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THE POLYTOPE OF m-SUBSPACES
OF A FINITE AFFINE SPACE

Julie Christophe
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Abstract. The m-subspace polytope is defined as the convex hull
of the characteristic vectors of all m-dimensional subspaces of a finite
affine space. The particular case of the hyperplane polytope has been
investigated by Maurras (1993) and Anglada and Maurras (2003), who
gave a complete characterization of the facets. The general m-subspace
polytope that we consider shows a much more involved structure, no-
tably as regards facets. Nevertheless, several families of facets are es-
tablished here. Then the group of automorphisms of the m-subspace
polytope is completely described and the adjacency of vertices is fully
characterized.

Keywords. Convex polytope, finite affine space, m-subspace polytope.

Mathematics Subject Classification. 51A30, 52B12, 90C27.

Introduction

Maurras [13] (for the plane) and Anglada and Maurras [2] (in general) investi-
gate the polytope of hyperplanes of a finite affine space. Remarkably, they provide
a complete description of all facets of the polytope. We extend their investigation
by replacing hyperplanes with (affine) subspaces of a fixed dimension m. It turns
out that the neat characterization of facets by Anglada and Maurras does not
appear to be transposable, as we find wild families of facets for the polytope of
m-subspaces (when 2 ≤ m ≤ n − 2). We establish several of these families, and
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then provide some additional results. Namely, we describe the group of automor-
phisms (a useful tool in the classification of facets) and characterize adjacency of
vertices.

In the affine space AG = AG(n, GF (q)) of dimension n over the Galois field
GF (q), take for a given m all the m-dimensional subspaces (for an introduction to
finite affine spaces, see for instance Artin [3], or Beutelspacher and Rosenbaum [4]).
The m-subspaces are subsets of the set AG, and AG has qn points. Hence the
characteristic vectors of m-subspaces are (0/1)-vectors in R

qn

. The polytope
of m-subspaces P (m, n, q) is the convex hull of all these characteristic vectors
(classical books on [convex] polytopes include Brøndsted [6], Grünbaum [12], and
Ziegler [15]). Thus the vertices of P (m, n, q) correspond exactly to m-subspaces of
AG(n, GF (q)). Our main goal is to produce facets of the polytope P (m, n, q). In
the particular case of the polytope P (n − 1, n, q), Anglada and Maurras [2] show
that each facet-defining inequality (FDI) is built from a so-called “tangle”, a result
that we will recall in Section 3.

The porta [7] and polymake [11] softwares delivered us the list of FDIs for
P (m, n, q) in only one truly new case, namely the case of P (2, 4, 2). A similar list
appears in Anglada’s thesis [1]. We mention in passing that Olivier Anglada has
been working independently on the same polytope P (m, n, q), although focusing
mainly on the case m = n − 2 (see [1]). Running home-made programs on the
output from porta, we derived a classification of the 16 400 FDIs of the polytope
P (2, 4, 2). Two facets are put in the same family if and only if they can be
transformed one into the other by some automorphism of the polytope. The
resulting eight families of affine inequalities are summarized in Table 1.

Our paper offers a generalization for each of the eight families of FDIs. Geomet-
ric interpretations in AG(n, GF (2)) are provided for both the generalized FDI and
the set of vertices in the corresponding facet. (Many of our results about facets
assume that the Galois field has only two elements; a few additional results are
given in Christophe [8]). Some inequality families from Table 1 are easily handled,
for example the “trivial inequalities” and the “plane-frame inequality” which keep
the same form in the general case. On the other hand, some inequalities are more
resistant to generalization (several possible interpretations having to be tested).
Nevertheless, we provide in Section 2 an adequate generalization to the general
case of P (m, n, 2) with 1 ≤ m ≤ n−2 for six of the eight families, and to P (2, n, 2)
for the remaining two families. Explicit proofs are included for three of the gener-
alized families. The “trivial inequalities” family is a rather easy case. Two other
families which require more work are also handled. The proofs for the remaining
five families of inequalities can be based on similar arguments and are not given
here (see Christophe [8] for details). In the two final sections, we describe the
automorphism group of the polytope P (m, n, q) and the adjacency relationship on
its vertices.
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Table 1. The eight families of FDIs for P (2, 4, 2), where “Quan-
tity” refers to the number of facets in the family and “Vertices” to the
number of vertices on any facet of the family. Explanations for the
inequalities are provided in the corresponding subsections of Section 2.

Inequality Name Quantity Vertices
1 xi ≥ 0 Trivial I 16 105
2 xi ≤ 1 Trivial II 16 35
3 xi ≤ xj + xr + xs + xt Point- 240 42

+xu + xv + xw hyperplane
4 xi + xj + xk − 2 ≤ xl Plane-frame 560 19
5 xa + xb ≤ 2xi + 2xj + 2xk + 2xl 6 720 19

+xr + xs + xt + xu + xv + xw

6 xi + xj + xk + xl − 2 3D-frame 1 680 28
≤ xs + xt + xu + xv

7 xs + xt + xu + xv + xw + xa ≤ 3 4D-frame 448 20

8 2xa + xi + xj − 2 ≤ 2xb 6 720 20
+xr + xs + xt + xu + xv + xw

1. The polytope P (m, n, q) and some geometrical facts

The n-dimensional affine space AG(n, GF (q)) over the Galois field GF (q) of
q elements has qn points. When one of these points is selected as the origin,
AG(n, GF (q)) becomes a vector space of dimension n over the field GF (q). The
(affine) subspaces of AG(n, GF (q)) are the empty set (of dimension −1) and all
translates of the vector subspaces (keeping the same dimension). Thus an m-
subspace, that is a subspace of dimension m, is a particular subset of AG(n, GF (q));
when m ≥ 0, it is formed by qm points. A frame of an m-subspace T of AG(n,
GF (q)) is a subset of m+1 points of T consisting of an origin o and the m vectors
of a basis for the resulting vector subspace T . We often abbreviate AG(n, GF (q))
into AG.

For terminology and notation about polytopes, we generally follow Ziegler [15].
By definition, the vertices of the m-subspace polytope P (m, n, q) are the charac-
teristic vectors of all m-subspaces of the affine space AG(n, GF (q)). Let us first
indicate the dimension of P (m, n, q). For m ≥ 0, the polytope P (m, n, q) lies in
the affine hyperplane defined in the real vector space R

qn

by the affine equation∑
i∈AG xi = qm. Consequently, the dimension of (the affine subspace spanned by)

a set S of vertices of P (m, n, q) is one less than the rank of the set S of vertices seen
as vectors of R

qn

. Also, any facet is defined by more than one affine inequality.
The following result can be easily established:

Proposition 1.1. In R
qn

, we have dim(P (m, n, q)) = qn−1 for all 0 ≤ m ≤ n−1
and q ≥ 2.
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Table 2. Values of the subspace dimension m, the dimension n of
the finite affine space and the cardinality q of the Galois field for which
porta and polymake are able to provide a linear description of the
polytope P (m,n, q), together with the numbers of vertices and facets
of the polytope.

m n q Vertices Facets
1 3 2 28 16
2 3 2 14 128
1 4 2 120 32
2 4 2 140 16 400
1 5 2 496 64

