established when xi is given through equation (3.2), it is
necessary to identify only functions xi and DB

i (ti). We employ equation (3.10), with an appropriate constraint,
to determine DB

i (ti). The first constraint is the total cumulative demand at each ti, D
B
i (ti), which is given by:

DB
i (ti) =

(i− 1)kM

m
− IBi . (3.13)

Let ∅i = (i−1)kM
m − IBi , and then the formula of DB

i (t) is as follows:

DB
i (t) = M − M(p+ q)

q + exp
[
M(p+ q)

[
t
M xi + 1

M(p+q)

(
ln
(
Mp+q∅i
M−∅i

)
− ti(p+ q)xi

)]] . (3.14)

In addition, equation (3.10) must be satisfied by another constraint – that is, DB
i (ti+1) = ikM

m − IBi+1. This
constraint is applied for equation (3.14), and then the value of xi, where iε[1,m− 1], is obtained by:

xi =
pAdm

kM(p+ q)

[
ln

(
Mp+ q∅i+1

M − ∅i+1

)
− ln

(
Mp+ q∅i
M − ∅i

)]
. (3.15)

From equations (3.14) and (3.15), xi and DB
i (t) depend only on IBi and IBi+1. Consequently, the relevant cost

between two replenishments i and i + 1 is the functions of these two decision variables. However, at the last
replenishment, by controlling the final marketing effort, xm, the retailer can decide the end of the planning
horizon. As a result, the last relevant cost is the functions IBm and xm. By replacing xm in equations (3.2) and
(3.14) as well as solving equation (3.14) with the constraint that cumulative demand at the end of the planning
horizon is equal to kM, we can find the final formula for the relevant cost of the last replenishment as:

V = ABm +
βaam
xm − 1

[
exp

(
G(xm − 1)

xm (p+ q)βa

)
− 1

]
+
hBvBkMG

xm(p+ q)
+
hBvBMpG

qxm(p+ q)
+
hBvBM

xmq
ln

(
M − kM
M − ∅m

)
, (3.16)

where:

G = ln

[
(Mp+ qkM) (M − ∅m)

(Mp+ q∅m) (M − kM)

]
. (3.17)

We apply the gradient method to update and find the optimal value of xm. In order to find values of IBi ,
various meta-heuristics methods can be employed to solve this issue. Section 4 presents and discusses a numerical
example with a detailed algorithm.



EFFECTS OF DOMINANCE ON OPERATION POLICIES IN A TWO-STAGE SUPPLY CHAIN 1267

3.2. Scenario 2: retailer stage dominates manufacturer stage

Due to being a dominating stage, the retailer’s decision variables are the quantity of each replenishment, qi,
and the marketing effort between two consecutive replenishments, ki, given that replenishment is placed only
when the inventory level drops to zero. Under the retailer’s domination, the manufacturer’s variables are the
production rate, pAi , between two consecutive replenishments and the initial inventory.

3.2.1. Retailer stage

Since new replenishment is placed only when the inventory level falls to zero, it is like stating that DB
i (ti) =

Qi−1 for every t in the appropriate domain, where Qi−1 =
∑i−1
j=1 qj . Presumably, it is DB

i (t0) for some specific

time t0. Solving equation (3.10) with the constraint DB
i (ti) = Qi−1, the explicit formula for DB

i (t) is obtained
as equation (3.18). Employing the constraint DB

i (ti+1) = Qi to equations (3.18) and (3.19) is thus presented as:

DB
i (t) = M − M(p+ q)

q + exp
[
M(p+ q)

[
t
M xi + 1

M(p+q)

(
ln
(
Mp+qQi−1

M−Qi−1

)
− ti(p+ q)xi

)]] , (3.18)

ti+1 = ti +
1

xi(p+ q)

[
ln

(
Mp+ qQi
M −Qi

)
− ln

(
Mp+ qQi−1
M −Qi−1

)]
. (3.19)

As mentioned in the 1st scenario, the retailer needs to minimize the total relevant cost for obtaining the
optimal inventory policy. The retailer’s total relevant cost in this scenario is:

Total relevant cost =

m∑
i=1

[∫ ti+1

ti

a (t) dt+ABi + hBvB
∫ ti+1

ti

[
Qi−DB

i (t)
]

dt

]
(3.20)

The constraints for equation (3.20) are qi ≤ cB ,
∑m1

i=1 qi=kM , and xi>0. Due to the large number of variables
in equation (3.20), which includes {q1, q2, . . . . . . , qm} and {x1, x2, . . . . . . , xm}, finding the exact optimal solution
for this function is a difficult task. Therefore, we apply a meta-heuristic algorithm to find optimal or near-optimal
solutions. The appendix provides a more detailed description of the algorithm.

