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Abstract. A recently introduced dualization technique for binary
linear programs with equality constraints, essentially due to Poljak
et al. [13], and further developed in Lemaréchal and Oustry [9], leads
to simple alternative derivations of well-known, important relaxations
to two well-known problems of discrete optimization: the maximum
stable set problem and the maximum vertex cover problem. The re-
sulting relaxation is easily transformed to the well-known Lovász θ
number.
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1. Background

The problem of finding a stable set or equivalently, a maximal (or, a maximal
weighted independent set in weighted graphs) independent set in a graph is one of
the most difficult problems of combinatorial optimization. It is known to be NP-
complete for arbitrary graphs. Furthermore, it is also very difficult to approximate
as mentioned in [6, 14].

Lovász was the first one to introduce upper bounds of semidefinite type for this
problem where his investigations were motivated by some problems in information
theory [10,11]. In particular, Shannon, studying the problems of interference stable
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coding in 1956, introduced the concept of information capacity of a graph which
is intimately related to the maximal independent set of the graph. However,
Shannon’s measure for the information capacity of a graph turns out to be a
function which is very hard to compute even for simple graphs like the pentagon
circuit C5 (a circuit with five nodes). It was only in 1977 that Lovász obtained
the precise result that the Shannon capacity of C5 was equal to

√
5. In fact,

Lovász’s result gave a polynomially computable upper bound (by a judicious use
of the ellipsoid method) on the maximal independent set of an arbitrary graph.
Furthermore, for a class of graphs called perfect graphs, Lovász’s bound is exact.
This bound is commonly referred to as Lovász theta function (or, number). Lovász
theta function can be computed as the solution of a semidefinite programming
problem (there exist several formulations; see e.g. [3,7]), which spawned a flurry of
activities in the numerical optimization community with the advent of polynomial
interior point methods in the 80’s.

1.1. Augmented Lagrange duality and semidefinite relaxations

Poljak, Rendl and Wolkowicz proposed a novel dualization technique which they
called a recipe for obtaining semidefinite programming relaxations for quadratic
0 − 1 programs in [13] using redundant constraints in an augmented Lagrangian
framework. In a recent paper [9], Lemaréchal and Oustry extended the technique
to linear integer programs with equality constraints, which results in a semidefinite
programming relaxation of the problem. In summary, the idea is the following.
Consider the linear integer programming problem

maximize cT x
s.t. Ax = b

xi ∈ {0, 1}, ∀i ∈ {1, . . . , n}·
Lemaréchal and Oustry rewrite this problem by adding a redundant quadratic
constraint and treating the 0 − 1 constraints as quadratic equations as follows:

maximize cT x
s.t. Ax = b

‖Ax − b‖2
2 = 0

x2
i = xi, ∀i ∈ {1, . . . , n}·

Then, they form a Lagrange dual of the above problem, and take the dual of the
resulting problem one more time to arrive at the following convex, semidefinite
programming relaxation (bi-dual) of the original problem:

maximize cT d(X)
s.t. Ad(X) = b

Trace AT AX = ‖b‖2
2[

1 d(X)T

d(X) X

]
� 0
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with X a symmetric n × n matrix, and d(X) the vector composed of its diago-
nal elements. Appending the redundant constraint with a scalar multiplier to the
Lagrange function is reminiscent of augmented Lagrangian methods, hence our
title. Lemaréchal and Oustry then establish that this technique is equivalent to
what they propose in their paper as “Dualization B”, which essentially consists
in dualizing the linear inequality constraints, and minimizing the resulting La-
grange function over the quadratic constraints resulting from the binary nature
of the variables. Under certain technical conditions, they show that maximiz-
ing the resulting function (“Dualization B”) gives a better bound than the linear
programming relaxation of the original problem.

Our purpose in this note is to explore the consequences of this dualization
technique in the context of the maximum (weighted) stable set problem and the
maximum (weighted) vertex cover problem. Given the importance of these prob-
lems both from theoretical and applied viewpoints, this note adds to the repertoire
of many derivations of Lovász’s theta (see e.g. [7] for a detailed exposition of these
derivations) yet another simple and concise derivation.

