
RAIRO-Oper. Res. 42 (2008) 123–139 RAIRO Operations Research

DOI: 10.1051/ro:2008005 www.rairo-ro.org

A LOGARITHM BARRIER METHOD
FOR SEMI-DEFINITE PROGRAMMING
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Abstract. This paper presents a logarithmic barrier method for solv-
ing a semi-definite linear program. The descent direction is the clas-
sical Newton direction. We propose alternative ways to determine the
step-size along the direction which are more efficient than classical line-
searches.
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1. Introduction

In this paper we present an algorithm for solving the optimization problem:

md = inf
y

[
bty :

m∑
i=1

yiAi − C ∈ K, y ∈ Rm

]
, (D)

where K denotes the cone of n× n symmetric positive semi-definite matrices, the
vector b ∈ Rm and the n×n symmetric matrices C and Ai, i = 1, . . . , m, are given.
The dual problem of (D) is:

mp = max
X

[〈C, X〉 : X ∈ K, 〈Ai, X〉 = bi ∀ i = 1, . . . , m], (P )
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where by 〈C, X〉 we denote the trace of the matrix (CtX). It is recalled that 〈·, ·〉
corresponds to an inner product on the space of n × n matrices.

These problems are linear. Their feasible sets involving the cone of positive
semi-definite matrices, a non polyhedral convex cone, they are called linear semi-
definite programs. Such problems are the object of a particular attention since
the papers by Alizadeh [1,2], as well on a theoretical or an algorithmical aspect,
see for instance the following references [1–4,6,7].

Under suitable conditions, solving (D) is equivalent to solving (P ): the optimal
solutions of one problem being easily obtained when one optimal solution of the
other problem is known. In this paper, the problem (D) is approximated by the
problem (Dr), (r > 0),

m(r) = inf [ fr(y) : y ∈ Rm], (Dr)

where the barrier function fr : Rm → (−∞, +∞] is defined by

fr(y) =
{

bty + nr ln r − r ln[det(
∑m

i=1 yiAi − C)] if y ∈ Ŷ ,
+∞ if not,

with

Ŷ =

{
y ∈ Rm : the matrix

m∑
i=1

yiAi − C ∈ K̂

}
,

and K̂ = int(K) is the cone of n × n symmetric positive definite matrices. This
problem is solved via a classical Newton descent method. The difficulty is in the
line-search: the presence of a determinant in the definition of fr induces high
computational costs in classical exact or approximate line-searches. Here, instead
of minimizing fr along the descent direction d at the current point x, we minimize
a function θ̃ such that

1
r

[fr(x + td) − fr(x)] = θ(t) ≤ θ̃(t) ∀ t > 0, θ(0) = θ̃(0), θ′(0) = θ̃′(0) < 0.

This function θ̃ needs to be appropriately chosen so that the optimal t is easily
obtained and to be close enough to θ in order to give a significant decrease of fr

in the iteration step. We propose in this paper functions θ for which the optimal
solution t is explicitly obtained and a good quality of the approximation of θ by θ̃

is ensured by the condition θ′′(0) = θ̃′′(0).
In the next section, we briefly recall some results in linear semi-definite pro-

gramming. Section 3 studies the problem (Dr), in particular the behavior of its
optimal value and its optimal solutions when r → 0. Section 4 shows how to
compute the Newton descent direction. Section 6 is devoted to the determination
of efficient approximations θ̃, these approximations are deduced from inequalities
shown in Section 5. The algorithm is resumed in Section 7 and numerical ex-
periments presented in Section 8 show the efficiency of the approximations when
compared with classical line-searches.
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2. A brief background in linear semi-definite

programming

Throughout the paper, we use the following notation:

Y = {y ∈ Rm :
∑m

i=1 yiAi − C ∈ K}, F = {X ∈ K : 〈Ai, X〉 = bi ∀ i},
Ŷ = {y ∈ Rm :

∑m
i=1 yiAi − C ∈ K̂}, F̂ = {X ∈ F : X ∈ K̂}.

