A LOGARITHM BARRIER METHOD FOR SEMI-DEFINITE PROGRAMMING

Jean-Pierre Crouzeix ${ }^{1}$ and Bachir Merikhi ${ }^{2}$

Abstract

This paper presents a logarithmic barrier method for solving a semi-definite linear program. The descent direction is the classical Newton direction. We propose alternative ways to determine the step-size along the direction which are more efficient than classical linesearches.

Keywords. Linear semi-definite programming, barrier methods, line-search.

Mathematics Subject Classification. 90C22, 90C05, 90C51.

1. Introduction

In this paper we present an algorithm for solving the optimization problem:

$$
\begin{equation*}
m_{d}=\inf _{y}\left[b^{t} y: \sum_{i=1}^{m} y_{i} A_{i}-C \in K, y \in \mathbb{R}^{m}\right] \tag{D}
\end{equation*}
$$

where K denotes the cone of $n \times n$ symmetric positive semi-definite matrices, the vector $b \in \mathbb{R}^{m}$ and the $n \times n$ symmetric matrices C and $A_{i}, i=1, \ldots, m$, are given. The dual problem of (D) is:

$$
\begin{equation*}
m_{p}=\max _{X}\left[\langle C, X\rangle: X \in K,\left\langle A_{i}, X\right\rangle=b_{i} \forall i=1, \ldots, m\right], \tag{P}
\end{equation*}
$$

[^0]where by $\langle C, X\rangle$ we denote the trace of the matrix $\left(C^{t} X\right)$. It is recalled that $\langle\cdot, \cdot\rangle$ corresponds to an inner product on the space of $n \times n$ matrices.

These problems are linear. Their feasible sets involving the cone of positive semi-definite matrices, a non polyhedral convex cone, they are called linear semidefinite programs. Such problems are the object of a particular attention since the papers by Alizadeh [1,2], as well on a theoretical or an algorithmical aspect, see for instance the following references $[1-4,6,7]$.

Under suitable conditions, solving (D) is equivalent to solving (P) : the optimal solutions of one problem being easily obtained when one optimal solution of the other problem is known. In this paper, the problem (D) is approximated by the problem $\left(D_{r}\right),(r>0)$,

$$
\begin{equation*}
m(r)=\inf \left[f_{r}(y): y \in \mathbb{R}^{m}\right] \tag{r}
\end{equation*}
$$

where the barrier function $f_{r}: \mathbb{R}^{m} \rightarrow(-\infty,+\infty]$ is defined by

$$
f_{r}(y)=\left\{\begin{array}{lc}
b^{t} y+n r \ln r-r \ln \left[\operatorname{det}\left(\sum_{i=1}^{m} y_{i} A_{i}-C\right)\right] & \text { if } y \in \widehat{Y} \\
+\infty & \text { if not }
\end{array}\right.
$$

with

$$
\widehat{Y}=\left\{y \in \mathbb{R}^{m}: \text { the matrix } \sum_{i=1}^{m} y_{i} A_{i}-C \in \widehat{K}\right\}
$$

and $\widehat{K}=\operatorname{int}(K)$ is the cone of $n \times n$ symmetric positive definite matrices. This problem is solved via a classical Newton descent method. The difficulty is in the line-search: the presence of a determinant in the definition of f_{r} induces high computational costs in classical exact or approximate line-searches. Here, instead of minimizing f_{r} along the descent direction d at the current point x, we minimize a function $\widetilde{\theta}$ such that

$$
\frac{1}{r}\left[f_{r}(x+t d)-f_{r}(x)\right]=\theta(t) \leq \widetilde{\theta}(t) \quad \forall t>0, \quad \theta(0)=\widetilde{\theta}(0), \quad \theta^{\prime}(0)=\widetilde{\theta}^{\prime}(0)<0
$$

This function $\widetilde{\theta}$ needs to be appropriately chosen so that the optimal t is easily obtained and to be close enough to θ in order to give a significant decrease of f_{r} in the iteration step. We propose in this paper functions θ for which the optimal solution t is explicitly obtained and a good quality of the approximation of θ by $\widetilde{\theta}$ is ensured by the condition $\theta^{\prime \prime}(0)=\widetilde{\theta^{\prime \prime}}(0)$.

In the next section, we briefly recall some results in linear semi-definite programming. Section 3 studies the problem $\left(D_{r}\right)$, in particular the behavior of its optimal value and its optimal solutions when $r \rightarrow 0$. Section 4 shows how to compute the Newton descent direction. Section 6 is devoted to the determination of efficient approximations $\widetilde{\theta}$, these approximations are deduced from inequalities shown in Section 5. The algorithm is resumed in Section 7 and numerical experiments presented in Section 8 show the efficiency of the approximations when compared with classical line-searches.

2. A BRIEF BACKGROUND IN LINEAR SEMI-DEFINITE PROGRAMMING

Throughout the paper, we use the following notation:

$$
\begin{array}{ll}
Y=\left\{y \in \mathbb{R}^{m}: \sum_{i=1}^{m} y_{i} A_{i}-C \in K\right\}, & F=\left\{X \in K:\left\langle A_{i}, X\right\rangle=b_{i} \forall i\right\}, \\
\widehat{Y}=\left\{y \in \mathbb{R}^{m}: \sum_{i=1}^{m} y_{i} A_{i}-C \in \widehat{K}\right\}, & \widehat{F}=\{X \in F: X \in \widehat{K}\} .
\end{array}
$$

It is easily seen that $-\infty \leq m_{p} \leq m_{d} \leq+\infty$ (weak duality). In this paper we assume that the two following assumptions hold:
(H1) The system of equations $\left\langle A_{i}, X\right\rangle=b_{i}, i=1, \ldots, m$ is of rank m.
(H2) The sets \widehat{Y} and \widehat{F} are non empty.
Then it is known that (see for instance [1,3]):
(a) $-\infty<m_{p}=m_{d}<+\infty$.
(b) The sets of optimal solutions of (P) and (D) are non empty convex compact sets.
(c) If \bar{X} is an optimal solution of (P), then \bar{y} is an optimal solution of (D) if and only if

$$
\bar{y} \in Y \quad \text { and } \quad\left(\sum_{i=1}^{m} \bar{y}_{i} A_{i}-C\right) \bar{X}=0 .
$$

(d) If \bar{y} is an optimal solution of (D), then \bar{X} is an optimal solution of (P) if and only if

$$
\bar{X} \in F \quad \text { and } \quad\left(\sum_{i=1}^{m} \bar{y}_{i} A_{i}-C\right) \bar{X}=0 .
$$

3. The Problem $\left(D_{r}\right)$: THEORETICAL ASPECTS

Recall that $\left(D_{r}\right), r>0$, is the problem

$$
\begin{equation*}
m(r)=\inf \left[f_{r}(y): y \in \mathbb{R}^{m}\right] \tag{r}
\end{equation*}
$$

with $f_{r}: \mathbb{R}^{m} \rightarrow(-\infty,+\infty]$ defined by

$$
f_{r}(y)= \begin{cases}b^{t} y+n r \ln r-r \ln \left[\operatorname{det}\left(\sum_{i=1}^{m} y_{i} A_{i}-C\right)\right] & \text { if } y \in \widehat{Y} \\ +\infty & \text { if not. }\end{cases}
$$

We start with the study of this function.

