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ANALYZING DISCRETE-TIME BULK-SERVICE Geo/Geob/m

QUEUE

Veena Goswami1, Umesh C. Gupta2 and Sujit K. Samanta2

Abstract. This paper analyzes a discrete-time multi-server queue in
which service capacity of each server is a minimum of one and a maxi-
mum of b customers. The interarrival- and service-times are assumed to
be independent and geometrically distributed. The queue is analyzed
under the assumptions of early arrival system and late arrival system
with delayed access. Besides, obtaining state probabilities at arbitrary
and outside observer’s observation epochs, some performance measures
and waiting-time distribution in the queue have also been discussed.
Finally, it is shown that in limiting case the results obtained in this
paper tend to the continuous-time counterpart.
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waiting-time.

1. Introduction

In recent years discrete-time queues have been receiving increased attention due
to their usefulness in performance analysis of communication systems. Their im-
portance has further increased due to the emergence of the broadband integrated
services digital network (B-ISDN) which can provide transfer of video, voice and
data through high speed local area networks (LANs), on-demand video distri-
bution, and video telephony, etc. The asynchronous transfer mode (ATM) is a
network transfer technique and capable of supporting a wide variety of multime-
dia applications with diverse service and performance requirements. It transmits
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the information in small, fixed-length packets called “cells”. Since the ATM is
based on the packet-switching principle, the events (arrival of packets and their
onward transmission) occur only at regularly spaced points of time. Thus the
underlying transport mechanism is represented adequately by the discrete-time
queueing system. A detailed discussion and applications of discrete-time queues
can be found in books by Bruneel and Kim [2] and Woodward [20]. Besides many
systems operate on discrete-time basis, e.g., machine cycle of processor, synchro-
nous communication channel (Slotted ALOHA multi-access channel) and traffic
concentrators. In such queues arrivals and departures can occur simultaneously at
boundary epoch of a slot. In case of simultaneity their order may be taken care of
by either arrival-first (AF) or departure-first (DF) management policies. Accord-
ing to AF policy, arrivals take precedence over departures, while under DF policy
the opposite effect is observed, Gravey and Hébuterne [12]. It may be remarked
here that AF and DF policies also correspond to late arrival system with delayed
access (LAS-DA) and early arrival system (EAS), respectively, Hunter [15].

In past, several authors have analyzed infinite- (finite-) buffer discrete-time
multi-server queues with single (batch) arrival under EAS and LAS-DA. Earliest
work was due to Chan and Maa [3] wherein they discussed the GI/Geo/m queue
with EAS and obtained the distribution of number of customers in the system at
prearrival epoch. Further, Chaudhry and Gupta [7] have carried out a detailed
analysis (including numerical aspects) of the same queueing model and obtained
the state probabilities at prearrival, arbitrary and outside observer’s observation
epochs. In this connection see also paper by Gao et al. [11]. The performance anal-
ysis and optimal control of Geo/Geo/c queue under LAS-DA has been discussed
by Artalejo et al. [1]. The analysis of multi-server queue with batch arrivals:
GeoX/Geo/c has been carried out by Rubin and Zhang [17]. Further, Chaudhry
et al. [9] have discussed a more complex model: GIX/Geo/m. In this connection
see also papers by Chaudhry and Kim [8], Wittevrongel et al. [19]. The transient
behaviour of the Geo/Geo/m/m queue (discrete version of Erlang loss model) has
been studied by Chaudhry and Gupta [5]. For the GI/Geo/m/m queue, Chaudhry
and Gupta [6] obtained the distribution of number of busy channels at various
epochs under LAS-DA and EAS. Recently, Chaudhry et al. [10] have analyzed
finite-buffer GI/Geo/m/N queue with early arrival system and obtained the state
probabilities at prearrival and arbitrary epochs. Further, Gupta et al. [14] have
discussed the same queueing model for EAS and LAS-DA, and developed a recur-
sive procedure, to obtain system length distributions at prearrival, arbitrary and
outside observer’s observation epochs. They have also obtained the distribution
of the actual waiting time in the queue of a customer in both cases.