It is easily seen that −∞ ≤ mp ≤ md ≤ +∞ (weak duality). In this paper we
assume that the two following assumptions hold:

(H1) The system of equations 〈Ai, X〉 = bi, i = 1, ..., m is of rank m.
(H2) The sets Ŷ and F̂ are non empty.

Then it is known that (see for instance [1,3]):

(a) −∞ < mp = md < +∞.
(b) The sets of optimal solutions of (P ) and (D) are non empty convex com-

pact sets.
(c) If X̄ is an optimal solution of (P ), then ȳ is an optimal solution of (D) if

and only if

ȳ ∈ Y and

(
m∑

i=1

ȳiAi − C

)
X̄ = 0.

(d) If ȳ is an optimal solution of (D), then X̄ is an optimal solution of (P ) if
and only if

X̄ ∈ F and

(
m∑

i=1

ȳiAi − C

)
X̄ = 0.

3. The problem (Dr): theoretical aspects

Recall that (Dr), r > 0, is the problem

m(r) = inf [ fr(y) : y ∈ Rm], (Dr)

with fr : Rm → (−∞, +∞] defined by

fr(y) =

{
bty + nr ln r − r ln [det(

∑m
i=1 yiAi − C)] if y ∈ Ŷ ,

+∞ if not.

We start with the study of this function.
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3.1. fr is a twice differentiable strictly convex function

The following notation will be used in the expressions of the gradient and the
Hessian of fr: given y ∈ Ŷ , we introduce the m × m symmetric positive definite
matrix B(y) and the lower triangular m × m matrix L(y) such that

B(y) =
m∑

i=1

yiAi − C = L(y)Lt(y).

Next, for i, j = 1, 2, · · · , m, we define

Âi(y) = [L(y)]−1Ai[Lt(y)]−1,

bi(y) = trace(Âi(y)) = trace(AiB
−1(y)),

∆ij(y) = trace(B−1(y)AiB
−1(y)Aj) = trace(Âi(y)Âj(y)).

Thus b(y) is a vector of Rm and ∆(y) is a symmetric m × m matrix

Theorem 1. The function fr is twice continuously differentiable on Ŷ . Actually,
for all y ∈ Ŷ we have:
(a) ∇fr(y) = b − rb(y);
(b) ∇2fr(y) = r∆(y);
(c) the matrix ∆(y) is definite positive.

Proof. (a) Denote by (e1, e2, · · · , em) the canonical basis of Rm. Let i ∈ {1, · · · , m}
and zi ∈ R, zi 	= 0. Then,

fr(y + ziei) − fr(y)
zi

= bi − r

zi
[ln det(B(y + ziei)) − ln det(B(y))],

= bi − r

zi
[ln det(L(y)[I + ziÂi]Lt(y)) − ln det(B(y))],

= bi − r

zi
ln det(I + ziÂi(y)),

= bi − r

zi
ln[1 + zitrace(Âi(y)) + ziε(zi)]

where the function ε is such that ε(z) → 0 when z → 0. Pass to the limit when
zi → 0.

(b) In the same manner, given i, j ∈ {1, · · · , m}, let us consider

bi(y + zjej) − bi(y)
zj

=
−1
zj

[trace(Ai[B−1(y + zjej) − B−1(y)])].

But,

B−1(y + zjej) − B−1(y) = [B(y) + zjAj ]−1 − B−1(y),

= [B(y)(I + zjB
−1(y)Aj) ]−1 − B−1(y),

= [(I + zjB
−1(y)Aj)−1 − I ]B−1(y).
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Neglecting the second order terms in zj , we obtain

bi(y + zjej) − bi(y)
zj

∼ trace(AiB
−1(y)AjB

−1(y)).

Pass to the limit when zj → 0. On the other hand the equality

trace(B−1(y)AiB
−1(y)Aj) = trace(Âi(y)Âj(y))

is immediate.
(c) Let d 	= 0. Next, let M =

∑m
i=1 diÂi(y). Then (H1) implies M 	= 0. On the

other hand,

〈∇2fr(y)d, d〉 = rtrace

⎛⎝∑
i,j

didjÂi(y)Âj(y)

⎞⎠ = rtrace(M2) > 0,

from what we deduce that the matrix ∇2fr(y) is positive definite. �
Since fr is strictly convex, (Dr) has at most one optimal solution.

