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MARKET CLEARING PRICE AND EQUILIBRIA
OF THE PROGRESSIVE SECOND PRICE MECHANISM

Patrick Maillé
1

Abstract. The Progressive Second Price mechanism (PSP), recently
introduced by Lazar and Semret to share an infinitely-divisible resource
among users through pricing, has been shown to verify very interest-
ing properties. Indeed, the incentive compatibility property of that
scheme, and the convergence to an efficient resource allocation where
established, using the framework of Game Theory. Therefore, that
auction-based allocation and pricing scheme seems particularly well-
suited to solve congestion problems in telecommunication networks,
where the resource to share is the available bandwidth on a link. This
paper aims at supplementing the existing results by highlighting some
properties of the different equilibria that can be reached. We precisely
characterize the possible outcomes of the PSP auction game in terms
of players bid price: when the bid fee (cost of a bid update) tends to
zero then the bid price of all users at equilibrium gets close to the so-
called market clearing price of the resource. Therefore, observing an
equilibrium of the PSP auction game gives some accurate information
about the market clearing price of the resource.
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Introduction

Network pricing is encountering a growing interest from resource providers, since
it appears as a solution against congestion. Indeed, with the appearance of new
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services that need high communication rates (video on demand) and the soaring
of the number of users, situations of network saturation occur more and more
frequently. Therefore, pricing mechanisms that constitute an incentive to regulate
consumption may replace in the future the current flat-rate schemes, with which
congestion is more likely to happen. The recent literature on the subject shows the
importance of developping new allocation and pricing mechanisms: many papers
propose pricing solutions, for wireless [1, 16] and wired networks [6, 8, 10, 11, 18].

The objective in both cases is to fairly share the resources (bandwidth, comput-
ing power) among users. The notions we use here – fairness, optimal allocation,
user reaction to a pricing mechanism – come from economics, which provides a
theoretical framework to study the performance of a system. In particular, the
formalism of non-cooperative game theory is well-suited to describe the behavior
of users and resource sellers (the players in the allocation game), since the poten-
tial users of a network, competing for the resource, can be considered as behaving
selfishly.

Using this formalism, Lazar and Semret recently introduced the Progressive
Second Price mechanism (PSP) [9,17], an auction-based scheme to allocate band-
width among users: players can modify their bid as a reply to the bids submitted
by the others (with a bid change fee ε), and allocations and prices are computed
following second-price auction principles.

Lazar and Semret prove that players are incentivized to bid truthfully, and that
the auction game converges after a finite time to an 2ε-Nash equilibrium, i.e. a
situation where no player (user) can improve his utility by more than a certain
value 2ε > 0 by changing his bid. Moreover, that equilibrium corresponds to an
efficient resource allocation in the sense that it maximizes social welfare.

In this paper, we focus on the structure of the equilibrium reached by the PSP
auction game. We link that equilibrium to the users’ willingness-to-pay functions,
and illustrate how that result could be used by the seller in order to maximize his
revenue (notice that it is natural to consider that the seller will try to obtain the
highest revenue: see [13, 14] for results in the case of a single item to be sold).

The paper is organized as follows. Section 1 presents the PSP mechanism
suggested by Lazar and Semret and quote their main results. In Section 2, we
define the market clearing price as the unit price for which the aggregated demand
equals the total available resource, and we characterize all Nash equilibria of the
game where players (users) reveal their true valuations. We establish the relation
between such equilibria, called truthful, and the market clearing price. Since the
PSP scheme leads to 2ε-Nash equilibria, we investigate in Section 3 all truthful
such equilibria for small values of ε, and also relate them to the market clearing
price. Conclusions and future work are presented in Section 4.
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1. The progressive second price mechanism

We describe here the PSP allocation and pricing mechanism for an infinitely
divisible resource (bandwidth on a communication link1 [9]).