All the above studies on multi-server queue have been carried out under the
assumption that server serves the customer one at a time. However, there are
many instances where the services (transmission of packets) are carried out in
batches of fixed (or variable) size to increase the service (transmission) rate. Bulk-
service queues have applications in areas mentioned above and have been recently
investigated by Gupta and Goswami [13], Chaudhry and Chang [4] in case of single
server. It may be mentioned here that the modelling and analysis of discrete-time
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multi-server queue with bulk-service is more involved and quite different than the
corresponding continuous-time counterpart.

In this paper, we consider a discrete-time multi-server queue with infinite-buffer
in which interarrival- and service-times are independent and geometrically dis-
tributed. Further, each server performs services in batches of minimum of one
and a maximum of b customers. We obtain steady-state queue-length distribu-
tions at arbitrary and outside observer’s observation epochs for both early arrival
system and late arrival system with delayed access. Some performance measures
and waiting-time distribution in the queue have also been discussed. The results
for continuous-time bulk-service M/M b/m queue is obtained as a limiting case
of discrete-time Geo/Geob/m queue. The advantage of analyzing discrete-time
queue is that one can obtain continuous-time result from it as a limiting case but
converse is not true.

This paper is organized as follows: Description of the queueing model, and
analyzes of early arrival system and late arrival system with delayed access are
given in Section 2. In Section 3, we discussed outside observer’s distribution. The
waiting-time analysis is carried out in Section 4. Finally, it has been shown in
the appendix that in limiting case, the results tend to continuous-time M/M b/m
queue as they should be.

2. Description of the model

We consider a discrete-time multi-server bulk-service infinite buffer queue in
which interarrival times of customers are independent and geometrically distributed
with probability mass function (p.m.f.) an = (1 − λ)n−1λ, 0 < λ < 1, n ≥ 1.
There are m servers and service times of batches (with a minimum of one and a
maximum of b per server) are assumed to be independent and geometrically dis-
tributed with p.m.f. sn = (1 − µ)n−1µ, 0 < µ < 1, n ≥ 1. At any time, each of
the free servers are equally likely to take a batch for service. The traffic intensity
is given by ρ = λ/mbµ. Further, the probability that j batches complete service
given that there are i busy servers is given by

c(j|i) =
(

i

j

)
µj(1 − µ)i−j , for i = 0, 1, 2, . . . , m, j = 0, 1, . . . , i;

c(j|i) = 0, for j > i or j < 0.

Below we first discuss the early arrival system.

2.1. Geo/Geob/m queue with EAS

Let us assume that the time axis is slotted into intervals of equal length with the
length of a slot being unity. Further, let the time axis be marked as 0, 1, 2, . . . , t, . . .
and assume that potential arrivals occur in the interval (t, t+) and potential batch-
departures occur in the interval (t−, t). The various time epochs at which events
occur are depicted in Figure 1.
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Figure 1. Various time epochs in early arrival system (EAS).

Let us define the joint probability as Qn,i(t) = P{n customers in the queue
excluding the batches in service and i servers are busy at time t}, n ≥ 0, 0 ≤ i ≤ m.

Relating the states of the system at two consecutive epochs t and (t + 1), we
obtain

Q0,0(t + 1) = (1 − λ)
m∑

j=0

c(j|j)Q0,j(t) + λ

m−1∑
j=0

c(j + 1|j + 1)Q0,j(t), (1)

Q0,k(t + 1) = (1 − λ)
m∑

j=k

c(j − k|j)Q0,j(t)

+(1 − λ)
m+k∑

j=m+1

c(j − k|m)
b∑

i=1

Qi+(j−m−1)b,m(t)

+λ

m∑
j=k

c(j − k|j)Q0,j−1(t)

+λ

m+k∑
j=m+1

c(j − k|m)
b∑

i=1

Qi+(j−m−1)b−1,m(t),

1 ≤ k ≤ m, (2)

Qn,m(t + 1) = (1 − λ)
m∑

j=0

c(j|m)Qn+jb,m(t)

+λ

m∑
j=0

c(j|m)Qn+jb−1,m(t), n ≥ 1. (3)



ANALYZING DISCRETE-TIME BULK-SERVICE GEO/GEOB/M QUEUE 271

Let us define in steady-state

Qn,i = lim
t→∞Qn,i(t), n ≥ 0, 0 ≤ i ≤ m.