3.2. (Dr) has one unique optimal solution

Because the convex function fr takes the value +∞ on the boundary of its
domain and is differentiable on the interior, it is lower semi-continuous. In order
to prove that (Dr) has one optimal solution, it suffices to prove that the recession
cone of fr is reduced to the origin. Before that, we show the following result:

Proposition 1. d = 0 whenever btd ≤ 0 and
∑m

i=1 diAi ∈ K.

Proof. Assume that d 	= 0, btd ≤ 0 and C =
∑m

i=1 diAi ∈ K. Then (H1) implies
C 	= 0. Let some X̂ ∈ F̂ ⊂ K̂, such X̂ exists in view of assumption (H2). Then,

0 < 〈C, X̂〉 =
m∑

i=1

di〈Ai, X̂〉 = btd.

The proposition is proved. �
Theorem 2. d = 0 if (fr)∞(d) ≤ 0.

Proof. Fix some y ∈ Ŷ , such y exists in view of assumption (H2). The recession
function (fr)∞ of fr is defined as

(fr)∞(d) = lim
t→+∞

[
ξ(t) =

fr(y + td) − fr(y)
t

]
.

Let B = B(y) =
∑m

i=1 yiAi − C, B is a positive definite symmetric matrix, there
exists a non singular lower triangular matrix L such that B = LLt. Given d, set
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H(d) =
∑m

i=1 diAi. Then, for any t such that the matrix B + tH(d) is positive
definite,

ξ(t) = btd − rt−1[ln det(B + tH(d)) − [ln det(B)),
= btd − rt−1[ln det(I + tE(d)]

where E(d) = L−1H(d)(L−1)t. We deduce that ,

ξ(t) =
{

btd − rt−1 ln det (I + tE(d)) if I + tE(d) ∈ K̂,
+∞ otherwise.

The condition [fr]∞(d) ≤ 0 is therefore equivalent to say that H(d) is positive
semi-definite (hence E(d) is also positive definite) and

btd ≤ r lim
t→∞

1
t

ln det (I + tE(d)) = r lim
t→∞

n∑
i=1

1
t

ln(1 + tλi(d)) = 0,

where by λi(d) we denote the eigenvalues of E(d). Pass to the limit and apply
Proposition 1. �

We denote by y(r) or yr the unique optimal solution of (Dr).

3.3. When r → 0

Next, we turn our interest in the behavior of the optimal value m(r) and the
optimal solution y(r) of (Dr) for r → 0. For that, let us introduce the function
h : Rm × R → (−∞, +∞] defined by

h(y, t) =

⎧⎨⎩ bty − ln det
[

m∑
i=1

yiAi − tC

]
if

m∑
i=1

yiAi − tC ∈ K̂,

+∞ otherwise.

It is easily shown that h is convex and lower semi-continuous. Next, consider the
function φ : Rm × R × R → (−∞, +∞] defined by

φ(y, t, r) =

⎧⎨⎩
rh(r−1y, r−1t) if r > 0,
h∞(y, t) if r = 0,
+∞ if r < 0.

Then, φ is also lower semi-continuous and convex, see for instance Rockafellar [8].
Next, define f : Rm × R → (−∞, +∞] by

f(y, r) = φ(y, 1, r)
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f is also convex and lower semi-continuous. By construction,

f(y, r) =

⎧⎨⎩
fr(y) if r > 0,
bty if r = 0, y ∈ Y,
+∞ otherwise.

(2)

Define m : R → (−∞, +∞] by m(r) = infy[f(y, r) : y ∈ Rm]. This function is
convex. Furthermore m(0) = md and m(r) is the optimal value of (Dr) when
r > 0. It is clear that for r > 0

m(r) = fr(y(r)) = f(y(r), r)

and
0 = ∇fr(y(r)) = ∇yf(y(r), r) = b − rb(yr).