In order to share the total amount of available resource Q, among a set I =
{1, ..., I} of players, Lazar and Semret suggest to use the following auction-based
scheme:

• each player i submits a 2-dimensional bid si = (qi, pi) ∈ Si := [0, Q] ×
[0, +∞), where qi is a desired quantity of resource and pi the unit price
player i is willing to pay for that resource. A bid s0 := (Q, p0) is introduced
by the owner of the resource to ensure that the bandwidth is not sold at
a unit price below p0, that is called the reserve price, we therefore define
I0 := I ∪ {0} where player 0 is the resource owner;

• allocated quantities of resource (ai)i∈I0 , and prices (ci)i∈I charged to play-
ers are computed based on the bid profile s := (s1, ..., sI): the resource goes
first to players with the highest prices in their bids until it is completely al-
located. The pricing rule is chosen such that the total charge ci of player
i covers the “social opportunity cost” of his presence, i.e. the declared
willingness-to-pay of players who are excluded by player i’s bid. In that
sense, the PSP scheme is an extension of Vickrey auctions [19], and is
inspired by Clarke-Groves mechanisms [4, 7].

More formally, the resource allocation ai(s) that player i obtains and
the price ci(s) he is charged when the bid profile is s are given by

ai(s) := qi ∧ Q
i
(pi, s−i), (1)

ci(s) :=
∑
j �=i

pj [aj(s−i) − aj(s)] , (2)

where s−i := (s1, ..., si−1, si+1, ..., sI) is the bid profile that player i faces,
i.e. s = (si; s−i), and

Q
i
(pi, s−i) :=

⎡
⎣Q −

∑
pk≥pi,k �=i

qk

⎤
⎦

+

(3)

is the amount of resource remaining after all players with price larger than
pi are allocated their asked quantity (i.e. the maximum allocation that
player i can expect by bidding price pi when faced with the bid profile
s−i). The allocation aj(s−i) corresponds to the allocation that player j
would have obtained according to the allocation rule (1) if player i had
not been present in the game, i.e. if the bid profile had been s−i instead
of s.

1Lazar and Semret also studied an extension of PSP to a whole network, but we focus in this
paper on the case of a single link.
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Figure 1. Allocation and price to pay for player i with bid si =
(qi, pi), and corresponding utility Ui.

User preferences are modelled by quasilinear utility functions, of the form
Ui(s) := θi(ai(s)) − ci(s), where θi(ai) is the maximum price player i is will-
ing to pay to obtain allocation ai (θi is called the valuation function of user i,
assumed nondecreasing, differentiable, and such that θi(0) = 0).

The PSP allocation and pricing rules, and the associated value of player i’s
utility, are illustrated in Figure 1.

The auction game works as follows: each player i ∈ I can make a bid si (or
change his bid) each T units of time, knowing perfectly the bids made by the
other players s−i. There is a bid fee ε charged for each bid change. Moreover, it
is assumed that two players never bid at exactly the same time.

Defining a truthful bid as a bid si = (qi, pi) such that pi = θ′i(qi) (that is,
bidding a price equal to the marginal valuation), Lazar and Semret prove (see [9],
Prop. 1) that submitting truthful bids is profitable for players (incentive compati-
bility property). Consequently, they suggest a truthful behavior for players, which
ensures the convergence of bids in a finite time to a truthful 2ε-Nash equilibrium,
i.e. a bid profile where no player can increase his utility by more than 2ε by unilat-
erally changing his bid [9]. Moreover, the corresponding allocation is efficient in
the sense of the social welfare

∑
i∈I∪{0} θi(ai) with θ0(q) := p0q (see [17], Prop. 3).

To derive those theoretical results, Lazar and Semret assume that the valuation
functions verify some regularity properties, that we also consider in this paper:

Assumption 1.1. For any i ∈ I,

• θi is differentiable, and θi(0) = 0;
• θ′i ≥ 0, non-increasing and continuous;
• ∃γi > 0, ∀z ≥ 0, θ′i(z) > 0 ⇒ ∀η < z, θ′i(z) ≤ θ′i(η) − γi(z − η).
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Assumption 1.2. ∃κ > 0, ∀i ∈ I,

• ∀y, z, y > z ≥ 0, θ′i(y) − θ′i(z) > −κ(y − z);
• θ′i(0) < +∞.

