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AN ANALYTIC CENTER CUTTING PLANE ALGORITHM
FOR FINDING EQUILIBRIUM POINTS ∗

Fernanda M.P. Raupp1 and Wilfredo Sosa2

Abstract. We present a variant of the analytic center cutting plane
algorithm proposed by Goffin et al. (1996) to approximately solve equi-
librium problems as proposed by Blum and Oettli (1994), which include
as particular problems the variational inequalities problem, the Nash
equilibria problem in non-cooperative games, the convex minimization
problem, and the fixed point problem. Furthermore, we analyze the
convergence and complexity of the modified algorithm.
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1. Introduction

In this work we deal with the equilibrium problem in the following format:

(EP) find x̄ ∈ K such that f(x̄, y) ≥ 0 ∀y ∈ K, (1)

where f : [0, 1]n × [0, 1]n → R satisfies the following properties:
P1. f(x, x) = 0 ∀x ∈ [0, 1]n;
P2. f(x, ·) : [0, 1]n → R is convex and lower semi-continuous ∀x ∈ [0, 1]n;
P3. f(·, y) : [0, 1]n → R is upper semicontinuous ∀y ∈ [0, 1]n;
and K is a nonempty compact convex subset of [0, 1]n.
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As the set K is bounded, we can consider the hypercube [0, 1]n as its containing
set without loss of generality, since we can always scale the variables.

The EP general formulation (1) with the name “equilibrium problem” was in-
troduced first by Blum and Oettli [4]. However, the same formulation with another
name was addressed before by Nikaido and Isoda [15], and then by Fan [7]. It is
also important to cite the work of Brezis et al. [6], which extends the results of [7]
for K not compact.

It has been pointed out in [4, 12, 13] that EP general formulation includes as
particular problems the convex minimization problem, the fixed point problem, the
Nash equilibria problem for noncooperative games and the variational inequalities
problem. Moreover, EP is closest in formulation to the equilibrium programming
problem introduced by Antipin and Vasil’ev [1]. Hereafter, a solution of EP (1) is
called an equilibrium point.

As a matter of completion, next we show how the four problems mentioned
above can be formulated as particular cases of EP. Assuming K is a nonempty
closed convex subset of R

n, we exhibit appropriate function f for each particular
problem such that its solution set coincides with the solution set of EP. One can
show that properties P1, P2 and P3 hold.

a) The convex minimization problem. Let h : K → R be a convex and
lower semicontinuous function. The convex minimization problem which
is formulated as follows:

find x ∈ K such that h(x) ≤ h(y) ∀y ∈ K

can be reformulated as an equilibrium problem taking f(x, y) := h(y) − h(x)
for all x, y ∈ K.

b) The fixed point problem. Let T : R
n → P(Rn) be an upper semicontinuous

point-to-set mapping such that T (x) ∩ K is a nonempty compact convex
set for each x ∈ K. The fixed point problem is defined as:

find x ∈ K such that x ∈ T (x).

Our goal is accomplished by setting f(x, y) := maxu∈T (x)∩K(x−u)T (y−x)
for all x, y ∈ K.

c) The Nash equilibria problem in noncooperative games. Let I be a finite set
(the set of players). For each i ∈ I, consider a nonempty compact convex
subset Ki of R

n (the strategy set of the ith player). Let K :=
∏

i∈I Ki. For
each i ∈ I consider a continuous function fi : K → R (the loss function of
the ith player, depending on the strategies of all players) which is convex in
the ith variable. For each x, y ∈ K, we define x(yi) as (x(yi))j := xj for all
j �= i, and (x(yi))i := yi. The Nash equilibria problem in noncooperative
games is formulated as:

find x ∈ K such that fi(x) ≤ fi(x(yi)) ∀i ∈ I ∀y ∈ K.
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In this case, set f(x, y) :=
∑

i∈I(fi(x(yi)) − fi(x)) for all x, y ∈ K to
obtain the EP general formulation.

d) The variational inequalities problem. Let T : K → P(Rn) be an upper
semicontinuous point-to-set mapping such that T (x) is a compact set for
all x ∈ K. The variational inequality problem is defined as:

find x ∈ K, u ∈ T (x), such that uT (y − x) ≥ 0 ∀y ∈ K.

Now, take f(x, y) := maxu∈T (x) uT (y − x) for all x, y ∈ K.
Considering the general formulation EP, existing algorithms for finding approx-
imately equilibrium points exploit orthogonal projection techniques and use hy-
potheses such as continuity, differentiability and/or monotonicity on f , as we can
observe as follows.

Resembling the extragradient method of Korpelevich [11], Antipin [2] in his
prediction gradient method generates two sequences:

yk = PK

(
xk − α∇2f

(
xk, xk

))
, 1

xk+1 = PK

(
xk − α∇2f

(
yk, yk

))
.

The hypotheses considered on f such as differentiability in K and monotonicity
(i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ K), enables Antipin to show that the
generated sequence {xk} converges to a point in the solution set of EP.