3.1. f_{r} IS A TWICE DIFFERENTIABLE STRICTLY CONVEX FUNCTION

The following notation will be used in the expressions of the gradient and the Hessian of f_{r} : given $y \in \widehat{Y}$, we introduce the $m \times m$ symmetric positive definite matrix $B(y)$ and the lower triangular $m \times m$ matrix $L(y)$ such that

$$
B(y)=\sum_{i=1}^{m} y_{i} A_{i}-C=L(y) L^{t}(y)
$$

Next, for $i, j=1,2, \cdots, m$, we define

$$
\begin{gathered}
\widehat{A}_{i}(y)=[L(y)]^{-1} A_{i}\left[L^{t}(y)\right]^{-1} \\
b_{i}(y)=\operatorname{trace}\left(\widehat{A}_{i}(y)\right)=\operatorname{trace}\left(A_{i} B^{-1}(y)\right) \\
\Delta_{i j}(y)=\operatorname{trace}\left(B^{-1}(y) A_{i} B^{-1}(y) A_{j}\right)=\operatorname{trace}\left(\widehat{A}_{i}(y) \widehat{A}_{j}(y)\right)
\end{gathered}
$$

Thus $b(y)$ is a vector of \mathbb{R}^{m} and $\Delta(y)$ is a symmetric $m \times m$ matrix
Theorem 1. The function f_{r} is twice continuously differentiable on \widehat{Y}. Actually, for all $y \in \widehat{Y}$ we have:
(a) $\nabla f_{r}(y)=b-r b(y)$;
(b) $\nabla^{2} f_{r}(y)=r \Delta(y)$;
(c) the matrix $\Delta(y)$ is definite positive.

Proof. (a) Denote by $\left(e_{1}, e_{2}, \cdots, e_{m}\right)$ the canonical basis of \mathbb{R}^{m}. Let $i \in\{1, \cdots, m\}$ and $z_{i} \in \mathbb{R}, z_{i} \neq 0$. Then,

$$
\begin{aligned}
\frac{f_{r}\left(y+z_{i} e_{i}\right)-f_{r}(y)}{z_{i}} & =b_{i}-\frac{r}{z_{i}}\left[\ln \operatorname{det}\left(B\left(y+z_{i} e_{i}\right)\right)-\ln \operatorname{det}(B(y))\right] \\
& =b_{i}-\frac{r}{z_{i}}\left[\ln \operatorname{det}\left(L(y)\left[I+z_{i} \widehat{A}_{i}\right] L^{t}(y)\right)-\ln \operatorname{det}(B(y))\right] \\
& =b_{i}-\frac{r}{z_{i}} \ln \operatorname{det}\left(I+z_{i} \widehat{A}_{i}(y)\right) \\
& =b_{i}-\frac{r}{z_{i}} \ln \left[1+z_{i} \operatorname{trace}\left(\widehat{A}_{i}(y)\right)+z_{i} \varepsilon\left(z_{i}\right)\right]
\end{aligned}
$$

where the function ε is such that $\varepsilon(z) \rightarrow 0$ when $z \rightarrow 0$. Pass to the limit when $z_{i} \rightarrow 0$.
(b) In the same manner, given $i, j \in\{1, \cdots, m\}$, let us consider

$$
\frac{b_{i}\left(y+z_{j} e_{j}\right)-b_{i}(y)}{z_{j}}=\frac{-1}{z_{j}}\left[\operatorname{trace}\left(A_{i}\left[B^{-1}\left(y+z_{j} e_{j}\right)-B^{-1}(y)\right]\right)\right] .
$$

But,

$$
\begin{aligned}
B^{-1}\left(y+z_{j} e_{j}\right)-B^{-1}(y) & =\left[B(y)+z_{j} A_{j}\right]^{-1}-B^{-1}(y), \\
& =\left[B(y)\left(I+z_{j} B^{-1}(y) A_{j}\right)\right]^{-1}-B^{-1}(y), \\
& =\left[\left(I+z_{j} B^{-1}(y) A_{j}\right)^{-1}-I\right] B^{-1}(y)
\end{aligned}
$$

Neglecting the second order terms in z_{j}, we obtain

$$
\frac{b_{i}\left(y+z_{j} e_{j}\right)-b_{i}(y)}{z_{j}} \sim \operatorname{trace}\left(A_{i} B^{-1}(y) A_{j} B^{-1}(y)\right)
$$

Pass to the limit when $z_{j} \rightarrow 0$. On the other hand the equality

$$
\operatorname{trace}\left(B^{-1}(y) A_{i} B^{-1}(y) A_{j}\right)=\operatorname{trace}\left(\widehat{A}_{i}(y) \widehat{A}_{j}(y)\right)
$$

is immediate.
(c) Let $d \neq 0$. Next, let $M=\sum_{i=1}^{m} d_{i} \widehat{A}_{i}(y)$. Then (H1) implies $M \neq 0$. On the other hand,

$$
\left\langle\nabla^{2} f_{r}(y) d, d\right\rangle=r \operatorname{trace}\left(\sum_{i, j} d_{i} d_{j} \widehat{A}_{i}(y) \widehat{A}_{j}(y)\right)=r \operatorname{trace}\left(M^{2}\right)>0
$$

from what we deduce that the matrix $\nabla^{2} f_{r}(y)$ is positive definite.
Since f_{r} is strictly convex, $\left(D_{r}\right)$ has at most one optimal solution.