In steady-state equations (1)–(3) reduce to

0 = −λQ0,0 + (1 − λ)
m∑

j=1

c(j|j)Q0,j + λ

m−1∑
j=0

c(j + 1|j + 1)Q0,j , (4)

0 = [(1 − λ)c(0|k) − 1]Q0,k + (1 − λ)
m∑

j=k+1

c(j − k|j)Q0,j

+λ

m∑
j=k

c(j − k|j)Q0,j−1

+(1 − λ)
m+k∑

j=m+1

c(j − k|m)
b∑

i=1

Qi+(j−m−1)b,m

+λ

m+k∑
j=m+1

c(j − k|m)
b∑

i=1

Qi+(j−m−1)b−1,m,

1 ≤ k ≤ m, (5)

0 = [(1 − λ)c(0|m) − 1]Qn,m + (1 − λ)
m∑

j=1

c(j|m)Qn+jb,m

+λ

m∑
j=0

c(j|m)Qn+jb−1,m, n ≥ 1. (6)

The solution of equations (4)–(6) will give the queue-length distribution Q0,k,
(0 ≤ k ≤ m) and Qn,m, (n ≥ 1). To get them, first we need to solve the differ-
ence equation (6). In order to do this we define the displacement operator E as
EjQn,m = Qn+j,m, Spiegel [18], and rewrite the equation (6) as

[{
(1−λ)c(0|m)− 1

}
+(1−λ)

m∑
j=1

c(j|m)Ejb +λ
m∑

j=0

c(j|m)Ejb−1

]
Qn,m = 0. (7)

The characteristic equation associated with (7) is

g(z) ≡
{
(1 − λ)c(0|m) − 1

}
+ (1 − λ)

m∑
j=1

c(j|m)zjb + λ
m∑

j=0

c(j|m)zjb−1 = 0

which, after simplification, reduces to

g(z) ≡ {(1 − λ)z + λ}{µzb + (1 − µ)}m − z = 0. (8)
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By using Rouché’s theorem it can be shown that only one zero of g(z) falls inside
the unit circle and, this root is real and unique if and only if ρ = λ/mbµ < 1.
We denote this root by r (0 < r < 1) and other mb roots by ri (i = 1, 2, . . . , mb),
|ri| ≥ 1. Thus, r satisfies the equation

{(1 − λ)r + λ}{µrb + (1 − µ)}m − r = 0. (9)

Now the solution of (6) can be written as

Qn,m = A0r
n +

mb∑
i=1

Air
n
i , n ≥ 0, (10)

where Ai’s are arbitrary constants.
Since

m−1∑
k=0

Q0,k +
∞∑

n=0

Qn,m = 1, (11)

we must have Ai = 0, for all i = 1, 2, . . . , mb, otherwise the left hand side of
(11) diverges. Therefore, from (10) we get Qn,m = A0r

n. Setting n = 0 yields
A0 = Q0,m, and hence

Qn,m = Q0,mrn, n ≥ 1. (12)

Now from equation (5), for k = m, we have

Q0,m−1 =
1

λc(0|m)

[
{1 − (1 − λ)c(0|m)}Q0,m

−(1 − λ)
2m∑

j=m+1

c(j − m|m)
b∑

i=1

Qi+(j−m−1)b,m

−λ

2m∑
j=m+1

c(j − m|m)
b∑

i=1

Qi+(j−m−1)b−1,m

]
. (13)

The terms
∑b

i=1 Qi+(j−m−1)b,m and
∑b

i=1 Qi+(j−m−1)b−1,m appear in the right
hand side of (13) can be simplified using (12) and are given by

b∑
i=1

Qi+(j−m−1)b,m =
1 − rb

1 − r
r(j−m−1)b+1Q0,m,

b∑
r=1

Qi+(j−m−1)b−1,m =
1 − rb

1 − r
r(j−m−1)bQ0,m.
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Substituting the above expressions in (13), we obtain

