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ON CO-BICLIQUES

Denis Cornaz1

Abstract. A co-biclique of a simple undirected graph G = (V, E) is
the edge-set of two disjoint complete subgraphs of G. (A co-biclique is
the complement of a biclique.) A subset F ⊆ E is an independent of G
if there is a co-biclique B such that F ⊆ B, otherwise F is a dependent
of G. This paper describes the minimal dependents of G. (A minimal
dependent is a dependent C such that any proper subset of C is an
independent.) It is showed that a minimum-cost dependent set of G
can be determined in polynomial time for any nonnegative cost vector
x ∈ QE

+. Based on this, we obtain a branch-and-cut algorithm for the

maximum co-biclique problem which is, given a weight vector w ∈ QE
+,

to find a co-biclique B of G maximizing w(B) =
∑

e∈B we.
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1. Introduction

Let G = (V, E) be a simple undirected graph and we a nonnegative weight for
each e ∈ E. We denote E[U ] = {uv ∈ E : u, v ∈ U} and E[U ] = {uv : u, v ∈
U, u �= v, uv /∈ E}. A subset of nodes U ⊆ V is called a clique if E[U ] = ∅. A set
B ⊆ E is called a co-biclique if there are two disjoint cliques U1 and U2 such that
B = E[U1] ∪ E[U2]. Note that ∅ is a co-biclique. A co-biclique B is maximum if
its weight w(B) =

∑
e∈B we is maximum.

This paper adresses the maximum co-biclique problem which is to determine a
maximum co-biclique of G. Note that finding a maximum cardinality clique in
G can be reduced to finding a maximum cardinality co-biclique in 2G, where 2G
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consists in the graph G and a disjoint copy of G. This implies that the maximum
co-biclique problem is NP-hard.

The structure of odd cycle is essential in the study of the bipartite subgraphs
(see [8]). The collection of the odd cycles of G coincide with the minimal de-
pendents of the independence system that is naturally formed by the bipartite
subgraphs of G. (An independence system of a set E consists in a collection I of
subsets of E such that I ∈ I and I ′ ⊆ I implies I ′ ∈ I.) Recently, it was showed
that less natural independence systems could be associated to more complicated
graph structures, with interesting polyhedral and algorithmic consequences. This
approach is used for graph coloring in [4, 5]. The independence system associated
to the (edge-set of) induced bipartite subgraphs have been defined and described
in [3]. In [1, 2], the independence systems associated to the bicliques and to the
complete multipartite subgraphs have been introduced and characterized. This pa-
per studies the independence system associated to the co-bicliques. According to
our knowledge, although bicliques have been studied a lot (see [7]), the maximum
co-biclique problem has never been considered before. Knowing the importance of
bicliques, we found natural to study co-bicliques.

Our approach is the following: We say that an edge set F ⊆ E is independent if
there is a co-biclique B such that B ⊇ F , otherwise F is dependent. In this way,
solving the maximum co-biclique problem is equivalent to determine the maximum
weight of an independent. Hence there is a 0-1 linear programming formulation of
the maximum co-biclique problem in the natural variable space, namely

(PI)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
∑

e∈E

wexe

s.t.
xe ∈ {0, 1} for every e ∈ E,

x(C) ≤ |C| − 1 for every dependent set C,

where x(C) =
∑

e∈C xe. We are interested in solving (PI) with a branch-and-cut
algorithm. That method is efficient if the continuous relaxation (P ) of (PI) can be
solved in polynomial time. The number of inequalities of (P ) may be exponential
(with respect to n := |V |) but we will show that indeed (P ) can be solved in
polynomial time.

This paper is organized as follows. In Section 2, we give some definitions and
we characterize the independents. In Section 3, we give a complete description
of the minimal dependents. In Section 4, we show that finding a minimum-cost
dependent reduces to finding a minimum-cost odd cycle in an auxiliary signed
graph Ĝ of G. We use this to show that (P ) can be solved in polynomial time.