3.2. $\left(D_{r}\right)$ HAS ONE UNIQUE OPTIMAL SOLUTION

Because the convex function f_{r} takes the value $+\infty$ on the boundary of its domain and is differentiable on the interior, it is lower semi-continuous. In order to prove that $\left(D_{r}\right)$ has one optimal solution, it suffices to prove that the recession cone of f_{r} is reduced to the origin. Before that, we show the following result:

Proposition 1. $d=0$ whenever $b^{t} d \leq 0$ and $\sum_{i=1}^{m} d_{i} A_{i} \in K$.
Proof. Assume that $d \neq 0, b^{t} d \leq 0$ and $C=\sum_{i=1}^{m} d_{i} A_{i} \in K$. Then (H1) implies $C \neq 0$. Let some $\widehat{X} \in \widehat{F} \subset \widehat{K}$, such \widehat{X} exists in view of assumption (H2). Then,

$$
0<\langle C, \widehat{X}\rangle=\sum_{i=1}^{m} d_{i}\left\langle A_{i}, \widehat{X}\right\rangle=b^{t} d
$$

The proposition is proved.
Theorem 2. $d=0$ if $\left(f_{r}\right)_{\infty}(d) \leq 0$.
Proof. Fix some $y \in \widehat{Y}$, such y exists in view of assumption (H2). The recession function $\left(f_{r}\right)_{\infty}$ of f_{r} is defined as

$$
\left(f_{r}\right)_{\infty}(d)=\lim _{t \rightarrow+\infty}\left[\xi(t)=\frac{f_{r}(y+t d)-f_{r}(y)}{t}\right]
$$

Let $B=B(y)=\sum_{i=1}^{m} y_{i} A_{i}-C, B$ is a positive definite symmetric matrix, there exists a non singular lower triangular matrix L such that $B=L L^{t}$. Given d, set
$H(d)=\sum_{i=1}^{m} d_{i} A_{i}$. Then, for any t such that the matrix $B+t H(d)$ is positive definite,

$$
\begin{aligned}
\xi(t) & =b^{t} d-r t^{-1}[\ln \operatorname{det}(B+t H(d))-[\ln \operatorname{det}(B)), \\
& =b^{t} d-r t^{-1}[\ln \operatorname{det}(I+t E(d)]
\end{aligned}
$$

where $E(d)=L^{-1} H(d)\left(L^{-1}\right)^{t}$. We deduce that,

$$
\xi(t)= \begin{cases}b^{t} d-r t^{-1} \ln \operatorname{det}(I+t E(d)) & \text { if } I+t E(d) \in \widehat{K} \\ +\infty & \text { otherwise }\end{cases}
$$

The condition $\left[f_{r}\right]_{\infty}(d) \leq 0$ is therefore equivalent to say that $H(d)$ is positive semi-definite (hence $E(d)$ is also positive definite) and

$$
b^{t} d \leq r \lim _{t \rightarrow \infty} \frac{1}{t} \ln \operatorname{det}(I+t E(d))=r \lim _{t \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{t} \ln \left(1+t \lambda_{i}(d)\right)=0
$$

where by $\lambda_{i}(d)$ we denote the eigenvalues of $E(d)$. Pass to the limit and apply Proposition 1.

We denote by $y(r)$ or y_{r} the unique optimal solution of $\left(D_{r}\right)$.

3.3. When $r \rightarrow 0$

Next, we turn our interest in the behavior of the optimal value $m(r)$ and the optimal solution $y(r)$ of $\left(D_{r}\right)$ for $r \rightarrow 0$. For that, let us introduce the function $h: \mathbb{R}^{m} \times \mathbb{R} \rightarrow(-\infty,+\infty]$ defined by

$$
h(y, t)= \begin{cases}b^{t} y-\ln \operatorname{det}\left[\sum_{i=1}^{m} y_{i} A_{i}-t C\right] & \text { if } \sum_{i=1}^{m} y_{i} A_{i}-t C \in \widehat{K} \\ +\infty & \text { otherwise }\end{cases}
$$

It is easily shown that h is convex and lower semi-continuous. Next, consider the function $\phi: \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R} \rightarrow(-\infty,+\infty]$ defined by

$$
\phi(y, t, r)= \begin{cases}r h\left(r^{-1} y, r^{-1} t\right) & \text { if } r>0 \\ h_{\infty}(y, t) & \text { if } r=0 \\ +\infty & \text { if } r<0\end{cases}
$$

Then, ϕ is also lower semi-continuous and convex, see for instance Rockafellar [8]. Next, define $f: \mathbb{R}^{m} \times \mathbb{R} \rightarrow(-\infty,+\infty]$ by

$$
f(y, r)=\phi(y, 1, r)
$$

f is also convex and lower semi-continuous. By construction,

$$
f(y, r)=\left\{\begin{array}{lll}
f_{r}(y) & \text { if } & r>0 \tag{2}\\
b^{t} y & \text { if } & r=0, y \in Y \\
+\infty & \text { otherwise } &
\end{array}\right.
$$

Define $m: \mathbb{R} \rightarrow(-\infty,+\infty]$ by $m(r)=\inf _{y}\left[f(y, r): y \in \mathbb{R}^{m}\right]$. This function is convex. Furthermore $m(0)=m_{d}$ and $m(r)$ is the optimal value of $\left(D_{r}\right)$ when $r>0$. It is clear that for $r>0$

$$
m(r)=f_{r}(y(r))=f(y(r), r)
$$

and

$$
0=\nabla f_{r}(y(r))=\nabla_{y} f(y(r), r)=b-r b\left(y_{r}\right)
$$

Theorem 3. The functions m and y are continuously differentiable on $(0,+\infty)$. We have, for all $r>0$,

$$
\begin{gathered}
r \Delta\left(y_{r}\right) y^{\prime}(r)-b\left(y_{r}\right)=0 \\
m^{\prime}(r)=n+n \ln (r)-\ln \left(\operatorname{det}\left(B\left(y_{r}\right)\right)\right.
\end{gathered}
$$

Moreover,

$$
\begin{equation*}
m_{d}=m(0) \leq b^{t} y(r) \leq m_{d}+n r . \tag{3}
\end{equation*}
$$

Proof. Let $\bar{r}>0, \nabla_{y} f(y(\bar{r}), \bar{r})=0$ because $y(\bar{r})$ is an optimal solution of $\left(D_{\bar{r}}\right)$. The function f is twice continuously differentiable on $\widehat{Y} \times] 0,+\infty[$ and the matrix $\nabla_{y y}^{2} f(y(\bar{r}), \bar{r})$ is positive definite. Applying the implicit function theorem to the equation $0=T(y, r)=\nabla_{y} f(y, r)$ at the point $(y(\bar{r}), \bar{r})$ we deduce that in a neighborhood of \bar{r} the function y is continuously differentiable and

$$
\nabla_{y y}^{2} f\left(y_{r}, r\right) y^{\prime}(r)-b\left(y_{r}\right)=0
$$

