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Abstract. In this paper we present the image space analysis, based
on a general separation scheme, with the aim of studying Lagrangian
duality and shadow prices in Vector Optimization. Two particular
kinds of separation are considered; in the linear case, each of them is
applied to the study of sensitivity analysis, and it is proved that the
derivatives of the perturbation function can be expressed in terms of
vector Lagrange multipliers or shadow prices.
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1. Introduction

The recent developments in the field of Vector Optimization and the interest in
its applications ask for a definition of a general scheme for carrying out the analysis
of vector problems as well as for finding methods of solution. Starting from the
first approaches made in [3,4], such a scheme was proposed in [5]; it is based on the
image space analysis and theorems of the alternative or separation theorems, and
it has produced some developments in the field of Vector Variational Inequalities
besides that of Vector Optimization.

The present paper aims at presenting the image space analysis for studying
the Lagrangian duality in Vector Optimization, with particular attention to the
linear case and the sensitivity analysis, that is, the study of the derivatives of the
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perturbation function. Such a study is interesting because it arises in applications
when the input parameters defining the problem change or contain errors. In the
scalar case, some results are known: for a constrained optimization problem, the
sensitivity of the optimal objective function value can be expressed in terms of
the Lagrange multipliers, called shadow prices. No such simpler result is available
for a vector optimization problem, because, even in the linear case, the solution
set is large and non-convex, and it is no longer a unique function of the parameter.
Some existing results in this direction can be found in [1, 9].

With the aim of defining a systematic method of research, in this paper the
general scheme proposed in [5] is applied to the study of shadow prices. More
precisely, two different separation approaches are proposed and compared; each of
them furnishes Lagrange multipliers that can applied to the study of sensitivity
analysis.

The contents of this paper are as follows. This section is completed by describing
the general features of image space analysis and the separation approach. In
Section 2, separation with linear scalar functions is presented, and it is proved
that it shrinks to a known method, the ε-method. In Section 3, a different kind of
separation is proposed; that is, separation with a vector function. It is compared
with the previous one and it is used to define a vector Lagrangian duality, including
the known dual of Isermann. In Section 4, the linear case is considered and, for
each of the previous approaches, the derivatives of the perturbation function are
obtained in terms of Lagrange multipliers. Finally, an example compares the two
approaches.

Let the positive integers �,m, n and the cone D ⊆ R� be given. In the sequel it
will be assumed that D is convex, closed and pointed with apex at the origin and
with intD �= ∅, namely with nonempty interior; 〈·, ·〉 will denote the usual scalar
product. Consider the vector-valued functions f : Rn → R�, g : Rn → Rm, and
the subset X ⊆ Rn. We will consider the following vector minimization problem,
which is called generalized Pareto problem:

min D\{0}f(x), subject to x ∈ K := {x ∈ X : g(x) = 0} , (1.1)

where minD\{0} denotes vector minimum with respect to the cone D\ {0} : x0 ∈ K
is a (global) vector minimum point (for short, v.m.p.) of (1.1), iff

f
(
x0
)

�D\{0} f(x), ∀x ∈ K, (1.2)

where the inequality means f(x0)− f(x) /∈ D\{0}. At D = R�
+ (1.1) becomes the

classic Pareto vector problem.
It is trivial to note that x0 is a v.m.p. of (1.1), i.e. (1.2) is fulfilled, iff the

system (in the unknown x)

f
(
x0
)− f(x) ≥D\{0} 0, g(x) = 0, x ∈ X (1.3)
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is impossible. Consider the sets:

H :=
{
(u, v) ∈ R� × Rm : u ≥D\{0} 0, v = 0

}
,

K :=
{
(u, v) ∈ R� × Rm : u = f

(
x0
)− f(x), v = g(x), x ∈ X

}
.

H and K are subsets of R� ×Rm, that is called image space; K is called the image
of problem (1.1). Now, observe that system (1.3) is impossible iff

H∩K = ∅. (1.4)

Hence, x0 is a v.m.p. of (1.1) iff (1.4) holds. In general, to prove (1.4) directly
may be a very difficult task. The separation approach in the image space consists
in proving (1.4) indirectly by obtaining the existence of a function such that two
of its disjoint level sets contain H and K respectively.