Q0,m−1 =
Q0,m

λc(0|m)

[{
1 − (1 − λ)c(0|m)

}

−
{

(1 − λ)r + λ

}
1 − rb

1 − r

2m∑
j=m+1

c(j − m|m)r(j−m−1)b

]

=
Q0,m

λc(0|m)

[{
1 − (1 − λ)c(0|m)

}

−
{

(1 − λ)r + λ

}
1 − rb

1 − r

m∑
j=1

c(j|m)r(j−1)b

]
. (14)

Using the relation (9) in the above equation, we obtain

Q0,m−1 =
Q0,m

λc(0|m)(1 − r)

[
1 − c(0|m)−

{
(1 − λ)r + λ

} m∑
j=1

c(j|m)r(j−1)b

]
. (15)

Again making use of (12), we get from (5), for k = m − 1, m − 2, . . . , 2, 1,

Q0,k−1 =
1

λc(0|k)

[{
1 − (1 − λ)c(0|k)

}
Q0,k

−
m∑

j=k+1

c(j − k|j)
{

(1 − λ)Q0,j + λQ0,j−1

}

−
{

(1 − λ)r + λ

}
1 − rb

1 − r

m+k∑
j=m+1

c(j − k|m)r(j−m−1)bQ0,m

]
. (16)

From (15), it is clear that Q0,m−1 is represented in terms of Q0,m and similarly,
one can see from (16) that Q0,k, for k = m−2, m−3, . . . , 2, 1, 0 can be recursively
obtained in terms of Q0,m. Therefore, the only unknown quantity Q0,m can be
obtained using the normalization condition.

2.2. Geo/Geob/m queue with LAS-DA

As discussed earlier the two policies differ each other in the order of the arrival
and departure of packets around a slot boundary. In LAS-DA, potential arrivals
occur in the interval (t−, t) and potential batch-departures occur in the interval
(t, t+). More specifically, various time epochs at which events occur are depicted
in Figure 2.

Again, let us define the joint probability as Pn,i(t−)=P{n customers in the
queue excluding the batches in service and i servers are busy at time t−}, n ≥
0, 0 ≤ i ≤ m.
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Figure 2. Various time epochs in late arrival system with de-
layed access (LAS-DA).

Observing the state of the system at two consecutive time epochs t− and (t +
1)−, we obtain following equations, where for the sake of simplicity we use symbol
t instead of t−,

P0,0(t + 1) = (1 − λ)
m∑

j=0

c(j|j)P0,j(t), (17)

P0,k(t + 1) = (1 − λ)
m∑

j=k

c(j − k|j)P0,j(t)

+(1 − λ)
m+k∑

j=m+1

c(j − k|m)
b∑

i=1

Pi+(j−m−1)b,m(t)

+λ

m∑
j=k

c(j − k|j − 1)P0,j−1(t)

+λ

m+k∑
j=m+1

c(j − k|m)
b∑

i=1

Pi+(j−m−1)b−1,m(t),

1 ≤ k ≤ m, (18)

Pn,m(t + 1) = (1 − λ)
m∑

j=0

c(j|m)Pn+jb,m(t)

+λ

m∑
j=0

c(j|m)Pn+jb−1,m(t), n ≥ 1. (19)

Let us define in steady-state

Pn,i = lim
t−→∞Pn,i(t), n ≥ 0, 0 ≤ i ≤ m.
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In steady-state equations (17)–(19) reduce to

0 = −λP0,0 + (1 − λ)
m∑

j=1

c(j|j)P0,j , (20)

0 = [(1 − λ)c(0|k) − 1]P0,k + (1 − λ)
m∑

j=k+1

c(j − k|j)P0,j

+λ

m∑
j=k

c(j − k|j − 1)P0,j−1

+(1 − λ)
m+k∑

j=m+1

c(j − k|m)
b∑

i=1

Pi+(j−m−1)b,m

+λ

m+k∑
j=m+1

c(j − k|m)
b∑

i=1

Pi+(j−m−1)b−1,m, 1 ≤ k ≤ m, (21)