Since $m(r)=f(y(r), r)$ and y is continuously differentiable on $(0, \infty), m$ is also continuously differentiable and

$$
\begin{aligned}
m^{\prime}(r) & =f_{y}^{\prime}(y(r), r) y^{\prime}(r)+f_{r}^{\prime}(y(r), r) \\
& =n+n \ln (r)-\ln \left[\operatorname{det}\left(B\left(y_{r}\right)\right]\right.
\end{aligned}
$$

because $f_{y}^{\prime}(y(r), r)=\left[\nabla_{y} f(y(r), r)\right]^{t}=0$. Next, because the function m is convex,

$$
m(0) \geq m(r)+(0-r) m^{\prime}(r)
$$

from what we obtain,

$$
+\infty>m_{d}=m(0) \geq b^{t} y(r)-n r>-\infty .
$$

On the other hand $y_{r} \in \widehat{Y} \subset Y$ and therefore $b^{t} y(r) \geq m_{d}$.

Let us denote by S_{d} the set of optimal solutions of (D), we know that this set is closed convex bounded and not empty. The distance of a point y to the set S_{D} is defined as usual by

$$
d\left(y, S_{d}\right)=\inf _{z}\left[\|y-z\|: z \in S_{d}\right] .
$$

The following result concerns the behavior of y_{r} and $m(r)$ when $r \rightarrow 0$.
Theorem 4. Assume that $r \rightarrow 0$, then $d\left(y_{r}, S_{d}\right) \rightarrow 0$ and $m(r) \rightarrow m_{d}$.
Proof. Let us consider the multivalued map S defined on \mathbb{R} by

$$
S(r)=\left\{y \in Y: b^{t} y \leq m_{d}+n r\right\} .
$$

Its graph is closed, $S(r)=\emptyset$ if $r<0$. If $r>0, \emptyset \neq S(0)=S_{d} \subset S(r), y_{r} \in S(r)$ and $S(r)$ is a closed convex set. The recession cone of $S(r), r>0$, coincides with the recession cone of $S(0)$. Hence $S(r)$ is compact because $S(r)$ is so. We deduce that the multivalued map S is upper semi-continuous (USC) on $[0,+\infty$) because compact-valued with a closed graph. Since $y_{r} \in S(r)$, then $d\left(y_{r}, S(0)\right) \rightarrow 0$ when $r \rightarrow 0$.

It remains to prove that $m(r) \rightarrow m_{d}=m(0)$ when $r \rightarrow 0$. Since the function m is convex, it is enough to prove that it is lower semi-continuous at 0 . We proceed by contradiction, if not there exist $\lambda<m_{d}$ and a sequence $\left\{r_{k}\right\}$ of positive numbers converging to 0 such that $m\left(r_{k}\right)<\lambda$. Let $y_{k}=y\left(r_{k}\right)$. Then there exist $\bar{y} \in S_{d}$ and a sub-sequence $\left\{y_{k_{l}}\right\}$ converging to \bar{y}. Since the function f is lower semi-continuous on $\mathbb{R}^{m} \times \mathbb{R}$ and $f(\bar{y}, 0)=m_{d}>\lambda$, one has for l large enough

$$
\lambda>m\left(r_{k_{l}}\right)=f\left(y_{k_{l}}, r_{k_{l}}\right)>\lambda
$$

which is not possible.

4. The Newton descent direction and The Line-SEARCH

Due to the presence of the barrier function, the problem $\left(D_{r}\right)$ can be considered as unconstrained. This problem will be solved via a classical descent algorithm. Because the function f_{r} takes the value ∞ on the boundary of Y, the iterates will stay in \widehat{Y}. Thus, the method that we propose is an interior point method.

Assume that our current iterate is $y \in \widehat{Y}$. For descent direction d at y, we take the solution of the linear system

$$
\left[\nabla^{2} f_{r}(y)\right] d=-\nabla f_{r}(y)
$$

According to Theorem 1, the linear system is equivalent to the system

$$
\begin{equation*}
\Delta(y) d=b(y)-\frac{1}{r} b \tag{1}
\end{equation*}
$$

with $B(y), b(y)$ and $\Delta(y)$ defined as in Section 3.1. The matrix $\Delta(y)$ being definite positive, the linear system (1) can be efficiently solved via a Cholewsky decomposition. Of course, we assume $\nabla f_{r}(y) \neq 0$ (if not the optimum is reached). It follows that $d \neq 0$.

The next step in the algorithm consists in the choice of $\bar{t}>0$ giving a significant decrease of the function f_{r} on the half line $y+t d, t>0$. Then, the next iterate will be taken equal to $y+\bar{t} d$. To do that, we consider the function

$$
\begin{aligned}
\theta(t) & =\frac{1}{r}\left[f_{r}(y+t d)-f_{r}(y)\right], \quad y+t d \in \widehat{Y} \\
\theta(t) & =\frac{1}{r} b^{t} d-\ln \operatorname{det}(B(y+t d))+\ln \operatorname{det}(B(y))
\end{aligned}
$$

Since $\nabla^{2} f_{r}(y) d=-\nabla f_{r}(y)$ one has

$$
d^{t} \nabla^{2} f_{r}(y) d=-d^{t} \nabla f_{r}(y)=d^{t} b(y)-r d^{t} b .
$$

In order to simplify the notation, y and d staying fixed in the following, we set

$$
B=B(y)=\sum_{i=1}^{m} y_{i} A_{i}-C \quad \text { and } \quad H=\sum_{i=1}^{m} d_{i} A_{i} .
$$

Since B is symmetric and positive definite, there exists a lower triangular matrix L such that $B=L L^{t}$. Next, we set

$$
E=L^{-1} H\left[L^{-1}\right]^{t} .
$$

Since $d \neq 0$, assumption (H1) implies $H \neq 0$ from what we have $E \neq 0$.
With this notation, for all $t>0$ such that $I+t E$ is positive definite,

$$
\begin{equation*}
\theta(t)=t\left[\operatorname{trace}(E)-\operatorname{trace}\left(E^{2}\right)\right]-\ln \operatorname{det}(I+t E) \tag{2}
\end{equation*}
$$