Recall that K is a nonempty compact convex subset of [0, 1]n. For y ∈ K, let
us define the following set

Lf (y) = {x ∈ [0, 1]n : f(y, x) ≤ 0}. (2)

Assuming continuity and pseudomonotonicity of f , the algorithm proposed by
Iusem and Sosa [13] generates also two sequences as follows:

yk such that maxy∈Kk
f(y, xk) ≤ f(yk, xk) + εk,

xk+1 = xk + λk

(
PLf (yk)(xk) − xk

)
,

where
Kk := {x ∈ K : ‖x‖ ≤ max{‖x0‖, . . . , ‖xk−1‖} + 1},

and εk > 0 with limk→∞ εk = 0. Considering that {xk} or {yk} is bounded,
they proved that the sequence {xk} generated by the algorithm converges to an
equilibrium point.

In this paper we present a different approach to find equilibrium points approx-
imately. Note that Lf (y) is convex by property P2. Now, consider the definition
of the following set

S = (∩y∈KLf (y)) ∩ K. (3)

1PK denotes the orthogonal projection over the set K and ∇2f denotes the gradient of f
with respect to the second argument.
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The set S is contained in the solution set of EP, as we can see in [12] for example.
So, the problem of finding a point in S is a particular case of the convex feasibility
problem, which in general consists of finding a point belonging to the intersection
of a family of convex sets, for more information see [5]. The approach considered
in this work is devised for finding a solution of EP by finding a point in S. No
continuity, no differentiability and no monotonicity assumptions on f are made.
Nor any projection technique is used.

Here we study the application of a variant of the analytic center cutting plane
algorithm for solving convex feasibility problems of Goffin et al. [8]. The first
optimization method that combines the cutting plane methods with the technique
of interior point methods was introduced by Sonnevend [17]. Besides allowing for
feasible computer implementation, the methods developed with this characteristic
have shown great performance in practice, see Goffin et al. [9], and Raupp and
Gonzaga [16] for example.

The proposed method consists of building an increasingly refined polyhedral
approximation of S. The linear inequalities that define the approximation of S
are generated by an oracle called at a query point as hyperplanes. In this version
the query point is an approximation of the analytic center for the current poly-
hedral relaxation and the hyperplanes are originated from shallow cuts, which in
turn makes the test point always an interior point for the new refined polyhedral
approximation. Although its possible to add more than one cut per iteration as
in Ye [20], the proposed method adds just one cut per iteration.

We also verify that the modified analytic center cutting plane method when
applied to find an equilibrium point approximately is polynomial, with the com-
plexity bound depending on the space dimension as in [8].

It is well known that a point close to the solution set of EP (an approximate
solution of EP) can generate instability for methods using perturbations of the
objective function and of the feasible set, see for example [1]. This is not the case
of our approach. Since S is compact and convex, we use the proposed analytic
center cutting plane method in order to approximate S by compact polyhedral
sets, which contain the set S and have nonempty interior. With this technique,
we obtain in some finite iteration an approximate solution, since the volumes of
the polyhedral sets tend to zero monotonically [8, 19].

The paper is organized as follows. We conclude the Introduction presenting the
notation used hereafter. Section 2 briefly introduces some definitions and results
from the theory of interior point methods. Section 3 is devoted to state some def-
initions and results related to the equilibrium problem already introduced. Under
certain assumptions the proposed algorithm as well as its convergence analysis
are presented in Section 4. Finally, in Section 5 we conclude our work with final
comments.

1.1. Notations

Let w and z be m-dimensional real vectors. The matrices W and Z denote
diagonal matrices with diagonals w and z, respectively. Consequently, Wz denotes
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the component-wise product of w and z. The vector e denotes the vector with
entries equal to 1 and dimension given by the context.

Given a nonempty closed set K, ∂K denotes the boundary of K and
o

K denotes
its interior set. For each x ∈ R

n, PK(x) denotes the orthogonal projection of the
point x over the set K as already mentioned.

2. Analytic center

In this section we briefly recall some definitions and results from the theory of
interior point methods. A plain exposition of such theory can be found in Ye [21],
for example. We begin with the definition of the analytic center of a bounded
polyhedral set and end with the presentation of the nature of the cutting planes
used in the proposed technique for finding an approximate solution of EP.

Let P ⊆ [0, 1]n be a bounded polyhedral set defined by m (> n) linear inequal-
ities given by

P =
{
x ∈ R

n : AT x ≤ b
}

,

where A ∈ R
n×m with full row rank and b ∈ R

m are known, such that P is
nonempty and its set of interior points is given by

o

P = {x ∈ R
n : AT x < b}.

We assume that P has nonempty interior in order to define the dual potential
function φ :

o

P → R, given by

φ(x) =
m∑

j=1

ln (bj − aT
j x),

where bj is the jth component of vector b and aj is the jth column of matrix A,
j = 1, . . . , m. Note that φ(·) decreases indefinitely as x approaches ∂P .

