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AN APPROACH TO ROBUST NETWORK DESIGN
IN TELECOMMUNICATIONS

GEORGIOS PETROU!, CLAUDE LEMARECHAL? AND
ApaM Ouorou!

Abstract. In telecommunications network design, one of the most
frequent problems is to adjust the capacity on the links of the network
in order to satisfy a set of requirements. In the past, these requirements
were demands based on historical data and/or demographic predic-
tions. Nowadays, because of new technology development and customer
movement due to competitiveness, the demands present considerable
variability. Thus, network robustness w.r.t demand uncertainty is now
regarded as a major consideration. In this work, we propose a min-
max-min formulation and a methodology to cope with this uncertainty.
We model the uncertainty as the convex hull of certain scenarios and
show that cutting plane methods can be applied to solve the under-
lying problems. We will compare Kelley, Elzinga-Moore and bundle
methods.

Keywords. Telecommunications network design, robust optimiza-
tion, min-max-min problems, cutting plane methods.
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1. INTRODUCTION

In the present competitive markets, robustness is regarded as a major considera-
tion in telecommunication networks. The demand presents considerable variability
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because of customers movement, introduction of new services and product devel-
opment. Historical data for predicting the future is inadequate since the area is
constantly changing or because there is no history for new services. In this work,
we study the problem of assigning capacity to the links of a network in order
to satisfy a set of requirements. We consider that the demand is an uncertain
parameter and propose a new formulation and a methodology to cope with this
uncertainty. To model the uncertainty, the demand is assumed to belong to an un-
certainty set and we seek for a capacity assignment of the links that is good enough
for every possible demand in the uncertainty set. Thus, our approach fits in the
framework of robust optimization as termed in [2,16]. We analyze the case where
the uncertainty set is the convex hull of given demand scenarios. Our approach
can be viewed as worst-case oriented since we consider a min-max-min criterion
which will result in conservative decisions, with the purpose of contributing to
the learning process of decision makers by seeking solutions that hedge against
demand uncertainty.

The paper is organized as follows. After reviewing the literature in Section 2,
we present our min-max-min formulation for the general case in Section 3. In
Section 4, we introduce the resolution procedures when the uncertainty set is de-
scribed by the convex hull of a reasonable number of scenarios. The computational
results are reported in Section 5, and Section 6 concludes this study.

2. RELATED WORKS

Stochastic programming and robust optimization are mathematical tools to deal
with uncertainty. They have been both used for telecommunication network design
under uncertainty.

A stochastic approach for the network design problem with uncertain demand
is presented in [23]. Sen et al. deal with the problem under the budget constrained
approach. They formulate a two-stage stochastic linear program and they solve it
with the use of stochastic decomposition [10]. This method is based on sampling
which has asymptotic properties and a statistically motivated stopping rule. The
first stage problem minimizes the expected unserved demands and provides the
capacity of the graph, while the second stage problem strives for an efficient use
of the capacity. The model is validated with the use of simulation, and it is also
noted that the proposed solution is better than replacing the uncertain variables
by their expected values.

Another stochastic optimization method is presented by Lisser et al. [19]. Sce-
nario representation is used in order to formulate the uncertainty of the demand,
and every scenario corresponds to a given probability for the possible realization.
The resulting non-smooth problem is solved with the analytic center cutting plane
method [9]. The subproblem is decomposed into multicommodity flow problems
by demand scenarios. The authors take advantage of this formulation by using
parallel computing.
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Italiano et al. [12] are concerned with the problem of reserving capacity in
a network in order to satisfy pairwise demands. To remove uncertainty of the
demands they use terminal nodes and bounds for the traffic between the terminals.
This model is known as hose model. The solution has to satisfy any traffic matrix
for the demand, and the capacity vector should form a tree. Hence, the flows are
not split, and for any traffic matrix the flow of every demand uses the same path.

Duffield et al. [6] have studied a similar problem, but they concentrate on Vir-
tual Private Networks (VPN) based on the hose model. Under this concept they
take into account only the ingress and the egress traffic for each endpoint of the
VPN, which is more easily specified compared to the conventional point-to-point
approach, and Steiner trees are employed in order to connect the VPN endpoints.
However, they consider the capacity assignment on a pre-existing network, which
is dynamically resized.