Denote by λ_{i} the eigenvalues of the symmetric matrix E, then

$$
\begin{equation*}
\theta(t)=\sum_{i=1}^{n}\left[t\left(\lambda_{i}-\lambda_{i}^{2}\right)-\ln \left(1+t \lambda_{i}\right)\right], \quad t \in[0, \widehat{t}) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{t}=\sup \left[t: 1+t \lambda_{i}>0 \text { for all } i\right]=\sup [t: y+t d \in \widehat{Y}] \tag{4}
\end{equation*}
$$

Observe that $\widehat{t}=+\infty$ if E is positive semi-definite and $0<\widehat{t}<+\infty$ if not. It is clear that θ is convex on $[0, \widehat{t}, \theta(0)=0$ and

$$
0<\sum \lambda_{i}^{2}=\theta^{\prime \prime}(0)=-\theta^{\prime}(0)
$$

Also $\theta(t) \rightarrow+\infty$ when $t \rightarrow \widehat{t}$. It follows that there exists one unique $t_{\text {opt }}$ such that $\theta^{\prime}\left(t_{\text {opt }}\right)=0, \theta$ reaches its minimum in this point.

Unfortunately, there is no explicit formula giving $t_{\text {opt }}$ and solving the equation by iterative methods needs successive computations of the functions θ and θ^{\prime}. These computations have a high numerical cost because the expression of θ in (2) contains a determinant not easily handled and (3) needs the knowledge of the eigenvalues of E, a difficult numerical problem. This leads to think of alternative approaches.

Once E is computed, it is easy to compute the two following quantities

$$
\operatorname{trace}(E)=\sum_{i} e_{i i}=\sum_{i} \lambda_{i} \quad \text { and } \quad \operatorname{trace}\left(E^{2}\right)=\sum_{i, j} e_{i j}^{2}=\sum_{i} \lambda_{i}^{2}
$$

In Section 6, we take advantage of these data to propose lower bounds of \widehat{t} and functions bounded from below by θ. Before, we look at some useful inequalities on a sample of numbers when the sum of the numbers and the sum of their squares are known.

5. SOME USEFUL INEQUALITIES

As usual in statistics, given a sample of n real numbers $x_{1}, x_{2}, \ldots, x_{n}$, we consider their arithmetic mean \bar{x} and their standard deviation σ_{x}. These quantities are defined as follows:

$$
\bar{x}=\frac{1}{n} \sum x_{i} \quad \text { and } \quad \sigma_{x}^{2}=\frac{1}{n} \sum x_{i}^{2}-\bar{x}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2} .
$$

The following result is due to Wolkowicz-Styan [10], see also Crouzeix-Seeger [5] for additional results.

Proposition 2.

$$
\begin{aligned}
& \bar{x}-\sigma_{x} \sqrt{n-1} \leq \min _{i} x_{i} \leq \bar{x}-\frac{\sigma_{x}}{\sqrt{n-1}} \\
& \bar{x}+\frac{\sigma_{x}}{\sqrt{n-1}} \leq \max _{i} x_{i} \leq \bar{x}+\sigma_{x} \sqrt{n-1}
\end{aligned}
$$

In the particular case where all x_{i} are positive, one deduces

$$
n \ln \left(\bar{x}-\sigma_{x} \sqrt{n-1}\right) \leq \sum_{i=1}^{n} \ln \left(x_{i}\right) \leq n \ln \left(\bar{x}+\sigma_{x} \sqrt{n-1}\right)
$$

where, by convention, $\ln (t)=-\infty$ if $t \leq 0$. The next result is still better.
Theorem 5. Assume that $x_{i}>0$ for $i=1,2, \cdots, n$. Then

$$
n \ln \left(\bar{x}-\sigma_{x} \sqrt{n-1}\right) \leq A \leq \sum_{i=1}^{n} \ln \left(x_{i}\right) \leq B \leq n \ln (\bar{x}),
$$

with

$$
A=(n-1) \ln \left(\bar{x}+\frac{\sigma_{x}}{\sqrt{n-1}}\right)+\ln \left(\bar{x}-\sigma_{x} \sqrt{n-1}\right)
$$

and

$$
B=\ln \left(\bar{x}+\sigma_{x} \sqrt{n-1}\right)+(n-1) \ln \left(\bar{x}-\frac{\sigma_{x}}{\sqrt{n-1}}\right) .
$$

Proof. If $\sigma_{x}=0$, then $x_{i}=\bar{x}$ for all i and the inequalities hold. Assume $\sigma_{x}>0$. Let us consider the two following problems where \bar{x} and σ_{x} are fixed,

$$
\begin{aligned}
& A=\inf _{x}\left[\sum_{i=1}^{n} \ln \left(x_{i}\right): \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \text { and } \quad \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=n \sigma_{x}^{2}\right], \\
& B=\sup _{x}\left[\sum_{i=1}^{n} \ln \left(x_{i}\right): \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \text { and } \quad \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=n \sigma_{x}^{2}\right] .
\end{aligned}
$$

The second problem has always optimal solutions, the first problem has optimal solutions if $\bar{x}-\sigma_{x} \sqrt{n-1}>0$ because Proposition 2 and in the other case $-\infty=$ $A<\sum \ln \left(x_{i}\right)$.

Apply the first order necessary optimality condition: if x is optimal solution of one problem or the other one, there exist α and β such for all i

$$
\left(x_{i}-\bar{x}\right)^{2}-\alpha\left(x_{i}-\bar{x}\right)+\beta=0 .
$$

Thus each $\left(x_{i}-\bar{x}\right)$ is a root of the equation

$$
w^{2}-\alpha w+\beta=0 .
$$

Denote by a and b the two roots of this equation. The quantities $\left(x_{i}-\bar{x}\right)$ divide into two parts, p equal to $a, n-p$ equal to b. From $\sigma_{x} \neq 0$ we deduce that $1 \leq p \leq n-1$ and $a \neq b$. Hence,

$$
0=\sum_{i}\left(x_{i}-\bar{x}\right)=p a+(n-p) b
$$

and

$$
n \sigma_{x}^{2}=\sum_{i}\left(x_{i}-\bar{x}\right)^{2}=p a^{2}+(n-p) b^{2}
$$

From what we deduce that either

$$
a=\bar{x}+\sigma_{x} \sqrt{\frac{n-p}{p}} \quad \text { and } \quad b=\bar{x}-\sigma_{x} \sqrt{\frac{p}{n-p}}
$$

or

$$
a=\bar{x}-\sigma_{x} \sqrt{\frac{n-p}{p}} \quad \text { and } \quad b=\bar{x}+\sigma_{x} \sqrt{\frac{p}{n-p}} .
$$