2. The maximum (weighted) stable set problem

We consider the linear integer programming formulation of the stable set prob-
lem on a connected graph G = (V, E) (with node set V and edge set E), referred
to as (SSP):

maximize cT x
s.t. xi + xj ≤ 1, ∀(i, j) ∈ E

xi ∈ {0, 1}, ∀i ∈ V

where c ∈ R|V | is a positive vector. The optimal value is referred to as the
(weighted) independence number, α(G), of G. The problem is also sometimes
called the node packing or vertex packing problem.

To view the stable set problem in the context of Lemaréchal–Oustry we refor-
mulate the problem as follows:

maximize cT x
s.t. xi + xj + sij = 1, ∀(i, j) ∈ E

xi ∈ {0, 1}, ∀i ∈ V
sij ∈ {0, 1}, ∀(i, j) ∈ E

and, treating the binary constraints as quadratic constraints

maximize cT x
s.t. xi + xj + sij = 1, ∀(i, j) ∈ E

x2
i = xi, ∀i ∈ V

s2
ij = sij , ∀(i, j) ∈ E
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we can apply the dualization B technique. We obtain the following SDP problem
which we refer to (SSLO):

maximize cT d(X)
s.t. Pd(X) + d(S) = e

Trace AT AX = |E|[
1 d(X)T

d(X) X

]
� 0

where P represents the |E| × |V | edge-node incidence matrix, A represents the
block matrix A =

[
P I

]
with

AT A =
[

PT P PT

P I

]
,

the (variable) symmetric matrix X is as follows:

X =
[

X BT

B S

]
,

e is a vector of all ones, and, finally d(X) ∈ R|V | denotes the diagonal of X ,
d(S) ∈ R|E| the diagonal of S, respectively.

The intriguing question here is whether this is a new relaxation to the stable
set problem. To answer this question, we have to relate the value of the above
relaxation which we denote zsslo to well-known relaxations of the stable set prob-
lem. The most famous relaxation of the stable set problem is the θ-number or
θ-function of Lovász, for which at least seven different formulations are known;
see [3,7]. Can we transform the above relaxation into one of the equivalent forms
of Lovász θ?

Let us begin by inspecting closely the constraints of the relaxation (SSLO).
Obviously, the first set of constraints are nothing else than the constraints

xi + xj + sij = 1, ∀(i, j) ∈ E

of the linear integer programming formulation, expressed using the diagonal ele-
ments of the large matrix X. The second constraint of (SSLO) has three compo-
nents, (1) the component Trace PT PX which expresses the connectivity properties
of the graph, (2) 2 ∗ Trace PT B, and (3) the term Trace S which is just the sum
of the diagonal elements of S.

Now, consider dropping the matrix B altogether, and the off-diagonal elements
of S which do not seem to play any role in the problem. In fact, we can reduce S
to vector s, which is just its diagonal. This leaves us with the SDP problem we
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refer to as SSSLO (simplified SSLO):

maximize cT d(X)
s.t. Pd(X) + s = e

Trace PT PX + eT s = |E|[
1 d(X)T

d(X) X

]
� 0

s ≥ 0.

It is easy to verify that SSSLO is still a valid relaxation of the stable set problem.
Just take a stable set in the graph G and its incidence vector x, and form the matrix
X = xxT . This is a feasible solution to SSSLO along with the accompanying slack
vector. It is also immediate that zssslo ≤ zsslo since SSSLO is a restriction of
SSLO.

Now, a careful look at the second constraint reveals the following structure
∑
i∈V

δiXii +
∑

(i,j)∈E

sij + 2
∑

(i,j)∈E,i�=j

Xij = |E|

where δi is the number of nodes adjacent to node i. It is obvious using the first
set of constraints that the above constraint is simply

∑
(i,j)∈E,i�=j

Xij = 0.

Hence, our relaxation is in fact

maximize cT d(X)
s.t. Pd(X) + s = e∑

(i,j)∈E,i�=j

Xij = 0

[
1 d(X)T

d(X) X

]
� 0

s ≥ 0.

Now, let us append to this relaxation the following constraints:

Xij ≥ 0, ∀ (i, j) ∈ E. (1)

With these non-negativity constraints we still conserve the property that the re-
sulting SDP problem is a relaxation of SSP, and that the resulting optimal value,
znnssslo, say, is at most as large as zssslo, i.e., znnssslo ≤ zssslo.