Remark 1.3. Assumption 1.1 can be interpreted as follows: more resource means
more value for a user, but the valuation of obtaining one more resource unit
decreases with the allocation, since its relative impact on performance decreases.
The parameter γi gives a lower bound on this decreasingness (or equivalently on
the concavity of θi): while it is strictly positive, the marginal valuation of resource
decreases faster than −γi. Likewise, Assumption 1.2 imposes an upper bound on
the decreasingness of the marginal valuation function: θ′i decreases more slowly
than −κ. Notice that we necessarily have γi ≤ κ for all i ∈ I. When the valuation
functions of all users are piecewise twice differentiable, then we can satisfy both
assumptions by setting γi := supq:θ′

i(q)>0 θ′′i (q) for all i ∈ I and κ := infi,q θ′′i (q).
In the particular case when all users have the same valuation function that is
parabolic in its increasing part, i.e. the marginal valuation function is of the form
θ′i(q) = [θ′i(0) − γiq]+, then γi = κ for all users.

2. Market clearing price and truthful Nash equilibria

In this section, we define the market clearing price and the truthful Nash equi-
libria of the PSP auction game, and prove that those notions are intimately linked.
To do so, we first introduce the demand function di of a user i ∈ I.

Definition 2.1. For i ∈ I, define the demand function of player i as the function
di such that for every unit price p > 0,

di(p) = argmax
q

{θi(q) − pq}. (4)

di(p) thus corresponds to the resource quantity that player i would want to buy
in order to maximize his utility, if the unit price of the resource were fixed to p.

Assumption 1.1 ensures the existence and uniqueness of di(p), ∀p > 0. Indeed,

we have di(p) =
{

(θ′i)
−1(p) if 0 < p ≤ θ′i(0)

0 if p > θ′i(0) . (Remark that ∀q, θ′i(q) > 0 ⇒
di(θ′i(q)) = q.)

Definition 2.2. Under Assumptions 1.1 and 1.2, all demand functions (di)i∈I are
continuous and non-increasing on (0, +∞[, and they are strictly decreasing as long
as they take strictly positive values.

The market clearing price is then the unique price u (if it exists) such that

∑
i∈I

di(u) = Q. (5)

We also define I+ := {i ∈ I|di(u) > 0}, i.e. the set of players that would buy a
strictly positive quantity of resource if the unit price were u.
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Remark 2.3. Those concepts of demand function and market clearing price are
common in economics. They are also more and more used to study telecommuni-
cation systems, as for example in [5, 12]. We straightforwardly obtain a condition
for the existence of the market clearing price:

Lemma 2.4. A necessary and sufficient condition for the market clearing price
to exist and be strictly greater than p0 is that

∑
i∈I

di(p0) > Q. (6)

We now define the notion of Nash equilibrium. In game theory, a Nash equilibrium
is a configuration of player strategies such that nobody can improve his utility by
unilaterally changing his strategy. When they exist, Nash equilibria are generally
expected to represent the possible outcomes of noncooperative games. In our
context Nash equibria can be formally defined as follows.

Definition 2.5. A Nash equilibrium of the PSP game is a bid profile s = (s1, ..., sI)
such that

∀i ∈ I, ∀s̃i = (q̃i, p̃i) ∈ Si, Ui(s̃i, s−i) ≤ Ui(s)

i.e. no player can be better off by unilaterally changing his bid.
Moreover, we say that a Nash equilibrium is truthful if all players submit a

truthful bid, i.e. pi = θ′i(qi), ∀i ∈ I.

Remark 2.6. The truthful bidding strategy pointed out by Lazar and Semret
leads to a 2ε truthful Nash equilibrium. However, Nash equilibria of the PSP game
are not necessarily truthful: assume for example that the marginal valuation of
player 1 is such that θ′1(Q) > p0. Then it is easy to see from the PSP allocation
and pricing rules that the bid profile such that s1 = (Q, p1) with p1 > maxi�=1 θ′i(0)
and si = (0, 0) for all i �= 1 is a Nash equilibrium: player 1 gets all the resource
and pays a unit price p0, while no other player could obtain some resource at a
unit price below p1.

In this paper, we consider that users follow a myopic truthful bid update strat-
egy like the one proposed by Lazar and Semret. We therefore focus only on truthful
Nash (and ε-Nash) equilibria of the PSP game.

We now characterize all truthful Nash equilibria of the PSP auction game, using
the market clearing price u:

Proposition 2.7. If (6) holds, then under Assumptions 1.1 and 1.2, the truthful
Nash equilibria of the PSP game are the bid profiles s∗ such that all users that
effectively obtain some resource bid the same unit price p∗i = u with u the market
clearing price.