0 = [(1 − λ)c(0|m) − 1]Pn,m + (1 − λ)
m∑

j=1

c(j|m)Pn+jb,m

+λ

m∑
j=0

c(j|m)Pn+jb−1,m, n ≥ 1. (22)

It can be seen that equations (22) and (6) are same but others are different.
Therefore, the characteristic equation and hence the value of r will be same in
both (EAS and LAS-DA) cases. Following the procedure discussed for EAS we
can obtain P0,k (0 ≤ k ≤ m) and Pn,m (n ≥ 1). They are given as

P0,m−1 =
P0,m

λc(0|m − 1)

[{
1 − (1 − λ)c(0|m)

}

−
{

(1 − λ)r + λ

}
1 − rb

1 − r

m∑
j=1

c(j|m)r(j−1)b

]
, (23)

P0,k−1 =
1

λc(0|k − 1)

[{
1 − (1 − λ)c(0|k)

}
P0,k

−
m∑

j=k+1

c(j − k|j − 1)
{

j

k
(1 − λ)(1 − µ)P0,j + λP0,j−1

}

−
{

(1 − λ)r + λ

}
1 − rb

1 − r

m+k∑
j=m+1

c(j − k|m)r(j−m−1)bP0,m

]
, (24)

k = m − 1, m − 2, . . . , 2, 1,

Pn,m = P0,mrn, n ≥ 1. (25)
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3. Outside observer’s distribution

In EAS, since an outside observer’s observation epoch falls in a time interval
after a potential arrival and before a potential batch-departure, the probability
Qo

0,k (0 ≤ k ≤ m) and Qo
n,m (n ≥ 1) that the outside observer sees k servers busy

(with no customers in the queue) and m servers busy (with n customers in the
queue), respectively, can be obtained by observing arbitrary and outside observer’s
observation epochs in Figure 1. They are given by

Q0,0 =
m∑

j=0

c(j|j)Qo
0,j , (26)

Q0,k =
m∑

j=k

c(j − k|j)Qo
0,j +

m+k∑
j=m+1

c(j − k|m)
b∑

i=1

Qo
i+(j−m−1)b,m,

1 ≤ k ≤ m, (27)

Qn,m =
m∑

j=0

c(j|m)Qo
n+jb,m, n ≥ 1. (28)

The solution of equations (26)–(28) will give the queue-length distribution Qo
0,k,

(0 ≤ k ≤ m) and Qo
n,m, (n ≥ 1). To get them, we first solve the difference equation

(28) using Qn,m = Q0,mrn (Eq. (12)) and the displacement operator E defined
by EjQo

n,m = Qo
n+j,m. Thus, we rewrite the equation (28) as

m∑
j=0

c(j|m)EjbQo
n,m = Q0,mrn, n ≥ 1. (29)

The solution of homogeneous difference equation

m∑
j=0

c(j|m)EjbQo
n,m = 0 (30)

of the non-homogeneous difference equation (29) is given by

Qo(h)
n,m =

b∑
i=1

(
m∑

j=1

Aijn
j−1

)
γn

i , n ≥ 1,

where Aij ’s are arbitrary constants and γi’s (of multiplicity m) are the roots of
the characteristic equation (1−µ+µzb)m = 0 of the corresponding equation (30).
The particular solution of (29) is given by

Qo(p)
n,m =

Q0,mrn

(1 − µ + µrb)m
, n ≥ 1.
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Thus, the general solution of (29) is given by

Qo
n,m =

b∑
i=1

(
m∑

j=1

Aijn
j−1

)
γn

i +
Q0,mrn

(1 − µ + µrb)m
, n ≥ 1. (31)

The normalization condition
∑m

j=0 Qo
0,j +

∑∞
n=1 Qo

n,m = 1 will be satisfied only if
the equation f(z) ≡ 1 − µ + µzb = 0 has any real root γi between 0 and 1. Since
f(0) = 1 − µ > 0, f(1) = 1 > 0 and f ′(z) = µbzb−1 > 0, for z > 0, i.e., f(z) is a
monotonic increasing function in 0 < z < 1, therefore f(z) = 0 has no real root γi

between 0 and 1. Thus, all Aij must be zero and hence (31) becomes

Qo
n,m =

Q0,mrn

(1 − µ + µrb)m
, n ≥ 1. (32)