2. Separation by several linear functions

The separation approach described in Section 1 can be carried out by adopting
any kind of separation function, namely a linear or nonlinear function, a scalar
or a vector function having any number of components. In this section, we will
propose the separation with � linear scalar functions.

Observe that system (1.3) can be equivalently split into the � systems (in the
unknown x):

fk

(
x0
)− fk(x) �= 0, f

(
x0
)− f(x) ∈ D, g(x) = 0, x ∈ X (2.1)

k ∈ I := {1, . . . , �}.
If D = R�

+, then the � systems (2.1) are equivalent to

fk

(
x0
)− fk(x) > 0, f

(
x0
)− f(x) ∈ R�

+, g(x) = 0, x ∈ X

k ∈ I, or to

Sk

(
x0
)

:






fk

(
x0
)

> fk(x)
fi(x) ≤ fi

(
x0
)
, i ∈ I\{k}

g(x) = 0, x ∈ X.

k ∈ I.
Obviously (1.2) is satisfied, i.e. x0 is a v.m.p. of (1.1), iff all the � systems Sk(x0)

are impossible. Moreover, for every k ∈ I, the impossibility of system Sk(x0) is a
necessary and sufficient condition for x0 to be a minimum point of the following
scalar problem:

Pk

(
x0
)

: min fk(x) subject to fi(x) ≤ fi

(
x0
)
, i ∈ I\{k}, g(x) = 0, x ∈ X.

On the above results, obtained by separation arguments, is based the well-known
and well-studied ε-method (see, for example [2]), even if it has been obtained by
a direct proof. More precisely, we have the following theorem.
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Theorem 2.1 (see Th. 4.3 of [2]). The solution x0 is a v.m.p. of (1.1) iff there
exist an ε0 ∈ R� such that x0 is an optimal solution of

min fk(x) subject to fi(x) ≤ ε0
i , i ∈ I\{k}, g(x) = 0, x ∈ X,

for all k ∈ I.

Theorem 2.1 shows that with appropriate choices of ε, all v.m.p. of (1.1) can
be found. However, the proof of Theorem 2.1 shows that these εi values are equal
to fi(x0), i.e. to the actual objective values of the v.m.p., one would like to find.
Hence a confirmation or check of optimality is obtained rather than the discovery
of solutions. In general, this is a deficiency of the method; nevertheless, in the
study of sensitivity analysis that will be performed in Section 4, this is not a lack,
because we will assume to begin with x0, that is an optimal solution of (1.1).

Now, if we consider each of the � scalar problems Pk(x0), k ∈ I, we can apply
the separation scheme adopted for scalar optimization [4]. Consider the sets:

Hk :=
{
(u, v) ∈ R� × Rm : uk > 0, ui ≥ 0, i ∈ I\{k}; v = 0

}
, k ∈ I,

and observe that systems Sk(x0) are all impossible iff

Hk ∩ K = ∅, k ∈ I. (2.2)

For every k ∈ I, introduce the function rk : R� × Rm → R given by:

rk

(
u, v; θk, µk

)
= uk +

∑

i∈I\{k}
θk

i ui +
〈
µk, v

〉
,

where θk ∈ R�−1
+ , µk ∈ Rm are parameters. It can be proved the following

optimality condition (see [4, 5]).

Theorem 2.2. Let x0 ∈ K. Assume that, ∀k ∈ I, there exist θk ∈ R�−1
+ and

µk ∈ Rm such that

fk

(
x0
)− fk(x) +

∑

i∈I\{k}
θk

i

(
fi

(
x0
)− fi(x)

)
+ 〈µk, g(x)〉 ≤ 0, ∀x ∈ X, (2.3)

for each k ∈ I. Then x0 is a v.m.p. of (1.1) with C = R�
+.

3. Vector separation and vector duality

In this section, we will propose a vector separation function for obtaining an
optimality condition to be compared with that of Theorem 2.2. With this aim, let
us set U := D\ {0} and define the vector polar of U with respect to D\ {0}:

U∗
D\{0} :=

{
Γ ∈ R�×� : Γu ≥D\{0} 0, ∀u ∈ U

}
.
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Consider the function w : R� × Rm → R� given by:

w = w(u, v, Γ, Λ) = Γu + Λv, ∀Γ ∈ U∗
D\{0}, ∀Λ ∈ R�×m, (3.1)

where Γ and Λ are parameters. Indeed, (3.1) is a family of functions within which
we will look for one in order to achieve the disjunction of H and K. Define the
“positive” level set of (3.1):

WD\{0}(u, v, Γ, Λ) :=
{
(u, v) ∈ R� × Rm : w(u, v, Γ, Λ) ≥D\{0} 0

}
.