Another study in the framework of the hose model is done by Kumar et al. [17].
They propose two new methods for solving the problem of the VPN tree computa-
tion: the breath-first search algorithm (BFS) and a primal-dual algorithm. They
compare these two methods in terms of cost and computational time, with the
Steiner tree which is given as solution in [6]. The BFS algorithm was developed
initially for the case of symmetric ingress and egress bandwidths and it computes
the optimal tree in polynomial time. In the general case the problem is NP-hard,
and both algorithms outperform the Steiner tree method.

Ben-Ameur and Kerivin [1] consider VPN networks with a polyhedral model
for the demand uncertainty. Their mathematical formulation is built on the arc-
path flow formulation and a cutting plane method is devised to deal with the large
size of the problem. There are two procedures which identify violated inequalities
for the master problem. These inequalities are based on unsatisfied demands
and improvement of the value of the objective function by selecting sequentially
different paths. The final solution specifies a capacity vector, the supporting paths
of the demands, and the splitting coefficients which are independent of the possible
values of the demands.

In [22] Ouorou proposes three models for a robust capacity assignment in
telecommunication networks with demand uncertainty in the framework of ro-
bust optimization as defined by Kouvelis and Yu [16]. The algorithmic solutions
are based on cutting plane methods. Some computational experiments indicate
that the Elzinga-Moore cutting plane method [7] can be a more valuable choice
when compared with Kelley’s method [13]. Since different possible uncertainty
sets may exist in some circumstances, a generalization of these models is proposed
in order to cope with a finite number of plausible uncertainty sets, and a weight is
associated with each uncertainty set to determine its relative importance or worth.

3. PROBLEM FORMULATION

We follow the approach introduced in [20] by Lucertini and Paletta, who studied
a similar problem in which the investment for installing the capacity is limited by
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a fixed budget. Suppose that we have a telecommunication network represented
by a graph G = (V, E) where V is the set of nodes (e.g. terminals) and E is
the set of edges (e.g. optical links). We also have a set K of pairs of nodes,
which are defined as origin-destination pairs (OD-pairs). The commodities that
have to be transferred between the OD-pairs are not given but they belong to
an uncertainty set Q. Let I'(x) be the set of all possible demand vectors which
can be satisfied given a capacity vector x. A robust decision can be obtained by
minimizing a function ¢(2, I'(x)) with respect to the capacity vector x, where ¢
is an appropriate measure of the set of unsatisfied demands. In this study we
suppose that the feasible capacities are continuous, as in [23]. If ¢ € lel is the
cost vector, then

X = {zeR'f': chgB} (1)

will denote the set of feasible capacities available for the network, under a given
budget B. The problem we consider is as follows:

géig d(Q,T(x)).

To define the measure ¢, we introduce a penalty function f(w, 7y), which expresses
the gap between a demand vector w that the graph has to support and a demand
vector v that the graph can support. For any capacity vector x € X, we set

o(,T(z)) ;== max min f(w, v)

we yel(x)
and we formulate the problem as
in(Q,T ie. i i . 2
min ¢(Q, I(z)),  ie gg)r;glggvglrl&)f(w, 7) (2)

There are several ways to choose the function f. In this study, we consider that it is
suitable to take as penalty function the weighted sum of unsatisfied commodities.
So, if 7 is the penalty for not satisfying one unit of demand for the k** OD-pair,
then we set f to be
flw, 7) = Z m(wr — )
keK

where (y)* := max(0,y). As for I'(z), we introduce the following notation: P
is the set of the possible paths considered to support the deman between the k"
OD-pair, 2y, is the flow of path p € Py, v is the vector of demands which can be
carried through the graph given the capacity vector . Then,

I'(z) = 'yeR‘f‘ : Hzele‘, Z Z Zhp < @4, VJEE, ZZ;W =, VkeK
keK pePy:jep PE Py

The first constraint implies that the total flow on every path does not exceed
the corresponding capacity, and the second constraint indicates that the vector of
demands 7 is supported from the flow z.
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Introducing 6y := (wr — %) " for every k € K, problem (2) can be rewritten as:

minmaxmin Yy 70k
zeX we v,0,z keK

st. >, > mp<uwzj,jeE,
k€K pEPy:jEp

Z Zkp = Yk keKa
PE Py
5k2wk7’yka kEK,

,Y) 67 z Z 0)
or in a compact form as

minmaxmin 7wld
zeX weN ~v,0,2
s.t. Az <=,

Fz=r, (3)
52"‘}7’77
7)672205

where A and F' are suitable 0-1 matrices. This formulation is defined as arc-path
formulation.
Remark. Since we assume that the supporting paths for the commodities are not