More precisely, Condition (6) implies that every bid profile s∗ such that

(N)
{ ∀i ∈ I+, s∗i = (di(u), u)

∀i ∈ I \ I+, s∗i = (q∗i , θ′i(q
∗
i )) with q∗i ∈ [0, Q]
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is a truthful Nash equilibrium for the PSP auction game; and under Assump-
tions 1.1 and 1.2, (N) is also a necessary condition for a bid profile to be a truthful
Nash equilibrium.

Proof. Define (as in [17]) for all bid profile s:

Qi(y, s−i) :=

⎡
⎣Q −

∑
j �=i:pj>y

qj

⎤
⎦

+

and Pi(z, s−i) := inf {y ≥ 0 : z ≤ Qi(y, s−i)} ,

which implies that ci(s) =
∫ ai(s)

0
Pi(z, s−i)dz, and that

∀y, z z ≤ Qi(y, s−i) ⇔ Pi(z, s−i) ≤ y. (7)

We need to show that when the bid profile is s∗, no player i ∈ I could improve
his utility by unilaterally changing his bid. First note that the allocations (a∗

i )i∈I
can be computed: since ∀i ∈ I, p∗i ≤ u and Q

i
(., s∗−i) is non-decreasing, we have

Q(p∗i , s
∗
−i) ≤ Q(u, s∗−i) = Q −

∑
j �=i

dj(u) = di(u),

which proves that a∗
i = di(u) (see Eq. (1)).

Assume that there exist r > 0 and η > 0 such that Pi(a∗
i + r, s∗−i) ≤ u − η. (7)

would then imply that a∗
i + r ≤ Qi(u− η, s∗−i) ≤ Q−∑

j �=i,j∈I+ dj(u) = a∗
i , which

leads to a contradiction, therefore

∀r > 0, Pi(a∗
i + r, s∗−i) ≥ u ≥ Pi(a∗

i , s
∗
−i), (8)

where the last inequality stems from the fact that a∗
i ≤ Q

i
(u, s∗−i) ≤ Qi(u, s∗−i)

and from (7). We can now compare the utility U∗
i that a player i ∈ I gets in

the current situation, with the utility Ũi he would receive by changing his bid (we
denote by ãi the corresponding allocation):

U∗
i − Ũi = θi(a∗

i ) − θi(ãi) −
∫ ai

ãi

Pi(z, s∗−i)dz ≥ (θ′i(a
∗
i ) − u)(a∗

i − ãi) (9)

where we used the concavity of θi, Equation (8) and the non-decreasingness of
Pi(., s∗−i). Finally we have

• if i ∈ I+ then θ′i(a
∗
i ) = u, and (9) gives U∗

i − Ũi ≥ 0;
• if i /∈ I+, then θ′i(a

∗
i ) ≤ u and a∗

i = di(u) = 0 ≤ a′
i, so U∗

i − Ũi ≥ 0.
Therefore none of the players, facing the others’ bids, has an interest to modify
his own bid: the bid profile s∗ is a truthful Nash equilibrium of the PSP game.

The fact that (N) is necessary under Assumptions 1.1 and 1.2 will be proved
later in this paper, as a consequence of Proposition 3.1. �
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Remark 2.8. Under condition (6), (N) implies that ∀i ∈ I, p0 ≤ Pi(q∗i , s∗−i) ≤ u,
so the seller revenue R :=

∑
i∈I ci verifies p0Q ≤ R ≤ uQ. Moreover, when

I+ = I, we have R = p0Q. Therefore the seller has no guarantee of obtaining the
best revenue possible from the resource, as pointed out in [3]. It could therefore
be interesting for the seller to put a reserve price close below the market clearing
price in order to maximize his revenue.

3. ε-Nash equilibrium and market clearing price

In this section, we establish that for each truthful ε-Nash equilibrium of the
game, the prices pi submitted by players in I+ (i.e. the players that effectively
get some resource) are close to the market clearing price for small values of ε.