Proposition 3.1. If w is given by (3.1), then we have:

H ⊂ WD\{0}(u, v, Γ, Λ), ∀Γ ∈ U∗
D\{0}, ∀Λ ∈ R�×m, (3.2a)

H =
⋂

Γ∈U∗
D\{0}

Λ∈R�×m

WD\{0}(u, v, Γ, Λ) . (3.2b)

Proof. Condition (3.2a) follows immediately by the definition of H and of WD\{0}.
Because of (3.2a), to show (3.2b) it is enough to prove that no element of the
complement of H belongs to the right-hand side of (3.2b); namely that ∀(ũ, ṽ) /∈ H
∃Γ̃ ∈ U∗

D\{0} and ∃Λ̃ ∈ R�×m such that

(ũ, ṽ) /∈ WD\{0}
(
u, v, Γ̃, Λ̃

)
. (3.3)

(ũ, ṽ) /∈ H implies at least one of the following cases: (i) ũ /∈ D\{0} or (ii) ṽ �= 0.
If (i) holds (3.3) is obtained with Γ̃ = I� (the identity matrix of order �) and Λ̃ = 0
(the null matrix of order � × m), since we have w(ũ, ṽ; Θ̃, Λ̃) = ũ /∈ D\{0}. If (ii)
holds, then ∃i0 ∈ {1, . . . , m} such that ṽi0 �= 0. Suppose that ṽi0 < 0. Set Γ̃ = αI�

and

Λ̃ =






0 . . . 0 d̃1i0 0 . . . 0
...

...
...

...
...

0 . . . 0 d̃�i0 0 . . . 0




 ,

where d̃T := (d̃1i0 , . . . , d̃�i0) ∈ D\{0} and α > 0. We have w(ũ, ṽ; Γ̃, Λ̃) = αũ+ṽi0 d̃.
Since D is pointed and ṽi0 < 0, then ṽi0 d̃ /∈ D\{0}; moreover, since d̃ �= 0 then
ṽi0 d̃ /∈ D. Therefore, ṽi0 d̃ belongs to the complement of D which is open. If α is
small enough we obtain w(ũ, ṽ; Γ̃, Λ̃) = αũ + ṽi0 d̃ /∈ D. If we suppose ṽi0 > 0, we
repeat the same proof with Λ̂ = −Λ̃. In both cases (3.3) is shown. �

Now, we are in a position to state an optimality condition for (1.1).

Theorem 3.1. Let x0 ∈ K. If there exist matrices Γ ∈ U∗
D\{0} and Λ ∈ R�×m

such that
Γ
[
f
(
x0
)− f(x)

]
+ Λg(x) �D\{0} 0, ∀x ∈ X, (3.4)

then x0 is a v.m.p. of (1.1).
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Proof. From Proposition 3.1 and (3.4) we have H ⊂ WD\{0}(u, v, Γ, Λ) and1 K ⊂
∼ WD\{0}(u, v, Γ, Λ). Therefore (1.4) holds. �

Remark 3.1. Observe that if condition (2.3) is fulfilled for each k ∈ I, then by
putting

Γ =








1 θ̃1
2 . . . θ̃1

�

θ̃2
1 1 . . . θ̃2

�

...
...

...
θ̃�
1 θ̃�

2 . . . 1








and Λ =








µ̃1T

µ̃2T

...
µ̃�T








,

it results
Γ
[
f
(
x0
)− f(x)

]
+ Λg(x) ≤ 0, ∀x ∈ X,

and hence condition (3.4) is satisfied, provided that D = R�
+. Another sufficient

optimality condition that implies (3.4) is given by the following corollary.

Corollary 3.1. Let x0 ∈ K. If there exists Λ ∈ R�×m such that

I�

[
f
(
x0
)− f(x)

]
+ Λg(x) �D\{0} 0, ∀x ∈ X,

then x0 is a v.m.p. of (1.1).