restricted, we consider in our implementation the following equivalent formulation:

minmax min Y 70k
zeX weN v,6,X kEK

st > (XJI?Jr +X]l-“*) <wzj, jEL,
kEK
AXEF — XP7) = yly, k € K,
Ok = wk — Yk, k € K,
775’XZO’

where A is the node-arc incidence matrix of G, X** and X*~ are the “posi-
tive” and the “negative” flow vectors — respectively — which are used to satisfy
commodity k, and I, is the vector of RIVI defined by
—1, if 4 is the k*" origin node,
(Ig); = 1, if 7 is the k*® destination node,

0, otherwise.

This formulation is defined as node-arc formulation.

4. SOLUTION METHODS

Problem (3) is difficult because of non-convexity (due to the internal min) and
nonsmoothness (due to the intermediate max). We refer to [5] for a discussion
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of these difficulties. However, an algorithm can be constructed for the solution
of (3) when  is a bounded polyhedron with a limited number of extreme points.
Thus we limit our study to the case where ) is defined as the convex hull of |S]
scenarios w!, ..., w!%l of possible demands; then the extreme points of Q will be
among these scenarios.

For fixed 2 and w in (3), the inner linear minimization problem is compactly
written as

min wT§
Y4
s.t. Az <ux,
6>w—Fz,
6,z >0,

whose dual problem is

P(r,w) :=max wlu—2Tv
u

v
st. FTu < ATv,
u <,
u,v > 0.

(4)

We have substituted F'z for v and eliminated the resulting constraint F'z > 0 since
z and F' are positive by definition. By LP duality the above two programs have
the same optimal value. Thus (3) is equivalent to solving

min max P(z,w).
zeX we

Note that P(z,w) is easily computed for every (x,w) through a linear maximization
program.
Setting
= P
Q(z) == max P(z,w)

we have to minimize @ over X and the next result gives crucial properties of
function Q.

Theorem 1. Function @ is conver and we have

Qz) = _71n21ax‘s"Pi(ac), where  Pi(x) := P(z,w’), i =1,2,...,|S]. (5)

Proof. Let gy : X X 2 +— R be the linear function g, ,(z,w) = uTw —vTx, where
(z,w) € X xQ and (u,0) €U xV = {(u,v): Flu< AT, u<m, u,v>0}.

We have that X x Q # () for every (u,v) € U XV, 80 gy, is well-defined. Moreover
gu,v 1s convex as a linear function, and for an arbitary (z',w’) € (X, Q) we have:

max gy, (2,w') < Z Tpw), < +00.
(u,v)eUXV hekK
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So, if we rewrite P as

P= max guu,
(u,v)eU XV

then we deduce that P is convex as the maximum of a family of convex functions
(see [11], Prop. IV.2.1.2).

Now, the convex function P(z,-) attains its maximum at some extreme point
of the set Q (see [11], Prop. I11.2.4.6), and these extreme points are among the |S]|
possible scenarios. Hence:

max P(z,w) = max {P(Jc,wl), P(z,w?),. .. ,P(x,w‘s‘)} )
we

This establishes (5), and also shows that Q(z) < +oo for all z € X. Thus @ is
convex for the same reason as P. (]

Then the convex nonsmooth problem

min Q(z) (6)
is equivalent to (3).

We will analyze three cutting plane algorithms for the solution of (6). The basic
idea underlying these algorithms can be described as follows. Having computed ¢
sets of | S| values P;(zx), i = 1,...,|S| and corresponding subgradients gx; = —vg;
(see Th. 2 below) for i« = 1,...,|S] and k = 1,...,t, the true function Q is
approximated (from below) by the polyhedral function

x — max {Pi(zy) + gz —ap) ri=1,...,[S], k=1,...,t}. (7)

A cutting plane method uses this function to select a new point z;11, so as to
improve the current approximation (7). The way this point is chosen determines
whether and how fast the algorithm converges.

Theorem 2. For fired v € X and i € {1,...,|S|}, let (uoi,voi) be an optimal
solution of P;(xo). Then —vo; € OPi(xo).

