RAIRO Operations Research
RAIRO Oper. Res. 39 (2005) 163-183
DOI: 10.1051/r0:2006001

ONLINE LIB PROBLEMS: HEURISTICS FOR BIN
COVERING AND LOWER BOUNDS FOR BIN PACKING

LUKE FINLAY! AND PRABHU MANYEM?

Abstract. We consider the NP Hard problems of online Bin Covering
and Packing while requiring that larger (or longer, in the one dimen-
sional case) items be placed at the bottom of the bins, below smaller (or
shorter) items — we call such a version, the LIB version of problems.
Bin sizes can be uniform or variable. We look at computational studies
for both the Best Fit and Harmonic Fit algorithms for uniform sized
bin covering. The Best Fit heuristic for this version of the problem is
introduced here. The approximation ratios obtained were well within
the theoretical upper bounds. For variable sized bin covering, a more
thorough analysis revealed definite trends in the maximum and average
approximation ratios. Finally, we prove that for online LIB bin packing
with uniform size bins, no heuristic can guarantee an approximation
ratio better than 1.76 under the online model considered.

Keywords. Online approximation algorithm, asymptotic worst case
ratio, bin covering problem, bin packing problem, longest item, uniform
sized bins.

Mathematics Subject Classification. 68W25, 68Q17, 90B05,
90C27.

INTRODUCTION

Bin covering definition: In the classical one-dimensional Bin Covering problem,
we are given a list L = (i : 1 < ¢ < n) of items. The size of item ¢ is a;, where
each a; € (0,1]. A bin is said to be covered if the sum of the item sizes in the bin
adds up to at least one. The problem is to pack these |L| = n items into bins such
that the number of covered bins is maximised.

Received January 25, 2004. Accepted September 7, 2005.
I Centre for Industrial and Applied Mathematics (CTAM), University of South Australia,
Mawson Lakes, SA 5095, Australia; luke.finlay@unisa.edu.au

2 Centre for Informatics and Applied Optimisation (CIAO), University of Ballarat, Mount
Helen, VIC 3350, Australia; p.manyem@ballarat.edu.au
© EDP Sciences 2006

http://www.edpsciences.org/ro or http://dx.doi.org/10.1051/r0:2006001

http://www.edpsciences.org/ro
http://dx.doi.org/10.1051/ro:2006001

164 L. FINLAY AND P. MANYEM

The solution is feasible even if the sum of item sizes in a bin is greater than
one. In a covered bin, it is indeed possible for an item to be protruding out of the
bin. There could also be items that are completely outside the bin, stacked on top
of other items, and yet belonging to the bin — this is still feasible — however, this
only pushes the solution farther away from optimality! The objective is to find a
feasible solution that maximises the sum of the sizes of the covered bins — in the
case of unit-sized bins, this is the same as maximising the number of covered bins.

Offline versus online bin covering: If the sizes of all items in L are known in
advance, this is known as offfine bin covering. In the online version of bin cov-
ering, items in L arrive one by one. When an item ¢ of length a; arrives, it must
immediately be assigned to a bin (and this assignment cannot be changed later),
and the length a;y; of the next item becomes known only after item 7 has been
assigned to its bin.

The online condition can be formulated as follows: In a used bin, if item ¢ is
below item j, then ¢ should have arrived prior to j in the input list L, that is,

[i is below j in a used bin] = [i < j]. (1)

In all versions of Bin Packing and Bin Covering, it is assumed that there is an
infinite supply of bins of any size. Hence, running out of bins to place items is
never an issue.

LIB Versions. The online versions of Bin Packing and Covering considered in
this paper impose this additional requirement: In any bin, for any pair of items 4
and j, if size(j) = a; > size(i) = a;, then j should be placed in the bin below i. In
other words, longer items should be placed lower in any bin than shorter items. We
can call this the LIB version, for Longest Item at the Bottom. The LIB constraint
can be defined as

[i is below j in a used bin] = [a; > a;]. (2)

The dual of Bin Covering is Bin Packing, where the item sizes in a bin should total
up to at most the bin size. The online LIB variation of Bin Packing is treated in
Section 3.

Literature on Bin Covering. Some of the earliest works to appear in Bin
Covering were by Assmann [1] and Assmann et al. [2]. In [2], the authors provide
polynomial time heuristics with an AAR (defined in Sect. 1.1) of 4/3 for the offline
problem and 2 for the online problem when all bins are of unit size. Csirik and
Totik [9] show that there can be no polynomial time heuristic that guarantees an
AAR better than 2 for online problems with unit-sized bins. Csirik et al. provide
two algorithms for offline bin covering in [6]. Woeginger and Zhang [15] provide
a polynomial time heuristic for the online version with variable sized bins. For a
survey of bin covering problems, see Csirik and Frenk [5]. Csirik et al. [7] provide a
polynomial time approximation scheme for the general version of Bin Covering, as
well as algorithms that have bounded worst-case behaviour for instances with dis-
crete item sizes — these algorithms are based on the Sum of Squares algorithm [8]
for Bin Packing.

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 165

Online LIB Covering: Manyem [11] provides Next Fit (NF) and First Fit (FF)
heuristics for the LIB version, and shows that both heuristics cannot guarantee
an AAR better than ©(n), where n = |L| is the number of items in the input,
even for uniform-sized bins. NF and FF belong to the class of Any Fit algorithms,
whereas HF is a bounded space algorithm, as explained in Section 1.4. In [13],
Manyem et al. provide a harmonic fit (HF) algorithm to the LIB version of the
problem, and extend the ©(n) negative result to the same. This paper introduces
the Best Fit (BF) heuristic for this problem.

Variable-sized online LIB Bin Covering: In [11], Manyem extends the
Woeginger-Zhang heuristic [15] to this version of the problem.