Next, we would like to find facets of P (m, n, q). Table 2 lists the values of m, n
and q for which porta and polymake are able to produce the linear description of
P (m, n, q), and also the number of vertices and facets of the polytope. The most
interesting case for us in Table 2 is the one of P (2, 4, 2). Indeed, in the cases of
polytopes P (1, n, 2), vertices encode lines of a finite affine space AG(n, GF (2))
of dimension n on GF (2), that is they encoded unordered pairs of points of
AG(n, GF (2)). So the polytope is just a hypersimplex (see e.g. Ziegler [15]);
the trivial inequalities xi ≥ 0 and xi ≤ 1 are its only FDIs, and moreover the
polytope satisfies the single affine equation

∑
i∈AG xi = 2. For another case, the

polytope P (2, 3, 2) of planes of a 3-dimensional affine space is a hyperplane poly-
tope. Thus we know its facets from Anglada and Maurras [2]. As a conclusion,
the only case in Table 2 that is really instructive for us is the one of P (2, 4, 2),
namely the polytope of planes of AG(4, GF (2)). The FDI data for this case were
sorted out into families by our programs. The resulting eight families are provided
in Table 1. The next section will list generalizations of all of these eight families
to polytopes P (m, n, q).

Let us now recall some known geometrical facts, first about finite affine spaces.
For 0 ≤ m ≤ n, the number of m-dimensional subspaces of the affine space AG =

AG(n, GF (q)) is qn−m

[
n
m

]
q

, where we make use of the Gaussian number (cf.

van Lint and Wilson [14])

[
n
m

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)
· (1)

More generally, we set
[

n
m

]t

q

=
m−1∏
x=t

qn − qx

qm − qx
for the number of m-subspaces

of AG(n, GF (q)) containing a given subspace of dimension t. Thus,
[

n
m

]m

q

= 1

and
[

n
m

]t

q

= 0 for t > m.
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Here are two easy lemmas from real linear algebra (for a proof of the second
one, see Anglada and Maurras [2]; another proof can be based on the eigenvalues
of the matrix, which are easily obtained).

Lemma 1.2. For A and B two matrices respectively of size r × s and s × t,

rank(A · B) ≤ min{ rank(A), rank(B) }.

Lemma 1.3. If S is a real, symmetric matrix of the form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α β
. . . γ . . . γ γ

β α
α β

γ
. . . . . . γ γ

β α

...
...

. . .
...

...

α β

γ γ . . .
. . . γ

β α
α β

γ γ . . . γ
. . .

β α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

composed of r2 square submatrices of size t, with r ≥ 1 and t ≥ 1, then

rank(S) = r · t ⇐⇒ α �= β,
(α − β) + t · (β − γ) �= 0, and
(α − β) + t · (β − γ) + r · t · γ �= 0.

2. Facets

We now present a generalization for each of the eight families of facets of
P (2, 4, 2) from Table 1. In the sequel, we assimilate the characteristic vector of an
m-subspace of the affine space AG(n, GF (q)) to the m-subspace itself. Otherwise
said, a vertex of P (m, n, q) is identified with an m-subspace of AG(n, GF (q)). We
will always assume 0 ≤ m ≤ n − 1 (and, of course, that q is a prime power — a
basic property of Galois fields).
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2.1. Trivial inequality of type I

The Trivial Inequality of type I is defined from the choice of one point i in the
affine space AG = AG(n, GF (q)):

xi ≥ 0. (2)

There are thus qn Trivial Inequalities of type I. The vertices of the face defined
by inequality (2) are the (characteristic vectors of the) m-dimensional subspaces

which do not contain the point i, so their number is equal to (qn−m − 1)
[

n
m

]
q

.

In all cases, a trivial inequality of type I defines a facet.

Proposition 2.1. For 0 ≤ m ≤ n − 1 and for all q ≥ 2, the Trivial Inequality
from Equation (2) defines a facet of P (m, n, q).

Proof. We want to prove that the face defined by xi ≥ 0 has dimension qn−2. Let
M be the incidence matrix of points of AG \ {i} (corresponding to rows) versus
m-subspaces which do not contain the point i (corresponding to columns). So

M is a (qn − 1) × s matrix where s = (qn−m − 1)
[

n
m

]
q

. Our goal is to prove

rank(M) = qn − 1. By Lemma 1.2, it suffices to show rank(M · M t) = qn − 1.
Consider first the case q = 2. Then

M · M t =

⎛
⎜⎝

α β
. . .

β α

⎞
⎟⎠

with α equal to the number of vertices of the face which contain a given point p
distinct from i, and β equal to the number of vertices of the face containing two
given points p and p′ distinct from i. The numbers α and β are independent of
the choice of p and p′ because the stabilizer of i in the affine group of AG acts
doubly transitively on AG \ {i} (remember q = 2; we recall the definition of the
affine group in Section 4). Then Lemma 1.3 gives rank(M · M t) = qn − 1 (indeed
α �= β is easily verified while α �= −(n − 1) · β is obvious). Thus by Lemma 1.2
rank(M) = qn − 1, which completes the proof in case q = 2.

Consider now the case q > 2. To form the rows of the incidence matrix M , we
sort the points of AG \ {i} into classes of q− 1 points, where two points are in the
same class if they belong to the same line through i. We then obtain



the polytope of m-subspaces of a finite affine space 323

M · M t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 0
. . . γ γ

0 α
α 0

γ
. . . γ

0 α
α 0

γ γ
. . .

0 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Indeed, there is no subspace containing two points aligned with i and avoiding
i; this explains the zeroes in the matrix. That other values repeat themselves is
easily established. Moreover, we have

α > 0, (4)
α �= (q − 1)γ, (5)
α �= (q − qn)γ (6)

because α > 0 is clear, and together with γ ≥ 0 and q − qn ≤ 0, the latter
immediately gives Inequality (6). To check (5), we compute explicitly the values
of α and γ.

If m = 0, then α = 1 and γ = 0.
If m ≥ 1, then α denotes the number of m-subspaces containing p but not i,

for some point p in AG, and

α =
m−1∏
x=0

qn − qx

qm − qx
−

m−1∏
x=1

qn − qx

qm − qx
·

On the other hand, γ gives the number of m-subspaces containing two given points
p and p′ not aligned with i, so

γ =
m−1∏
x=1

qn − qx

qm − qx
−

m−1∏
x=2

qn − qx

qm − qx
·

Equation (5) becomes

(
qn − 1
qm − 1

− 1
)
·

m−1∏
x=1

qn − qx

qm − qx
�= (q − 1)

(
qn − q

qm − q
− 1

)
·

m−1∏
x=2

qn − qx

qm − qx
,

and after simplification

q ·
(
qn−1 − 1

)
�= (q − 1) · (qm − 1) .
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As q > q − 1 and qn−1 ≥ qm, we conclude that equation (5) is satisfied. Applying
Lemma 1.2 gives rank(M · M t) = qn − 1. �

2.2. Trivial inequality of type II

As for the other trivial inequality (see previous subsection), the present inequal-
ity is defined from the choice of one point i in the affine space AG(n, GF (q)):

xi ≤ 1. (7)

There are qn Trivial inequalities of type II. The vertices of the corresponding face

of P (m, n, q) are the
[

n
m

]
q

m-dimensional subspaces which contain the point i.