Proof. The theorem results from elementary convex calculus, but a simple direct
proof can be given:

If (upi,vo;) is an optimal solution of the mathematical programming problem
P(z0,w?) of (4), then P;(xg) = ul.w! — vl xg. Let (us;, vsi) be the optimal solution
of P;(z) for an arbitrary € X. Since the constraints of (4) do not depend on z,
(w4, voi) is feasible for problem P(z,w") and

Pi(r) = ulw —vlz >ulw’ —olx

= Pi(wo) —vd;(x — x0), Va,m0€ X,i€{l,...,|59]}

Hence —vg; € OP;(xp). O
We consider and compare the three following cutting plane methods, which
differ in the way they construct the trial points zj. They all use an oracle which,
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at a given z, solves (4) |S| times to compute the P;(z)’s and then Q(x), as well as
the optimal v;’s to provide the subgradients stipulated in Theorem 2. The optimal
v;’s computed at « = xj, will be denoted by vy, for i =1,...,|95].

4.1. KELLEY CUTTING PLANE METHOD

This is one of the first cutting plane methods proposed in the literature. The
next trial point x;y; is obtained by solving the following relaxed problem (Master
Problem) of (6):

miZn zZ

x,

st. Z>Pi(ak) —vh(r—a), i=1,2,...,|S], k=0,1,...,¢, (8)
¢’z < B,
x>0

The method iterates until a “good” approximation of the solution is found, and
the resulting algorithm can be stated as follows:

KELLEY ALGORITHM (KA)

Step 0 Initialize 20 =0, € > 0,2 = 400 and t = 0.

Step 1 Call the oracle at x; to obtain P;(x:) and vy for i =1,...,|S], and Q(x¢).

Step 2 Let Z = min {?, Q(xt)}.

Step 3 Solve (8) and let (x141, Z) be its optimal solution.

Step 4 U Z—-Z<e¢ (1 + |§|) , then stop. Otherwise set t = ¢t + 1 and loop to
Step 1.

This procedure converges, and the proof is given in [13]. Note that X is bounded, so
(8) has always an optimal solution. This substantially simplifies the issue (see [11],
Th. XI1.4.2.3). However, if convergence is slow, then the Master Problem can be
uncomfortably large. For further discussion see Sections 5 and 6.

4.2. ELZINGA-MOORE CUTTING PLANE METHOD

This method is based on the following result by Nemhauser and Widhelm [21].

Theorem 3. Given a bounded, non-empty polyhedron described from a set of
linear inequalities,

a?xZﬁ]a j:17"'7p7
the optimal solutions in o and x of the problem

max o

T

o,x .
st ajx —|lajllo > 65, j=1,...,p,

are respectively the radius and the center of the largest sphere inscribed in the
polyhedron.
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Proof. See [21]. O

Naturally, this result has a meaning only for a bounded polyhedron. Now
consider in the (z, Z)-space the polyhedron defined by the constraints in (8) —
i.e. the epigraph of the current approximation (7). It is unbounded but it can
be truncated from above by appending the constraint Z < Z. The polyhedron
thus obtained clearly contains any optimal solution (x*,Q(x*)) of (6): the center
revealed by Theorem 3 may be deemed an adequate approximation of such an
optimal solution. This is the rationale for Elzinga-Moore cutting plane method,
which computes the next trial point by solving

max o
z,0,2Z

st. Z4+0<Z
Pilar) — vli(x — @) = Z + (|[vsil P + 1) 20 <0, (9)
i=1,2,...,|S], k=0,1,....¢,
¢’z < B,
xz > 0.

Note again that this linear program has a non-empty bounded feasible set, and
therefore an optimal solution (z¢41,0¢t+1, Z¢4+1) (with o441 > 0). This method has
little usage in the literature even though it is not much harder to be implemented
than Kelley’s method. It was shown to be more efficient than Kelley’s for some
min-max problems, see [22]. Elzinga-Moore cutting plane algorithm for the solu-
tion of (6) is as follows:

ELZINGA-MOORE ALGORITHM (EMA)

Step 0 Initialize 20 =0, € > 0,2 = 400 and t = 0.

Step 1 Call the oracle at x; to obtain P;(x:) and vy; for i = 1,...,|S]|, and Q(x:).
Step 2 Let Z = min {?, Q(xt)}.

Step 8 Solve (9) to get x11 and opy.

Step 4 If o441 < €, then stop. Otherwise set ¢t =t + 1 and loop to Step 1.