3.2.2. Manufacturer stage

Due to transparent data and the retailer’s announcement, the manufacturer knows exactly the demand that
it has to satisfy. Assuming that the production rate is fixed between time ti and ti+1, the manufacturer stage
is modeled as follows.

Let Hi (r) = minimum operation cost from time ti to the end of the planning horizon, given that r is the
inventory level at time ti, before replenishment quantity qi is delivered. Since shortages are not allowed, r ≥ qi.
The recurrence relationship for this problem is then given by:

Hi (r) = min (Si (r, y) +Hi+1 (y))
y = qi+1, . . . , z

, (3.21)

where z =
∑m
j=i+1 qj and qi ≤ r ≤ qi + z.

We compute Si (r, y) as follows:

Si (r, y) = +∞, ifpAi > pAd +4Ap , (3.22)

Si (r, y) = (r − di)hAvA (ti+1 − ti) +
hAvAp(ti+1 − ti)2

2
. . .
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+

{ (
pAi − pAd

)
fA (ti+1 − ti) , if pAd +4Ap > pAi > pAd(

pAi − pAd
)
wA (ti+1 − ti) , if pAi ≤ pAd

, (3.23)

where pAi = y+qi−r
ti+1−ti . The boundary conditions for equation (3.19) are given by:

Hm (qm) = 0 (3.24)

Hm (x) = +∞ (x 6= qm). (3.25)

We note that before the last delivery the inventory level of manufacturing is qm and will immediately drop
to zero after the success of last delivery. As a result of this, the manufacturer does not incur any cost, i.e.
Hm (qm) = 0. Since it is not allowed to manufacture any quantity more than demand in the last replenishment,
i.e. the redundant items cannot be sold to the retailer, other values of inventory level not equal to qm are
prohibited and incur an infinite cost.

The optimal solution is now given by:

min
[
hAvAr2

2pAd
+H1(r)

]
r = d1, . . . , z

, (3.26)

where z =
∑m
i=1 qi. Let tmax = maxi=1,...,m−1. The worst-case solution time for this stage is proportional to

z ×
[
(pAd +4Ap )× tmax

]m−2
.

4. Numerical example

Consider a supply chain that includes a manufacturer, a retailer, and a market. The market has its own
parameters M , p, and q, corresponding to potential market size, the coefficient of innovation, and the coefficient
of imitation, respectively. Both the manufacturer and the retailer agree that they only satisfy k portion of the
market, and this is done through m times of replenishments. In addition, so as to maximize profit, the retailer
decides on using advertisement to control the demand rate. This advertising process has two parameters, βa and
ar, denoting the coefficient of advertisement and the normal advertisement cost rate, respectively. The retailer
incurs a set-up cost, ABi , every time it receives replenishment. This set-up cost is under the form of a staircase
function given by:

ABi = A0 + e0

⌈
qi
b0

⌉
. (4.1)

The unit holding cost, unit selling price, and unit purchasing cost of the retailer and manufacturer are hB ,
sB , vB , hA, sA, and vA, respectively. The manufacturer has a default production rate, pAd . In order to achieve
a more flexible manufacturing system, the manufacturer’s production rate can increase to a maximum value of
pAd +4Ap . However, this flexibility incurs a cost whenever the production rate differs from the default value. This
cost can be interpreted as the money paid for the labor due to working overtime or the penalty of not utilizing
resources well. Depending on the scenarios, the decision variables of each stage are different. Tables 1–3 give
parametric values of this numerical example.

Table 1. Market and advertisement’s parameters.

Parameter M p q k m ar βa

Value 800 0.0163 0.0325 0.96 6 10 1.5
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Table 2. Manufacturer’s parameters.