Now, defining the dual slack vector by

z = b − AT x,

the gradient and the Hessian of φ(·) at x are given respectively by

∇φ(x) = −AZ−1e and ∇2φ(x) = −AZ−2AT ,

where AZ−2AT is symmetric and positive definite.
Since P is compact,

o

P is not empty and φ(·) is strictly concave in
o

P , the analytic
center of P defined by

xa = argmax
{

φ(x) : x ∈ o

P
}
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satisfies the first order optimality condition ∇φ(xa) = 0, i.e., there exists a
Lagrangean multiplier wa > 0 such that

Awa = 0, za = b − AT xa > 0 and W aza = e. (4)

Given an interior point x of P , we measure the proximity of this point to the
analytic center xa using dual approach (evaluating the norm of a scaled gradient
vector) which is

δ(z) = ‖Z−1AT (AZ−2AT )−1AZ−1e‖ = ‖Zw(z) − e‖,

where
w(z) := Z−1[I − Z−1AT (AZ−2AT )−1AZ−1]e,

satisfies Aw(z) = 0 and w(z) > 0.
Let (x, z, w) be such that z = b − AT x and w = w(z). The vector x is an

η-approximate analytic center of P if

‖Zw − e‖ ≤ η < 1,
AT x + z = b, z > 0

Aw = 0, w > 0.
(5)

Given x ∈ o

P , the dual Newton method generates a new iterate

x+ = x + dx, (6)

where
dx = −[∇2φ(x)]−1∇φ(x) = −(AZ−2AT )−1AZ−1e,

which was first proposed by Vaidya in [18]. Setting z+ = b−AT x+ and w+ = w(z+),
if x is an η-approximate analytic center of P , then by Lemma 5.4 in Gonzaga [10]
we get z+ > 0 and ‖Z+w+ − e‖ ≤ η2.

If (xa, za, wa) satisfies (4) and (x+, z+, w+) satisfies (5), then by Lemma 2 in
Ye [19] we have that

φ(xa) ≥ φ(x+) ≥ φ(xa) − η2

2(1 − η)
· (7)

Let (x+, z+, w+) be such that x+ is an η-approximate analytic center,
z+ = b − AT x+ and w+ = w(z+). Consider the following ellipsoid inscribing
in P with center at x+

E+ = {x ∈ R
n : ‖(Z+)−1AT (x − x+)‖ ≤ 1 − η},

denoted by Dikin ellipsoid.
Now, assume that S (3) is defined implicitly by an oracle. The oracle either

returns x+ ∈ S or generates a hyperplane, which intersects the interior of the
Dikin ellipsoid, as we can verify by the following lemma.
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Lemma 2.1. If a ∈ R
n with ‖a‖ = 1, τ :=

√
aT (A(Z+)−2AT )−1a,

ρ :=
√

aT A(Z+)−2AT a and β ∈ ] 0, 1−η
ρτ [ , then

H+ =
{
x ∈ R

n : aT (x − x+) = βτ
}

(8)

intersects the interior of the Dikin ellipsoid.

Proof. Let xp be the projection of x+ on H+, then xp = x+ + βτa. So, we have
‖(Z+)−1AT (xp − x+)‖ = ‖(Z+)−1AT (βτa)‖ = βρτ < 1 − η. �

When the hyperplane H+ (8) is added to the system, the new convex set is
defined by

P̄ =
{
x ∈ R

n : AT x ≤ b, aT x ≤ aT x+ + βτ
}

.

Now, denoting by x̄a the analytic center of P̄ and using Theorem 2 of Ye [19], one
can show that the potential function φ(·) satisfies

φ(x̄a) ≤ φ(xa) + ln(4τ) − (1.5 − β), (9)

with τ and β as defined in Lemma 2.1.
It is interesting to observe that x+ is still in the “quadratic convergence” region

of P̄ (Lem. 3 in Ye [19]). As a result, Goffin et al. [8] showed that it is neces-
sary no more than four iterations of the dual Newton method (6) to find a new
η-approximate analytic center of P̄ starting from x+ + ∆x, where

∆x := −α(1 − η)
τ

(
A

(
Z+

)−2
AT

)−1

a

is the affine direction that maximizes the new slack constrained to the Dikin ellip-
soid trust region, and appropriated given values for α, η ∈ ]0, 1[.

3. Equilibrium problem

In this section, we characterize a solution and an approximate solution of EP.
Some of the theoretical results presented here will be used in the next section.

Recall the sets Lf (x) = {y ∈ [0, 1]n : f(x, y) ≤ 0} (2) defined for each x ∈ [0, 1]n,
and S = (∩x∈KLf (x)) ∩ K (3), and consider the following definitions:
D1. the map Γ : [0, 1]n ⇒ R

n given by

Γ(x) =
{
v ∈ R

n : f(x, y) ≥ vT (y − x) ∀y ∈ [0, 1]n
}

;

D2. the selection T : [0, 1]n → R
n of Γ, i.e.

T (x) ∈ Γ(x) ∀x ∈ [0, 1]n.

Observe that Γ(x) �= ∅ ∀x ∈ ]0, 1[n.
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Lemma 3.1. Let {xk}k∈N ⊂ K and {uk}k∈N ⊂ R
n be two sequences such that

xk → x̄ and uk → ū. If uk ∈ Γ(xk) ∀k ∈ N, then ū ∈ Γ(x̄).