For further details about this procedure and the proof of its convergence, see [7].

4.3. BUNDLE METHOD

Kelley cutting plane method is known to be unstable. Bundle methods [11,14,
18] aim at overcoming this instability by computing the Moreau-Yosida regular-
ization of the piecewise linear approximation of (7). More precisely, the master
problem to consider is obtained by adding a quadratic term to (8) as follows:

min 24 e — 2
st. Z>Pi(ak) —vi(r—ak), i=1,2,...,|S], k=0,1,....¢, (10)
cTx < B,
z >0,
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where Z; is the stability center: a point which is known to be relatively good;
(¢ is a positive parameter which controls the tradeoff between minimizing Z and
staying close to T;. The stability center is updated if x¢41 is significantly better
than Z; in the sense that

Q(re+1) < Q@) — K(Q(®t) — Zi41), (11)

where (2411, Z¢4+1) is the solution of (10), and « €]0,0.5[. If (11) holds, then we
have a descent step and set Ti11 = x1q1, otherwise we have a null step and the
stability center is left as it is. The resulting cutting planes are added to (10) in
both cases. The bundle algorithm (BA) stops when

Q(Ty) — Zi41 < e(1+|Q(74)]), (12)

where ¢ is the desired accuracy.
BUNDLE ALGORITHM (BA)

Step 0 Initialize xg = Zp =0, € > 0, k €]0,0.5[ and ¢t = 0. Call the oracle at xz
to obtain P;(xo) and vg; for i = 1,...,]S|, and Q(x).

Step 1 Solve (10) and let (z1y1, Z¢11) be its optimal solution.

Step 2 Call the oracle at 2441 to obtain P;(x41) and veyq; fori =1,...,|S], and
Q(Tt41)-

Step 3 If (11) is true then set Ty41 = 441, otherwise set Tyy1 = 4.

Step 4 Compute fig41.

Step 5 If (12) is true then stop. Otherwise set t = ¢+ 1 and loop to Step 1.

Remark. Step 3 is defined as weight updating and it is crucial for the speed of

convergence of the algorithm. We use a procedure described in [14], where the
weight p; is decreased if the approximation of @ is close to @ at x¢41, and it
is increased if the errors of the new linearizations are greater than a variation
estimate of Q(Z;). See [14] for further details.

5. RESULTS AND NUMERICAL EXPERIMENTS

We consider the above three methods for the following reasons. Kelley’s method
is one of the most methods used in nonsmooth optimization while Elzinga-Moore
algorithm has been, to the best of our knowledge, used rarely even if it is not
much more hard to implement than the former. It outperformed Kelley’s method
on some min-max problems arizing in robust capacity planning problems, see [22].
Our first aim was to confirm this efficiency. We also consider the proximal bundle
method because it is known as one of the best methods for nonsmooth optimization
and we think it is extremely informative to compare it with the two above methods.
Its subproblem is a quadratic problem which is considered to more difficult than
the linear subproblems of Kelley and Elzinga-Moore methods.

We have written an experimental code based on the above development, under
Eclipse Platform 2.1.1; we have used Java 1.4.2 and ILOG Cplex 9.0 for the solution
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TABLE 1. Graphs specifications.

|| || Nodes | Edges | OD-pairs | Scenarios ||

Graph 1 12 25 50 21
Graph 2 19 34 50 21
Graph 3 26 30 100 21
Graph 4 16 49 89 10
Graph 5 26 53 100 21
Graph 6 60 40 140 11

of the subproblems (4), (8), (9) and (10). All the runs are performed on a two-
processor Xeon Intel server of 2.4 GHz CPU speed and 1.5 GB of RAM memory,
running under Linux.

The networks of our experiments derive from actual networks with given nomi-
nal demands. Their sizes are given in Table 1, as well as the numbers of OD-pairs
and the number |S]| of scenarios considered in each case. Those scenarios have
been generated in two ways as follows:

(1) From the available nominal vector of demands w and a positive parameter
p, we have generated random €} € [—p,p| for s = 1,...,|S| and k =
1,...,|K| and set

wp =ewg, k=12,...,|K|

(2) From the nominal vector of demands w we have generated random €} €
[0,1] for s=1,...,|S| and k= 1,...,|K], and set

LW

wge;%, k=1,2,...,|K|
. €°
J J

The first case results in scenarios that are variations around the nominal demand,
and we use it for graphs 1, 2, 3, 4 and 6. In the second case the sum of the
demands is the same for every scenario, and we use it for graphs 5 and 6. Finally,
the nominal demand is included in the set of scenarios.