Parameter sA vA hA pAd 4Ap fA wA

Value 35 22 0.02 60 10 3 1

Table 3. Retailer’s parameters.

Parameter sB vB hB cB A0 e0 b0

Value 55 35 0.02 160 100 80 50

Table 4. Manufacturer’s production plans in the 1st scenario.

No. 1 2 3 4 5 6

Time 0 2.133 4.267 6.4 8.533 10.667
qi 128 128 128 128 128 128

Total relevant cost = 360.5.

Figure 2. Retailer’s chromosome structure in the 1st scenario.

Table 5. Retailer’s inventory policies in the 1st scenario.

No. 1 2 3 4 5 6

Time 0 2.133 4.267 6.4 8.533 10.667
IBi 0 32 32 32 21 32
xi 1.853 1.186 0.888 0.927 0.9277 10

Total relevant cost = 2922.5.

4.1. Scenario 1: the manufacturer dominates the retailer

4.1.1. The manufacturer’s decision

As we have proposed above, when dominating the system, the manufacturer sets the replenishment cycle
and the quantities delivered to the retailer. The cycle and the quantities are identified by equations (3.8)–(3.9).
Under this condition, Table 4 lists the manufacturer’s production plan. The manufacturer’s total relevant cost
is computed by equation (3.7).

4.1.2. The retailer’s decision

Under the manufacturer’s domination, the retailer’s only two decision variables are the inventory on hand
just before each replenishment arrives and the last marketing effort. To solve the retailer’s issues, various meta
heuristic algorithms can be applied, but this example adopts the genetic algorithm (GA). Each chromosome
represents a feasible solution corresponding to a retailer’s inventory policy (see Fig. 2). Figures 3 and 4 show
the flowchart for this procedure and the retailer’s total relevant cost corresponding to the generations in the 1st
scenario by GA. Table 5 gives the retailer’s inventory policies in this scenario. Appendix A provides the detailed
descriptions of the algorithm.
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Figure 3. Flowchart of the genetic algorithm.

Figure 4. Retailer’s total relevant cost corresponding to the generations in the 1st scenario.
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Figure 5. Retailer’s chromosome structure in the 2nd scenario.

Figure 6. Retailer’s total relevant cost corresponding to the generations in the 2nd scenario.

Table 6. Retailer’s inventory policies in the 2nd scenario.

No. 1 2 3 4 5 6

Time 0 13.456 14.405 14.664 14.920 15.546

qi 35 145 147 144 148 149
xi 0.1463 3.9673 8.8464 7.9318 3.9888 8.3224

Total relevant cost = 2225.6.

4.2. Scenario 2: the retailer dominates the manufacturer

4.2.1. The retailer’s decision

Being the dominating stage, the retailer’s decision variables are the quantity of each replenishment and the
marketing efforts between two consecutive replenishments. Due to the huge amount of decision variables and
the complexity of the objective functions, we again adopt GA. In this example, the range of marketing effort is
[0; 10], the crossover rate is 0.8, and the mutation rate is updated adaptively. Figure 5 shows the chromosome
of this issue. Table 6 gives the best results found by GA, while Figure 6 displays the best value that GA finds
corresponding to the generation. Appendix A explains the reason why GA is adopted and represents descriptions
of the algorithm.

4.2.2. The manufacturer’s decision

Due to the transparent system, the retailer’s demands are revealed to the manufacturer in order to help it
to optimize its production plan. Based on equation (3.24), the boundary value for the manufacturer stage is
H6(149) = 0. Si(x, y) in equation (3.23) and can be interpreted as the total operation cost between the ith
demand and the (i+1)th demand, where the inventory levels are x and y, respectively. Due to constraints and
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Table 7. Manufacturer’s production plans in the 2nd scenario.

No. 1 2 3 4 5 6

Time 0 13.456 14.405 14.664 14.920 15.546
IAi 35 589 510 381 254 149
pAi 43.773 69.535 69.486 66.317 68.719 0

Total relevant cost = 1889.9.

assumptions, the value of x in H5(x) must be in the range [q5, q5 + q6]. The calculation of H5 (254) is used as
an illustrative example. In order to calculate H5 (254) =S5 (254, 149) +H6(149), S5 (200, 149) is required. Using
equation (3.23) with:

pAi =
y + qi − r
ti+1 − ti

=
148 + 149− 254

15.55− 14.92
=

43

0.63
= 68.7 < 70,

we have:

S5 (254, 149) = (254− 148)×0.02× 22× 0.63 . . .