Proof. Since uk ∈ Γ(xk) ∀k ∈ N, then 〈uk, x − xk〉 ≤ f(xk, x) ∀x ∈ K, k ∈ N. It
implies that 〈ū, x − x̄〉 ≤ f(x̄, x) ∀x ∈ K, and so ū ∈ Γ(x̄). �

Theorem 3.2. If for each x ∈ K, f(x, ·) is subdifferentiable at x, then the fol-
lowing statements hold:

(1) If x̄ ∈ S then x̄ ∈ K and T (y)T (x̄ − y) ≤ 0 ∀y ∈ K.
(2) If x̄ ∈ K and T (y)T (x̄ − y) ≤ 0 ∀y ∈ K, then x̄ is a solution of EP.

Proof.

1. If x̄ ∈ S, then f(y, x̄) ≤ 0 ∀y ∈ K. Since T (y) ∈ Γ(y) ∀y ∈ K, we have
T (y)T (x̄ − y) ≤ f(y, x̄) ≤ 0 ∀y ∈ K.

2. If x̄ ∈ K and T (y)T (x̄ − y) ≤ 0 ∀y ∈ K. Take y ∈ K arbitrarily and for
each λ ∈ ]0, 1[ consider u := λy + (1− λ)x̄, then u ∈ K, ∀λ ∈ ]0, 1[. Thus,
we have 0 = T (u)T (u − u) = λT (u)T (y − u) + (1 − λ)T (u)T (x̄ − u). By
hypothesis T (u)T (x̄−u) ≤ 0 ∀λ ∈ ]0, 1[, which implies that 0 ≤ T (u)T (y−
u) ≤ f(u, y) ∀λ ∈ ]0, 1[, and the statement follows from property P3.

The next theorem replaces the hypothesis of the previous one in order to reach
the same goal. �

Theorem 3.3. If for each x ∈ K and y ∈ ∂K there exists {yi}i∈N ⊂ o

K such that
yi → y and f(x, y) = limi→+∞ f(x, yi), then the following statements hold:

(1) If x̄ ∈ S, then x̄ ∈ K and T (y)T (x̄ − y) ≤ 0 ∀y ∈ o

K.

(2) If x̄ ∈ K and T (y)T (x̄ − y) ≤ 0 ∀y ∈ o

K, then x̄ is a solution of EP.

Proof. Item 1 follows from item 1 of Theorem 3.2. For item 2, take y ∈ o

K

arbitrarily, then ∀λ ∈ ]0, 1[ we have that u := λy + (1 − λ)x̄ ∈ o

K. So, using the
same argument as in item 2 of Theorem 3.2, we have that 0 ≤ f(x̄, y). Now, if
y ∈ ∂K the statement follows from the hypothesis. �

The following lemma gives sufficient conditions in order to guarantee the hy-
pothesis used in Theorems 3.2 and 3.3.

Lemma 3.4. If K ⊂ ]0, 1[n and
o

K �= ∅, then
a) for each x ∈ K, f(x, ·) is subdifferentiable at x;

b) for each y ∈ ∂K, there exists {yi}i∈N ⊂ o

K such that yi → y, then

lim
i→∞

f(x, yi) = f(x, y);

c) if f is bounded above on K × K, then for each compact set C ⊂ K,
∪x∈CΓ(x) is bounded.
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Proof. Items a) and b) follow from the fact that each convex function is continuous
and subdifferentiable at each interior point of its effective domain. For item c),
take ε > 0 such that C(ε) := ∪x∈CB(x, ε) ⊂]0, 1[n, where B(x, ε) := {y ∈ R

n :
‖y − x‖ ≤ ε}. Given u ∈ ∪x∈CΓ(x), then there exists x ∈ C such that u ∈ Γ(x).
So, uT (y − x) ≤ f(x, y) ∀y ∈]0, 1[n. If ‖u‖ > ε, take z := PB(x,ε)(x + u), then
uT (z − x) = ‖u‖ε. It implies that ‖u‖ε ≤ f(x, z). Finally, the statement follows
from the boundedness of f . �

Now let us define the following set for δ > 0:

S(δ) = ∪x∈SB(x, δ). (10)

Theorem 3.5. Let f be bounded above on K × K and let T : ]0, 1[n→ R
n be a

selection of Γ. Given ε > 0, there exists δ > 0 such that ∀x ∈ S(δ), we have that
T (y)T (x − y) ≤ ε ∀y ∈ K.

Proof. Let L > 0 be such that L := sup{‖v‖ : v ∈ ∪x∈KΓ(x)} and δ := ε/L. Given
x ∈ S(δ), we have that T (y)T (x − y) = T (y)T (x − PS(x)) + T (y)T (PS(x) − y) ≤
T (y)T (x − PS(x)) ≤ Lδ = ε, ∀y ∈ K. �

Definition 3.6. We say x ∈ [0, 1]n is an ε-solution for EP if and only if exists
δ > 0 such that d(x, S) := infy∈S ‖x − y‖ ≤ δ and T (y)T (x − y) < ε ∀y ∈ K.

4. Algorithm

In this section, we start giving the assumptions made to present the proposed
algorithm, which is a variant of the analytic center cutting plane algorithm in [8].
Finally, we analyze its convergence following [8].