Theorem 3. The functions m and y are continuously differentiable on (0, +∞).
We have, for all r > 0,

r∆(yr)y′(r) − b(yr) = 0,

m′(r) = n + n ln(r) − ln(det(B(yr)).
Moreover,

md = m(0) ≤ bty(r) ≤ md + nr. (3)

Proof. Let r̄ > 0, ∇yf(y(r̄), r̄) = 0 because y(r̄) is an optimal solution of (Dr̄).
The function f is twice continuously differentiable on Ŷ ×]0, +∞[ and the ma-
trix ∇2

yyf(y(r̄), r̄) is positive definite. Applying the implicit function theorem to
the equation 0 = T (y, r) = ∇yf(y, r) at the point (y(r̄), r̄) we deduce that in a
neighborhood of r̄ the function y is continuously differentiable and

∇2
yyf(yr, r)y′(r) − b(yr) = 0.

Since m(r) = f(y(r), r) and y is continuously differentiable on (0,∞) , m is also
continuously differentiable and

m′(r) = f ′
y(y(r), r)y′(r) + f ′

r(y(r), r)

= n + n ln(r) − ln[det(B(yr)]

because f ′
y(y(r), r) = [∇yf(y(r), r)]t = 0. Next, because the function m is convex,

m(0) ≥ m(r) + (0 − r)m′(r)

from what we obtain,

+∞ > md = m(0) ≥ bty(r) − nr > −∞.

On the other hand yr ∈ Ŷ ⊂ Y and therefore bty(r) ≥ md. �
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Let us denote by Sd the set of optimal solutions of (D), we know that this set
is closed convex bounded and not empty. The distance of a point y to the set SD

is defined as usual by

d(y, Sd) = inf
z

[ ‖y − z‖ : z ∈ Sd ].

The following result concerns the behavior of yr and m(r) when r → 0.

Theorem 4. Assume that r → 0, then d(yr, Sd) → 0 and m(r) → md.

Proof. Let us consider the multivalued map S defined on R by

S(r) = {y ∈ Y : bty ≤ md + nr}.

Its graph is closed, S(r) = ∅ if r < 0. If r > 0, ∅ 	= S(0) = Sd ⊂ S(r), yr ∈ S(r)
and S(r) is a closed convex set. The recession cone of S(r), r > 0, coincides with
the recession cone of S(0). Hence S(r) is compact because S(r) is so. We deduce
that the multivalued map S is upper semi-continuous (USC) on [0, +∞) because
compact-valued with a closed graph. Since yr ∈ S(r), then d(yr, S(0)) → 0 when
r → 0.

It remains to prove that m(r) → md = m(0) when r → 0. Since the function m
is convex, it is enough to prove that it is lower semi-continuous at 0. We proceed
by contradiction, if not there exist λ < md and a sequence {rk} of positive numbers
converging to 0 such that m(rk) < λ. Let yk = y(rk). Then there exist ȳ ∈ Sd and
a sub-sequence {ykl

} converging to ȳ. Since the function f is lower semi-continuous
on Rm × R and f(ȳ, 0) = md > λ, one has for l large enough

λ > m(rkl
) = f(ykl

, rkl
) > λ

which is not possible. �

4. The Newton descent direction and the line-search

Due to the presence of the barrier function, the problem (Dr) can be considered
as unconstrained. This problem will be solved via a classical descent algorithm.
Because the function fr takes the value ∞ on the boundary of Y , the iterates will
stay in Ŷ . Thus, the method that we propose is an interior point method.

Assume that our current iterate is y ∈ Ŷ . For descent direction d at y, we take
the solution of the linear system

[∇2fr(y)]d = −∇fr(y).

According to Theorem 1, the linear system is equivalent to the system

∆(y)d = b(y) − 1
r
b (1)
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with B(y), b(y) and ∆(y) defined as in Section 3.1. The matrix ∆(y) being definite
positive, the linear system (1) can be efficiently solved via a Cholewsky decom-
position. Of course, we assume ∇fr(y) 	= 0 (if not the optimum is reached). It
follows that d 	= 0.

The next step in the algorithm consists in the choice of t̄ > 0 giving a significant
decrease of the function fr on the half line y + td, t > 0. Then, the next iterate
will be taken equal to y + t̄d. To do that, we consider the function

θ(t) =
1
r
[fr(y + td) − fr(y)], y + td ∈ Ŷ ,

θ(t) =
1
r
btd − ln det(B(y + td)) + ln det(B(y)).