2. Preliminaries

First we collect some general terminology and facts on signed graphs (this can
be found in [8], Vol. C, p. 1329). A signed graph is a triple (V, E, Σ), where (V, E)
is an undirected graph and Σ ⊆ E. The subset of edges Σ is called a signing.
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A path of (V, E, Σ) is a subset P ⊆ E of the form P = v0v1, v1v2, . . . , vk−1vk where
each vi is a distinct node of V . If all the vi are distinct except v0 = vk, then P is
called a cycle. We call a path, or a cycle odd (even, respectively) if it contains an
odd (even, respectively) number of edges in Σ.
A cut of (V, E, Σ) is a set of edges of the form δ(U) = {uv ∈ E : u ∈ U, v ∈ V \U}
where U ⊆ V .

Lemma 2.1 ([8]). Two signing Σ and Σ′ give the same collection of odd cycles if
and only if Σ∆Σ′ is a cut of (V, E).

Let G = (V, E) be a graph and E := E[V ]. The signed graph associated to G

is the signed graph G̃ = (V, E ∪ E, E). Denote V (F ) the set of nodes incident to
an edge in F ⊆ E.

Definition 2.2. Let F ⊆ E and W = V (F ). The rooted graph of F is the signed
graph

G̃F = (W, E[W ] ∪ F, E[W ]).

The following lemma characterizes the independents (of G).

Lemma 2.3. Let F ⊆ E. The following propositions are equivalent.
(i) G̃F has no odd cycle;
(ii) E[W ] is a cut of G̃F ;
(iii) F is an independent.

Proof. (i) ⇔ (ii) : It follows by setting V := W , E := E[W ] ∪ F , Σ := E[W ] and
Σ′ := ∅ in Lemma 2.1.
(ii) ⇒ (iii) : If E[W ] = δ(U) is a cut of G̃F , then E[U ] = E[W \ U ] = ∅ and
F ⊆ E[U ] ∪ E[W \ U ]. Since B = E[U ] ∪ E[W \ U ] is a co-biclique, then F is an
independent.
(iii) ⇒ (ii) : If F is an independent, F is contained in a co-biclique B = E[U ] ∪
E[W \ U ]. Hence E[W ] is a cut δ(U) of G̃F . �

A set F is a minimal dependent if F is a dependent and F ′ is an independent
for every proper subset F ′ of F . Lemma 2.3 has the following corollary.

Corollary 2.4. Let F ⊆ E. F is a minimal dependent if and only if
(i) G̃F has at least one odd cycle, and
(ii) for every odd cycle Q of G̃F and every edge f ∈ F \ Q, there is a node

vf ∈ V (Q) such that f is the unique edge in F incident to vf .

Proof. Necessity. Let F be a minimal dependent. Then (i) follows from the fact
that F is not an independent. If (ii) does not hold, then there is an odd cycle
Q and an edge f ∈ F \ Q such that V (Q) ⊆ V (F \ {f}). But then Q belongs
to the rooted graph of F \ {f}, which is impossible since F \ {f} is independent.
Sufficiency. By (i), F is a dependent. Assume that F ′ = F \ {f} is a dependent
for some f ∈ F . Then the rooted graph G̃F ′ of F ′ has an odd cycle Q. Since f is
not an edge of G̃F ′ , then f ∈ F \ Q. By (ii), there is a node vf ∈ V (Q) such that
vf /∈ V (F ′), a contradiction. �



298 D. CORNAZ

3. Description of the minimal dependents

In what follows we introduce some definitions that are useful to give a complete
description of the minimal dependents. Throughout the section we will use the
following conventions: F will always represent an edge subset of G, W is the set
of nodes of F , and G̃F will always represent the rooted graph of F . (Recall that
G̃F is a signed graph.)

Definition 3.1. F induces an obstruction with an odd cycle Q of G̃F if for every
edge f in F \ Q

(a) f is incident to exactly one node of Q, and
(b) f is adjacent to no edge in F \ {f}.