Proof. It is enough to observe that I� ∈ U∗
D\{0}. �

The sufficient optimality condition of Corollary 3.1 can be exploited to obtain a
general scheme for studying the vector Lagrangian duality related to problem (1.1).
In [8], it has been defined the following vector dual problem of (1.1):

Max
Λ

D\{0} min
x∈X

D\{0}LV (x; Λ), (3.5)

where LV (x; Λ) := f(x)−Λg(x) is called the vector Lagrangian function. Observe
that in (3.5) we consider the maximum on Λ of the set-valued map [10]:

Φ(Λ) = min
x∈X

D\{0}LV (x; Λ), Λ ∈ R�×m.

Denote by ∆1 := min
x∈K

D\{0}f(x) and ∆2 := Max
Λ

D\{0} min
x∈X

D\{0}LV (x; Λ) the

sets of optimal values of (1.1) and (3.5), respectively. In [8] it has been proved the
following result.

Theorem 3.2. There exist x0 ∈ K and Λ0 ∈ R�×m such that

[
f
(
x0
)− f(x)

]
+ Λ0g(x) �D\{0} 0, ∀x ∈ X (3.6)

iff 0 ∈ ∆1 − ∆2.

1∼ denotes complement.
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Theorem 3.2 establishes, in terms of vector separation, a necessary and sufficient
condition for having an optimal solution of (1.1) and an optimal solution of its
dual problem such that the corresponding optimal vector values are equal; i.e.,
the two problems have at least a common optimal value. We can interpret this
result like a generalization of the duality gap equal to zero for scalar problems.
Obviously, it is interesting to define classes of vector problems for which (3.6) is
fulfilled. In [8] it has been proved that among these problems there are linear
Pareto vector problems.

Let us consider the following positions: D = R�
+; f(x) = Cx, with C ∈ R�×n;

g(x) = Ax− b, with A ∈ Rm×n and b ∈ Rn; X = {x ∈ Rm : xi ≥ 0, i = 1, . . . , n}.
Problem (1.1) becomes:

min R�
+\{0}Cx, subject to x ∈ K = {x ≥ 0, Ax = b} (3.7)

and its vector dual:

Max
Λ

R�
+\{0} min

x≥0
R�

+\{0}[Cx − Λ(Ax − b)]. (3.8)

A known linear vector dual, that of Isermann [6], can be embedded in the formu-
lation (3.8): let us substitute

min
x≥0

R�
+\{0}[Cx − Λ(Ax − b)] (3.9)

with Λb when

Λ ∈ T :=
{
Λ ∈ R�×m : (ΛA − C)x �R�

+\{0} 0, ∀x ≥ 0
}

=
{

Λ ∈ R�×m : Cx − ΛAx + Λb �R�
+\{0} Λb, ∀x ≥ 0

}
,

i.e., with one of the minimum vector values of the problem (3.9). Actually, the
Isermann dual is:

Max
Λ

R�
+\{0}Λb, subject to Λ ∈ T =

{
Λ ∈ R�×m : (ΛA − C)x �R�

+\{0} 0, ∀x ≥ 0
}

.

(3.10)
Observe that, according to Tucker theorem of the alternative (see, e.g., Th. 3,
p. 29 of [7]), the feasible set T of (3.10) can be equivalently defined as:

T :=
{
Λ ∈ R�×m : ∃τ ∈ intR�

+ such that τT (ΛA − C) ≤ 0
}

. (3.11)

The following result holds:

Theorem 3.3 [6]. Let ∆1 := min
x∈K

R�
+\{0}Cx and ∆2 := Max

Λ∈T
R�

+\{0}Λb. Then

(i) Cx �R�
+\{0} Λb, ∀x ∈ K, ∀Λ ∈ T ;

(ii) ∆1 = ∆2.
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Moreover, a complementarity condition holds for a pair of optimal solutions of
primal and dual problems.

Theorem 3.4. Let x0 be a v.m.p. of (3.7) and Λ0 an optimal solution of (3.10)
such that Cx0 = Λ0b. For every i = 1, . . . , n such that x0

i > 0 it results (Λ0A −
C)i = 0, where the apex i denotes the i-th column of the matrix.