+
22× 0.02×0.632

2
×68.7 + (68.7− 60)×3× 0.63.

Thus, we arrive at:

S5 (254, 149) = 289.4⇒ H6 (400) = 289.4

Table 7 provides the final manufacturer’s production plans.

5. Conclusion

From the results of this research, it is clear that when in the dominant position, either the retailer or the
manufacturer spends less money on the total relevant cost, which is extremely important. The retailer reduces
the cost by utilizing the batch size in the set-up cost and controlling the demand rate. The manufacturer
decreases the cost by avoiding penalties from fluctuating the production rate and holding the inventory too
long. In addition, the total relevant costs of the retailer and manufacturer in the two scenarios are unequal. If
the objective function is the profit of the entire supply chain, then collaboration and power sharing are really
required to ensure satisfaction for both the manufacturer and retailer.

This study proposes a model for considering different dominant relationships in the supply chain system
under the Bass model’s market effects and the advertisement effect. The proposed model is consistent with the
diffusion process and intuitions. Using the model, each stage of the supply chain may respond to the impacts
from the dominating stage in order for the firm to maximize its profit. Through the example and the model, we
can analyze and verify which stage is better to dominate the supply chain.

This model still has a few limitations. First, when the size of the potential market increases, the computational
time required for the dynamic programming technique will grow considerably. Thus, the solution method may
not be suitable for solving large-scale problems. Second, the model assumes that the required information is
available and accessible for all stages of the supply chain system. As a result of this assumption, each stage can
easily identify the best policies, but this assumption may not apply to all types of supply chains. Subsequent
studies may consider the degree of information transparency in the model. Third and lastly, this paper does
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not reflect on some important phenomena, such as delivery backlog or lost sales. Future studies may extend
the proposed model to take these issues into consideration. This will certainly bring the current model closer to
reality.

Appendix A

Genetic algorithm

Genetic algorithm (GA) is a meta heuristic algorithm inspired by the process of natural selection. Genetic
algorithms are commonly used to generate high-quality solutions to optimization and search problems by mimic
natural selection activities, such as mutation, crossover, and selection. In GA, each chromosome is presented for
a feasible solution. In the first and the second scenarios, the chromosomes are encoded as [Q1 −Q2 · · · −Qm]
and [Q1 −Q2 · · · −Qm − x1−x2 · · · −xm], respectively. After the fitness values are computed, each chromosome
is picked in accordance with the probability distribution of the fitness value. To conduct a crossover, each pair of
parents is selected based on the parents’ position in the population. The next step randomly creates a crossover
point. If there is no capacity violation, then two chromosomes are mated to produce the next generation.

In the traditional GA approach, values of parameters, i.e. population size, crossover rate, mutation rate,
and number of crossover points, are fixed throughout the whole evolution process. However, several studies
pointed out that the performance of GA is enhanced by adjusting values of the genetic parameters [6, 8, 14].
As a result of this, adaptive genetic algorithms, in which the genetic parameters vary throughout the evolution,
have been developed [4, 14]. In this paper each chromosome represents a feasible solution corresponding to the
replenishment policies. This study applies the adaptive mutation rate in order to increase the diversity of the
chromosomes at initial generations and to strengthen the local optimal search at the last generations. In this
study the mutation rate at the z th generation is given by:

mutation rate (z) =
ρ

εγ
, (A.1)

where:

γ =

⌈
λz

Number of generations

⌉
. (A.2)

If the mutation occurs at the genes representing the cumulative quantities in the chromosome, then in order
to ensure the feasibility of new chromosomes the new value of Qi after mutating must be in the range of y1 and
y2, where y1 = max(Qi−1, Qi+1 − cB) and y2 = min(Qi−1 + cB , Qi+1). In both of the two scenarios, the values
of ρ, ε, and λ are set at 0.4, 2, and 5, respectively.