Definition 3.2. Let F be an edge set inducing an obstruction with the odd cycle
Q = v0v1, v1v2, . . . , vk−1vk (where the indices are taken modulo k).
An edge vivi+2 ∈ E[W ] is called short-chord if

(a) vi+1vi+2 ∈ F and vivi+1, vi+2vi+3 ∈ E[W ], or
(b) vivi+1 ∈ F and vi−1vi, vi+1vi+2 ∈ E[W ].

An edge vivi+3 ∈ E[W ] is called a diagonal if
(c) vivi+1, vi+2vi+3 ∈ F , vi−1vi, vi+1vi+2, vi+3vi+4 ∈ E[W ].

An edge viw ∈ E[W ] with w �∈ V (Q) is called a wing if
(d) vivi+1, wvi+2 ∈ F and vi−1vi, vi+1vi+2, vi+2vi+3 ∈ E[W ], or
(e) vivi−1, wvi−2 ∈ F and vi−3vi−2, vi−2vi−1, vivi+1 ∈ E[W ].

Definition 3.3. We say that two wings viw and vjw
′ overlap if vivj ∈ F .

Figure 1 depicts the objects of the above definitions.

Theorem 3.4. F is a minimal dependent if and only if F induces an obstruction
with an odd cycle Q such that

(i) every edge in E[W ] \Q is either a short-chord, a diagonal, or a wing, and
(ii) no wings overlap.

Proof. Necessity: Let F be a minimal dependent of G. By Corollary 2.4(i), G̃F

contains an odd cycle. Let Q be an odd cycle of G̃F such that |Q∩F | is maximal.
Let P be a path of G̃F linking vi, vj ∈ V (Q) such that P ∩ Q = ∅ and

V (P ) ∩ V (Q) = {vi, vj}. We let P1, P2 ⊆ Q be the two distinct paths of Q

linking vi, vj . So P1 ∩ P2 = ∅ and P1 ∪ P2 = Q. Note that |P1 ∩ E[W ]| and
|P2∩E[W ]| are of opposite parity. Hence we can assume without loss of generality
that Q1 = P1 ∪ P is an odd cycle and Q2 = P2 ∪ P is an even cycle of G̃F .

Claim 1. We claim that none of the following propositions can be true.
(1) P = {vivj} with vivj ∈ F .
(2) P = {viw, wvj} with viw, wvj ∈ F .
(3) P = {viw, ww′, w′vj} with viw, w′vj ∈ F .
Proof. If either (1), or (2), or (3) is true, then V (Q1) ⊆ V (F \ {f}) for every
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Figure 1. Short-chords (a,b), diagonal (c) and wings (d,e).

f ∈ F ∩ P2. If there is an edge f ∈ F ∩ P2, then, by Corollary 2.4(i), F \ {f}
is a dependent; this contradicts the minimality of F . So we can assume that
F ∩ P2 = ∅. Therefore |F ∩ Q1| > |F ∩ Q|; which contradicts the maximality of
|Q ∩ F |. (End of the proof of Claim 1.)
Claim 2. We claim that F induces an obstruction with Q. Proof. By Corol-
lary 2.4(ii), every edge in F is incident to Q. If f ∈ F is a chord of Q, we can
assume that P = {f}; this is impossible by Claim 1(1). So Q has no chord in F ,
hence Definition 3.1(a) holds. Let f, f ′ be two adjacent edges such that f ∈ F \Q
and f ′ ∈ F . By Corollary 2.4(ii), f ′ also belongs to F \Q. Moreover the common
node of f and f ′ is not in Q; thus we can assume that P = {f, f ′}; this is impos-
sible by Claim 1(2). Hence Definition 3.1(b) holds. (End of the proof of Claim 2.)
A node v of Q is said to be exposed if it is incident to no edge in F ∩ Q.
Claim 3. We claim that the following propositions are true.
(1) P2 has no internal edge in F .
(2) If Q2 has no chord in F , then P2 has no exposed node.
(3) Every node of P2 is incident to (exactly) one edge in F .
Proof. By Corollary 2.4(ii), every edge in F is incident to a node in Q1. Thus
(1) is true. Suppose that (2) is not true. Let v be an exposed node of P2. There
is an edge f in F \ P2 incident to v and to a node in Q1. By Claim 2, Q has
no chord, hence f is incident to a node in P . This is impossible since Q2 has no
chord. Suppose now that (3) is false. Let v be a node of P2 incident to two edges
f1, f2 in F . By Claim 2, f1, f2 ∈ Q. If f1 ∈ P1 and f2 ∈ P2, then P2 = {f2} since
f2 must be incident to a node in V (Q1 \ f1); this is impossible. So f1, f2 ∈ P2.
Since f1 and f2 are incident to Q1, then P2 = {f1, f2}. Since Q2 is even in G̃F ,
then |P ∩ E[W ]| is even. Hence, because of the maximality of |Q ∩ F | and the
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minimality of F , there are only two cases: either P = {vivj} with vivj ∈ F , or
P = {viw, wvj} with viw, wvj ∈ F . This is impossible by Claim 1. (End of the
proof of Claim 3.)