Proposition 2.2. The Trivial Inequality of Type II from Equation (7) defines a
facet if and only if q = 2 and 1 ≤ m ≤ n − 1.

Proof. The sufficiency part can be established similarly as it was for Proposi-
tion 2.1 (details are given in [8]). The necessity of q = 2 derives from the following
remark. If q > 2, all vertices satisfying xi = 1 also satisfy xj = xk for any two
points j and k aligned with i; thus they belong to more than one proper face and
cannot span a facet. �

2.3. Point-hyperplane inequality

Select one hyperplane H in the affine space AG(n, GF (q)) and then choose one
point i in H . The resulting Point-Hyperplane Inequality is

(qm−1 − 1)xi ≤
∑

j∈H\{i}
xj . (8)

Proposition 2.3. Let H be an hyperplane of AG(n, GF (q)) and i be a point of
H. Inequality (8) defines a facet if and only if q = 2 and 2 ≤ m ≤ n − 1.

For the proof of Proposition 2.3 as well as of the next Proposition 2.4, the reader

is referred to Christophe [8]. There are 2n

[
n

n − 1

]
2

facets defined by a Point-

Hyperplane Inequality as in Proposition 2.3. Anyone of them has 2n−1−m

[
n − 1

m

]
2

+2n−m

[
n − 1
m − 1

]
2

vertices.

Because of the present lack of satisfactory generalizations to other values of q,
we will assume q = 2 for generalizing the remaining inequalities in Table 1. A few
more results for the case q > 2 are collected in Christophe [8].
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Figure 1. Illustration for the inequality of the fifth type in the
case of P (2, 4, 2).

2.4. Plane-frame inequality

Take three non aligned points i, j and k of the affine space AG(n, GF (2)) over
GF (2), and let l be the fourth point in their plane. The resulting Plane-Frame
Inequality reads:

xi + xj + xk − 2 ≤ xl. (9)

Thus, Plane-Frame Inequalities are based on the choice of one pair of incident point

and plane. They are in number 2n

[
n
2

]
2

, each one having
(

3
(

2n − 2
2m − 2

)
− 2

)
·

[
n
m

]2

2

vertices.

Proposition 2.4. The Plane-Frame Inequality (9) is a FDI for P (m, n, 2) if and
only if 2 ≤ m ≤ n − 1 or (m = 1 and n = 2).

2.5. The fifth type of inequality

Obtaining a generalization of Case 5 in Table 2 that would deliver FDIs was
found more difficult than for other cases. Here is such a generalization, although
under the restrictions q = 2 and m = 2. Assuming n ≥ 4, consider a partition
of the affine space AG = AG(n, GF (2)) into two parallel hyperplanes H1 and H2

(see Fig. 1 for an illustration with n = 4). Then in H1 take two points a and b;
they will be seen to correspond to the terms in the left-hand-side of Inequality (10)
we are constructing. The points of H1 \ {a, b} give terms in the right-hand side
of the inequality with a coefficient 1. Next, the hyperplane H2 is partitioned into
lines parallel to the line {a, b}. Construct some subset S of H2 under the following
restriction:

The subset S contains one point on each line of the hyperplane H2 which is parallel
to {a, b}. Moreover, the resulting 2n−2 points do not form an (n− 2)-dimensional
subspace of AG.

The points of S appear in the right-hand side of the inequality with a coefficient 2.
When m = 2 and n = 4, such a set S is necessary an affine frame. In the general
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case, the inequality is of the following form:

xa + xb ≤
∑

t∈H1\{a,b}
xt + 2

∑
s∈S

xs. (10)

This inequality is valid for the polytope P (2, n, 2): If the left-hand side is zero,
the inequality is trivially valid. At a plane, that is a vertex of the polytope,
the only two other cases are those where the left-hand-side takes value 1 or 2,
depending on wether the plane contains one or two of the points a, b. Notice that
in AG(n, GF (2)), a plane not parallel to a hyperplane intersects this hyperplane
in exactly two points. If a plane contains the point a but not the point b, then it
contains a point of H1 \ {a, b}. If a plane contains both points a and b, then either
the plane is included in H1 and then it contains two points of H1 \ {a, b}, or the
plane is not parallel to H1 and thus contains a point of S.

Proposition 2.5. Inequality (10) is facet defining for the polytope P (m, n, 2) if
and only if m = 2 and n ≥ 4.

Proof. Necessity is left to the reader. To prove sufficiency, let F be the face of the
polytope P (2, n, 2) defined by Inequality (10). The vertices of F are the planes in
AG = AG(n, GF (2)) which

(1) are entirely contained in H2 \S (the number of vertices of this type varies
with the choice of S);

(2) are entirely contained in H1 and are then formed with a, b and two points
in H1 \ {a, b} (the number of these vertices is 2n−2 − 1);

(3) have half of their points in each of the two hyperplanes H1 and H2 and
necessarily contain
(a) a and b, one point in S and the last one in H2 \ S (there are 2n−2

vertices of this type), or
(b) one point in {a, b}, one point in H1 \ {a, b} and two points in H2 \ S.

The number of these vertices equals
(
2n−1 − 2

)
2n−3.

We will now prove that among the vertices of types 2 and 3 there are 2n−1 affinely
independent points in R

2n

. To this aim, we consider the matrix M whose columns
are the (characteristic vectors of) vertices of types 2 and 3 of the face F . In the
remaining part of the proof, the term “vertex” will mean “vertex of type 2 or 3
lying on the face F”. It is sufficient to show rank(M) ≥ 2n − 1, which in turn
follows from rank (M ·M t) ≥ 2n−1. The rows and columns of M ·M t are indexed
by the points of AG. We group the rows, and accordingly the columns, as follows:
first, we take the pairs of points in H1 \ {a, b} forming a line parallel to {a, b},
then we take a and b, next the points of H2 \ S and finally the points of S with
the restriction that the first listed point of S forms with the first listed point of
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H2 \ S a line parallel to {a, b}, similarly for the second points and so on. Then

M · M t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 \ {a, b} a b H2 \ S S

A B 1 0

Bt β γ
γ β

2n−2 1

1 2n−2

γ 2
. . .

2 γ

1 0
. . .

0 1

0 1

1 0
. . .

0 1

1 0
. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

with

A =

⎛
⎜⎜⎜⎜⎜⎝

α 1
1 α

0

. . .

0 α 1
1 α

⎞
⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎝

C1 C2

C2 C1

...
Ck Ck+1

Ck+1 Ck

⎞
⎟⎟⎟⎟⎟⎠

, (12)

where

• α is the number of vertices that contain a given point of H1 \ {a, b} and
takes the value 1 + 2n−3;

• k = 2n−1 − 3;
• Ci gives the number of vertices containing the point a (resp. b) and one

point of H1 \ {a, b}. The values of the Ci’s depend on the choice of S, but
we always have, for i odd, Ci + Ci+1 = 2 + 2n−3;

• β is the number of vertices containing the point a (resp. b). Thus β is
equal to 2n−2 + (2n−3 + 1) · (2n−2 − 1);

• γ gives the number of vertices containing the points a and b. Thus γ
equals 2n−1−1. Moreover, γ gives the number of vertices whose associated
subspaces contain a given point in H2 \ S.