APPLICATIONS

Bin Packing and Covering theory does help solve practical industry based prob-
lems such as assigning semiconductor wafer lots to customer orders [3]. Another
interesting application arises during assigning tasks to computer processors based
on a task priority. Each bin is analogous to a processor. The size of a bin corre-
sponds to the processor’s capabilities (such as speed), and the position of a task
in a bin corresponds to its priority.

The LIB version of Bin Packing has applications in the Transportation industry,
especially with loading of pallets in a truck. If long items are placed at the bottom
of a pallet inside a truck, transportation is easier. In terms of weight, if heavier
items are placed at the bottom, better stability of the truck can be achieved, and
smaller items will not get crushed by larger items.

Bin Covering has been applied in the industry, from packing peaches into cans
in an “online” manner (so that the weight of each can is at least equal to its
advertised weight) to breaking up a large company into smaller companies such
that each new company is viable [15].

ORGANISATION OF THE PAPER

The entire paper deals only with online, LIB problems. Bin Covering is a
dual version of Bin Packing [2]. Bin sizes may be uniform or variable. Tables 1
and 2 summarise the notation and the acronyms used. The focus of computational
testing in this paper is on approximation ratios, not on running times.

Section 1 is about uniform-sized Bin Covering (USBC). Sections 1.2 and 1.3 dis-
cuss computational results from implementing First Fit (FF) and Best Fit (BF)
algorithms for USBC. The FF heuristic was introduced in [11]. This paper intro-
duces the BF heuristic.

In Section 1.4, we present the performance results of the Harmonic Fit (HF)
heuristic.

Section 2 studies the performance of an adaptation of the Woeginger-Zhang
heuristic [15] for two different cases: (a) uniformly spaced bin sizes B = {1.0, 0.8,
0.6, 0.4 and 0.2}, and (b) non-uniform bin sizes B = {1.0 and 0.2}.

166

L. FINLAY AND P. MANYEM

TABLE 1. Notation (in alphabetical order).

a; Size of item 14

b; Bin number j

B Set of used bins

B Set of available bin sizes, s; through sgx

dif f BinSize| Difference between successive bin sizes in VSBC

i Index for an item (usually)

Iy Interval k, equal to [(k +1)~1, k7! in HF

J Index for a bin (usually)

K Number of available bin sizes (cardinality of B)

L Input list of items, in a given sequence

Ly, Sublist of L with item sizes in interval I},

(order of item arrivals in Ly is the same as in L)

M Number of intervals into which (0, 1] is divided (in HF algorithm)

n Cardinality of list L

P Percentage of times the heuristic and optimal solutions have equal
value

P (Sum of the sizes of used bins)/5 (in variable size bin cover)

R Worst case approximation ratio for algorithm A

RY Worst case asymptotic approximation ratio for algorithm A

s1(sk) Size of the largest (smallest) available bin size

topSize(b;) |Size of the item at the top of bin b,

totalSize(b;) | Sum of the sizes of the items in bin b;

|(a,b]|L Number of items in the list L in the (a,b] range

Section 3 Notation Below:

dq Number of double-stacked L; items

m; Maximum number of items from list L; that can be placed in a
unit size bin

mig Maximum number of L; (i > 2) items that can be placed on top
of an L; item

S1 Number of single-stacked L items

S Max. no. of Ly items that could be placed on top of single-stacked
L, items (actual no. could be less than sg)

I} Number of Ly items that are multi-stacked

In Section 3, we prove a lower bound on the guaranteed approximation ratio
for the uniform-sized bin packing problem.

Problem Statement:

1. UNIFORM SIZED BIN COVERING

Online USBC with LIB constraint. Given an

infinite supply of unit sized bins and a list L with |L| = n items, each of size (0, 1].

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 167

TABLE 2. Acronyms.

LIB Largest (Longest, in the one-dimensional case)
Item at the Bottom

NF Next Fit heuristic

FF First Fit heuristic

BF Best Fit heuristic

HF Harmonic Fit heuristic

AAR | asymptotic approximation ratio

SU Space Used (in a bin, or set of bins)
USBP | Uniform Sized Bin Packing

VSBC | Variable Sized Bin Covering

USBC | Uniform Sized Bin Covering

LB Lower Bound

Items should be placed in bins while maintaining the online and LIB constraints (1)
and (2). Any number of items can be placed in a bin, regarless of whether the bin
is overflowing. The objective is to maximise the number of covered bins.

1.1. APPROXIMATION RATIOS

Given an instance (a list L) of Bin Covering, let OPT(L) and A(L) be the
solution values obtained by the exact (or optimal) and approximation algorithms
respectively. We define the asymptotic approximation ratio (AAR), R for ap-
proximation algorithm A as

PT(L
RS = lim inf {R;“, OPT(L) > s} , where R = OTL())' (3)
When bin sizes are variable, this generalizes to
L L L OPT(L, B)
R = lim inf {ng}g, OPT(L,B) > s}, where R(), = XL B (4)

where B is the collection of bin sizes. For a class of inputs C, RS and Ri B are
similarly defined. Observe that 1 < R’, R}’ 5 < oo. The lower these ratios, the
better the approximation algorithm. Note that the above ratios are defined over
all instances of the corresponding problems. Hence these are worst case ratios —
worst among all the instances.

Note that OPT' (L) refers to the solution obtained by an optimal algorithm that
(1) knows the entire input list and the sequence of items in advance, and (2) obeys
the online and LIB constraints (1) and (2). Usually this solution is the same as
that of an optimal offline algorithm, but this is not necessarily true when the
LIB constraint comes into play. For example, if a < b — that is, item a arrives
before item b — and size(a) < size(b), an optimal offline algorithm could place
both items in the same bin with a above b, but the optimal online algorithm that

168 L. FINLAY AND P. MANYEM

TABLE 3. Bin covering First Fit algorithm [11].