For the algorithm we need to consider the listed assumptions:

A1. S is nonempty;
A2. f is bounded above on K × K and satisfies P1, P2, P3;
A3. there exists an oracle such that for each x ∈ ]0, 1[n it checks the inclusion

x ∈ argmin{f(x, y) : y ∈ [0, 1]n}.

If the inclusion is false, it generates T (x) ∈ Γ(x);
A4. given x̄ ∈ K and x∗ ∈ S, if f(x̄, x∗) = 0 then x̄ is a solution of EP.

We should emphasize that assumptions A1, A2, A4, P1, P2 and P3 are satisfied
by a large class of functions f , meaning that some of them are not necessarily
continuous nor monotone. For example, considering K = [0, 1]2, the following
function

f(x, y) =
{

1 − y/x, x > 0
0, x = 0

satisfies the assumptions A1, A2, A4, P1, P2 and P3, however f is not continuous
neither monotone (not even pseudomonotone).
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The assumption A1 holds if f is properly quasimonotone and satisfies P1, P2
and P3. (This concept was introduced by Zhou-Chen in 1998 for the case of
variational inequalities and then extended to bifunctions, for more information
see [3].) The assumption A4 holds if f(·, y) has a unique maximizer for each
y ∈ K.

The following lemma tells us that the hypothesis A4 is obtained if we use other
classical ones for the particular problems considered in Section 1.

Lemma 4.1. Consider the four particular problems of EP presented in Section 1.
a) Given the convex minimization problem, the assumption A4 holds.
b) Given the fixed point problem, if (−T ) is monotone (i.e., (u − v)T (x −

y) ≤ 0, ∀ x, y ∈ K, u ∈ T (x), v ∈ T (y)), then A4 holds.
c) Given the Nash equilibria problem in noncooperative games, if for each

i ∈ I, fi is additive (i.e., fi(x) =
∑

j∈I fij(xj), ∀x ∈ K), then A4 holds.
d) Given the variational inequality problem. If (T − I) is monotone, then A4

holds.

Proof. Given x̄ ∈ K and x∗ ∈ S such that f(x̄, x∗) = 0, it follows:
a) 0 = f(x̄, x∗) = h(x∗) − h(x̄). Hence h(x̄) = h(x∗) ≤ h(x) ∀x ∈ K, and so

x̄ is a solution of EP.
b) 0 = f(x̄, x∗) = supu∈T (x̄)∩K(x̄ − u)T (x∗ − x̄). Then there exists

ū ∈ T (x̄) ∩ K such that (x̄ − ū)T (x∗ − x̄) = 0, which implies that

(x̄ − x∗)T (x∗ − x̄) + (x∗ − ū)T (x∗ − x̄) = 0. (11)

Since x∗ ∈ S, we have by Theorem 3.2 that x∗ is a solution of EP and
so x∗ ∈ T (x∗). By monotonicity of (−T ), we have that the second term
in (11) is non positive, which implies −‖x̄−x∗‖2 = (x̄−x∗)T (x∗− x̄) ≥ 0,
and so x̄ = x∗ is a solution of EP.

c) For each x, y ∈ K, we have

f(x, y) =
∑
i∈I

[fi(x(yi)) − fi(x)]

=
∑
i∈I

⎡
⎣(fii(yi) +

∑
j �=i

fij(xj)) − (fii(xi) +
∑
j �=i

fij(xj))

⎤
⎦

=
∑
i∈I

fii(yi) −
∑
i∈I

fii(xi). (12)

By hypothesis, 0 = f(x̄, x∗) =
∑

i∈I fii(x∗
i ) − ∑

i∈I fii(x̄i), and so∑
i∈I fii(x∗

i ) =
∑

i∈I fii(x̄i). Hence, f(x̄, x) =
∑

i∈I fii(xi)−
∑

i∈I fii(x̄i) =∑
i∈I fii(xi) −

∑
i∈I fii(x∗

i ) = f(x∗, x) ≥ 0, ∀x ∈ K.
d) We have that 0 = f(x̄, x∗) = supu∈T (x̄) uT (x∗ − x̄), then there exists

ū ∈ T (x̄) such that ūT (x∗ − x̄) = 0. Since (T − I) is monotone, then
((ū− x̄)− (u∗−x∗))T (x̄−x∗) ≥ 0, ∀u∗ ∈ T (x∗). Thus (ū−u∗)T (x̄−x∗) ≥
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‖x̄ − x∗‖2 ≥ 0, and so 0 = ūT (x̄ − x∗) ≥ (u∗)T (x̄ − x∗), ∀u∗ ∈ T (x∗).
We also have that 0 ≤ f(x∗, x̄) = supu∗∈T (x∗)(u∗)T (x̄ − x∗) ≤ 0, then
there exists ū∗ ∈ T (x∗) such that (ū∗)T (x̄− x∗) = 0. From (11), (12) and
monotonicity of (T − I), it follows that −‖x̄−x∗‖2 = (x∗ − x̄)T (x̄−x∗) =
((ū − x̄) − (ū∗ − x∗))T (x̄ − x∗) ≥ 0, and so x̄ = x∗ is a solution of EP.