We skip the arguments for the other values in Equation (11) (details are provided
in [8]). Let us prove that the rank of the matrix M ·M t in Equation (11) is equal
to 2n − 1. Remember that the matrix M · M t has both its rows and columns
indexed by points of AG. After adding the row indexed by the point b to the row
indexed by a, and making the similar operation on the columns, we obtain the
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new matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 \ {a, b} a b H2 \ S S

A k C 1 0
k ε η 2n−1 2
Ct η β 2n−2 1

1 2n−1 2n−2

2n−1 − 1 2
. . .

2 2n−1 − 1

1 0
. . .

0 1

0 2 1

1 0
. . .

0 1

1 0
. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

where C is the column matrix containing the second column of matrix B from
Equation (12), k = 2n−3 + 2, ε = 2β + 2γ and η = β + γ. Next, execute the
following operations on the matrix from equation (13):

• subtract one (resp. two) time(s) each row indexed by the points of S to
the rows indexed by b (resp. a);

• subtract to the rows indexed by the points of H2 \ S a well chosen row
of S.

We get then the following matrix (still having the same rank as M · M t):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 \ {a, b} a b H2 \ S S

A k C 1 0
k ε′ η′ 2n−1 − 2 0
Ct η′ β′ 2n−2 − 1 0

1 2n−1 − 2 2n−2 − 1

2n−1 − 2 2
. . .

2 2n−1 − 2
0

0 2 1

1 0
. . .

0 1

1 0
. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)
where β′ = β − 2n−2, ε′ = 2 β + 2 γ − 2n and η′ = β + γ − 2n−1. The rank of the
submatrix in the lower right part trivially equals |S| = 2n−2. Because the matrix
in the upper right part is null, we now work with the submatrix in the top left
part.
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Subtract 1/k times the row indexed by a to each of the rows indexed by the
points of H2 \ S. We thus get the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 \ {a, b} a b H2 \ S

A k C 1
k ε′ η′ 2n−1 − 2
Ct η′ β′ 2n−2 − 1

0 τ ρ

µ ν
. . .

ν µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

where

τ = 2n−1 − 2 − ε′

k
,

ρ = 2n−2 − 1 − η′

k
,

µ = 2n−1 − 2 − (2n−1 − 2)
k

,

ν = 2 − (2n−1 − 2)
k

·

Letting δ = µ + (2n−2 − 1)ν, execute the following operations:

• to each row indexed by the points of H1 \ {a, b} subtract the sum of the
rows indexed by the points of H2 \ S divided by δ;

• subtract (2n−1 − 2) times the sum of the rows indexed by the points of
H2 \ S divided by δ to the row a;

• subtract (2n−2 − 1) times the sum of the rows indexed by the points of
H2 \ S divided by δ to the row b.

There results the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 \ {a, b} a b H2 \ S

A k′ C′ 0
k ξ ω 0

C′t σ φ 0

0 τ ρ

µ ν
. . .

ν µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)
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where

C′ =

⎛
⎜⎜⎜⎜⎜⎝

C′
2

C′
1
...

C′
j

C′
i

⎞
⎟⎟⎟⎟⎟⎠

,

k′ = k − 2n−2τ

δ
,

C′
s = Cs −

2n−2ρ

δ
,

ξ = ε′ − (2n−1 − 2)
2n−2τ

δ
,

ω = η′ − (2n−1 − 2)
2n−2ρ

δ
,

σ = η′ − (2n−2 − 1)
2n−2τ

δ
,

φ = β′ − (2n−2 − 1)
2n−2ρ

δ
·

As µ differs from ν and from −(2n−2 − 1)ν (see [8] for details), the lower right
matrix has rank 2n−2 (cf. Lem. 1.2).

In the matrix from Equation (16), delete the row and the column indexed
by the point a. In view of the rank values obtained for the lower right part in
Equation (14), resp. Equation (16), it remains to prove that the following matrix
has rank 2n−1 − 1:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α 1
1 α

0
C′

2

C′
1

. . .
...

0
α 1
1 α

C′
j

C′
i

C2 C1 · · · Cj Ci φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

It is easy to see that the matrix in Equation (17) has rank at least 2n−1 − 2 (in
view of the upper left submatrix on the points of H1 \ {a, b}; notice α �= 1,−1).
It remains to check that the last column of the matrix is not a linear combination
of the 2n−1 − 2 first columns. Suppose to the contrary that for real values λ1, λ2,
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· · · , λ2n−1−2, there holds

λ1 · α + λ2 = C′
2

λ1 + λ2 · α = C′
1

. . .
...

λk · α + λk+1 = C′
k+1

λk + λk+1 · α = C′
k

λ1 · C2 + λ2 · C1 + · · · + λk · Ck+1 + λk+1 · Ck = φ,

where k = 2n−1−3. The 2n−1−2 first equations imply for i ∈ {1, 3, 5, . . . , 2n−1−3}

λi =
C′

i+1 · α − C′
i

α2 − 1
and λi+1 =

C′
i · α − C′

i+1

α2 − 1
·

By carrying these values in the last equation, we obtain:

∑
i∈{1,2,...,2n−1−2}

α · Ci
2 −

∑
j∈{1,3,...,2n−1−3}

2 · Cj · Cj+1

+
∑

t∈{1,2,...,2n−1−2}
Ct ·

(
2n−2ρ

δ

)
· (1 − α) = (α2 − 1) · φ. (18)

Validity of Equation (18) is necessary and sufficient for the singularity of the matrix
in equation (17). Let us show that equality (18) does not hold. By replacing α, ρ,
φ and δ with their values (see Christophe [8] for the computations), equation (18)
becomes:

2n−2
(
2n−4 + 1

) ((
2n−3 + 1

) (
2n−2 − 1

))
+2

∑
i∈{1,3,...,2n−1−3}

Ci · Ci+1 −
(
2n−3 + 1

) ∑
i∈{1...2n1−2}

C2
i = 0. (19)

For all i ∈ {1, 3, . . . , 2n−1−3}, we have Ci +Ci+1 = 2n−3 +2. Thus Equation (19)
becomes after some computation:

22n−5 + 2n−3 − 1 =
∑

i∈{1,3,...,2n−1−3}
Ci · Ci+1. (20)

As the values for the coefficients Ci vary between 2 and 2n−3 and also for i odd
Ci + Ci+1 = 2n−3 + 2, the product Ci · Ci+1 takes at least the value 2n−2. So the
right-hand side of Equation (20) is at least

(
2n−2 − 1

)
2n−2. For n ≥ 4, the left-

hand side is lesser. Hence Equation (20) cannot hold, and neither Equation (19)
nor Equation(18). �
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Figure 2. Illustration for the 4D-Frame Inequality with m = 2, n = 4
and q = 2.

2.6. 3D-Frame Inequality

Choose a 3-subspace in the affine space AG = AG(n, GF (2)) and, in this sub-
space, take an affine frame. We put the points i, j, k, l of the affine frame in the
left-hand side and the other points of the 3-subspace, say s, t, u and v, in the
right-hand side of the inequality. The 3D-Frame Inequality is as follows:

xi + xj + xk + xl − 2 ≤ xs + xt + xu + xv. (21)

Proposition 2.6. Inequality (21) is facet-defining for P (m, n, 2) if and only if
2 ≤ m < n − 1.