Back probagation

In the 2nd scenario, the total relevant cost has a stage-wise structure. It seems appealing that the chromosomes
should be encoded as [Q1 −Q2 · · · −Qm], and back propagation is adopted to update xi by using the gradient
method. If this approach is applicable, then it will simplify the chromosomes and give a more accurate solution
than coding chromosomes as [Q1 −Q2 · · · −Qm − x1−x2 · · · −xm]. However, due to the function’s sensitivity
and the probability of trapping in the local optimal, this approach is not promising.

In order to solve the problem, we apply the gradient descent method combined with the back propagation
approach. The gradient method has the advantage of a solid mathematical background and has been applied
successfully in solving several optimization problems in engineering fields [9, 10, 18, 20]. The prominent feature
of the gradient method is its reliation on the derivative, which is sometimes difficult to compute. However, when
the problem has a special structure, like it can be presented with a recurrence relation form, then the back
probagation method is highly appropriate to quickly compute the gradient.
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Given the set of [Q1, Q2, . . . . . . , Qm], the total relevant cost is the function of [x1, x2, . . . . . . , xm]. From the
initial values of marketing efforts

[
x01, x

0
2, . . . . . . x

0
m

]
, via the number of iterations, the appropriate values of

[x1, x2, . . . . . . , xm] are determined. Let Zi

(
ai, x

j
i

)
be the total relevant cost to go from the time the retailer

receives the ith replenishment to the end, given that the advertisement rate at that time is ai and the retailer
uses marketing efforts xji – the value of xi at iteration j.

The recurrence relation between Zi and Zi+1 is:

Ri

(
ai, x

j
i

)
= Pi

(
ai, x

j
i

)
+Ri+1

(
ai+1, x

j
i+1

)
, (A.3)

where ai+1, ti+1, and Pi

(
ti, ai, x

j
i

)
are given by equations (3.2), (3.19), and (A.4), respectively.

Pi

(
ai, x

j
i

)
=

∫ ti+1

ti

a (t) dt+ABi + hBvB
∫ ti+1

ti

[
Qi−DB

i (t)
]

dt. (A.4)

If xji = 1, then:

Pi

(
ai, x

j
i

)
= ABi +

aiFi

xji (p+ q)
+
hBvBQiFi

xji (p+ q)
+
hBvBMpFi

qxji (p+ q)
+
hBvBM

xji q
ln

(
M −Qi
M −Qi−1

)
, (A.5)

else:

Pi

(
ai, x

j
i

)
= Ai +

βaai

xji − 1

[
exp

(
Fi(x

j
i − 1)

xji (p+ q)βa

)
− 1

]
+
hBvBQiFi

xji (p+ q)
+
hBvBMpFi

qxji (p+ q)
+
hBvBM

xji q
ln

(
M −Qi
M −Qi−1

)
,

(A.6)

where:

Fi = ln

[
(Mp+ qQi) (M −Qi − 1)

(Mp+ qQi−1) (M −Qi)

]
. (A.7)

The boundary condition for equation (A.3) is:

Zm+1 (am+1, ) = 0. (A.8)

Partial differentiation of equation (A.3) with respect to xji is given by:

∂Zi

∂xji
=
∂Pi

∂xji
+
∂Zi+1

∂ai+1
×∂ai+1

∂xji
. (A.9)

In order to calculate ∂Zi+1/∂ai+1 and ∂Zi+1/∂ti+1, the partial derivatives of equation (A.3) with respect to ai
and ti are taken as:

∂Zi
∂ai

=
∂Pi
∂ai

+
∂Zi+1

∂ai+1
×∂ai+1

∂ai
. (A.10)
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The boundary equation is:

∂Zm+1

∂am+1
= 0. (A.11)

These recurrent relations determine the gradients of decision variables xi. The value of xi is updated by using
the following equation:

xj+1
i = xji + r

∂Zi

∂xji
. (A.12)

The process stops when the stopping condition is met.

This procedure has some limitations. The first is that the ratio between maxi

[
∂Zi

∂xj
i

]
/mini

[
∂Zi

∂xj
i

]
is large.

This makes the function very sensitive when updating the value by the gradient method. In addition, due to
the existence of many local optimal points, the procedure described above may be trapped in local optimums.
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