List | Maximum | Average | No. of | % of
size ratio ratio runs ones
10 4.0 1.414 5000 | 37.42
15 5.0 1.425 5000 | 12.26
20 3.0 1.417 1000 3.5

we use to produce OPT can never do this, because this would violate the online
constraint (1).

1.2. BEST FIT ALGORITHM FOR BIN COVERING

First Fit (FF). The FF algorithm [11] for USBC with online and LIB con-
straints has been proven to have an upper bound AAR of ©(n). When an item
1 arrives, assume that bins b; through b,, have already been wused, in that order.
Each such bin b;, 1 < j < m, has two parameters, topSize(j) and totalSize(j),
representing the size of the topmost item in b; and the sum of the sizes of the
items in b; respectively.

The FF algorithm scans b; through b,, in that order. For each bin b;, it checks
if (1) a; < topSize(j), and, (2) totalSize(j) < 1. FF places item ¢ in the first such
bin b; that satisfies both the conditions above and updates topSize(j) as well as
totalSize(j) — note that after such a placement, totalSize(j) could be greater
than one. If no such bin among b; through b,, satisfies these conditions, FF opens
a new bin b,,41 in which to place 1.

Best Fit (BF). The BF algorithm behaves similar to FF, but for the following
differences:

o If there exists at least one used uncovered bin b;, 1 < j < m, such that
(1) a; < topSize(j);
(2) totalSize(j) < 1; and
(3) placing 7 in b; causes overflow of the bin (the bin becomes covered),
then i is placed in that used bin for which the overflow is the least.

e If such a used bin as described above is unavailable, but there is a used
bin that meets conditions (1) and (2) above, then item ¢ is placed in that
used bin for which, after placing i, totalSize(j) is the greatest.

BF is greedier than FF. It still cannot guarantee an AAR better than ©(n) —
however, it has a better average ratio (see Tabs. 3 and 4).

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 169

TABLE 4. Bin covering Best Fit algorithm.

List | Maximum | Average | No. of | Running
Size Ratio Ratio Runs Time

5 2 1.106 5000 <ls

6 3 1.170 5000 <ls

7 3 1.206 5000 <ls

8 3 1.240 5000 <ls

9 3 1.276 5000 <ls
10 4 1.282 5000 <ls
11 4 1.298 5000 <ls
12 4 1.316 5000 <ls
13 4 1.322 5000 1.5s
14 4 1.323 5000 1.9 min
15 5 1.333 5000 9.9 min
16 5 1.337 5000 1h
17 5 1.343 5000 2.5h
18 4 1.343 5000 8.2h
19 4 1.342 5000 | 1.49 days
20 4 1.347 5000 | 4.82 days
21 5 1.349 4000 20 days
22 3.5 1.328 2000 | 47 days

Algorithm 1 (ALG1). Best Fit (online LIB Bin Covering version).
Given: Items 1---n with sizes a1 ---a,, 0<a; <1lforl <i<n.

Running Time: O(n?).

1 nBin (number of bins used) = 0;

2 for (item = 1 to n) do

3 bin = 1;

4 bestBin = 0;

5 firstBin = 0;

6 bestWaste = 1;

7 while (bin < nBin) do

8 if (topSizelbin] > sizelitem] AND totalSizel[bin]> 1) then

9 if (firstBin == 0) then

10 firstBin = bin;

11 end if

12 if (totalSizel[bin] + sizelitem] >= 1 AND
totalSize[bin] + sizel[item] - 1 < bestWaste) then

13 bestBin = bin;

14 bestWaste = totalSizel[bin] + sizelitem] - 1;

15 end if (from line 12)

16 end if (from line 8)

17 bin = bin+ 1;

170 L. FINLAY AND P. MANYEM

18 end while (from line 7)
19 if (bestBin !'= 0) then

20 place item in bestBin;

21 update topSizel[bin] and totalSize[bin];
22 elself (firstBin '= 0) then

23 place item in firstBin;

24 update topSize[bin] and totalSize[bin];
25 else (item not placed in any previous bin)
26 nBin = nBin+ 1; (new, fresh, unused bin)
27 place item in nBin;

28 topSize[nBin] = sizel[item];

29 totalSize[nBin] = sizelitem];

30 end if (from line 19)

31 end for

1.3. COMPUTATIONAL COMPARISON OF BF AND FF ALGORITHMS

Again, we emphasise that the focus of computational testing in this paper is
on approximation ratios, not on running times. When comparing the Best Fit
(BF) and First Fit (FF) algorithms, the maximum ratios are likely to be similar,
since both belong to the Any Fit class of heuristics, but the average ratio could
be better for BF. Item sizes were generated using a uniform distribution in the
interval (0,1].

It can be observed from Tables 3 and 4 that the average ratios for the Best Fit
algorithm are better. The BF results have more number of items, hence the actual
comparison with FF can only be done on the list sizes of 10, 15 and 20. The time
taken for computation for n > 20 was very high. Hence a distributed architecture
was used, with 4 to 8 computers working on the problem at any given time. The
maximum ratio for BF almost looks quadratic with the maximum occurring at an
|L| = n value between 15 and 17 items (except for the anomaly that occurs at
n = 21 producing a maximum of 5). The BF maximum ratios are very similar to
those of FF, as anticipated. The number of runs for 22 items was only 2000 due
to the high amount of computation time involved.

In Figure 1, the average ratio for the BF algorithm seems to be asymptotically
approaching 1.4, which is roughly the average ratio for FF (Tab. 3). Of course,
list sizes larger than 22 would have to be experimented with to see if this trend
continues, and more runs with a list size of 22 items would need to be carried out.