Hence, we have so far looked into three SDP relaxations for SSP with respective
optimal values in the following order:

znnssslo ≤ zssslo ≤ zsslo.
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But, the non-negativity constraints (1) along with the second constraint, namely,

∑
(i,j)∈E,i�=j

Xij = 0,

imply that Xij = 0 ∀ (i, j) ∈ E, i 	= j. Hence, we obtain the following problem:

maximize cT d(X)
s.t. Pd(X) + s = e

Xij = 0, ∀(i, j) ∈ E,[
1 d(X)T

d(X) X

]
� 0

s ≥ 0.

On the other hand, the first set of constraints are now redundant. To see this
let qij be a R|V |+1 vector with a −1 in the zeroth position, and 1 in the i and

j positions, respectively. Now, using the fact that qT
ij

[
1 d(X)T

d(X) X

]
qij ≥ 0,

and that Xij = 0 ∀ (i, j) ∈ E, i 	= j, we obtain the inequality

Xii + Xjj ≤ 1, ∀(i, j) ∈ E. (2)

Therefore, we arrived at the following SDP formulation:

maximize cT d(X)
s.t. Xij = 0, ∀ (i, j) ∈ E[

1 d(X)T

d(X) X

]
� 0

which is one of the several formulations of the θ-number of Lovász; see Lemma 2.17
of Lovász and Schrijver [5, 12]. Lemaréchal and Oustry [9] re-derive this form of
the θ function by taking the Lagrange dual of the following quadratic formulation
of the stable set problem:

maximize cT x
s.t. xixj = 0, ∀(i, j) ∈ E

xi ∈ {0, 1}, ∀i ∈ V,

and taking the dual of the resulting semidefinite program.

2.1. Observations and discussion

We have the following observations.
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(1) It is not true that the constraints defining (SSSLO), namely,

Xii + Xjj ≤ 1, (i, j) ∈ E,∑
(i,j)∈E

Xij = 0

[
1 d(X)T

d(X) X

]
� 0

imply the constraints:

Xij ≥ 0, (i, j) ∈ E.

As an example consider the graph K3 and the matrix

Z :=




1 x x x
x x y −y
x y x 0
x −y 0 x




Take for instance, x = 1/4 and y = 1/8. Then, Z is feasible for (SSSLO).
(2) For complete graphs, it is easy to see that zssslo = θ. When c = e, it is

well-known that θ = 1, and zssslo ≤ 1 can be seen from the inequality

fT Y f ≥ 0 for f = (−1, 1, . . . , 1) and Y =
[

1 d(X)T

d(X) X

]
.

(3) We have conducted numerical experiments using the semidefinite program-
ming software packages SDPHA [2] and SDPPACK [1]. In particular, we
have solved the problem (SSSLO) using SDPHA and computed Lovász
theta for the same graph using a built-in function in SDPPACK. In all
our experiments, including odd circuits with up to 11 nodes (with c = e),
and other small examples with weighted graphs or unit costs, we always
observed equality between zssslo and theta. Notice that it is elementary
to see that θ ≤ zssslo. Further research is required to establish or refute
this claim of equality between the two numbers.

(4) In reference to 1 above, we always obtained an optimal matrix X with
Xij = 0 for (i, j) ∈ E in our numerical experiments.

(5) Another interesting observation based on our computational experience
seems to suggest that the matrix X corresponding to an optimal solution
to (SSSLO) in the case of odd circuit graphs has a circulant structure,
e.g., for C5, SDPHA reports the following optimal matrix

Z :=




1 0.4472 0.4472 0.4472 0.4472 0.4472
0.4472 0.4472 0 0.2764 0.2764 0
0.4472 0 0.4472 0 0.2764 0.2764
0.4472 0.2764 0 0.4472 0 0.2764
0.4472 0.2764 0.2764 0 0.4472 0
0.4472 0 0.2764 0.2764 0 0.4472




·
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In addition to the circulant structure, for C3, C5, C7, C9 and C11 (with c =
e), we obtain the optimal diagonal values as Xii(2k + 1) =

cos π
2k+1

1+cos π
2k+1

for

i = 1, . . . , 2k + 1 (Lovász [11] had proved that θ(C2k+1) =
(2k+1) cos π

2k+1
1+cos π

2k+1
).