Since ∇2fr(y)d = −∇fr(y) one has

dt∇2fr(y)d = −dt∇fr(y) = dtb(y) − rdtb.

In order to simplify the notation, y and d staying fixed in the following, we set

B = B(y) =
m∑

i=1

yiAi − C and H =
m∑

i=1

diAi.

Since B is symmetric and positive definite, there exists a lower triangular matrix
L such that B = LLt. Next, we set

E = L−1H [L−1]t.

Since d 	= 0, assumption (H1) implies H 	= 0 from what we have E 	= 0.
With this notation, for all t > 0 such that I + tE is positive definite,

θ(t) = t[trace(E) − trace(E2)] − ln det(I + tE). (2)

Denote by λi the eigenvalues of the symmetric matrix E, then

θ(t) =
n∑

i=1

[t(λi − λ2
i ) − ln(1 + tλi)], t ∈ [0, t̂) (3)

where
t̂ = sup[ t : 1 + tλi > 0 for all i ] = sup[ t : y + td ∈ Ŷ ]. (4)

Observe that t̂ = +∞ if E is positive semi-definite and 0 < t̂ < +∞ if not. It is
clear that θ is convex on [0, t̂[, θ(0) = 0 and

0 <
∑

λ2
i = θ′′(0) = −θ′(0).

Also θ(t) → +∞ when t → t̂. It follows that there exists one unique topt such that
θ′(topt) = 0, θ reaches its minimum in this point.
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Unfortunately, there is no explicit formula giving topt and solving the equation
by iterative methods needs successive computations of the functions θ and θ′.
These computations have a high numerical cost because the expression of θ in (2)
contains a determinant not easily handled and (3) needs the knowledge of the
eigenvalues of E, a difficult numerical problem. This leads to think of alternative
approaches.

Once E is computed, it is easy to compute the two following quantities

trace(E) =
∑

i

eii =
∑

i

λi and trace(E2) =
∑
i,j

e2
ij =

∑
i

λ2
i .

In Section 6, we take advantage of these data to propose lower bounds of t̂ and
functions bounded from below by θ. Before, we look at some useful inequalities on
a sample of numbers when the sum of the numbers and the sum of their squares
are known.

5. Some useful inequalities

As usual in statistics, given a sample of n real numbers x1, x2, . . . , xn, we con-
sider their arithmetic mean x̄ and their standard deviation σx. These quantities
are defined as follows:

x̄ =
1
n

∑
xi and σ2

x =
1
n

∑
x2

i − x̄2 =
1
n

∑
(xi − x̄)2.

The following result is due to Wolkowicz-Styan [10], see also Crouzeix-Seeger [5]
for additional results.

Proposition 2.

x̄ − σx

√
n − 1 ≤ min

i
xi ≤ x̄ − σx√

n − 1
,

x̄ +
σx√
n − 1

≤ max
i

xi ≤ x̄ + σx

√
n − 1.

In the particular case where all xi are positive, one deduces

n ln(x̄ − σx

√
n − 1) ≤

n∑
i=1

ln(xi) ≤ n ln(x̄ + σx

√
n − 1),

where, by convention, ln(t) = −∞ if t ≤ 0. The next result is still better.

Theorem 5. Assume that xi > 0 for i = 1, 2, · · · , n. Then

n ln(x̄ − σx

√
n − 1) ≤ A ≤

n∑
i=1

ln(xi) ≤ B ≤ n ln(x̄),



A LOGARITHM BARRIER METHOD FOR SEMI-DEFINITE PROGRAMMING 133

with

A = (n − 1) ln
(

x̄ +
σx√
n − 1

)
+ ln(x̄ − σx

√
n − 1),

and

B = ln(x̄ + σx

√
n − 1) + (n − 1) ln

(
x̄ − σx√

n − 1

)
.