1.4. HARMONIC FIT ALGORITHM

The best fit and first fit algorithms fall into the any fit category. That is, any
item can be placed in any bin. The harmonic fit (HF) algorithm places items
into categories of bins. Each bin is still of unit size, but the bin can only accept
items in a specific size range or size interval — hence HF is known as a bounded

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 171

1.35[T

1251 9

Average Ratio
N
T
Il

115 T

1.05 b

1 I I I I I I I I I
4 6 8 10 12 14 16 18 20 22

Number of ltems

FIGURE 1. Average ratios for BF algorithm.

space heuristic. Items in different intervals cannot be mixed in the same bin. The
number of intervals, M, is finite.

The HF heuristic. The HF algorithm for online USBC with the LIB con-
straint is as follows [13]:

e Divide the unit interval (0,1] into M intervals such that (0,1] = UQ/IZI Iy,
where I}, = (k—}rl,ﬂ , 1<k<M-1and Iy = (0, ﬁ], where M is a pos-

itive integer. That is, the breakpoints are defined as {1, %, %, i, ce ﬁ}

e Given an input list L = {i : 1 < i < n} of items with sizes {a;}, divide
L into M sublists {Ly | 1 < k < M} based on size, such that an item
i € Ly if and only if its size a; falls in the corresponding size interval Ij.
The correct sequence of arrivals (as in L) is also maintained within each
sublist L. Each Ly, is treated henceforth as independent input.

e For each Ly, place items in bins using the First Fit (FF) heuristic.

It has been proven [13] that the HF algorithm has an upper bound for the AAR
of ©(n). Testing of this algorithm was taking a long time to compute, so parallel
computing was used with a mix of Windows and Red Hat Linux machines. The
parallel part of the code was written in Java and the code that calculates the
approximation ratio was written in C.

The final results are shown below in Table 5 with only the Best number of
intervals shown. The ratios obtained vary with the number of intervals M chosen

172 L. FINLAY AND P. MANYEM

TABLE 5. Bin covering Harmonic Fit algorithm.

List size Best No. No. of | Run Max. | Ave. % of
(n) intervals (M) | runs time | ratio | ratio | ones (p)
5 3 2763 14's 3 | 1.503 | 53.963
6 3 2763 13 s 4 1.629 | 42.816
7 3 2763 17's 4 | 1.742| 32.863
8 3 2763 7s) 1.830 | 25.480
9 3 2763 14 s) 1.890 | 18.567
10 3 2763 11s) 1.924 | 12.450
11 3 2763 10's 5 [1.935| 8.035
12 3 2763 9s 5 |1.943 | 4.958
13 3 2763 14's 6 1.934 | 3.511
14 3 2763 | 3.6 min 6 1.913 | 2.316
15 3 2763 5 min 6 1.906 | 1.484
16 3 2763 | 29 min 7 | 1.899 | 0.760
17 3 2763 1.3h 7 | 1.868| 0.507
18 50 2763 7.6 h 7 | 1.899| 0.471
19 50 2763 30 h 6 1.885 | 0.036
20 3 2763 | 5.5 days 7 1.817 | 0.072
21 3 2763 | 16 days 6 |1.800| 0.072
22 3 2763 | 71 days 7 | 1.799 0

for the HF heuristic. The Best number of intervals is given by the one with the
lowest maximum ratio and is defined as M} on the table. In most cases this was
three. Only 2763 runs were done due to the lengthy computation times involved.
The time taken (column 4 of the table) was the amount of time a single computer
working on the problem would have taken if it had worked on all the runs of the
problem. The % of ones, (p in the last column) is the percentage of runs where
the heuristic performed optimally. The Max ratio column defines the maximum
ratio that was attained by the heuristic.

The harmonic fit algorithm does not perform well relatively, as can be observed
from Tables 4 and 5. The best fit algorithm performs much better in terms of
average as well as maximum ratios. Similar results were obtained in the case of
uniform-sized bin packing [13], where for list sizes upto 25, FF (another any fit
heuristic), performed better than HF. In Figure 2, the average ratio seemed to
have a local maximum at a list size of 12. More runs and a larger list size would
be needed to verify this.

2. VARIABLE SIZED BIN COVERING

Problem statement: Online VSBC with LIB constraint. Variable sized
bin covering (VSBC) involves covering bins of varying sizes. The bin sizes belong
to the set B ={sg = 1> s2 > s3 > ... > s, > 0} and there can be an infinite

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 173

1.95

1.85

181

1.75

Average Ratio
'\,
T

1.65

1.55

15 I I I I I
4 6 8 10 12 14 16 18 20 22

Number of items

FIGURE 2. Average ratios for HF algorithm.

number of bins of each size. The objective is similar to USBC except that now,
our goal is to maximise the sum of the sizes of the covered bins.

Heuristic for Online VSBC with LIB. The heuristic being used is the
Woeginger-Zhang heuristic [15], adapted to the LIB situation. The adaptation to
LIB has appeared in [11], and is reproduced below:

e As each item ¢ arrives, if a; > s, it is placed in the largest possible bin
such that the bin is covered.

o If a; < s, then it is placed in any uncovered bin. However...

e If a; < s; and all bins used so far have been covered, then the item is
placed in a new bin of size sy.

It has been proven in [11] that an upper bound UB of the AAR for the above
algorithm is obtained from:

UB = max{q,2}, where q:max{i 85, 841 EB}. (5)
Sj+1

That is, the upper bound for all instances of the problem must be at least two
regardless of the bin sizes.

174 L. FINLAY AND P. MANYEM

TABLE 6. Variable sized bin covering with five bin sizes.