Proposition 3.1. Assume Assumptions 1.1 and 1.2 and inequality (6) hold (thus
the market clearing price u exists and is larger than p0). Then for all truthful
ε-Nash equilibrium s with a sufficiently small ε, all players who obtain some re-
source have a bid price close to the market clearing price u, the distance between
those prices being upperbounded by a value only depending on ε and users utility
parameters. More precisely, we have

ε < min
i,j∈I+

{γi

8
[dj(u)]2

}
⇒ max

i∈I+
|u − pi| ≤ 2C

√
ε (10)

with C =
√

2κ max
i∈I+

{
1√
γi

}
. (11)

Proof. Since the proof is technical and uses several intermediate lemmas, it is
reported to the Appendix. �

Remark 3.2. This result can now be used to prove that (N) is a necessary
condition (see Prop. 2.7), as a truthful Nash equilibrium is a truthful ε-Nash
equilibrium for all ε > 0.

Proposition 3.1 proves that prices in the bids of a truthful ε-Nash equilibrium are
arbitrarily close to the ones in a real Nash equilibrium, that we have characterized
in Section 2. In particular, the bidding algorithm proposed by Semret in [9] will
lead to a price profile such that maxi∈I+ |u − pi| = Oε→0(

√
ε).

Those results can also be used to obtain an estimation of the market clearing
price based on the observation of the bid profile when an ε-Nash equilibrium is
reached:

Proposition 3.3. Consider a truthful ε-Nash equilibrium s. Under Assump-
tions 1.1, 1.2 and inequality (6), and for a sufficiently small bid fee ε, the distance
from the maximum unit price in the bid profile s to the market clearing price u is
upperbounded by a value depending on ε and the user valuation parameters (γi)i∈I
and κ, that tends to 0 as ε tends to 0.
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Formally, if we define û := maxi∈I pi then

|u − û| ≤ 2C
√

ε,

where C is given in (11).

Proof. Remark that maxi∈I\I+ pi ≤ u, and apply Proposition 3.1. �
Remark 3.4. This last result suggests that PSP provides an approximation of the
market clearing price u. From Remark 1.3, the precision of the estimation depends
both on user heterogeneity (via κ that is the upper bound of the concavity of all
users’ valuation functions) and on the form of user valuation functions (the closer
θi is to a parabole in its increasing part, the smaller the ratio of the maximum
concavity to the minimum concavity of the valuation function). The best precision
is attained when all users have an affine marginal valuation function of the form
θ′i(q) = [θ′i(0) − κq]+: in that case C =

√
2κ and |u − û| ≤ √

ε × 8κ.

4. Conclusions and perspectives

In this paper, we have complemented the study of the truthful equilibria of the
PSP scheme. We have introduced the market clearing price, which is a crucial
notion in economics, and linked it to the Nash equilibria of that auction game.
As the PSP described by Lazar and Semret actually leads to ε-Nash equilibria,
we have proved that prices in such equilibria are still close to the market clearing
price.

During our study, we have highlighted the fact that different Nash equilibria
(and ε-Nash equilibria) may exist for a fixed set of players. This hazard does not
seem desirable, and future work could be done, in order to obtain a mechanism that
would lead to a unique equilibrium. A challenging work would also be to extend the
results obtained in this paper for a single link to the case of a whole network with
several links, where players compete for bandwidth on different routes. Semret
proves in [17] that in that case the PSP auction game also converges to an ε-Nash
equilibrium with an efficient allocation, but the structure of the equilibrium bid
profile is not characterized.

The temporal aspect of the allocation game is also important: while the PSP
scheme allocates resource in real-time without reservation, the perceived quality
of service (and thus willingness-to-pay) often depends on the fluctuations of allo-
cations and prices. Allowing resource reservation, as what is proposed in [15] for
Walrasian auctions, would constitute a challenging extension of the model.

Another interesting extension of the model would be to consider the reserve
price p0 of the seller as a strategic variable. Indeed, as pointed out in Remark 2.8,
the only guarantee for the resource owner is that the unit selling price exceeds
the reserve price p0. However, setting this reserve price to a high level reduces
the probability that all the resource be sold. A trade-off then has to be found,
and the results of this paper suggest that using the information contained in bids
may help optimize that trade-off: for a sufficiently small bid fee ε, all the resource
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is sold at equilibrium when the reserve price is below the market clearing price
u. A possible strategy for the seller could therefore be to first set a low reserve
price and let the auction game converge, then to change that reserve price to a
value close to û in order to sell the resource at the highest unit price possible and
ensure a revenue close to u×Q. Nevertheless, adjusting the reserve price close to
the estimated market clearing price can be profitable for the seller only if players
are not able to predict that change. Otherwise, this information should be taken
into account by the players to determine their strategies and the form of the game
changes, because players would then be reluctant to reveal their valuation for the
resource. For example, if the seller updates its reserve price during the bidding
process, as was suggested in [2], the users incentives change and determining the
equilibria of the game becomes more difficult.