There are 56 · 2n

23

[
n
3

]
2

facet-defining inequalities of this type and 6
[

n
m

]1

2

−

14
[

n
m

]2

2

+ 8
[

n
m

]3

2

vertices on each facet defined by such an FDI.

2.7. 4D-Frame Inequality

Choose a 4-subspace T in the affine space AG = AG(n, GF (2)) and an affine
frame R in this subspace. Let S be the set of points of T \R which together with
some 3 points from R form a plane of AG. As dim(T ) = 4, the set T \ (R ∪ S)
contains only one point, say a (see Fig. 2 for an illustration in case n = 4). The
inequality has the following form:

xa − 2 +
∑
i∈R

xi ≤
∑
s∈S

xs. (22)

The number of FDIs of this type equals 448 · 2n−4

[
n
4

]
2

. Each facet defined

by one of these FDIs has a number of vertices equal to 15
[

n
m

]1

2

− 85
[

n
m

]2

2

+

150
[

n
m

]3

2

− 80
[

n
m

]4

2

.

Proposition 2.7. Inequality (22) is facet defining for P (m, n, 2) if and only if
2 ≤ m < n − 1.
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Figure 3. Illustration for Inequality (23) with m = 2, n = 4 and
q = 2.

2.8. The eighth inequality

Our generalization works only for m = 2. Choose a plane {i, j, a, b} in the affine
space AG = AG(n, GF (2)), where n ≥ 3, and partition AG into planes parallel to
the plane {i, j, a, b} (see Fig. 3 for an illustration with n = 4). In each plane of
the partition, choose two points which form a line parallel to {i, j}. There results
a set T of 2n−1 − 2 points. Let U = AG \ ({i, j, a, b} ∪ T ). The selection of points
forming T is also subject to the following condition (which can be proved to be
necessary for the next inequality to be facet defining):

There exists at least one plane containing both a and three points of U .

The inequality has the form:

2 xa + xi + xj − 2 ≤ 2 xb +
∑
t∈T

xt. (23)

Proposition 2.8. Inequality (23), where T is the set of the 2n−1−2 points defined
above, is facet defining if and only if m = 2 and n ≥ 4.

Proof. The proof of sufficiency is left to the reader. Assume now m = 2 and n ≥ 4.
Inequality (23) is valid and thus defines a face of P (2, n, 2). Let us check this by
evaluating the two sides at a vertex of the polytope P (2, n, 2):

• The left-hand side takes a value less than or equal to 0. Then the inequality
is trivially valid.

• The left-hand side takes value 1. Any plane in AG which gives this value
to the left-hand side contains the point a and either i or j. By the con-
struction of the set T , the plane contains also some point of T , and thus
it gives a value 1 to the right-hand side of the inequality.

• The left-hand side takes value 2. This happens for a plane containing a,
i and j. This plane then also contains b and gives a value of 2 to the
right-hand side of the inequality.

The vertices of the face defined by Inequality (23) are the following planes:
1. the plane {i, j, a, b};
2. the 2n−1 − 2 planes containing a, i, one point of T and one point of U ;
3. the 2n−1 − 2 planes formed with a, j, one point of T and one point of U ;
4. the 2n−2 − 1 planes containing i, j and two points from U ;
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5. the planes containing a and three points of U (their number depends on
the choice of T ).

To prove that Inequality (23) defines a facet of P (2, n, 2), we proceed similarly as
in the proofs of Propositions 2.1 and 2.5. Considering the vertices of Types 1, 2,
3, and 4 together with only one vertex of type 5, we form the matrix M holding
the columns of coordinates in R

2n

of all these vertices. It is sufficient to show that
M ·M t has rank 2n − 1. Take the three lines parallel to {i, j} which contain each
a point of the selected plane of type 5, and call R their union.

To form M , and thus also M · M t, we list the points of AG in the following
ordering: first i, j, then the points in R, next the other points in U , all these points
being grouped two by two according to the lines parallel to {i, j} they form; next,
a, b and then the points of T grouped two by two according to the lines parallel to
{i, j} they form, and in an ordering which corresponds to the one followed for the
points of U (meaning that the first pair of points from T forms with the first pair
of points from U a plane of the partition, similarly for the second pairs of points,
and so on).

With this ordering of the points of AG, the matrix M · M t takes the form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j U a b T

3 · 2n−2 − 2 2n−2

2n−2 3 · 2n−2 − 2 2 2n−1 − 1 1 1

2 A B 0 C
2n−1 − 1 Bt 2n − 2 1 2

1 0 1 1 0

1 Ct 2 0

2 0
. . .

0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

where A, B and C are the following matrices:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R . . .

4 1 1 0 1 0
1 3 0 0 0 0
1 0 4 1 1 0
0 0 1 3 0 0
1 0 1 0 4 1
0 0 0 0 1 3

0

3 1
1 3 0

0
. . .

0
3 1
1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)
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B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2
3
2
3
2
2
...
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎜⎜⎝

1 1
1 1 0

. . .

0
1 1
1 1

⎞
⎟⎟⎟⎟⎟⎠

. (26)

Perform the following operations on the matrix from Equation (24) (the goal is to
set to zero the entries with column indices in T and row indices outside T ):

• subtract from the first two rows (indexed by i and j) 1/2 times each row
indexed by a point of T ;

• from each row indexed by a point of U , subtract 1/2 times two selected
rows indexed by points of T ;

• from the row indexed by a, subtract each row indexed by a point of T .
We then obtain the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j U a b T

3 · 2n−1 − 1 1
1 2n−1 − 1 1 1 1 0

1 A′ B′ 0 0
1 B′t 2 1 0
1 0 1 1 0

1 Ct 2 0

2 0
. . .

0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

where A′ and B′ are the following matrices:

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 1 0 1 0
0 2 0 0 0 0
1 0 3 0 1 0
0 0 0 2 0 0
1 0 1 0 3 0
0 0 0 0 0 2

0

0

2 0
. . .

0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

In Equation (27), the rank of the submatrix in the bottom right part is equal to
2n−1 − 2. Now subtract the row indexed by b from the first two rows and from
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the row indexed by a. Next, subtract the row indexed by a from rows numbers 3,
5 and 7. We obtain the matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j U a b

3 · 2n−1 − 2 0
0 2n−1 − 2 1 0 0

1

2 0
. . .

0 2
0 0

1 B′t 1 0
1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

The rank of the right bottom matrix is clearly 2. In the top left matrix, subtract
to the two first rows 1/2 times each of the rows indexed by the points of U . This
gives the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j U

3 · 2n−2 − 1 1 − 2n−2

1 − 2n−2 2n−2 − 1 0

1

2 0
. . .