List size | No. runs Time Max | Average % of
(n) ratio | ratio | ones (p)
3 5000 0 2 1.076 68.8
4 5000 0 2 1.087 51.76
5 5000 0 2 1.093 36.94
6 5000 0 2 1.099 25.76
7 5000 0 1.8 1.103 18.24
8 5000 0 1.75 1.106 11.86
9 5000 14s 1.625 | 1.111 8.28
10 5000 4 min 1.6 1.114 4.74
11 5000 33 min 1.75 1.115 4.08
12 5000 3.4h 1.455 1.118 2.08
13 5000 15 h 1.462 1.120 1.3
14 5000 2.6days | 14 1.122 0.9
15 5000 11.3 days | 1.455 | 1.123 0.6
16 5000 45 days | 1.462 | 1.127 0.14

If the bin sizes are equally spaced, then the upper bound will be equal to 2
regardless of the number of bin sizes. If there are k bin sizes, then s; = {(k — i +
1)/k, 1 <14 <k}, and hence the maximum ¢ will be s;_1/s = 2 regardless of the
value of k.

However if k was infinite, the upper bound would be equal to one because every
item would be able to cover a bin of exactly the same size. We restrict ourselves
to the non-trivial case where B is a finite set.

Therefore the upper bound depends on the set 8. When B = {1.0, 0.8, 0.6,
0.4, 0.2}, the upper bound would be two. For the case when B = {1.0, 0.2}, the
upper bound would be five. Computational tests on both of these sets of bins were
performed to test the upper bounds and the performance of the heuristic.

2.1. UNIFORMLY SPACED BIN SIZES

Consider the problem of VSBC where B = {1.0, 0.8, 0.6, 0.4, 0.2}. The upper
bound as defined in equation (5) as 2.0. Computational studies have verified this.
Parallel computing was used to speed up the computation since one computer
doing all the work would have taken over 60 days. The computation times were
due mainly to the time to compute the optimal solution using a branch and bound
technique. The computation of the heuristic took much less than a second for all
list sizes that were tested. Item sizes were generated using a uniform distribution
in the interval (0,1].

The maximum ratio was 2.0 for list sizes between 3 and 6, and beyond that, it
decreased with increasing list size. At the same time, the average ratio increased.
The percentage of ones decreased, as in the case of several algorithms for USBC
(such as FF and HF in Tables 3 and 5 respectively).

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 175

TABLE 7. Variable sized bin covering with two bin sizes.

List size | No. runs | Time Max | Average % of
(n) ratio | ratio | ones (p)
3 5000 0 5 1.618 49.58
4 5000 0 5 1.807 27.84
5 5000 0 5 1.902 14.92
6 5000 0 3.75 1.993 7.3
7 5000 0 3.75 2.056 3.14
8 5000 0 4 2.116 1.6
9 5000 0 4 2.158 0.64
10 5000 0 3.4 2.212 0.3
11 5000 0 3.667 | 2.241 0.14
12 5000 0 3.75 2.277 0
13 5000 6s 3.571 | 2.299 0
14 5000 1 min 3.5 2.326 0
15 5000 17 min | 3.444 | 2.346 0
16 5000 1.5h |3.444| 2375 0
17 5000 556h |3.273| 2.383 0
18 5000 18h |[3.333| 2.404 0
19 5000 2.5 days | 3.231 | 2.417 0
20 5000 7.1 days | 3.154 | 2.432 0

2.2. NON-UNIFORMLY SPACED BIN SIZES

Consider the problem of VSBC where B = {1.0, 0.2}. The upper bound is
defined above in equation (5) as 5.0. Computational studies have verified this.
More computer resources became available for this experiment and we were able
to use an additional twenty Pentium-4, two Ghz machines for this problem. The
parallel computing Java code performed about 11 days’ worth of experimentation
in under 9 hours.

The maximum ratio obtained was 5, although it was decreasing as the list size
increased. The percentage of ones dropped off sharply, and as before, the average
ratio increased.

3. LOWER BOUNDS IN BIN PACKING

3.1. PRELIMINARIES

We now turn our attention to the online LIB Bin Packing problem with unit-
sized bins. We prove that no algorithm can guarantee an AR (approximation
ratio) of less than 1.76, under the online model considered. Computing resources
have been used to obtain theoretical results.

Problem statement: Online LIB Uniform-Sized Bin Packing (USBP).
Given an infinite supply of unit-sized bins, and a list L with |L| = n items, each

176 L. FINLAY AND P. MANYEM

item with size in (0,1]. Each item should be placed in a bin assigned to it (on
top of items previously placed in that bin) as soon as it arrives. This placement
cannot be changed later. In addition, the LIB constraint (2) should be obeyed for
any used bin. A feasible solution is one where the sum of the item sizes in each
used bin is at most one. The goal is to find a feasible solution that minimises the
number of used bins.

Literature on Bin Packing. Coffman et al. [4] provide a comprehensive
review of heuristics in Bin Packing. The original harmonic algorithm for bin
packing called Harmonicy; was introduced in [10], which also featured a slightly
modified version of this algorithm called Refined-Harmonic. Without the LIB
constraint, and using NF to pack the items, these algorithms were shown to have
AAR’s of 1.692 and 1.636 respectively. For the non-LIB case, the best lower bound
obtained so far [14] is 1.53, that is, no heuristic for this problem can guarantee an
approximation ratio of less than 1.53 under the online model considered.

Manyem et al. [11-13] treat the online LIB version of Bin Packing. They show
that the worst case approximation ratio of the Next Fit (NF) algorithm is in O(n).
They provide a modified FF algorithm with a guaranteed upper bound of three
on the asymptotic approximation ratio (AAR) and computational results for their
heuristic. As for lower bounds, Manyem et al. [13] show that

Lemma 1. For the online LIB uniform-sized Bin Packing (USBP) problem, the
FF, BF and HF heuristics cannot guarantee an AAR better than two.