�
Now, we propose the following algorithm for identifying an ε-solution of EP, which
is a variant of the one proposed in [8].

Algorithm
Step 1 : (Initialization)

Given ε, η ∈ ]0, 1[. Let A0 = (I,−I) ∈ R
n×2n, b0 =

(
eT , 0

)T ∈ R
2n and

P 0 = {x ∈ R
n : (A0)T x ≤ b0}.

Set k := 0.
Step 2 : (Computation of an approximate analytic center)

Find xk, an η-approximate analytic center of P k.
Step 3 : (Stopping criterion)

Query the oracle to see if xk ∈ argmin{f(xk, y) : y ∈ [0, 1]n}. If the above
inclusion is true, then stop;

Step 4 : (Generation of the cutting plane)
Query the oracle to generate T (xk) ∈ Γ(xk). Set:
ak := T (xk)/||T (xk)||,
zk := bk − (Ak)T xk,
τk :=

√
(ak)T (Ak(Zk)−2(Ak)T )−1ak,

ρk :=
√

(ak)T Ak(Zk)−2(Ak)T ak,
βk := min{ η

(1−η)2 − η2

2(1−η) ,
1−η

2ρkτk }.
Update:
Ak+1 =

(
Ak, ak

)
, bk+1 =

(
(bk)T , (ak)T xk + βkτk

)T and
P k+1 = {x ∈ R

n : (Ak+1)T x ≤ bk+1}.
Set k := k + 1 and return to step 2.

End
In step 4 of the above algorithm, the updating of xk after a cut is done, as

described at the end of Section 2, is assumed as part of the procedure of finding a
new analytic center. The following lemmas show that the algorithm above is well
defined. We skip the proofs of those lemmas that follow straightforward.

Lemma 4.2. Let xk be generated by the algorithm. If T (xk) = 0, then

xk ∈ argmin{f(xk, y) : y ∈ [0, 1]n}.

Moreover, xk is a solution of EP.

Lemma 4.3. Let xk be generated by the algorithm. If T (xk) �= 0, then τk > 0,
ρk > 0 and βk > 0.
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Lemma 4.4. Let xk be generated by the algorithm. If xk /∈ argmin{f(xk, y) : y ∈
[0, 1]n}, then:

a) T (xk) �= 0;

b) S ⊂
o

P k. Moreover, T (xk)T (x − xk) < 0 ∀x ∈ S.

Proof.
a) It follows directly from the contrapositive result of Lemma 4.2.
b) We know that

Ak =
(
A0, a0, . . . , ak−1

)
and bk =

⎛
⎜⎜⎜⎝

b0

(a0)T x0 + β0τ0

...
(ak−1)T xk−1 + βk−1τk−1

⎞
⎟⎟⎟⎠ .

So, we only have to prove that for any x ∈ S, (Ak)T x < bk. Since x ∈ S ⊂ K ⊂
]0, 1[n, then (A0)T x < b0. By Theorem 3.3, we have

(ai)T (x − xi) =
(

T (xi)
‖T (xi)‖

)T

(x − xi) ≤ 0 ∀i ∈ {0, . . . , k − 1}.

So, (ai)T x ≤ (ai)T xi, ∀i ∈ {0, . . . , k − 1}. Since ai = T (xi)/‖T (xi)‖ �= 0, then
by Lemma 4.3 τ iβi > 0, ∀i ∈ {0, . . . , k − 1}. It implies (ai)T x ≤ (ai)T xi <
(ai)T xi + βiτ i, ∀i ∈ {0, . . . , k − 1}. And so (Ak)T x < bk.

Finally, suppose there exists x∗ ∈ S such that T (xk)T (x∗ − xk) = 0, then 0 =
T (xk)T (x∗−xk) ≤ f(xk, x∗) ≤ 0. It follows by assumption A4 that xk is a solution
of EP, which is a contradiction, because xk /∈ argmin{f(xk, y) : y ∈ [0, 1]n}. �
Lemma 4.5. Let xk be generated by the algorithm. If T (xk) �= 0, then the hyper-
plane

Hk = {x ∈ R
n : (ak)T (x − xk) = βkτk}

intersects the Dikin ellipsoid

Ek = {x ∈ R
n : ‖(Zk)−1(Ak)T (x − xk)‖ ≤ 1 − η}.

Proof. It follows from the fact that βk ≤ 1−η
2ρkτk ∈ ]0, 1−η

ρkτk [ and applying Lemma 2.1.
�

Using the same argument as in Goffin et al. [8] we find an upper bound for∑k
i=0(τ

i)2. This is achieved by a construction from Nesterov [14], which bounds
Ak(Zk)−2(Ak)T from below by a certain matrix Bk simple enough to handle. We
reproduce this result in the next lemma.

Lemma 4.6. Let xk be generated by the algorithm. If T (xk) �= 0, then

k∑
i=0

(τ i)2 ≤ 2n2 ln
(

1 +
k + 1
8n2

)
.
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Theorem 4.7. Given ε > 0 and L > supx∈K{‖v‖ : v ∈ Γ(x)}, the algorithm finds
an ε-solution for EP (1) as soon as k satisfies one of the following conditions:

(1) xk ∈ argmin{f(xk, y) : y ∈ [0, 1]n},

(2)
ε2

L2n
≥

1
2 + 2n ln

(
1 + k+1

8n2

)
2n + k + 1

exp
(
−2α

k + 1
2n + k + 1

)
,

where α = − ln(4) − (8η − 3)/(2(1 − η)2).