Using (32) in equation (27), after simplification, we obtain

Q0,k =
m∑

j=k

c(j − k|j)Qo
0,j +

Q0,mr(1 − rb)
(1 − r)(1 − µ + µrb)m

m+k∑
j=m+1

c(j − k|m)r(j−m−1)b

1 ≤ k ≤ m. (33)

By considering k = m in (33), we obtain

Qo
0,m =

1
c(0|m)

{
Q0,m − Q0,mr(1 − rb)

(1 − r)(1 − µ + µrb)m

2m∑
j=m+1

c(j − m|m)r(j−m−1)b

}
.

(34)
Again from (33) for k = m − 1, m − 2, . . . , 3, 2, 1, we obtain

Qo
0,k =

1
c(0|k)

{
Q0,k −

m∑
j=k+1

c(j − k|j)Qo
0,j

− Q0,mr(1 − rb)
(1 − r)(1 − µ + µrb)m

m+k∑
j=m+1

c(j − k|m)r(j−m−1)b

}
. (35)

Finally, Qo
0,0 is obtained from (26) and given by

Qo
0,0 = Q0,0 −

m∑
j=1

c(j|j)Qo
0,j . (36)

In LAS-DA, since an outside observer’s observation epoch falls in a time interval
after a potential batch-departure and before a potential arrival, the probability
P o

0,k (0 ≤ k ≤ m) and P o
n,m (n ≥ 1) that outside observer sees k servers busy (no

customer in the queue) and m servers busy (n customers in the queue) is the same
as P0,k and Pn,m, respectively. Hence P o

0,k = P0,k and P o
n,m = Pn,m.
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4. Waiting-time distribution

In this section, we obtain actual waiting-time (in queue) distribution (measured
in slots) of an arrival customer under the FCFS discipline for both EAS and LAS-
DA. Let us define the random variable Tq as “time spent waiting in the queue”
of an arrival with the corresponding p.m.f. wk = P (Tq = k), k ≥ 0. Further, let
P̃i(Tq > k) be the conditional probability of the event Tq > k, given that an arrival
finds i (i ≥ 0) customers in the queue.

4.1. Waiting-time in EAS system

An arriving customer may observe the system in any one of the following two
cases.
Case 1. w0 = P (Tq = 0).
This happens, if prior to an arrival, there are no customers in the queue and ‘i’
(0 ≤ i ≤ m − 1) servers are busy. Therefore, the probability that an arriving
customer does not wait is given by

P (Tq = 0) =
m−1∑
i=0

Q0,i. (37)

Case 2. wk = P (Tq = k), k ≥ 1.
This occurs, if prior to an arrival, there are ‘jb + n’ (j ≥ 0; 0 ≤ n ≤ b − 1)
customers in the queue and m servers are busy. Therefore, the probability that
an arriving customer will have to wait greater than k (k ≥ 0) slots is

P (Tq > k) =
∞∑

j=0

b−1∑
n=0

Qjb+n,mP̃jb+n(Tq > k)

=
1 − rb

1 − r
Q0,m

∞∑
j=0

rjb

j∑
i=0

(
mk

i

)
µi(1 − µ)mk−i

=
Q0,m(1 − µ + µrb)mk

1 − r
,

where

P̃jb+n(Tq > k) =
j∑

i=0

(
mk

i

)
µi(1 − µ)mk−i

is the probability that during k slots after the arrival of a customer there will not
occur more than ‘j’ batch-departures from the system. Then, consequently, we
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obtain

w0 = P (Tq = 0) = 1 − P (Tq > 0), where P (Tq > 0) =
Q0,m

1 − r
, (38)

wk = P (Tq > k − 1) − P (Tq > k)

=
Q0,m

1 − r

[
(1 − µ + µrb)m(k−1) − (1 − µ + µrb)mk

]
=

Q0,m

1 − r
(1 − µ + µrb)m(k−1)

[
1 − (1 − µ + µrb)m

]
k ≥ 1. (39)

The average waiting-time in the queue (Wq =
∑∞

k=1 kwk) is given by

Wq =
Q0,m

(1 − r)[1 − (1 − µ + µrb)m]
·

Remark 1. It may be noted here that w0 can be obtained either using (37) or (38).
This has also been checked numerically.