Appendix: proof of Proposition 3.1

To establish Proposition 3.1, we prove several intermediate results. First, we
give some inequalities that will be useful in the rest of the demonstrations:

Lemma 4.1. Under Assumptions 1.1 and 1.2, the following relations hold ∀i ∈ I:

∀a, b : 0 ≤ a ≤ b ≤ Q, θi(b) − θi(a) ≥ θ′i(b)(b − a) +
γi(b − a)2

2
(12)

∀e, f : 0 < e ≤ f ≤ θ′i(0), di(e) − di(f) ≥ f − e

κ
. (13)

Proof. (12) comes from Assumption 1.1 and the application of Taylor-Lagrange
formula, and (13) is a consequence of Assumption 1.2 after a variable change. �

Now we give a first result concerning the equilibrium allocations and prices:

Lemma 4.2. Assume that the bid profile s is truthful and constitutes an ε-Nash
equilibrium, and that the market clearing price u exists and is strictly greater than
p0 (condition (6) holds). Under Assumptions 1.1 and 1.2, we have ∀i ∈ I

ai ≥ di(u) −
√

2ε

γi
(14)

and pi ≤ u + κ

√
2ε

γi
· (15)

Proof. First notice that, since the demand functions (dk)k∈I are non-increasing
and Q

i
(., s−i) is non-decreasing:

∀p ≥ u, Q
i
(p, s−i) ≥ Q

i
(u, s−i) ≥

⎡
⎣Q −

∑
j∈I+,j �=i

dj(u)

⎤
⎦

+

≥ di(u) ≥ di(p). (16)
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This means that a player i ∈ I who submits bid (di(p), p) with p ≥ u is ensured
to obtain his asked quantity.

The lemma is trivial for i /∈ I+, since in that case di(u) = 0 and pi ≤ u, so we
assume here that i ∈ I+.

Denote by Ui the utility perceived by player i with the current bid profile s,
and Ũi(t̃) (resp. ãi) the utility (resp. the allocation) that player i would obtain
if he changed his bid to submit the bid t̃ = (q̃i, p̃i), the bids s−i of the other
players remaining unchanged. Assume ai ≤ di(u) (otherwise (14) is trivial). We
choose t̃ := (di(u), u). (16) implies Q

i
(u, s−i) ≥ di(u), so ãi = di(u), and (7) gives

Pi(di(u), s−i) ≤ u. We therefore have:

Ũi((di(u), u)) − Ui = θ(di(u)) − θ(ai) −
∫ di(u)

ai

Pi(z, s−i)dz

≥ θ(di(u)) − θ(ai) − u(di(u) − ai) ≥ γi(di(u) − ai)2/2

where we used (12) and the fact that θ′i(di(u)) = u for i ∈ I+. The ε-Nash
equilibrium condition implies that ∀t̃, Ũi(t̃) − Ui ≤ ε, so γi(di(u) − ai)2/2 ≤ ε,
which gives (14).

Relation (15) is obviously verified when pi < u. If pi ≥ u then (16) ensures
that ai = di(pi), and Relations (13) and (14) imply (15) (the inequality pi ≤ θ′i(0)
stems from the fact that bids are truthful). �

Lemma 4.3. Consider a truthful ε-Nash equilibrium. Let |I+| denote the cardinal
of I+, and p := maxi∈I+ pi. If |I+| > 1, then for ε < mini∈I+

{
γi

2 [di(u)]2
}
,

p ≥ u −√
ε

κ

|I+| − 1

√
2

mini∈I+ γi
. (17)

Proof. The result is trivial if p ≥ u. We thus focus on the case p < u. The quantity
qk asked by each player k ∈ I+ verifies:

qk = dk(pk) ≥ dk(p) ≥
(

dk(u) +
u − p

κ

)
(18)

where the last inequality comes from (13), with e := p and f := u (the inequality
u < θ′k(0) holds since k ∈ I+).