In Table 2 we report the results obtained by the three algorithms presented
in Section 4. The column headed “Budget” specifies the parameter B in each
test problem, see (1). This budget is derived arbitrarily, having as indicators
the solutions of the multicommodity flow problems, formed by every graph and
its corresponding scenarios. Different values for the budget are tested, but it is
always requested that finally at least one objective value equals to 0 (zero) and
various positive solutions for every graph are acquired. Then, for every method
we report the value of the objective function, the number of oracle calls and the
CPU time in seconds. Graph 6 appears twice because both scenario generation
methods 1 and 2 were used for it (the notations 6a and 6b correspond to the first
and second method respectively).
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TABLE 2. Results obtained by the different algorithms.

KA EMA BA

Budget 1 1 1
uaee obj. value # oracle CPU time || obj. value # oracle CPU time || obj. value # oracle CPU time

calls calls calls
612.3 63.33 90 18.45 63.33 85 23.63 63.33 16 5.21
Graoh 1 614.0 14.44 04 21.47 14.44 79 20.07 14.44 15 1.21
P 616.0 22.22 85 17.26 22.22 71 17.23 22.22 15 4.45
618.0 0.00 94 22.12 0.00 75 16.23 0.00 14 3.67
190.0 94.44 189 239.33 94.44 120 159.69 94.44 17 35.24
Granh 2 194.0 50.00 189 177.94 50.00 113 114.14 50.00 17 29.26
P 197.0 16.67 180 151.40 16.67 95 84.20 16.67 20 35.31
199.0 0.00 165 159.94 0.00 87 68.72 0.00 13 18.26
12165.0 97.22 179 280.11 97.25 138 221.64 97.22 39 93.48
Granh 3 || 121750 41.67 181 274.68 41.67 144 240.34 41.67 41 103.16
rap 12182.0 2.78 202 307.01 2.79 137 222.82 2.78 17 112.26
12187.0 0.00 173 269.13 0.00 128 201.06 0.00 13 102.38
7380.0 389.76 265 2049.12 389.77 167 1167.71 389.76 35 289.49
Granh 4 7305.0 202.26 181 1224.03 202.28 161 1120.62 202.26 39 335.48
P 7408.0 39.76 172 1201.59 39.78 160 1038.69 39.76 36 311.50
7415.0 0.00 244 2244.69 0.00 130 1025.08 0.00 38 303.00
8150.0 1930.00 687 | 15131.10 1930.01 664 | 16826.14 1930.00 60 2266.53
Granh 5 8300.0 612.50 479 8628.33 612.51 288 5238.21 612.50 49 922.21
P 8375.0 16.43 125 7437.13 16.43 257 3785.32 16.43 52 815.31
8390.0 0.00 281 3180.40 0.00 254 3882.62 0.00 37 506.80
40000.0 152.91 1176 | 22616.64 152.91 581 | 14216.79 152.91 216 | 16438.04
40400.0 82.65 1111 | 23615.07 82.65 533 | 11110.81 82.65 198 | 13079.14
Graph 6a || 40800.0 17.10 1064 | 10324.76 17.11 541 | 10882.63 17.10 167 0633.43
40900.0 2.13 1155 | 23065.01 2.14 562 9485.44 2.13 160 0878.38
41000.0 0.00 1157 | 22113.83 0.00 525 7134.68 0.00 144 8663.29
45000.0 121.38 659 | 24628.16 121.38 325 8103.27 121.38 125 | 13348.54
45600.0 39.44 633 | 19361.97 39.44 345 7021.62 39.44 93 8893.14
Graph 6b |[ 45800.0 13.68 643 | 24012.30 13.68 355 7260.20 13.68 106 0383.37
45900.0 0.87 720 | 25288.75 0.87 371 | 12712.30 0.87 95 8086.39
15920.0 0.00 609 | 16217.20 0.00 330 7134.05 0.00 100 9657.57
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# oracle calls
2
&

# oracle calls
3

0 L L L L L L L
11900 11950 12000 12050 12100 12150 555 560 565 570 575
Budget Budget

# oracle calls
@
&

# oracle calls

0 L L L 0 L L L L
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FIGURE 1. Tllustration of the number of oracle calls for the first 4 graphs.