3.2. SETTING UP AN INSTANCE OF THE PROBLEM

We now turn our attention to creating a problem instance in online LIB USBP
that can grow to an infinite size. We need a problem instance that can grow
infinitely large, in order to compute the AAR defined in Section 1.1. Observe that
we should now compute the approximation ratio as A(L, B)/OPT (L, B), since Bin
Packing is a minimisation problem.

Consider a list L that contains three sublists (L1, Lo, L3), in that order. The
size of items in sublist L; is a;, ¢ = 1,2,3. Eventually, we settle on specific item
sizes a; = 0.48, as = 0.043 and a3 = 0.047 — however, it makes sense to carry out
a more general analysis first.

Let |L;| = n;, the number of items in sublist L;. To ensure that the LIB
constraint is used, we assume that

O0<as<az<ai. (6)

In a list L with two sublists L1 and Lo, the LIB constraint does not come into
effect — the online constraint does the same job. For this reason, we assume that
ni, N2, N3 > 1.
The online and LIB constraints provide for the following rules for the placement
of items of different sizes in the same bin:
(1) An Ly item can be placed on top of an L, item;

(2) An Lj item can be placed on top of an L, item; and
(3) No other “mixed item” placements are allowed in the same bin.

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 177

Let m1 (m2, ms) be the maximum number of Ly (L, Ls) items that can be placed
in a bin. Thus m; = [1/a1] (and ma = |[1/az], ms = [1/as]).

Let us define multi-stacking as placing the maximum number of the same cate-
gory of items in a bin or bins. For example, if all Lo items are multi-stacked, they
would occupy [n2/ms] bins. With multi-stacking, items of different sizes cannot
be placed in the same bin. Assume that

1/3 < a1 <0.5. (7)

Hence m; = 2. Let mq2 (ma3) be the maximum number of Ly (L3) items that can
be placed on top of an Ly item. Thus,

= [and g = |22, (®)

az as

The following additional constraints are imposed on item sizes a1, as and ag:

e If a bin contains two L7 items, then no more items can be placed in the
bin:
2a1 + a2 >1 and 2a; +az > 1. (9)
e It is more optimal to place L3 (Ls) items on top of L; items rather than
multi-stacking Ls (Ls) items. In other words, a bin with one L, item and
mi2 (my3) number of Lo (Ls) items is more tightly packed than a bin
containing mgq (mg) number of Ly (L) items:

a1 + migas > moas and ai + mizasz > maas. (10)

e Similarly, a bin with one L; item and mya (my3) number of Ly (L3) items
is more tightly packed than a bin containing two L; items:

a1 +migas > 2a; and ay + mizaz > 2aq. (11)

e A bin with one L; item and mi3 number of L3 items is more tightly packed
than a bin containing one L; item and mj2 number of Ly items. In other
words, in a bin with one L item, it is better to fill in L3 items than Lo
items:

a1 + maizas > ai + miaas. (12)
The parameters mo, ms, mi2 and mq3 are chosen in such a manner as to obtain the
“best” (a1, as,as) combination. A particular (a1, as,as) combination is considered
to be the best if it provides the highest value for the lower bound LB, as explained
in (22) in Section 3.5. These four parameters can of course, vary widely — for
example, since 1/3 < a; < 0.5, and hence 0 < ay < 0.5, the value of mg can
range from 2 to a potentially large value. Thus our search process is limited by
available computing resources, and hence should be planned with judicious use of
computing power in mind.
Once the parameters ms, ms, mi2 and mq3 are fixed, one can obtain the sizes aq,
as and a3 by solving an IP (integer program) with (6)-(12) as constraints — any

178 L. FINLAY AND P. MANYEM

linear objective function consisting of a1, as and a3 can be used as long as the IP
does not yield an unbounded solution. We used the CPLEX solver to solve the IP.
Of course, to solve the integer program, one should replace each < (>) constraint
by a < (>) constraint by adding a suitable tolerance constant such as 0.01 or 0.001
to the left side (right side) of a < (>) constraint.

For a specific (a1, as,as) combination, the approximation ratio is computed as
explained below. We consider the computation of the heuristic solution value first.

3.3. HEURISTIC SOLUTION

A certain heuristic (or a certain strategy) can be described by a tuple (p1,p2),
where p; is the ratio of L; items that are double-stacked (two in a bin), and
po is the ratio of Lo items that can be placed on top of L items. A heuristic
that, for instance, double-stacks a constant number of L, items and single-stacks
the remaining L items will asymptotically reduce to a (0, p2) heuristic as |Lq|
increases — hence such heuristics that double-stack a constant number of L,
items, as opposed to a percentage of them, need not be considered?.

Here is how the heuristic H(p1,p2) behaves (see Tab. 1 for notation):

e As items in L; arrive, the heuristic H will double-stack d; of these items
and single stack the rest (s; = ny —dy). s1 is the number of single-stacked
L, items. dj is equal to |ping] if [pin1] is even, and |pin1| — 1 otherwise.

e When items in Lo begin arriving, H will attempt to place s, of these
into bins single-stacked with an L; item, and the remaining Lo items
(6 = n2 — s2 in number) will be multi-stacked. If s; is insufficient to carry
the placement of sy items of size ag, that is, s; < s3/mqa, then 3, the
number of multi-stacked Lo items will increase from ns — s9 to ng — s1mqs.
Let o = |pana]. Then s9 is given by

s9 = «, if « is divisible by m2, and so = mi2 {LJ otherwise. (13)
mi2

e Lastly, when items in L3 arrive, H will place as many of them on top
of singly-stacked L; items as possible. The remaining L3 items will be
multi-stacked. Recall that L3 items cannot be placed on top of Lo items
due to the LIB constraint.