Proof. Obviously, x0 and Λ0 are feasible solutions of problem (3.7) and (3.10),
respectively. Hence, according to the definition (3.11) of T , there exists τ ∈ intR�

+

such that τT (Λ0A − C) ≤ 0. Consider the scalar product 〈τT (Λ0A − C), x0〉,
where x0 ≥ 0 is such that Ax0 = b and Cx0 = Λ0b. It turns out:

〈
τT
(
Λ0A − C

)
, x0
〉

=
〈
τ, Λ0Ax0 − Cx0

〉
=
〈
τT , Λ0b − Cx0

〉
= 0.

Recalling that τT (Λ0A − C) ≤ 0 and x0 ≥ 0, the above equality to zero implies
that if x0

i > 0 then τT (Λ0A − C)i = 0; since τ ∈ intR�
+, the thesis follows. �

4. Sensitivity analysis

Consider the linear case, i.e. problem (3.7), and ∀ k ∈ I denote by ck ∈ Rn the
k-th row of the matrix C. Hence the � problems Pk(x0), k ∈ I, become:

Lk

(
x0
)

: min
〈
ck, x

〉
subject to Ax = b, x ≥ 0,

〈
ci, x

〉 ≤ 〈ci, x0
〉
, i ∈ I\{k};

k ∈ I.

For each of these problems, let us consider the corresponding scalar dual problem:

Dk

(
x0
)

:






max

[
〈
µk, b

〉− ∑

i∈I\{k}
θk

i

〈
ci, x0

〉
]

(µk)T A − ∑

i∈I\{k}
θk

i ci ≤ ck

θk
i ≥ 0, i ∈ I\{k}.

k ∈ I.

With the aim of discussing the sensitivity in connection with the Lagrange multi-
pliers, consider the perturbed problem:

min R�
+\{0}Cx, subject to x ∈ K(η) = {x ≥ 0, Ax = b + η}, (4.1)

where η ∈ Rm.
In the scalar case, it is well-known that the sensitivity of the perturbation func-

tion with respect to the parameter on the right-hand side of each equality con-
straint is given by the corresponding Lagrange multiplier. If we want to extend this
property to the vector case, we have the possibility of considering two approaches,
based on the two kinds of separation exposed in the previous sections.
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In the former, we will consider Lagrange multipliers, i.e. dual variables, defined
by the � problems Dk(x0), k ∈ I; in the latter the dual variables are represented
by the matrix Λ ∈ T .

Let x0(η) be a v.m.p. of (4.1); therefore, by Theorem 2.1, it is also a minimum
point of all the � problems

Lk(η) : min〈ck, x〉 subject to x ∈ K(η), 〈ci, x〉 ≤ 〈ci, x0(η)〉, i ∈ I\{k}; k ∈ I.

For each k ∈ I, denote by z0
k(η) the optimal value of Lk(η); obviously it results

z0
k(η) = 〈ck, x0(η)〉.

Observe that in Lk(η) we have perturbed by η only the constraints Ax = b,
while the constraints 〈ci, x〉 ≤ 〈ci, x0(η)〉, i ∈ I\{k}, are not originally perturbed,
but they change as consequence of the movement of the optimal solution from x0

to x0(η). For this reason, if we denote by (θ̃k(η), µ̃k(η))an optimal solution of the
dual of problem Lk(η), z0

k(η) depends on µ̃k(η), θ̃k(η) and x0(η). More precisely,
we have the following result.

Theorem 4.1. Let x0(η) be a v.m.p. of (4.1) and x0
S(η) the sub-vector of x0(η)

whose components are positive; let θ̃k(η) ∈ R�−1, µ̃k(η) ∈ Rm be an optimal
solution of the dual of problem Lk(η), ∀k ∈ I. Then it results:

∂z0
k(η)

∂ηj
= µ̃k

j (η) −
∑

i∈I\{k}
θ̃k

i (η)
〈

ci
S ,

∂x0
S(η)

∂ηj

〉
, ∀k ∈ I, ∀j = 1, . . . , m.