Proof.
(1) If there exists k ∈ N such that xk ∈ argmin{f(xk, y) : y ∈ [0, 1]n}, then by
Lemma 4.2 xk ∈ S.

(2) If xk /∈ argmin{f(xk, y) : y ∈ [0, 1]n} ∀k ∈ N, then by Lemma 4.4 S ⊂
o

P k

∀k ∈ N, and T (xk)T (x − xk) < 0, ∀x ∈ S and ∀k ∈ N. Note that by construction
o

P k+1 ⊂
o

P k, ∀k ∈ N.
Now, consider k ∈ N such that

φ(xk+1) =
2n+k+1∑

j=1

ln[(bk+1 − (Ak+1)T xk+1)j ]

≥
2n+k+1∑

j=1

ln[(bk+1 − (Ak+1)T x)j ]

≥
2n+k+1∑

j=1

ln[(bk+1
0 − (Ak+1)T x)j ]

≥
2n+k+1∑

j=1

ln(ε/L) ∀x ∈ S. (13)

According to definition of S(δ = ε/L) (10), the last inequality comes from the fact
that

S(ε/L) = S + B(0, ε/L) ⊂
o

P k
0 ,

where
P k

0 = {x ∈ R
n : (Ak)T x ≤ bk

0}
with

(bk+1
0 )2n+j = (aj−1)T xj−1 ∀j = 1, . . . , k + 1.

On the other hand, from (7) and from (9), we have

φ(xk+1) ≤ φ(x̄a) ≤ φ(xa) + ln(4τk) − (1.5 − βk).

We also have from (7) that

φ(xa) ≤ φ(xk) +
η2

2(1 − η)
,
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thus

φ(xk+1) ≤ φ(xk) + ln(τk) + ln(4) − 1.5 + βk +
η2

2(1 − η)
·

Since

βk = min
{

η

(1 − η)2
− η2

2(1 − η)
,

1 − η

2ρkτk

}
,

we have
φ(xk+1) − φ(xk) ≤ ln(τk) + ln(4) − 1.5 +

η

(1 − η)2
·

Thus
φ(xk+1) − φ(xk) ≤ 1

2
ln(τk)2 + ln(4) +

8η − 3
2(1 − η)2

·
Let α = − ln(4) − (8η − 3)/(2(1 − η)2), then

φ(xk+1) − φ(xk) ≤ 1
2

ln(τk)2 − α.

So
k∑

j=0

(φ(xj+1) − φ(xj)) ≤ 1
2

k∑
j=0

ln(τ j)2 − (k + 1)α

or

φ(xk+1) − φ(x0) ≤ 1
2

k∑
j=0

ln(τ j)2 − (k + 1)α.

Hence

φ(xk+1) + (k + 1)α ≤ φ(x0) +
1
2

k∑
j=0

ln(τ j)2 = 2n ln
(

1
2

)
+

1
2

k∑
j=0

ln(τ j)2.

From (13), we have

(2n + k + 1) ln(ε/L) + (k + 1)α ≤ 1
2

⎡
⎣2n ln

(
1
4

)
+

k∑
j=0

ln(τ j)2

⎤
⎦ .

Then

ln(ε/L) +
k + 1

2n + k + 1
α ≤ 1

2(2n + k + 1)

⎡
⎣2n ln

(
1
4

)
+

k∑
j=0

ln(τ j)2

⎤
⎦ .

From concavity of ln, we have

ln(ε/L) +
k + 1

2n + k + 1
α ≤ 1

2
ln

[
2n 1

4

2n + k + 1
+

∑k
j (τ j)2

2n + k + 1

]
,
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and from Lemma 4.6, we have

ln(ε/L) +
k + 1

2n + k + 1
α ≤ 1

2
ln

[
n
2 + 2n2 ln

(
1 + k+1

8n2

)
2n + k + 1

]
.

Thus,
ε2

L2n
≤

1
2 + 2n ln(1 + k+1

8n2 )
2n + k + 1

exp
(
−2α

k + 1
2n + k + 1

)
. (14)

As a consequence of inequality (14), we have that for each ε > 0 and
L > supx∈K{‖v‖ : v ∈ Γ(x)}, and according to definition S(δ), there exists k ∈ N

such that S(ε/L) ⊂
o

P k
0 , but S(ε/L) �⊂ P k+1

0 . And thus, for

Hk+1
0 := {x ∈ R

n : (ak+1)T (x − xk+1)}

we have that
Hk+1

0 ∩ S(ε/L) �= ∅.
So, as L → +∞ or ε → 0, we have

lim
k→+∞

d(Hk
0 , S) = lim

k→+∞
inf

x∈Hk
0 , y∈S

‖x − y‖ = 0.