0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

The rank of the bottom right matrix is equal to 2n−1 − 2 and the rank of the top
left matrix is 1. In view of all computations done, the rank of the matrix M · M t

is then equal to 2n−1 − 2 + 2 + 2n−1 − 2 + 1 = 2n − 1. �

3. Tangles

As it was indicated in the Introduction, Anglada and Maurras [2] obtain a
complete linear description for the polytope P (n−1, n, q) of hyperplanes of AG =
AG(n, GF (q)). We summarize their result. A tangle in AG is a set of qn−1 +
qn−2+· · ·+1 hyperplanes that contains exactly one hyperplane per class of parallel
hyperplanes. There are qqn−1+···+1 tangles. Select one tangle, and denote it by T .
For a point i of AG, let ti be the number of hyperplanes in T which contain the
point i. Then define t and x to be the vectors of components ti and xi respectively,
for i ∈ AG. Let β = (qn−1 + · · · + q) · qn−2. To each tangle T , there corresponds
the affine inequality

t · x ≥ β. (31)
Anglada and Maurras [2] prove that Inequality (31) defines a facet of the polytope
P (n−1, n, q) and, conversely, that each facet is defined by Inequality (31) for some
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Table 3. For each of the 14 orbits of tangles for n = 4, q = 2,
the coefficients of a corresponding inequality are given, as well as
the number of tangles in the orbit.

Coefficients of the tangle inequality Number of tangles
1 15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 16
2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 16
3 14 8 6 8 6 8 8 8 6 6 8 6 6 8 6 8 240
4 9 7 7 9 7 9 9 7 9 7 7 9 9 7 7 1 240
5 13 9 7 7 7 7 9 9 7 5 7 5 7 7 5 9 1680
6 10 8 8 10 8 10 8 8 8 6 6 2 8 6 6 8 1680
7 12 8 8 8 8 8 8 8 8 4 8 4 8 8 4 8 560
8 11 7 7 11 7 11 7 7 7 7 7 3 7 7 7 7 560
9 12 8 8 8 8 8 10 8 6 6 6 4 6 6 6 10 6720
10 11 7 9 9 9 9 9 7 7 5 7 3 7 7 5 9 6720
11 11 9 9 9 7 7 11 7 5 5 7 5 7 5 7 9 6720
12 10 8 10 10 8 8 10 6 6 4 8 4 8 6 6 8 6720
13 10 6 10 10 6 10 10 6 6 6 10 6 6 6 6 6 448
14 9 9 9 9 5 9 9 9 9 5 9 5 9 5 5 5 448

tangle T . Moreover, the vertices of this facet are all the hyperplanes not taken in
the tangle T .

It is tempting to try to generalize Anglada and Maurras’ characterization of
facets of P (n−1, n, q) to P (m, n, q), for a given m satisfying 1 ≤ m ≤ n−2. When
adequately rewritten, some of the FDIs described in Section 2 for P (m, n, q) have a
left-hand side which is obtained from some tangle as in the case of the hyperplane
polytope (see previous paragraph), but with a different right-hand side. In the
opposite direction, only some of the tangle inequalities provide the left-hand side
of a FDI of P (m, n, q).

Let us be more explicit for the example of P (2, 4, 2). In AG(4, GF (2)), the 215

tangles are sorted into 14 orbits under the action of the affine group. Table 3
lists the coefficients of a corresponding inequality for each orbit, together with the
number of tangles in the orbit.

Remember that each tangle produces an affine inequality having in its right-
hand side the value β as in Equation (31). Moreover, each such inequality defines
a facet of P (3, 4, 2). On the other hand, the eight families of FDIs of P (2, 4, 2)
are provided in Table 1. Because the polytope P (2, 4, 2) is not full-dimensional,
each facet is described by several affine inequalities. Taking this into account,
we checked which facets are defined by an inequality coming from some tangle.
Our results (independently obtained by Anglada [1]) are summarized in Table 4.
There is no tangle inequality producing a Point-Hyperplane Facet, nor the 3D-
Frame Facet.



338 J. CHRISTOPHE AND J.-P. DOIGNON

Table 4. For P (2, 4, 2), correspondence between facets and tan-
gle inequalities written in the form

∑
i∈AG aixi ≥ c.

Facets of P (2, 4, 2) Associated tangle ineq. Right-hand side
Trivial of Type I 15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 28
Trivial of Type II 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 24
Point-Hyperplane - -

Plane-Frame 12 8 8 8 8 8 8 8 8 4 8 4 8 8 4 8 24
Fifth 10 8 10 10 8 8 10 6 6 4 8 4 8 6 6 8 24

3D-Frame - -
4D-Frame 9 9 9 9 5 9 9 9 9 5 9 5 9 5 5 5 24

Eighth 11 7 9 9 9 9 9 7 7 5 7 3 7 7 5 9 24

We also tried to generalize tangles to “tangles of m-subspaces” but were not
successful in obtaining FDIs. We refer the reader to Christophe [8] for the full
story.

4. The automorphism group

For some polytopes, their automorphism groups helped produce new facets from
known ones (see for instance [5],[9] or [10]). Automorphisms also help sort facets
into meaningful families. With these remarks in mind, we now aim at determining
all the combinatorial automorphisms of the polytope we are studying, that is the
polytope P (m, n, q) of m-subspaces of AG(n, GF (q)).

Let us first recall some notions about finite affine spaces (cf. [4]). A semiaffinity
of AG = AG(n, GF (q)), where n > 1, is any permutation α : AG → AG which
maps any line to a line; in case q = 2, we also require than any plane be mapped to
a plane (for q > 2, the latter condition follows from the first). It can be shown that
semiaffinities admit an easy description when a frame is selected in AG (so that we
can use coordinates). Then, a semiaffinity is exactly a mapping α : AG → AG :
x → α(x) where the i-th coordinate of the image is given by

(α(x))i =
n∑

j=1

mij σ(xj) + ti (32)

for some regular matrix (mij) in (GF (q))n×n, some automorphism σ of the Galois
field GF (q) and some translation vector (ti) having n coordinates in GF (q). The
semiaffinities of AG form the semiaffine group AΓL(n, GF (q)) = AΓL(AG). When
we impose that σ be the identity on GF (q), we get the affinities of AG, which form
the affine group AGL(n, GF (q)) = AGL(AG).

Any semiaffinity α of AG = AG(n, GF (q)) permutes the points of AG among
themselves and also m-subspaces of AG among themselves, while preserving the
incidence relation. Hence, α induces on R

qn

a linear permutation α′ which accord-
ingly permutes the coordinates xi indexed by points i in AG, and moreover this
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linear permutation α′ sends any vertex of the polytope P (m, n, q) onto a vertex
of the same polytope. Hence, the semiaffinity α induces a combinatorial automor-
phism of the polytope P (m, n, q) which is the restriction of α′ to the set of vertices
of P (m, n, q). Remember that a combinatorial automorphism of a polytope can
be defined as a permutation of the vertices which maps, for each facet F , the set
of vertices of F onto the set of vertices of some facet of the polytope. Among
combinatorial automorphisms, we find those induced by linear permutations (or
more generally, affinities) of the ambient real space that map the polytope onto it-
self. For instance, in our case, we just saw that semiaffinities of AG produce linear
permutations preserving the polytope P (m, n, q), which in turn induce combina-
torial automorphisms. When 0 < m < n − 1, it happens that all combinatorial
automorphisms occur in this way.