1We wish to emphasise that we focus on asymptotic behaviour here. For example, one could
argue that there is a strategy where pa depends on p1 and ni, such as: (1) if n1 < 100 and
p1 < 0.2, then po = 0.1, (2) if ny < 100 and p1 > 0.2, then po = 0.5, (3) if n1 > 100 and
p1 < 0.4, then p2 = 0.8, and so on. However, the number of such cases is finite, and hence one
ultimately reaches a case that considers all values of n; greater than a finite positive integer
”(1) for which only one value of p; can be chosen — and for example, suppose p2 can be chosen
as follows: (a) if p1 < 0.3, then p2 = 0.8, (b) if 0.3 < p1 < 0.6, then ps = 0.7, and (c) if
0.6 < p1 < 1.0, then p2 = 0.45. Thus asymptotically, we have encountered these heuristics in
this example: (p1 < 0.3, p2 = 0.8), (0.3 < p1 < 0.6, p2 = 0.7), and (0.6 < p1 < 1.0, p2 = 0.45)

— the cases when n1 < n? are not considered in our lower bound analysis.

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 179

Depending on the relative numbers of L1, Lo and Ls, the number of bins h used
by the heuristic solution is computed as below in (a)—(c):
(a) If 81 > s2/mi2 + [n3/mis], then

h=d1/2+51+|—ﬁ/m2—|. (14)

The singly-stacked L; items (and bins) are so numerous that they can accomodate
all L3 items as well as those Lo items intended to be placed on top of L items.
(b) If s1 < s2/mi2 + [n3/my3] but s1 > sa/mi2. Those Lo items intended to
be placed on top of (single-stacked) L; items can indeed be placed so. However,
the remaining single-stacked L1 bins are insufficient to accomodate the L3 items.

I G [mﬁw + ["3 — (51 - SQ/mlﬂ . (15)

2 2 ms

(c) Neither of the above two cases. The single-stacked Ly bins are insufficient
even to accomodate the ss number of Lo items meant to go on top of L items
— hence making the placement of L3 items on top of single-stacked L; items

impossible:
h— s+ [EW N {w} , (16)
ms ma

3.4. OPTIMAL SOLUTION

An optimal algorithm OPT (one that produces an optimal solution) will behave
as follows:
If misny < n3g then
Single-stack all L; items;
Place as many L3 items as possible in bins with L; items;
Multi-stack the remaining L3 items, and
Multi-stack all Lo items.
Else
(Now we have migni > ng)
If n1 < |ng/mis] + |na/mi2| then
Single-stack all L; items;
Place ALL L3 items in bins with L; items;
Place as many L, items as possible in bins with L; items, and
Multi-stack the remaining Lo items.
Else
(Now Lng/mmj + Ln3/m12J <nyp)
Single-stack |na/mais] + |n3/mi2] number of L; items;
Double stack the remaining L; items;
Place ALL L3 items in bins with single-stacked L; items, and
Place ALL Lo items in bins with single-stacked L; items.
End If
End If

180 L. FINLAY AND P. MANYEM

Accordingly, the value of opt, the optimal solution value, is computed as below
in (a)—(c):

(a) If mi3ny < ngz (there is a sufficient number of L3 items to be placed on top
of single-stacked L; items), then

opt = 1y & {w} N [2} , (17)
ms mo

(b) If misnq > ng and n1 < [ng/mis] + [ne/mi2]. That is, all L items can be
placed in bins single-stacked with L; items, but there may be a few Ly items that
OPT will be unable to place on top of single-stacked L; items. In such a case,

(18)

opt =y + VQ — m12(”71ng fm/mlg})" .

(¢) If ny > [n3/mas] + [ne/miz], then

= [2] [] [oot =il]

mi3 mio 2

3.5. APPROXIMATION RATIOS AND LOWER BOUND

Observe that we should now compute the approximation ratio as
A(L,B)/OPT(L, B) — see Section 1.1 — since Bin Packing is a minimisation prob-
lem. Since the bins are of uniform size, we can simplify A(L,B) and OPT(L, B)
to A(L) and OPT (L) respectively.

For a given heuristic H(p1,p2), characterised by the tuple (p1,p2), the guar-
anteed approximation ratio is the maximum of the approximation ratios (h/opt)
over all instances of the problem — each instance of the problem is specified by
an (n1,n2,n3) tuple, where n;, = |L;|,1 < i < 3. However, the infinite number of
(n1,m2,mn3) tuples fall into a subset of nine cases (3 cases each for the heuristic
and optimal solutions), as far as approximation ratios are concerned.

For the 3 cases for the heuristic solution, let us name the values as hy, ho and
hs. Similarly, the optimal solution values for the three cases are named as opty,
opte and opts. The 9 cases can be named as case (i, j), where i (j) represents one of
the three cases in the heuristic (optimal) solutions. The maximum approximation
ratio r(4,7) is computed for each of the 9 cases, and the overall maximum ratio
over all 9 cases gives the guaranteed approximation ratio R(a1, as,as, p1,p2) for a
given H(p1, p2) heuristic:

R(ai,az,a3,p1,p2) = 1<i<f,§1alx<j<3 (i,). (20)

The lower-bound LB(a1, az, as), for a given (a1, az, as) combination, is obtained
by considering all possible heuristics H (p1, p2) as follows:

LB(ai,az,a3) = b SR R(ay,az,a3,p1,p2) (21)

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 181

TABLE 8. Variation in lower bound for worst case approximation ratio.

Problem size | Lower bound
100 1.7738
200 1.7803
500 1.7857
1000 1.7874
10000 1.7890

Of course, LB(a1,as,as), obtained by using any (a1, as, as) combination, can
be taken as a lower bound LB for the online LIB Bin Packing problem. However,
one wishes to obtain a better (that is, higher) value for the lower bound — which is
why, time permitting, one can experiment with different (a1, ag, az) combinations
that obey the constraints (6)—(12), and choose the best lower bound LB for the
problem:

LB = max LB(ay,as,as). (22)

ai,a2,as
For a fixed (p1,p2), in each of the nine (7, j) cases, some of the (n1,na,ns) values
will be valid and not others, due to the conditions set forth for each case. For each
case (i, j), an optimisation problem was solved as below:

maximise h;/opt; (23)
subject to
condition 4 (24)
condition j. (25)
For instance, if ¢ = j = 1, then condition i is s1 > s3/mi2 + [ng/mi3] and

condition j is given by misni; < ns.