3. The minimum (weighted) cover problem

We consider now the linear integer programming formulation of the minimum
vertex cover problem on a connected graph G = (V, E) (VCP):

minimize cT x
s.t. xi + xj ≥ 1, ∀(i, j) ∈ E

xi ∈ {0, 1}, ∀i ∈ V

where c ∈ R|V | is a positive vector. It is well-known that the value of the minimum
vertex cover, vc(G), say, is related to the independence number α(G) as

vc(G) + α(G) = W (3)

where W =
∑

i∈V ci, (or, as vc(G) + α(G) = |V |).
Adding binary surplus variables, treating the binary constraints as quadratic

constraints we obtain

minimize cT x
s.t. xi + xj − sij = 1, ∀(i, j) ∈ E

x2
i = xi, ∀i ∈ V

s2
ij = sij , ∀(i, j) ∈ E.

The augmented Lagrange duality technique yields the following relaxation as bi-
dual (VCR1):

minimize cT d(X)
s.t. Pd(X) − d(S) = e

Trace AT AX = |E|[
1 d(X)T

d(X) X

]
� 0

where P represents the |E| × |V | edge-node incidence matrix, A represents the
block matrix A =

[
P −I

]
with

AT A =
[

PT P −PT

−P I

]
,

the (variable) symmetric matrix X is as follows:

X =
[

X BT

B S

]
·
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Denote its optimal value zvcr1. Using arguments similar to those of the previous
section, we simplify this relaxation to the following semidefinite program (VCLO).

minimize cT d(X)
s.t. Pd(X) − s = e∑

(i,j)∈E,i�=j

(Xij − sij) = 0

[
1 d(X)T

d(X) X

]
� 0

s ≥ 0.

It is immediate to verify that VCLO is a relaxation of VCP. Just take a minimum
vertex cover in the graph G and its incidence vector x, and form the matrix
X = xxT . This is a feasible solution to VCLO along with the accompanying slack
vector. Now, append to this relaxation the following constraints:

Xij ≥ sij ∀ (i, j) ∈ E.

These imply, together with the second set of constraints that,

Xij = sij ∀ (i, j) ∈ E,

or, equivalently,
Xij = Xii + Xjj − 1 ∀ (i, j) ∈ E.

Therefore, we have arrived at the relaxation

minimize cT d(X)
s.t. Pd(X) ≥ e

Xij − Xii − Xjj = −1, ∀(i, j) ∈ E,[
1 d(X)T

d(X) X

]
� 0.

As is the case with the stable set relaxation, the first set of constraints are now
redundant. Therefore, we reach the relaxation (VCSDP):

minimize cT d(X)
s.t. Xij − Xii − Xjj = −1, ∀(i, j) ∈ E,[

1 d(X)T

d(X) X

]
� 0.

Denote its optimal value by zvcsdp.
Now, it is well-known, e.g. [6, 8], that a similar relation to 3 holds between

the respective semidefinite relaxations of minimum vertex cover problem and the
stable set problem, namely:

sdp(G) + θ(G) = W (4)
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where sdp(G) is the optimal value of the following program (VCMC):

minimize
∑
i∈V

ci
1 + Y0i

2
s.t. Yij − Y0i − Y0j = −1, ∀(i, j) ∈ E,

d(Y ) = e
Y � 0.

Notice that we can also obtain this relaxation departing from the quadratic pro-
gramming formulation of minimum vertex cover, namely,

minimize cT x
s.t. (1 − xi)(1 − xj) = 0, ∀(i, j) ∈ E

xi ∈ {0, 1}, ∀i ∈ V,

using the same steps as Lemaréchal and Oustry [9].
On the other hand, VCMC is equivalent to VCSDP via the bijective transfor-

mation X̃ = QY QT where

X̃ =
[

1 d(X)T

d(X) X

]

and the (n + 1) × (n + 1) matrix Q is given by

Q =
[

1 0
1
2e 1

2In

]
,

by Proposition 5.2 of Helmberg [4]. I.e., the mapping φ : Sn+1 
→ Sn+1, Y 
→ X =
QY QT where Sn+1 denotes the space of (n + 1) × (n + 1) symmetric matrices,
bijectively maps feasible solutions of VCMC to VCSDP, and with equal objective
function values. Therefore, we have that

zvcsdp + θ(G) = W.

As a final remark, we observed as in the stable set case, through computational
experiments that there is already equality between zvcr1, zvclo and W − θ(G).

The author would like to thank Francesco Maffioli for suggesting that the author prepare
this note.
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