Now we can prove that necessity is true. Denote ei = vivi+1 for i = 0, 1, . . . ,
k−1. Let e be an edge in E[W ]\Q. Suppose that P = {e}. Since Q has no chord,
then Q2 has no chord. As P has exactly one edge in E[W ], P2 has an odd number
of edges in E[W ]. By Claim 3, P2 contains exactly one edge in E[W ]. Note that
since G̃F has no multiple edge, P2 contains at least one edge in F . Suppose that
P2 contains exactly one edge f in F , by Claim 3, f is either ei or ej−1. First we
assume that f = ej. Then e is a short-chord (see Fig. 1a). If f = ei, then e is a
short-chord (see Fig. 1b). Now suppose that P2 contains more than one edge in
F . Claim 3 implies that the edges in F ∩ P2 are ei and ej−1. Finally, as P2 has
no exposed node, e is a diagonal (see Fig. 1c).

Assume now that e = ww′ with w, w′ ∈ W \ V (Q). This is impossible by
Claim 1(3). We can assume now that e = viw with vi ∈ V (Q) and w ∈ W \V (Q).
Note that since F induces an obstruction with Q, there is an edge in F , say
f = vjw (with vj ∈ V (Q)), which is the unique edge in F incident to w and the
unique edge in F incident to vj . Thus ej−1 and ej are in E[W ]. Let P = {e, f}.
The path P contains one edge in E[W ], therefore P2 contains an odd number of
edges in E[W ]. If P2 contains no edge in F , then the odd cycle Q1 has more edges
in F than Q has, contradiction. We can assume that Q2 has no chord. Assume
first that i < j. By Claim 3, ei is the unique edge of F ∩P2. Also, ei−1 is in E[W ].
Moreover vj is the unique exposed node of P2. Thus j = i + 2 and the edge e is
a wing (see Fig. 1d). The case j < i is similar: j = i − 2 and e is a wing (see
Fig. 1e). Finally the only possible neighbours of w besides vi are vi−2 and vi+2; if
w is adjacent to these three nodes, w is incident to two wings.

Assume now that there exist two nodes w, w′ ∈ W \ V (Q), a wing e = viw
and a wing e′ = vi+1w

′ which overlap. The path P ′ = {vi−1w
′, e′, ei, e, wvi+2}

has three edges in F and the path P ′′ = {ei−1, . . . , ei+1} has only one edge in F .
The cycle obtained by replacing P ′′ by P ′ in the sequence describing P ′′ is an odd
cycle in G̃F and has a larger number of edges in F than Q, which contradicts the
maximality of |F ∩ Q|.
Sufficiency. Let f ∈ F and let G̃F ′ be the signed rooted graph of F ′ = F \ {f}.
Assume now that F \ {f} is not a independent of G; by Lemma 2.3, there is an
odd cycle D of G̃F ′ . Note that D is also an odd cycle of G̃F . If f is an edge of
Q, Q cannot be a subgraph of G̃F ′ . In the other case f links a node in W \ V (Q)
to an exposed node v of Q, v is not a node of G̃F ′ and again Q is not a subgraph
of G̃F ′ .