Hence, there exists x∗ ∈ S such that limk→+∞(ak)T (x∗ − xk) = 0. Since f is
bounded above, then by item c of Lemma 3.4 the sequence {T (xk) = ‖T (xk)‖ak}k∈N

is bounded. So, limk→+∞ T (xk)T (x∗−xk) = 0. Let x̄ be any cluster point of {xk},
then there exists J ⊂ N such that xk → x̄, and using Lemma 3.1 T (xk) → T (x̄), as
k → +∞ and k ∈ J . And so, 0 = limk→+∞,k∈J T (xk)T (x∗−xk) = T (x̄)T (x∗−x̄) ≤
f(x̄, x∗) ≤ 0. Hence, using assumption A4, we have that x̄ is a solution of
EP. The algorithm stops at iteration k when inequality (14) does not hold and
d(xk+1, S) ≤ ε/L, verifying that T (y)T (xk+1,−y) < ε ∀y ∈ K, which validates
Theorem 3.5. �

5. Final comments

Here we present a new approach to solve equilibrium problems approximately,
which include as particular problems the variational inequalities problem, the Nash
equilibria problem in non-cooperative games, the convex minimization problem,
and the fixed point problem. Without using projection techniques and considering
different hypotheses compared to the existing methodology in literature, we pro-
posed an algorithm that combines the cutting plane method with the technique
of interior point methods which allows for feasible computer implementation with
polynomial time complexity. In future work, we want to adjust the algorithm
proposed here in order to solve multicriteria optimization problems, where the
objective functions as well as the constrains are linear functions.



52 F.M.P. RAUPP AND W. SOSA

References

[1] A.S. Antipin and F.P. Vasil’ev, A stabilization method for equilibrium programming prob-
lems with an inexactly specified set. Comp. Math. Math. Phys. 39 (1999) 1707–1714.

[2] A.S. Antipin, From Optima to Equilibria, in Proceedings of ISA RAS, Dynamics of Non-
Homogeneous Systems. Editorial URSS-Moscow 3 (2000) 35–64.

[3] Bianchi-Pini, A note on equilibrium problems with properly quasimonotone bifunctions. J.
Global Optim. 20 (2001) 67–76.

[4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium prob-
lems. The Mathematics Student 63 (1994) 123–145.

[5] L.M. Bregman, The relaxation method for finding a common point of convex sets and its
applications to solution of problems in convex programming. USSR Comp. Math. Math.
Phys. 7 (1967) 200–217.

[6] H. Brezis, L. Niremberg and G. Stampachia, A remark on Ky Fan’s minimax principle. Boll.
Un. Mat. Ital. 6 (1972) 293–300.

[7] K. Fan, A minimax inequality and applications, in Inequality III, edited by O. Shisha.
Academic Press, NY (1972) 103–113.

[8] J.-L. Goffin, Z.-Q. Luo and Y. Ye, Complexity analysis of an interior cutting plane method
for convex feasibility pProblems. SIAM J. Optim. 6 (1996) 638–652.

[9] J.-L. Goffin, J. Gonzio, R. Sarkissian and J.-P. Vial, Solving nonlinear multicommodity flow
problems by analytic center cutting plane method. Interior point methods in theory and
practice. Math. Program. Ser. B 76 (1997) 131–154.

[10] C.C. Gonzaga, Path following methods for linear programming. SIAM Rev. 34 (1992) 167–
224.

[11] G.M. Korpelevich, Extragradient method for finding saddle points and other problems.
Matecon 12 (1976) 747–756.

[12] A.N. Iusem and W. Sosa, New existence results for equilibrium problems. Nonlinear Anal.-
Theor. 52 (2003) 621–635.

[13] A.N. Iusem and W. Sosa, Iterative algorithms for equilibrium problems. Optimization 52
(2003) 301–316.

[14] Y. Nesterov, Complexity estimates of some cutting plane methods based on the analytic
barrier. Nondifferentiable and large-scale optimization. Math. Program. Ser. B 69 (1995)
149–176.

[15] H. Nikaido and K. Isoda, Note on noncooperative convex games. Pacific J. Math. 5 (1955)
807–815.

[16] F.M.P. Raupp and C.C. Gonzaga, A center cutting plane algorithm for a likelihood estimate
problem. Comput. Optim. Appl. 21 (2001) 277–300.

[17] G. Sonnevend, New algorithms in convex programming based on a notation of center and on
rational extrapolations. International Series of Numerical Mathematics, Birkhauser Verlag,
Basel, Switzerland 84 (1988) 311–327.

[18] P.M. Vaidya, A Locally Well-Behaved Potential Function and a Simple Newton-Type
Method for Finding the Center of a Polytope. Progress in Mathematical Programming:
Interior Point and Related Methods, edited by N. Megiddo. Springer, New York (1989)
79–90.

[19] Y. Ye, A potential reduction algorithm allowing column generation. SIAM J. Optim. 2
(1992) 7–20.

[20] Y. Ye, Complexity analysis of the analytic center cutting plane method that uses multiple
cuts. Math. Program. 78 (1997) 85–104.

[21] Y. Ye, Interior Point Algorithms: Theory and Analysis. Wiley–Interscience Series in Dis-
crete Mathematics and Optimization, John Wiley and Sons, New York (1997).