Remark 2. The average queue-length (Lo
q) at outside observer’s observation

epoch is given by

Lo
q =

∞∑
n=1

nQo
n,m =

Q0,mr

(1 − r)2(1 − µ + µrb)m

=
r[1 − (1 − µ + µrb)m]
(1 − r)(1 − µ + µrb)m

· Q0,m

(1 − r)[1 − (1 − µ + µrb)m]
= λWq,

where

λ =
r[1 − (1 − µ + µrb)m]
(1 − r)(1 − µ + µrb)m

(40)

is obtained from equation (9). Thus, the Little’s formula Lo
q = λWq is verified.

4.2. Waiting-time in LAS-DA system

Here also an arriving customer may observe the system in any one of the fol-
lowing two cases.

Case 1. w0 = P (Tq = 0).
This happens, if prior to an arrival, there are no customers in the queue and ‘i’
(0 ≤ i ≤ m−1) servers are busy or if there are ‘jb+n’ (0 ≤ j ≤ m−1; 0 ≤ n ≤ b−1)
customers present in the queue and m servers are busy such that out of m servers
there are at least (j + 1) batches about to departs, so that service of the new
arrival starts immediately. Therefore, the probability that an arriving customer
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does not wait is given by

P (Tq = 0) =
m−1∑
i=0

P0,i +
m−1∑
j=0

b−1∑
n=0

Pjb+n,m

m∑
i=j+1

(
m

i

)
µi(1 − µ)m−i.

Case 2. wk = P (Tq = k), k ≥ 1.
This occurs, if prior to an arrival, there are ‘jb + n’ (j ≥ 0; 0 ≤ n ≤ b − 1)
customers in the queue, m servers busy and ‘i’ (0 ≤ i ≤ j) batches out of m
servers are about to depart. Therefore, the probability that an arriving customer
will have to wait greater than k (k ≥ 0) slots is

P (Tq > k) =
∞∑

j=0

b−1∑
n=0

Pjb+n,mP̃jb+n(Tq > k)

=
1 − rb

1 − r
P0,m

∞∑
j=0

rjb

j∑
i=0

(
m(k + 1)

i

)
µi(1 − µ)m(k+1)−i

= P0,m
(1 − µ + µrb)m(k+1)

1 − r
,

where

P̃jb+n(Tq > k) =
j∑

i=0

(
m(k + 1)

i

)
µi(1 − µ)m(k+1)−i

is the probability that during (k+1) slots after the arrival of a customer there will
not occur more than ‘j’ batch-departures from the system. Then, consequently,
we obtain

w0 = P (Tq = 0) = 1 − P (Tq > 0), where P (Tq > 0) =
P0,m(1 − µ + µrb)m

1 − r
,

wk = P (Tq > k − 1) − P (Tq > k)

=
P0,m

1 − r

[
(1 − µ + µrb)mk − (1 − µ + µrb)m(k+1)

]
=

P0,m

1 − r
(1 − µ + µrb)mk

[
1 − (1 − µ + µrb)m

]
k ≥ 1.

The average waiting-time in the queue is given by

Wq =
P0,m(1 − µ + µrb)m

(1 − r)[1 − (1 − µ + µrb)m]
·
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Remark 3. The average queue-length (Lo
q) at outside observer’s observation

epoch is given by

Lo
q =

∞∑
n=1

nP o
n,m =

P0,mr

(1 − r)2

=
r[1 − (1 − µ + µrb)m]
(1 − r)(1 − µ + µrb)m

· P0,m(1 − µ + µrb)m

(1 − r)[1 − (1 − µ + µrb)m]
= λWq.