Assume that D contains a diagonal e = vivi+3 ; f cannot be ei or ei+2 since
vi and vi+3 have not been deleted from G̃F . If we replace in D the subsequence
. . . , e, . . . by . . . , ei, ei+1, ei+2, . . . (which is not a subsequence of D since D is odd
in G̃F ′) we obtain a new cycle which does not contain e and which is odd in G̃F ′ .
Reiterating this process, we can eliminate all the diagonals, and similarly all the
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short-chords. If D contains a node w in W \V (Q), D contains one or two wings in-
cident to w. If D contains a subsequence . . . , e, f ′, . . . where e is a wing, we replace
in D that subsequence by . . . , ei, ei+1, . . .. If D contains a subsequence . . . , e, e′, . . .
where e and e′ are wings, we replace in D that subsequence by . . . , ei, . . . , ei+3, . . ..
Again this new cycle is odd in G̃F ′ and we can eliminate similarly all the wings.
Finally D contains edges of the cycle Q only, a contradiction. �

4. Solving (P )

Let

(P )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
∑

e∈E

wexe

s.t.
0 ≤ xe ≤ 1 for every e ∈ E,

x(C) ≤ |C| − 1 for every dependent set C.

We state now the main result of the paper. We give a proof based on [9] which is
simpler than our original proof.

Theorem 4.1. (P ) can be solved in polynomial time.

Proof. By [6], the problem reduces to the following separation problem: given
x ∈ RE , decide if x satisfies the constraints of (P ), and if not, find a violated
inequality. We can check in polynomial time if 0 ≤ xe ≤ 1 for every e ∈ E. Note
that x(C) ≤ |C| − 1 is equivalent to w(C) ≥ 1 with we = 1 − xe for every e ∈ E.
Hence our separation problem reduce to the following problem: Does there exist
a dependent with cost strictly smaller than 1?

In the following we describe a polynomial algorithm which answers this question.
We reduce the problem to finding a minimum-cost odd cycle in an auxiliary signed
graph Ĝ of G. For any depend of G, there is an odd cycle of Ĝ with the same
cost, and vice-versa.

Let G be a graph with a nonnegative cost c(e) for each e ∈ E. For every node
v ∈ V , we define

c(v) = min
uv∈E

c(uv),

and we choose an edge uv ∈ E such that c(uv) = c(v); denote uv by f(v).
Let Ĝ be the signed graph constructed from G as follows (this is illustrated with
an example depicted in Fig. 2):

Let be the signed graph G̃ = (V, E ∪ E, E) associated with G. Note that each
node has degree n− 1 in G̃. For every edge e = uv of G̃ we make a copy ê = ueve

of e in Ĝ, in this way, all the edges of Ĝ are disjoint. We will call e the mate of
ueve. We will use the following notation: Ê is the set of copies of edges in E and
Σ is the set of copies of edges in E. Note that a node v of G̃ has n − 1 copies
ve, vf , . . . in Ĝ. For every node v of G̃ we create the

(
n−1

2

)
possible transition edges

vevf in Ĝ between the different copies of v. The node v will be called the node



302 D. CORNAZ

4 6
2

2
2 3

3

11

4

2

21

22

2

0

0

6

0
0

Figure 2. On the left the graph G, on the right the signed graph Ĝ.

associated with the transition edge vevf . Note that a transition edge is adjacent
to exactly two edges in Ê ∪ Σ. The set of the transition edges will be denoted by
T . The signing of Ĝ will be Σ, so Ĝ = (V̂ , T ∪ Ê ∪Σ, Σ). Now we define the costs
in Ĝ. The cost of an edge ê ∈ Ĝ is denoted by d(ê):

∗ d(ê) = 0 for each ê ∈ Σ;
∗ d(ê) = c(v)/2 for each ê ∈ T associated with a node v ∈ V adjacent to an

edge in Σ and an edge in Ê;
∗ d(ê) = c(v) for each ê ∈ T associated with a node v ∈ V adjacent to two

edges of the same type (two edges in Σ or two edges in Ê);
∗ d(ê) = c(e) − c(u)+c(v)

2 for each ê = ueve ∈ Ê where e = uv ∈ E.