Proposition 4.1. Any semiaffinity of AG = AG(n, GF (q)) induces as just indi-
cated a combinatorial automorphism of the polytope P (m, n, q). For 1 ≤ m ≤ n−2,
each automorphism of the polytope is induced in this way by some semiaffinity
of AG.

As a consequence, the automorphism group of the polytope P (m, n, q) is canon-
ically isomorphic to the semiaffine group AΓL(AG(n, GF (q))). We start the proof
with two lemmas.

Lemma 4.2. Let 1 ≤ m ≤ n−2. In the n-dimensional affine space AG(n, K) over
a skew-field K, select one m-subspace per m-direction in such a way that any two
of the selected m-subspaces meet. Then the collection F of all these m-subspaces
has a nonempty intersection.

Proof. We proceed by recurrence on m. The case m = 1 is trivial (because n ≥ 3):
Take two of the lines in F , say D and E, and let a be their intersection point.
For each line direction not parallel to the plane generated by D and E, the line in
that direction which lies in F must contain a. It is then clear that a belongs to
all lines from F .

Assuming m > 1, let us suppose the statement is true for the case of (m − 1)-
subspaces, and prove it for the case of m-subspaces. We first show that F has the
following property:

(*) Consider some (m−1)-direction D. Then the m-subspaces of F whose direction
contains D have as their intersection some (m − 1)-subspace in direction D.

Indeed, let A, B be two m-subspaces from F which are parallel to the (m− 1)-
direction D. As by assumption they share a common point, their intersection is an
(m− 1)-subspace with direction D. Thus A and B generate an (m + 1)-subspace,
let it be Z. Now take any m-direction E containing the (m − 1)-direction D but
not parallel to Z. There exists such a direction because m + 1 < n. Take the m-
subspace C of F in direction E. As C meets A, then A∩C is an (m−1)-subspace
with (m − 1)-direction D, that is, parallel to A ∩ B. Moreover, C ∩ Z is also an
(m− 1)-subspace, so A∩C = Z ∩C. The only way C can meet B is then to have
A∩B = A∩C = B ∩C. This is true for all C’s of F whose direction contains the
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(m−1)-direction D but which are not parallel to Z. Take then an element F of F
whose direction contains the (m−1)-direction D and which is parallel to Z. As F
must meet C in a (m− 1)-subspace, we derive D ∩C = A∩B, and Statement (*)
is proved.

Let us come back to the induction proof of Lemma 4.2. By applying State-
ment (*) to each (m − 1)-direction, we obtain a family H of (m − 1)-subspaces.
Let us prove that if U , V are in H, then U and V meet. Suppose to the contrary
U ∩ V = ∅. Then there exists some m-subspace A in F such that U is contained
in A and also A ∩ V = ∅. Next, there exists some subspace B in F such that
V is contained in B and A ∩ B = ∅. We have then a contradiction because by
assumption we must have A∩B �= ∅. So we can apply the recurrence to H. Thus,
there exists some point belonging to each (m − 1)-subspace of H. This point also
belongs to all the elements of F . �

Lemma 4.3. For 1 ≤ m ≤ n−2, any facet F of P (m, n, q) has at most (qn−m − 1)·[
n
m

]
q

vertices. Moreover, if F has exactly this number of vertices, then F is a

Trivial Facet of Type I.

Proof. As before, we identify any m-subspace with its characteristic vector. For
each m-direction of the affine space AG = AG(n, GF (q)), the qn−m parallel m-
subspaces in this direction form a partition of AG. The point (qm−n, qm−n, . . . ,
qm−n) in R

qn

is the center of gravity for all the (characteristic vectors of) m-
subspaces in a given direction. Then at most qn−m − 1 m-subspaces in such a
direction give a vertex of the given facet F . Indeed, if F contained all the m-
subspaces of some m-direction, then F would contain the corresponding center of
gravity. But this center is also the center of gravity of all of the m-subspaces in
any other m-direction, hence F would contain all the vertices of the polytope. We

conclude that F has at most (qn−m − 1) ·
[

n
m

]
q

vertices.

Let us prove the 2nd assertion. Suppose the facet F contains exactly (qn−m− 1)·[
n
m

]
q

vertices. Thus, from previous paragraph, F contains for each m-direction

qn−m − 1 of the qn−m m-subspaces in that direction. To prove that F is a Trivial
Facet of type I, we consider the family A of all vertices, or m-subspaces, not in F
and exhibit some point i of AG which belongs to each member of A.

A first step is to prove that any two members of A intersect. Suppose that
two m-subspaces A and A′ of AG are disjoint and also A ∈ A. Let us then prove
A′ /∈ A.

The union of all m-subspaces parallel to A that meet A′ forms a subspace T of
some dimension t. Clearly, T is partitioned into m-subspaces parallel to A; call
their collection U and notice A /∈ U . Similarly, T is partitioned into m-subspaces
parallel to A′; call their collection U ′ and notice A′ ∈ U ′. For U in U or in U ′,
we denote by xU the characteristic vector of U . All vectors xU belong to R

qn

and
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they obviously satisfy

1
qm−t

∑
U∈U

xU =
1

qm−t

⎛
⎝xA′

+
∑

V ∈U ′\{A′}
xV

⎞
⎠ .

The left-hand side gives the center of gravity of some vertices of the facet F
(because all m-spaces in the direction of A but A belong to F ). Hence, the right-
hand side is a point in F and so A′ is a vertex of F , that is A′ /∈ A.

The second and final step of the proof is to show that all members of A have a
common point. This follows from Lemma 4.2. �

Proof of Proposition 4.1. For any semiaffinity α of AG, denote by f(α) the com-
binatorial automorphism of the polytope P (m, n, q) induced by the linear permu-
tation α′ (see paragraph before the statement of Prop. 4.1). Clearly, the mapping
f : AΓL(n, GF (q)) → Aut(P ) is an injective homomorphism of groups. We pro-
ceed to prove that f is surjective.

Recall form Section 2.1 that for each point i of AG, there is a Trivial Facet of
type I with equation xi ≥ 0. Denote by TFI the collection of all these facets.
The resulting correspondence between points of AG and facets in TFI is clearly
one-to-one. Lemma 4.3 entails that TFI exactly consists of those facets having
the maximum number of vertices. Hence, any combinatorial automorphism β of
P (m, n, q) maps any element of TFI to some element of TFI. Consequently, β,
which actually is a permutation of the vertices of P (m, n, q), in other words of the
m-subspaces of AG, maps all the m-subspaces avoiding a given point i on all the
m-subspaces avoiding some point. Denoting as α(i) the latter point, we see that
β induces a permutation α of the points of AG. Moreover, for any point p and
m-subspace M of AG, we have p ∈ M implies α(p) ∈ β(M). It follows that α maps
any m-subspace to some m-subspace, and then also any line to some line. Finally,
α is a semiaffinity which induces the given combinatorial automorphism β. �

This completes the proof of Proposition 4.1, which describes the automorphism
group of the polytope P (m, n, q) in case 1 ≤ m ≤ n − 2. In the case of P (2, 4, 2),
it is then easily seen that the eight families of FDIs in Table 1 define orbits of
the action of the automorphism group on the set of all facets. The same assertion
is not true for the generalized families considered in Section 2: for instance, the
choice in Section 2.5 of various subsets S (not affinely equivalent subsets S, to be
precise) will deliver facets not lying in a same orbit.