Appendix

Here we study the relationship between the discrete-time Geo/Geob/m queue
and its continuous-time counterpart. For the continuous-time multi-server bulk-
service M/M b/m queue, we assume that the customers arrive according to a
Poisson process with rate α and are served in batches (with a minimum of one
and a maximum of b customers per server). Further, we assume that the service
time distribution of each batch is exponential with mean 1/β and is independent
of batch size. Until now we have only considered slots of unit length. Now we as-
sume that the time be slotted into intervals of equal length ∆ > 0, so that λ = α∆
and µ = β∆, where ∆ is sufficiently small. One may note that by substituting
λ = α∆ and µ = β∆ in λ < mbµ, we get α < mbβ, i.e., both positive recurrence
conditions (for the discrete- and continuous-time systems) are consistent. Now,
equation (9) can be written as

{
r + λ(1 − r)

}{
(1 − µ)m +

(
m

1

)
(µrb)(1 − µ)m−1 + · · · + (µrb)m

}
− r = 0,

or,
{

r + λ(1 − r)
}[{

1 −
(

m

1

)
µ + · · · + (−1)mµm

}
+ m(µrb)

{
1 −

(
m − 1

1

)
µ

+ · · · + (−1)m−1µm−1

}
+ · · · + (µrb)m

]
− r = 0.

Putting λ = α∆, µ = β∆ in the above and taking the limit as ∆ → 0 yields

mβrb+1 − (α + mβ)r + α = 0. (41)

The equation (15) can be written as

λ(1 − µ)m(1 − r)Q0,m−1 =

[
1 − (1 − µ)m − {(1 − λ)r + λ}mµ(1 − µ)m−1

−
{
(1 − λ)r + λ

} m∑
j=2

(
m

j

)
µj(1 − µ)m−jr(j−1)b

]
Q0,m,
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or, λ

[
1 −

(
m

1

)
µ + · · · + (−1)mµm

]
(1 − r)Q0,m−1 =

[{
mµ −

(
m

2

)
µ2 + · · · + (−1)m−1µm

}

− {r + λ(1 − r)}
{

mµ
{
1 − (m − 1)µ + · · · + (−1)m−1µm−1

}

+
m∑

j=2

(
m

j

)
µj(1 − µ)m−jr(j−1)b

}]
Q0,m.

Using λ = α∆, µ = β∆ in the above and taking the limit as ∆ → 0, we get

Q0,m−1 =
mβ

α
Q0,m. (42)

After rearranging the equation (16), we have

λ(1 − µ)kQ0,k−1 =

[{
1 − (1 − λ)(1 − µ)k

}
Q0,k

−
(

k + 1
1

)
µ(1 − µ)k

{
(1 − λ)Q0,k+1 + λQ0,k

}

−
m∑

j=k+2

(
j

j − k

)
µj−k(1 − µ)k

{
(1 − λ)Q0,j + λQ0,j−1

}

−
{

(1 − λ)r + λ

}
1 − rb

1 − r
m+k∑

j=m+1

(
m

j − k

)
µj−k(1 − µ)m−j+kr(j−m−1)bQ0,m

]
,

k = m − 1, m − 2 . . . , 2, 1.

Substituting λ = α∆, µ = β∆ in the above and taking the limit as ∆ → 0 yields

αQ0,k−1 = (α + kβ)Q0,k − (k + 1)βQ0,k+1, k = m − 1, . . . , 2, 1. (43)

Using Q0,m−1 = mβ
α Q0,m in (43) and after repeated substitution, we obtain

Q0,k =
(α

β

)k 1
k!

Q0,0, 1 ≤ k ≤ m. (44)

Finally, the equation (12) can be written as

Qn,m =
(α

β

)m 1
m!

rnQ0,0, n ≥ 1. (45)
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The above results are the same as those given in Medhi [16], p. 219, for the
continuous-time case. Similarly, in limiting case we can obtain equivalent results
from the LAS-DA. This leads to the conclusion that, in continuous-time, results
for both LAS-DA and EAS queues tend to same as it should be.

The authors are thankful to the anonymous referees for their valuable comments and
suggestions which have helped in improving the quality of the presentation of this paper.
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