Now consider one player i ∈ I+ such that pi = mink∈I+ pk. From (1) we have

ai ≤
⎡
⎣Q −

∑
pk≥pi,k �=i,k∈I+

dk(pk)

⎤
⎦

+

=

⎡
⎣Q −

∑
k �=i,k∈I+

dk(pk)

⎤
⎦

+

.



476 P. MAILLÉ

Applying then (5) and (18), we obtain

ai ≤
[
di(u) − (|I+| − 1)

u − p

κ

]+

. (19)

But (14) indicates that ai > 0 for a sufficiently small ε (ε < γi

2 [di(u)]2), and
consequently the right-hand term in (19) is strictly positive. As a result, from
lemma 4.2 we have di(u) −

√
2ε
γi

≤ ai ≤ di(u) − (|I+| − 1)u−p
κ , which implies

(|I+| − 1)u−p
κ ≤

√
2ε
γi

and establishes the lemma. �

Lemma 4.4. Consider a truthful ε-Nash equilibrium. If there exist i, j ∈ I+ such
that pi < pj and pi < u, then for a sufficiently small ε (ε <

min(γi,γj)
8 [di(u)]2),

pj − pi ≤ κ

√
2ε

γj
. (20)

Proof. Lemma 4.2 implies that ai > 1
2di(u) > 0, therefore aj = dj(pj) (player

j bids at a higher price than i, and thus obtains his asked quantity). Since
Qi(pi, s−i) ≥ ai we have

Qj(pi, s−j) = Q −
∑

k �=j:pk>pi

qk = Qi(pi, s−i) + qj ≥ dj(pj) + ai. (21)

Consequently, (7) yields Pj(dj(pj) + ai, s−j) ≤ pi.
Now express the ε-Nash equilibrium condition for player j, with t̃ = (q̃j , pj)

where q̃j := min(dj(pj)+ai, dj(pi)). The fact that Qj(y, s−j) = limη→y Q
j
(η, s−j)

and the non-decreasingness of Q
j
(., s−j) imply that Q

j
(pj , s−j) ≥ dj(pj) + ai, so

ãj = q̃j . Thus we have

ε ≥ Ũj(t̃) − Uj = θj(q̃j) − θj(dj(pj)) −
∫ q̃j

dj(pj)

Pj(z, s−j)dz.

Using (12) and the non-decreasingness of Pj(., s−j), we obtain

ε ≥ (θ′j(q̃j) − pi)(q̃j − dj(pj)) + γj(q̃j − dj(pj))2/2

≥ γj(q̃j − dj(pj))2/2, (22)

since dj(pj) ≤ q̃j ≤ dj(pi), θ′j(dj(pi)) = pi and θ′j is non-increasing.
• If dj(pi) ≥ dj(pj)+ ai, then q̃j = dj(pj)+ ai, and (22) implies ε ≥ γja

2
i /2,

But with the ε chosen, ai ≥ 1
2di(u), so we would have ε ≥ γj

8 [di(u)]2,
which is in contradiction with the hypotheses.

• Therefore dj(pi) < dj(pj) + ai, and q̃j = dj(pi). (22) then gives dj(pi) −
dj(pj) ≤

√
2ε
γj

. Since 0 < pi < pj < θ′j(0), (13) proves the lemma.
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We can now establish Proposition 3.1.

Proof. If |I+| = 1, then the set I+ is reduced to one player {i} such that θ′i(Q) = u
and ∀j ∈ I \ {i}, θ′j(0) ≤ u. Lemma 4.2 then gives an upper bound for pi. Since
no player can ask more quantity than Q and bids are truthful, then pi ≥ u. We
then get 0 ≤ pi − u ≤ κ

√
2ε
γi

= C
√

ε, which proves the proposition when |I+| = 1.

Now consider the case |I+| > 1. Lemmas 4.2 and 4.3 prove that for a sufficiently
small ε,

|p − u| ≤ max
(

1,
1

|I+| − 1

)√
2κ max

i∈I+

{
1√
γi

}√
ε = C

√
ε. (23)

Moreover, Lemma 4.4 ensures that if there is a player i ∈ I+ such that pi < u,
then if ε is sufficiently small,

max
i∈I+

(p − pi) ≤ C
√

ε. (24)

Relations (23) and (24) then yield the proposition. �
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