For the hyperplane polytope P (n − 1, n, q), all facets have the same number of
vertices: this follows from the characterization of the facets due to Anglada and
Maurras [2] and recalled in Section 3. So, the last assertion of Lemma 4.3 does
not extend to this polytope. Even more, the automorphism group of the polytope
P (n − 1, n, q) has a completely different structure than the one of P (m, n, q) for
1 ≤ m ≤ n − 2.
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Proposition 4.4. The automorphism group of the polytope P (n−1, n, q) consists
of all permutations of the collection of hyperplanes of AG(n, GF (q)) that stabilize
the partition into classes of parallel hyperplanes.

Proof. The proof is immediate in view of the characterization of the vertex set of
a facet: by Anglada and Maurras [2] (cf. Sect. 3 here), each facet of P (n− 1, n, q)
arises from some tangle, and its vertices are all hyperplanes outside this tangle.
Thus the set of vertices of a facet consists in a collection of hyperplanes which
misses exactly one hyperplane per direction. �

The order of the automorphism group of the hyperplane polytope P (n−1, n, q)

equals ( qn−1
q−1 )! (q!)

qn−1
q−1 . Notice that the polytope P (n−1, n, q), with n ≥ 2, admits

combinatorial automorphisms that are not induced by any semiaffinity of AG.

5. Adjacency of P (m, n, q)

Knowing the adjacency relationship of vertices could help in future search for
facets of P (m, n, q). Recall that two vertices of a polytope are adjacent if they
are the vertices of a 1-dimensional face. Equivalently, the intersection of all facets
containing both vertices does not contain any other vertex of the polytope; this is
the criterion used in the proofs of this section. Adjacency of vertices P (m, n, q) is
characterized first for q = 2, then for q ≥ 3. To formulate some conditions about
directions of lines in AG = AG(n, GF (q)), we make use of the projective space at
the infinity of the affine space AG (cf. [3, 4]).

Proposition 5.1. Two vertices of P (m, n, 2) are adjacent if and only if, as m-
subspaces of the affine space AG = AG(n, GF (2)), they have a nonempty intersec-
tion or their common line directions form in the hyperplane at infinity a projective
subspace of dimension strictly less than m − 2.

Proof. First, we prove that if two m-subspaces A and B of AG have a nonempty
intersection, they deliver two adjacent vertices of the polytope P (m, n, 2). To show
this, we prove that there are no other vertices of the polytope in the intersection
of all the facets which contain the vertices (associated to) A and B. Remark that
A and B belong in particular to the facets with equations:

• xi = 0 (Trivial Facet of Type I) for all i ∈ AG \ {A ∪ B};
• xi = 1 (Trivial Facet of Type II) for all i ∈ A ∩ B.

There does not exist any m-subspace different from A and B belonging to the
intersection of the facets just listed. Suppose on the contrary there exists one, say
C. Then C must be included in A ∪ B (because of the Trivial Facets of Type I)
and also have at least one point in A \ B and at least one point in B \ A. The
m-subspace C must also contain A∩B (because of the Trivial Facets of Type II).
Then, the fourth point of the plane generated by a point of C in A \B, a point of
C in B \A and a point of C in A∩B lies in C and in AG \ {A∪B}. This gives a
contradiction. So A and B are adjacent vertices of the polytope.
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Let us now prove that two m-subspaces A and B with an empty intersection and
a shared subspace at infinity of dimension less than m − 3 are adjacent. Assume
some m-subspace C belongs to all facets which contain both A and B. We show
that C /∈ {A, B} leads to a contradiction. Assuming C /∈ {A, B}, we notice first
C ⊆ A ∪ B, because for i ∈ AG \ (A ∪ B), the Trivial Facet of Type I with
equation xi ≥ 0 contains the vertices A and B, thus also vertex C. Necessarily,
C contains at least one point in A and one point in B. So C can be partitioned
into two parallel subspaces of dimension m − 1, one included in A, the other in
B. It results that the subspaces A and B have in common at infinity a projective
subspace of dimension m − 2. This contradicts our assumption.

It remains to prove that two m-subspaces A and B which have an empty in-
tersection and a shared subspace at infinity of dimension m − 1 or m − 2 are not
adjacent. In both cases, A ∪ B can be partitioned into two other m-subspaces C
and D. Let p be the middle point of (the characteristic vectors of) A and B. Then
p is also the middle point of the vertices C and D, thus A and B are nonadjacent
vertices of the polytope P (m, n, 2). �

When q ≥ 3, any two vertices of the polytope P (m, n, q) are adjacent. More gen-
erally, we have the following result. Remember that a polytope P is k-neighbourly
if 1 ≤ k ≤ dim(P ) and every k of its vertices are exactly the vertices of some
proper face of the polytope.

Proposition 5.2. For 0 ≤ m ≤ n − 1 and q ≥ 2, the polytope P (m, n, q) is
(q − 1)-neighbourly.

For m = n − 1, the same result appears in Anglada and Maurras [2].

Proof. Let S1, S2, . . . , Sq−1 be m-subspaces and let F be the intersection of all
the facets containing the (characteristic vectors of) S1, S2, . . . , Sq−1. We show
that any m-subspace T which belongs to F is one of S1, S2, . . . , Sq−1. Among
the facets which contain F , we have the Trivial Facets of Type I with equation
xi = 0 for all points i of AG \ (S1 ∪ S2 ∪ · · · ∪ Sq−1). Consequently we have
T ⊂ S1 ∪ S2 ∪ · · · ∪ Sq−1. Because the qm points of T are distributed in the q − 1
m-subspaces Si, the average number of points in T ∩Si is equal to or greater than
qm/(q − 1). As qm/(q − 1) > qm−1, for at least one value of i, the m-subspace Si

contains more than qm−1 points of T . Hence T = Si. �

6. Conclusion

Several pieces of information have been given on the polytope P (m, n, q) of m-
subspaces of AG(n, GF (q)). Families of facets are established, the automorphism
group is described and the adjacency of vertices is characterized. Future work on
this polytope should aim at finding more facets, in particular for the case q > 2.
In passing, we notice that we left aside the question of separation by the facet-
defining inequalities we found. The question of separation becomes interesting
when linear optimization on the polytope P (m, n, q) is required. Here, it is left as
an open problem.
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After completion of the results presented here, we produced new families of
facets by first generating the ridges of known facets, and then finding a second
facet containing a given ridge. In another approach, we directly generalized FDIs
from the case m = n− 1 to other values of m. The various outcomes (reported in
Christophe [8]) make even more apparent that the structure of P (m, n, q) is wild.
We have at this time no hope to forge a full description of P (m, n, q). This is
in strong contrast with the case of the polytope P (n − 1, n, q) of hyperplanes of
AG(n, GF (q)), for which Anglada and Maurras [2] provide a complete characteri-
zation of the facets. In this case, the FDIs are built in a combinatorial manner just
from the tangles of AG(n, GF (q)). It would be interesting to better understand
what makes this result possible, and only possible in the case of hyperplanes.

References
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