It appears from these results that, in terms of number of calls to the oracle,
the bundle algorithm outperforms the other two methods: it divides the number
of Kelley’s [resp. Elzinga-Moore] oracle calls by a factor of 4.2 to 12.7 [resp. 2.6
to 11.1]. However, this reduction is not reflected in the CPU times: in particular
for large problems, the bundle algorithm can become substantially slower than
Elzinga-Moore. The reason is that the quadratic subproblem in our implemen-
tation becomes time consuming when the sizes of the problem and of the bundle
increase. This behaviour contradicts the experiments of [4], which clearly show
that quadratic programming is hardly more expensive than linear programming,
and thus demonstrates the usefulness of specialized algorithms such as [8, 15].
On the other hand, Elzinga-Moore method behaves efficiently when compared to
Kelley’s, as reported in [22]. We hope that the readers will be encouraged to test
this method when only a linear solver is at their disposal. Figure 1 illustrates in
another way the above observations, where we plot the number of oracle calls vs
different budget for the first four graphs using other 20 traffic scenarios in each
case.

Using the first four graphs, we conduct some numerical experiments with the
proximal bundle algorithm, to analyse the model in terms of number of scenarios
and budget. The number of scenarios to be considered in the model is itself a
difficult issue which must be considered at a first stage before applying the model.
Interesting studies about the demand modeling exist in the literature, (see for
instance [3]) and can be used to simulate the demand and provide the scenarios.
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TABLE 3. Results with different number of scenarios.

Budget obj. value # oracle CPU time Budget obj. value # oracle CPU time
calls calls
5 scenarios 5 scenarios
535 234.54 22 2.79 280 288.92 30 8.66
540 156.21 20 2.81 290 164.68 26 7.59
550 13.36 19 2.46 300 50.56 29 8.58
555 0.00 14 1.92 305 0.00 27 7.47
10 scenarios 10 scenarios
550 217.79 17 4.65 285 235.79 21 13.53
Graph 1 555 154.37 5 3.00 Graph 2 295 116.86 18 11.57
565 37.83 14 2.71 305 5.74 20 8.93
570 0.00 13 2.17 310 0.00 17 6.77
20 scenarios 20 scenarios
555 199.39 14 4.40 285 276.43 26 27.70
560 128.23 16 4.89 295 151.78 28 34.57
570 8.22 15 4.11 305 34.82 21 17.42
575 0.00 13 3.10 310 0.00 16 10.80
5 scenarios 5 scenarios
11650 1300.07 65 73.96 5900 2776.79 29 103.03
11750 704.29 59 70.05 6000 1178.93 40 160.77
11850 132.36 51 49.61 6050 552.19 31 120.31
11900 0.00 48 38.66 6100 0.00 33 101.92
10 scenarios 10 scenarios
Graph 3 11700 1337.42 50 103.86 Graph 4 6000 2158.93 29 164.43
11800 730.56 43 7727 6100 853.38 26 139.90
11900 151.83 48 82.02 6150 228.38 27 126.68
11950 0.00 38 52.13 6200 0.00 25 97.01
20 scenarios 20 scenarios
11900 1368.16 62 262.72 6000 2224.75 30 427.17
12000 743.16 64 245.15 6100 835.63 27 315.88
12100 180.17 52 104.06 6150 210.63 27 272.93
12150 0.00 54 101.67 6200 0.00 21 181.50
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The greater the number of scenarios is, the better the uncertainty set minimize
the forcast error. However, some traffic scenario may dominates others. One of
the main features of the proximal bundle method is its small number of oracle
calls that do not depend on the number of scenarios in hand.

6. CONCLUSIONS

We have proposed a new approach for the network design problem in telecom-
munications under demand uncertainty. The uncertainty is modelled as a con-
vex set of a moderate number of demand’s scenarios, which results in a convex
non-smooth problem. For its solution, we considered and compared three algo-
rithms: the proximal bundle method and the cutting plane algorithms by Kelley
and Elzinga-Moore. The proximal bundle method appears to be the most effi-
cient in terms of number of calls to the oracle, but is impeded by the use of a
general-purpose quadratic solver. An extension of our proposed methodology to
the general case of a polyhedral uncertainty set is currently under study.
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