Denote by $h(p)$ and $k(p)$ the following quantities

$$
\begin{aligned}
& h(p)=\frac{p}{n} \ln \left[\bar{x}+\sigma_{x} \sqrt{\frac{n-p}{p}}\right]+\frac{n-p}{n} \ln \left[\bar{x}-\sigma_{x} \sqrt{\frac{p}{n-p}}\right] \\
& k(p)=\frac{p}{n} \ln \left[\bar{x}-\sigma_{x} \sqrt{\frac{n-p}{p}}\right]+\frac{n-p}{n} \ln \left[\bar{x}+\sigma_{x} \sqrt{\frac{p}{n-p}}\right]
\end{aligned}
$$

Then,

$$
\frac{A}{n}=\min _{p=1, \cdots, n-1}[\min [h(p), k(p)]] \quad \text { and } \quad \frac{B}{n}=\max _{p=1, \cdots, n-1}[\max [h(p), k(p)]]
$$

But $h(p)=k(n-p)$ for any $p=1, \ldots, n-1$ and therefore

$$
\begin{equation*}
\frac{A}{n}=\min _{p=1, \cdots, n-1}[h(p)] \quad \text { and } \quad \frac{B}{n}=\max _{p=1, \cdots, n-1}[h(p)] \tag{5}
\end{equation*}
$$

It is interesting to set $t(p)=\sqrt{\frac{p}{n-p}}$ and to consider the function

$$
\gamma(t)=\frac{t^{2}}{t^{2}+1} \ln \left[\bar{x}+\sigma_{x} t^{-1}\right]+\frac{1}{t^{2}+1} \ln \left[\bar{x}-\sigma_{x} t\right]
$$

Then,

$$
\gamma^{\prime}(t)=\frac{2 t}{\left(1+t^{2}\right)^{2}}\left[\ln \frac{\bar{x}+\sigma_{x} t^{-1}}{\bar{x}-\sigma_{x} t}\right]-\frac{\sigma_{x}}{\left(1+t^{2}\right)}\left[\frac{1}{\bar{x}+\sigma_{x} t^{-1}}+\frac{1}{\bar{x}-\sigma_{x} t}\right]
$$

The concavity of the function $t \rightarrow t^{-1}$ implies that

$$
\ln (t+\delta)-\ln (t)<\frac{\delta}{2}\left[\frac{1}{t+\delta}+\frac{1}{t}\right] \quad \forall t, \delta>0
$$

from what we deduce that γ^{\prime} is negative on $(0, \infty)$ and therefore γ is decreasing on this interval. It follows that

$$
A=n \gamma(n-1)<B=n \gamma\left(\frac{1}{n-1}\right)<n \lim _{t \downarrow 0} \gamma(t)=n \ln (\bar{x})
$$

The remaining inequality is a straight consequence of the definition of A.

6. Back to the step-size procedure

Let us go back to Equations (3) and (4). We denote by $\bar{\lambda}$ and σ_{λ} the arithmetic mean and the standard deviation of the λ_{i} and by $\|\lambda\|$ the euclidean norm of the
vector λ. Then, $\|\lambda\|^{2}=n\left(\bar{\lambda}^{2}+\sigma_{\lambda}^{2}\right)=\theta^{\prime \prime}(0)=-\theta^{\prime}(0)$ and

$$
\theta(t)=n t \bar{\lambda}-t\|\lambda\|^{2}-\sum_{i=1}^{n} \ln \left(1+t \lambda_{i}\right) .
$$

Our problem consists to find some $\bar{t} \in(0, \widehat{t})$ giving a significant decrease of the convex function θ.

We have said that the most natural choice, $\bar{t}=t_{\text {opt }}$ where $\theta^{\prime}\left(t_{\text {opt }}\right)=0$, presents numerical complications. It can be thought of a line-search by a method of Armijo-Goldstein-Price type but this line-search needs also several computations of functions θ and θ^{\prime}. Nevertheless, if we decide for such a line-search, it is convenient to know, for lack of the upper-bound \hat{t} of the domain of θ which is numerically difficult to obtain, a lower-bound of \widehat{t}. Such a bound is issued from Proposition 2

$$
\widehat{t}_{1}=\sup \left[t: 1+t \beta_{1}>0\right] \quad \text { with } \beta_{1}=\bar{\lambda}-\sigma_{\lambda} \sqrt{n-1}
$$

Another bound $\widehat{t_{2}}$ is due to the fact that $\left|\lambda_{i}\right| \leq\|\lambda\|$ for all i

$$
\widehat{t_{2}}=\sup \left[t: 1+t \beta_{2}>0\right] \quad \text { with } \beta_{2}=-\|\lambda\|
$$

Then, $0<\widehat{t}_{2} \leq \widehat{t}_{1} \leq \widehat{t} \leq+\infty$. As already said, the inequality $\widehat{t} \geq \widehat{t}_{1}$ is a consequence of Proposition 2. To prove that $\widehat{t}_{1} \geq \widehat{t}_{2}$ it is enough to prove that $\|\lambda\|^{2} \geq \beta_{1}^{2}$. This inequality is equivalent to

$$
0 \leq(n-1) \bar{\lambda}^{2}+\sigma_{\lambda}^{2}+2 \sigma_{\lambda} \bar{\lambda} \sqrt{n-1}=\left(\bar{\lambda} \sqrt{n-1}+\sigma_{\lambda}\right)^{2}
$$

Another strategy consists in minimizing an upper-approximation $\tilde{\theta}$ of θ. To be efficient, this approximation must be simple and close enough to θ. Here we require

$$
0=\widetilde{\theta}(0), \quad\|\lambda\|^{2}=\widetilde{\theta}^{\prime \prime}(0)=-\widetilde{\theta}^{\prime}(0)
$$

Theorem 5 provides such an approximation: set $x_{i}=1+t \lambda_{i}$, then $\bar{x}=1+t \bar{\lambda}$ and $\sigma_{x}=t \sigma_{\lambda}$. Next, define

$$
\theta_{0}(t)=\gamma_{0} t-(n-1) \ln \left(1+\alpha_{0} t\right)-\ln \left(1+\beta_{0} t\right)
$$

with

$$
\gamma_{0}=n \bar{\lambda}-\|\lambda\|^{2}, \quad \alpha_{0}=\bar{\lambda}+\frac{\sigma_{\lambda}}{\sqrt{n-1}} \text { and } \quad \beta_{0}=\beta_{1}=\bar{\lambda}-\sigma_{\lambda} \sqrt{n-1}
$$