Proof. x0(η) is a v.m.p. of (4.1) and hence, by Theorem 2.1, it is an optimal
solution of all the � problems Lk(η), k ∈ I. Let us consider the k-th of them, and
denote by x0

S(η) the sub-vector of x0(η) whose components are positive, and by ck
S

and AS the corresponding sub-vector and sub-matrix of ck and A, respectively.
Obviously, ∀j = 1, . . . , m, it results:

∂z0
k(η)

∂ηj
=

∂〈ck, x0(η)〉
∂ηj

=
∂〈ck

S , x0
S(η)〉

∂ηj
=
〈

ck
S ,

∂x0
S(η)

∂ηj

〉

=

〈

µ̃k(η)T AS −
∑

i∈I\{k}
θ̃k

i (η)ci
S ,

∂x0
S(η)

∂ηj

〉

, (4.2)

where (θ̃k(η), µ̃k(η)) is an optimal solution of the dual of Lk(η) and hence the last
equality holds because of the complementarity condition.
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Now, observe that ASx0
S(η) − b = η and hence, by denoting with the pedex t

the t-th element of a vector or the t-th row of a matrix, we have, ∀t = 1, . . . , m:

∂(ASx0
S(η) − b)t

∂ηj
= (AS)t

∂x0
S(η)

∂ηj
=

{
1 if t = j

0 if t �= j.

Therefore, by (4.2), it results:

∂z0
k(η)

∂ηj
=
〈

µ̃k(η)T , AS
∂x0

S(η)
∂ηj

〉
−

∑

i∈I\{k}
θ̃k

i (η)
〈

ci
S ,

∂x0
S(η)

∂ηj

〉

= µ̃k
j (η) −

∑

i∈I\{k}
θ̃k

i (η)
〈

ci
S ,

∂x0
S(η)

∂ηj

〉
,

∀k ∈ I, ∀j = 1, . . . , m. �

A different way of performing the sensitivity analysis is suggested by the vector
dual (3.8), where the dual variable is a matrix Λ ∈ R�×m. In this scheme, if Λ0

is an optimal solution of (3.8), then, ∀k ∈ I, the k-th row of Λ0 is assumed to be
a measure of the sensitivity of the the k-th objective 〈ck, x〉 with respect to the
perturbation Ax = b+ η of the equality constraints. In fact, we have the following
result.

Theorem 4.2. Let x0(η) be a v.m.p. of (4.1). Then there exists Λ0(η) = (λ0
kj(η)),

k ∈ I, j = 1, . . . , m, optimal solution of the Isermann dual of (4.1), such that

∂(Cx0(η))k

∂ηj
=

∂〈ck, x0(η)〉
∂ηj

= λ0
kj(η), ∀k ∈ I, ∀j = 1, . . . , m.

Proof. If x0(η) is a v.m.p. of (4.1), then by Theorem 3.3 there exist Λ0(η) optimal
solution of the dual of (4.1) such that Cx0(η) = Λ0(η)(b+η). Let x0

S(η) be the sub-
vector of x0(η) whose components are positive, and CS and AS the corresponding
sub-matrices of C and A, respectively. By the feasibility of x0(η), it results:

Cx0(η) = CSx0
S(η) = CSx0

S(η) − Λ0(η)
(
ASx0

S(η) − b − η
)
.
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Hence, if we consider the k-th component of Cx0(η), by the above equalities,
∀j = 1, . . . , m, we have:

∂(Cx0(η))k

∂ηj
=

∂〈ck, x0(η)〉
∂ηj

=
〈

ck
S ,

∂x0
S(η)

∂ηj

〉
−
〈

∂(Λ0(η))k

∂ηj
, ASx0

S(η) − b − η

〉

−
〈

(Λ0(η))k, AS
∂x0

S(η)
∂ηj

〉
+ λ0

kj(η)

=
〈

ck
S − (Λ0(η))kAS ,

∂x0
S(η)

∂ηj

〉
+ λ0

kj(η).

Now, observe that ck
S−(Λ0(η))kAS = 0, because it is the k-th row of the sub-matrix

CS−Λ0(η)AS corresponding to the positive components of x0(η); by Theorem 3.4,
CS − Λ0(η)AS is the null matrix. Therefore, it turns out:

∂
(
Cx0(η)

)
k

∂ηj
=

∂
〈
ck, x0(η)

〉

∂ηj
= λ0

kj(η), ∀k ∈ I, ∀j = 1, . . . , m,

and the proof is complete. �

Both results obtained by means of Theorems 4.1 and 4.2 give the partial deriva-
tives of the perturbation function of problem (4.1) with respect to ηj , ∀j =
1, . . . , m, i.e. the parameter on the right-hand side of each equality constraint.
Nevertheless, these derivatives are expressed in a different form according to the
particular kind of separation which has been chosen. This fact put in evidence
the importance of the method proposed: it is a unifying scheme where different
aspects of the same topic can be analysed and compared.