3.6. EXPERIMENTS AND CONVERGENCE OF LB

The nature of the objective function did not permit seeking an optimal solution
using any of the standard optimisation packages. Hence the optimisation (search)
procedure was coded in C language and implemented in a computer running Linux
(RedHat 7.1). It was ensured that the search process did converge as the problem
size, measured by max(ni,n2,ns), grew — see Table 8.

After some experimentation, we chose a; = 0.48, as = 0.043 and ag = 0.047 —
thus fixing my = 2, mg = 23, mg = 21, m2 = 12, and my3 = 11. As for p; and po,
we varied them in the [0, 1] interval in steps of 0.02. The experiments resulted in
an LB value of 1.7738. To conclude this section, we can state that, after allowing
for rounding errors,

Theorem 2. Under the online model considered for the LIB bin packing problem
with unit-sized bins, no algorithm can guarantee an asymptotic competitive ratio
less than 1.76.

182 L. FINLAY AND P. MANYEM
4. FURTHER RESEARCH

For online non-LIB uniform sized Bin Packing, the best lower bound obtained
so far is 1.53 [14]. Naturally, one would expect the lower bound for the constrained
problem (the LIB case) to be higher — our proof confirms this, though it falls short
of the lower bound of two conjectured in [13]. The reason for such a conjecture
lies in the results in Lemma 1. Further research, possibly by investigating different
lists, might bring the lower bound closer to two.

Another important open problem in online LIB uniform sized Bin Covering
(USBC) is the resolution of the following conjecture in [11]:

Conjecture 3. No polynomial-time (deterministic) approximation algorithm for
the Online USBC problem With LIB can guarantee an asymptotic approrimation
ratio that is a constant, under the considered online model.

Compare this with the tight bound of two for the non-LIB version — the upper
bound was proved in [2], and the lower bound was proved in [9].

Acknowledgements. The first author was supported by a grant from the University of
South Australia. The second author was supported by a grant from the Sir Ross and Sir
Keith Smith Foundation in Adelaide, Australia. The authors benefited from discussions
with David Panton. A preliminary version of this paper appeared in the proceedings of
the fourteenth Australasian workshop on Combinatorial Algorithms (AWOCA 2003).

REFERENCES

[1] S.F. Assmann, Problems in Discrete Applied Mathematics. Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge, MA (1983).

[2] S.F. Assmann, D.S. Johnson, D.J. Kleitman and J.Y.-T. Leung. On a Dual Version of the
One-dimensional Bin Packing. J. Algorithms 5 (1984) 502-525.

[3] M. Carlyle, K. Knutson and J. Fowler, Bin covering algorithms in the second stage of the
lot to order matching problem. J. Oper. Res. Soc. 52 (2001) 1232-1243.

[4] E.G. Coffman, M.R. Garey and D.S. Johnson, Bin Packing Approximation Algorithms: A
Survey, in Approxzimation Algorithms for NP-Hard Problems edited by D. Hochbaum. PWS
Publishing Company, Boston, MA (1997) 46-93.

[5] J. Csirik and J.B.G. Frenk, A Dual Version of Bin Packing. Algorithms Rev. 1 (1990) 87-95.

[6] J. Csirik, J.B.G. Frenk, M. Labbe and S. Zhang, Two Simple Algorithms for Bin Covering.
Acta Cybernetica 14 (1999) 13-25.

[7] J. Csirik, D.S. Johnson and C. Kenyon, Better approximation algorithms for bin covering,
in SODA 2001: Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (2001)
557-566.

[8] J. Csirik, D.S. Johnson, C. Kenyon, J.B. Orlin, P.W. Shor and R.R. Weber, On the sum-
of-squares algorithm for bin packing, in ACM-STOC 2000: Proceedings of the 32nd ACM
Symposium on the Theory of Computing (2000) 208-217.

[9] J. Csirik and V. Totik, On-line Algorithms for a Dual Version of Bin Packing. Discrete Appl.
Math. 21 (1988) 163-167.

[10] C.C. Lee and D.T. Lee, A Simple Online Bin Packing Algorithm. J. ACM 32 (1985) 562—
572.

[11]

[12]

[13]

[14]

[15]

BIN COVERING HEURISTICS AND BIN PACKING LOWER BOUNDS 183

P. Manyem, Bin packing and covering with longest items at the bottom: Online version,
The ANZIAM Journal (formerly Journal of the Austral. Math. Soc., Series B) 43(E) (June
2002) E186-E231.

P. Manyem. Uniform Sized Bin Packing and Covering: Online Version, in Topics in In-
dustrial Mathematics, edited by J.C. Misra. Narosa Publishing House, New Delhi (2003)
447-485.

P. Manyem, R.L. Salt, and M.S. Visser, Lower Bounds and Heuristics for Online LIB Bin
Packing and Covering, in Proceedings of the 13th Australasian Workshop on Combinatorial
Algorithms (Fraser Island, Queensland, Australia) (July 2002) 11-42.

A. Van Vliet, Optimal On-Line Algorithms For Variable-Sized Bin Covering. Inform. Pro-
cess. Lett. 43 (1992) 277-284.

G.J. Woeginger and G. Zhang, Optimal On-Line Algorithms For Variable-Sized Bin Cover-
ing. Oper. Res. Lett. 25 (1999) 47-50.

To access this journal online:
www.edpsciences.org