It is clear that θ_{0} is convex, its domain is $\left[0, \widehat{t_{0}}\right)$ with $\widehat{t}_{0}=\widehat{t}_{1}$ and

$$
\theta(t) \leq \theta_{0}(t) \forall t \geq 0, \quad \theta_{0}(0)=0 \quad \text { and } \quad \theta_{0}^{\prime \prime}(0)=-\theta_{0}^{\prime}(0)=\|\lambda\|^{2}
$$

One can also thought of simpler functions than θ_{0} involving only one logarithm. We consider functions of the following type

$$
\widetilde{\theta}(t)=\widetilde{\gamma} t-\widetilde{\delta} \ln (1+\widetilde{\beta} t), \quad t \in[0, \widetilde{t})
$$

where in order to fulfill the requirements

$$
\|\lambda\|^{2}=\widetilde{\delta} \widetilde{\beta}^{2}=\delta \widetilde{\beta}-\widetilde{\gamma}, \quad \widetilde{t}=\sup [t: 1+t \widetilde{\beta}>0] .
$$

Such functions are convex.
Of course $\widetilde{t} \leq \widehat{t}$ is required. In line with the lower-bounds \widehat{t}_{1} and \widehat{t}_{2}, we consider the two functions θ_{1} and θ_{2} corresponding to β_{1} and β_{2}. In the following result, we compare θ_{0}, θ_{1} and θ_{2}. As in other parts of the paper $\ln (r)=-\infty$ if $r \leq 0$.

Proposition 3. $\theta_{i}, i=0,1,2$, is strictly convex on $\left[0, \widehat{t}_{i}\right), \theta_{i}(t) \rightarrow+\infty$ when $t \rightarrow \widehat{t_{i}}$. Furthermore, $\theta(t) \leq \theta_{0}(t) \leq \theta_{1}(t) \leq \theta_{2}(t) \leq+\infty$ for all $t>0$.

Proof. The first part is immediate. The inequality $\theta(t) \leq \theta_{0}(t)$ is a straight consequence of Theorem 5. Set $\nu(t)=\theta_{1}-\theta_{0}$. Because $\beta_{0}=\beta_{1}$ and $\alpha_{0} \geq \beta_{0}$ one has for $t>0$

$$
\nu^{\prime \prime}(t)=\frac{\delta_{1} \beta_{1}^{2}-\beta_{0}^{2}}{\left(1+\beta_{0} t\right)^{2}}-\frac{(n-1) \alpha_{0}^{2}}{\left(1+\alpha_{0} t\right)^{2}}=\frac{(n-1) \alpha_{0}^{2}}{\left(1+\beta_{0} t\right)^{2}}-\frac{(n-1) \alpha_{0}^{2}}{\left(1+\alpha_{0} t\right)^{2}} \geq 0
$$

Because $\nu(0)=\nu^{\prime}(0)=0$, one deduces that $\nu(t) \geq 0$ for $t>0$.
Next, set $\mu(t)=\theta_{2}-\theta_{1}$. Then, $\mu(0)=\mu^{\prime}(0)=0$ and

$$
\mu^{\prime \prime}(t)=\|\lambda\|^{2}\left[\frac{1}{\left(1+\beta_{2} t\right)^{2}}-\frac{1}{\left(1+\beta_{1} t\right)^{2}}\right] \geq 0
$$

Here again $\mu(t) \geq 0$ for all $t>0$.
We deduce that the function θ_{i} reaches its minimum in one unique value \bar{t}_{i} which is the root of the equation $\theta_{i}^{\prime}(t)=0$. For $i=1,2$ one has

$$
\bar{t}_{i}=\frac{\delta_{i}}{\gamma_{i}}-\frac{1}{\beta_{i}} \quad \text { and } \quad \theta_{i}\left(\bar{t}_{i}\right)=\frac{\|\lambda\|^{2}}{\beta_{i}}+\frac{\|\lambda\|^{2}}{\beta_{i}^{2}} \ln (1-\beta)
$$

In particular,

$$
\bar{t}_{2}=\frac{1}{1+\|\lambda\|} \quad \text { and } \quad \theta_{2}\left(\bar{t}_{2}\right)=-\|\lambda\|+\ln (1+\|\lambda\|)
$$

The solution of $\theta_{0}^{\prime}(t)=0$ leads to the equation $t^{2}-2 b t+c t=0$ with

$$
b=\frac{1}{2}\left(\frac{n}{\gamma_{0}}-\frac{1}{\alpha_{0}}-\frac{1}{\beta_{0}}\right) \quad \text { and } \quad c=-\frac{\|\lambda\|^{2}}{\alpha_{0} \beta_{0} \gamma_{0}}
$$

whose the two roots are $t=b \pm \sqrt{b^{2}-c}$. For \bar{t}_{0} we take the root which belongs to the interval $\left(0, \widehat{t}_{0}\right)$ (there is only one).

Thus, the three values \bar{t}_{0}, \bar{t}_{1} and \bar{t}_{2} are explicitly computed. It is clear that

$$
\theta\left(\bar{t}_{2}\right) \leq \theta_{2}\left(\bar{t}_{2}\right), \quad \theta\left(\bar{t}_{1}\right) \leq \theta_{1}\left(\bar{t}_{1}\right) \leq \theta_{1}\left(\bar{t}_{2}\right) \leq \theta_{2}\left(\bar{t}_{2}\right)
$$

and

$$
\theta\left(\bar{t}_{0}\right) \leq \theta_{0}\left(\bar{t}_{0}\right) \leq \theta_{0}\left(\bar{t}_{1}\right) \leq \theta_{1}\left(\bar{t}_{1}\right) \leq \theta_{2}\left(\bar{t}_{2}\right)
$$

7. Description of the algorithm

Initialization: One decides for a step-size strategy and we choose the parameters $\varepsilon>0, r>0, \rho>0, \sigma \in(0,1)$. We start with some $y \in \widehat{Y}$.
Main step: (a) Compute $B=B(y)$ and L such that $L L^{t}=B$.
(b) Compute $g=b-r b(y)$ and $H=r \Delta(y)$.
(c) Solve the equation $H d=-g$. Compute E, $\operatorname{trace}(E)$ and $\operatorname{trace}\left(E^{2}\right)$.
(d) Compute $\bar{\lambda}$ and $\bar{\sigma}_{\lambda}$.
(e) Obtain \bar{t} using the step-size strategy. Take $\bar{y}=y+\bar{t} d$.
(f) If $\left|b^{t} y-b^{t} \bar{y}\right|>\rho n r$, do $y=\bar{y}$ and go to (a).
(g) If $n r>\varepsilon$, do $y=\bar{y}, r=\sigma r$ and go to (a).
(h) Stop: \bar{y} is an approximate solution of the problem (D).