Note that the cost d(ê) is nonnegative for each edge ê of Ĝ. The problem of finding
a minimum-cost odd cycle in a signed graph can be solved in polynomial time for
every nonnegative edge cost function (see [8]). Let Q̂ be an odd cycle of the signed
graph Ĝ minimizing its cost d(Q̂) =

∑
ê∈Q̂ d(ê). We will show now that the cost

of Q̂ is equal to the minimum cost of a dependent set of G.
Remark that Q̂ has at least one edge in Σ. We can assume that Q̂ does not

contain two consecutive edges that are transition edges in T . Thus Q̂ can be
decomposed into paths of the two following forms:

(P1) P1 = {t1, ê1, t2, ê2, . . . , tk, êk, tk+1}, where êi ∈ Ê, ti ∈ T , and t1 (tk+1) is
adjacent to an edge in Σ ∩ Q̂.

(P2) P2 = {ê1, t1, ê2, t2, . . . , tk−1, êk} where êi ∈ Σ and ti ∈ T .
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The cost of a path P1 is

d(P1) = d(t1) + d(ê1) + d(t2) + · · · + d(tk) + d(êk) + d(tk+1)

=
c(u1)

2
+ c(e1) − c(u1) + c(u2)

2
+ c(u2) + . . .

. . . + c(uk) + c(ek) − c(uk) + c(uk+1)
2

+
c(uk+1)

2
= c(e1) + c(e2) + . . . + c(ek).

Thus the cost of P1 is equal to the sum of costs c(e) of mates e ∈ E of edges
ê ∈ Ê ∩ P1. The cost of a path P2 is

d(P2) = d(ê1) + d(t2) + d(ê2) + d(t3) + · · · + d(tk) + d(êk)
= 0 + c(u2) + 0 + c(u3) + . . . + c(uk) + 0.

The cost of P2 is equal to the sum of the costs c(u) of nodes u associated with
transition edges in T ∩P2. Let F ⊆ E be the union of mates of the edges in Ê ∩Q
and edges f(u) ∈ E where u is the node associated with a transition edge of a
path P2. We have d(Q̂) ≥ c(F ). Besides, by Lemma 2.3, F is a dependent set.
Now let F be a minimum-cost dependent set. By Theorem 3.4, F induces an
obstruction with an odd cycle Q in G̃. Let W = V (F ). In the graph Ĝ there is
a cycle Q̂ such that the edges in Σ ∩ Q̂ (resp. Ê ∩ Q̂) are the mates of edges in
E[W ]∩Q (resp. F ∩Q), and the edges in T ∩Q̂ are the transition edges associated
with exposed nodes of Q. Clearly Q̂ has an odd number of edges in Σ. Since Q

has no chord in F , we have c(F ) ≥ d(Q̂).
�

Conclusion

This paper establishes a link between the only apparently distant notions of
co-bicliques and odd cycles. More precisely, the link concerns the subsets of co-
bicliques only, but this is appropriate to the resolution of the maximum co-biclique
problem. The odd cycles in signed graphs are used to handle naturally the com-
plicated minimal forbidden structures for (subsets of) co-bicliques.

A theorem by Guenin gives a full characterization of those signed graphs for
which the odd-cycle constraints define an integral polytope (see [8]). A remaining
question is whether a characterization of the graphs for which the dependent-
set constraints describe the co-biclique polytope can be deduced from Guenin’s
theorem?
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