The following example illustrates the results of Theorems 4.1 and 4.2.

Example 4.1. Let us set � = 2, m = 1, n = 2 and D = R2
+. Consider problem

(3.7) where 〈c1, x〉 = −3x1−2x2, 〈c2, x〉 = −x1−4x2 and K = {x ∈ R2 : x1+2x2 =
2, x1 ≥ 0, x2 ≥ 0}. Hence the perturbed problem (4.1) is






min(−3x1 − 2x2,−x1 − 4x2)

x1 + 2x2 = 2 + η

x1 ≥ 0, x2 ≥ 0,

η ∈ R (4.3)

and x0(η) =
(
1 + η

2 , 1
2 + η

4

)
is an optimal solution of (4.3). It results 〈c1, x0(η)〉 =

−2(2+η) and 〈c2, x0(η)〉 = − 3
2 (2+η); hence d〈c1,x0(η)〉

dη = −2 and d〈c2,x0(η)〉
dη = − 3

2 ·
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x0(η) is an optimal solution also of the two problemsL1(η) andL2(η):

L1(η) :






min(−3x1 − 2x2)

x1 + 2x2 = 2 + η

−x1 − 4x2 ≤ −3 − 3
2
η

x1 ≥ 0, x2 ≥ 0

and L2(η) :






min(−x1 − 4x2)

x1 + 2x2 = 2 + η

−3x1 − 2x2 ≤ −4 − 2η

x1 ≥ 0, x2 ≥ 0.

The dual problems of L1(η) and L2(η) are:

D1(η) :






max
[
µ1(2 + η) − θ1

(
−3 − 3

2
η

)]

µ1 + θ1 ≤ −3

2µ1 + 4θ1 ≤ −2

θ1 ≥ 0

and D2(η) :






max[µ2(2 + η) − θ2(−4 − 4η)]

µ2 + 3θ2 ≤ −1

2µ2 + 2θ2 ≤ −4

θ2 ≥ 0,

respectively.
The optimal solution of problem D1(η) corresponding to x0(η) is (θ̃1(η), µ̃1(η)) =

(2,−5), while that of D2(η) is (θ̃2(η), µ̃2(η)) = (1
2 ,− 5

2 ). By Theorem 4.1, we ob-
tain:

d〈c1, x0(η)〉
dη

= µ̃1(η) − θ̃1(η)
〈

c1,
dx0(η)

dη

〉
= −5 − 2

〈
(−3,−2),

(
1
2
,
1
4

)〉
= −2

and

d〈c2, x0(η)〉
dη

= µ̃2(η)− θ̃2(η)
〈

c2,
dx0(η)

dη

〉
= −5

2
− 1

2

〈
(−1,−4),

(
1
2
,
1
4

)〉
= −3

2
,

that is the same result obtained by the direct calculation of the derivative of
〈c1, x0(η)〉 and 〈c2, x0(η)〉.
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Now, consider the Isermann dual of the problem (4.3) when η = 0. In this case,

the dual variable is the matrix Λ =
(

λ11

λ21

)
and the dual is:

max(2λ11, 2λ21) subject to
(

λ11 + 3 λ11 + 2
λ21 + 1 λ21 + 4

)(
w1

w2

)
/∈ R2

+\{0} ∀w1 ≥ 0, w2 ≥ 0. (4.4)

By the thesis of Theorem 4.2, we have:

∂(Cx0(η))k

∂ηj

∣
∣
∣
∣
η=0

= λ0
kj , ∀k ∈ I, ∀j = 1, . . . , m.

In fact, the optimal solution corresponding to x0 = (1, 1
2 ) is Λ0 =

( −2
− 3

2

)
that

gives the derivatives of 〈c1, x0(η)〉 and 〈c2, x0(η)〉 at η = 0.
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