As said previously, the optimal solution of problem $\left(D_{r}\right)$ is only one approximate solution of problem (D), more r is close to 0 , more the approximation is good. Unfortunately, more r is close to 0 , more $\left(D_{r}\right)$ is badly conditioned. It is the reason why we use in the first iterations of the algorithm large r instead of dealing directly with a value of r such that $n r<\varepsilon$. The reason for the updating of r is the following: if $y(r)$ is the exact solution of problem $\left(D_{r}\right)$, then $b^{t} y(r) \in\left[m_{d}, m_{d}+n r\right]$, it is wasting time to continue iterations on $\left(D_{r}\right)$ when $\left|b^{t} y-b^{t} \bar{y}\right| \leq \rho n r$, with ρ near 1. For ρ one can consider for instance the values $0.5,1,2,3$. For σ, we can take for instance the values $0.1,0.25,0.5$. We describe now four different strategies for the step-size:

- Strategy Ls: A classical line-search of Armijo-Goldstein-Price type.
- Strategy $\mathbf{S}_{i}, i=0,1,2: \bar{t}=\bar{t}_{i}$ with \bar{t}_{i} defined as in the last section.

8. Numerical experiments

The computations have been performed on a D 810 station with Delphi 5 .

8.1. Example cube

$n=2 m, C$ is the $n \times n$ identity matrix, $b=(2, \ldots, 2)^{t} \in \mathbb{R}^{m}$ and the entries of the $n \times n$ matrix $A_{k}, k=1, \cdots m$, are given by:

$$
A_{k}[i, j]=\left\{\begin{array}{lll}
1 & \text { if } i=j=k & \text { or } i=j=k+m \\
a^{2} & \text { if } i=j=k+1 & \text { or } i=j=k+m+1 \\
-a & \text { if } i=k, j=k+1 & \text { or } i=k+m, j=k+m+1 \\
-a & \text { if } i=k+1, j=k & \text { or } i=k+m+1, j=k+m \\
0 & \text { otherwise. } &
\end{array}\right.
$$

$a \in \mathbb{R}$ is given.
Test 1. $(m, n)=(50,100)$ and $a=0$. Then, it is known that the vector $y=(1, \ldots, 1)^{t} \in \mathbb{R}^{m}$ is the optimal solution and $y_{0}=(1.5, \ldots, 1.5)^{t} \in \mathbb{R}^{m}$ is feasible. We take for parameters in the algorithm $\rho=1, \sigma=0.125, r_{0}=0.3, \varepsilon=0.1$ and for initial point y_{0}. The following array describes the results.

Strategy	Computational time	Number of iterations
S_{0}	34 s	3
S_{1}	34 s	4
S_{2}	660 s	25
Ls	dvg	dvg

dvg means that the algorithm does not terminate within a finite time.
Test 2. In this test, the data are the same as in the first test, except $\rho=2$ in place of $\rho=1$.

Strategy	Computational time	Number of iterations
S_{0}	33 s	3
S_{1}	34 s	4
S_{2}	480 s	18
Ls	dvg	dvg

The results of these two tests show that the strategies S_{2} and $L s$ do not compete with S_{0} and S_{1} and $a=2$ or 5 . In the next experiments, we continue only with S_{0} and S_{1}.
Test 3. Same data as in test 1 except $C=-2 I$ in place of $C=I$. We start the algorithm with the feasible point $y_{0}=(0, \ldots, 0)^{t}$ and we take $\rho=1$.

Strategy	S_{0}		S_{1}	
a	2	5	2	5
computational time	165 s	80 s	180 s	120 s
number of iterations	10	5	12	13

Test 4. Same data as in test 3 except $\rho=2$ in place of $\rho=1$.

Strategy	S_{0}		S_{1}	
a	2	5	2	5
computational time	130 s	50 s	135 s	56 s
number of iterations	7	3	10	5

References

[1] F. Alizadeh, Interior point methods in semi-definite programming with application to combinatorial optimization. SIAM J. Optim. 5 (1995) 13-55.
[2] F. Alizadeh, J.-P. Haberly, and M.-L. Overton, Primal-dual interior-point methods for semidefinite programming, convergence rates, stability and numerical results. SIAM J. Optim. 8 (1998) 746-768.
[3] D. Benterki, J.-P. Crouzeix, and B. Merikhi, A numerical implementation of an interior point method for semi-definite programming. Pesquisa Operacional 23-1 (2003) 49-59.
[4] J.-F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. Sagastizàbal, Numerical optimization, theoretical and practical aspects. Mathematics and Applications 27, Springer-Verlag, Berlin (2003).
[5] J.-P. Crouzeix and A. Seeger, New bounds for the extreme values of a finite sample of real numbers. J. Math. Anal. Appl. 197 (1996) 411-426.
[6] M. Kojima, S. Shindoh, and S. Hara, Interior point methods for the monotone semi-definite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86-125.
[7] M. Overton and H. Wolkowicz, Semi-definite programming. Math. program. Serie B $7 \boldsymbol{7}$ (1997) 105-109.
[8] R.T. Rockafellar, Convex analysis. Princeton University Press, New Jerzey (1970).
[9] L. Vanderberghe and S. Boyd, Positive definite programming. SIAM Review 38 (1996) 49-95.
[10] H. Wolkowicz and G.-P.-H. Styan, Bounds for eigenvalues using traces. Linear Algebra Appl. 29 (1980) 471-506.

[^0]: Received September 01, 2006. Accepted September 01, 2006.
 ${ }^{1}$ LIMOS, Université Blaise Pascal, Campus des Cézaux, 63174 Aubière, France; jp.crouzeix@isima.fr
 ${ }^{2}$ Laboratoire d'optimisation, Université Ferhat Abbas, Algérie; the research of this author has been made possible thanks to a PROFAS grant and the hospitality of Université Blaise
 Pascal. b_merikhi@yahoo.fr