Proof. If σx = 0, then xi = x̄ for all i and the inequalities hold. Assume σx > 0.
Let us consider the two following problems where x̄ and σx are fixed,

A = inf
x

[
n∑

i=1

ln(xi) :
n∑

i=1

(xi − x̄) = 0 and
n∑

i=1

(xi − x̄)2 = nσ2
x

]
,

B = sup
x

[
n∑

i=1

ln(xi) :
n∑

i=1

(xi − x̄) = 0 and
n∑

i=1

(xi − x̄)2 = nσ2
x

]
.

The second problem has always optimal solutions, the first problem has optimal
solutions if x̄ − σx

√
n − 1 > 0 because Proposition 2 and in the other case −∞ =

A <
∑

ln(xi).
Apply the first order necessary optimality condition: if x is optimal solution of

one problem or the other one, there exist α and β such for all i

(xi − x̄)2 − α(xi − x̄) + β = 0.

Thus each (xi − x̄) is a root of the equation

w2 − αw + β = 0.

Denote by a and b the two roots of this equation. The quantities (xi − x̄) divide
into two parts, p equal to a, n − p equal to b. From σx 	= 0 we deduce that
1 ≤ p ≤ n − 1 and a 	= b . Hence,

0 =
∑

i

(xi − x̄) = pa + (n − p)b,

and
nσ2

x =
∑

i

(xi − x̄)2 = pa2 + (n − p)b2.

From what we deduce that either

a = x̄ + σx

√
n − p

p
and b = x̄ − σx

√
p

n − p

or

a = x̄ − σx

√
n − p

p
and b = x̄ + σx

√
p

n − p
·
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Denote by h(p) and k(p) the following quantities

h(p) =
p

n
ln
[
x̄ + σx

√
n − p

p

]
+

n − p

n
ln
[
x̄ − σx

√
p

n − p

]
,

k(p) =
p

n
ln
[
x̄ − σx

√
n − p

p

]
+

n − p

n
ln
[
x̄ + σx

√
p

n − p

]
·

Then,

A

n
= min

p=1,··· ,n−1
[min[h(p), k(p)]] and

B

n
= max

p=1,··· ,n−1
[max[h(p), k(p)]].

But h(p) = k(n − p) for any p = 1, ..., n − 1 and therefore

A

n
= min

p=1,··· ,n−1
[h(p)] and

B

n
= max

p=1,··· ,n−1
[h(p)]. (5)

It is interesting to set t(p) =
√

p
n−p and to consider the function

γ(t) =
t2

t2 + 1
ln[x̄ + σxt−1] +

1
t2 + 1

ln[x̄ − σxt].

Then,

γ′(t) =
2t

(1 + t2)2

[
ln

x̄ + σxt−1

x̄ − σxt

]
− σx

(1 + t2)

[
1

x̄ + σxt−1
+

1
x̄ − σxt

]
·

The concavity of the function t → t−1 implies that

ln(t + δ) − ln(t) <
δ

2

[
1

t + δ
+

1
t

]
∀ t, δ > 0,

from what we deduce that γ′ is negative on (0,∞) and therefore γ is decreasing
on this interval. It follows that

A = nγ(n − 1) < B = nγ

(
1

n − 1

)
< n lim

t↓0
γ(t) = n ln(x̄).

The remaining inequality is a straight consequence of the definition of A. �

6. Back to the step-size procedure

Let us go back to Equations (3) and (4). We denote by λ̄ and σλ the arithmetic
mean and the standard deviation of the λi and by ‖λ‖ the euclidean norm of the
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vector λ. Then, ‖λ‖2 = n(λ̄2 + σ2
λ) = θ′′(0) = −θ′(0) and

θ(t) = ntλ̄ − t‖λ‖2 −
n∑

i=1

ln(1 + tλi).

Our problem consists to find some t̄ ∈ (0, t̂) giving a significant decrease of the
convex function θ.

We have said that the most natural choice, t̄ = topt where θ′(topt) = 0, presents
numerical complications. It can be thought of a line-search by a method of Armijo-
Goldstein-Price type but this line-search needs also several computations of func-
tions θ and θ′. Nevertheless, if we decide for such a line-search, it is convenient
to know, for lack of the upper-bound t̂ of the domain of θ which is numerically
difficult to obtain, a lower-bound of t̂. Such a bound is issued from Proposition 2

t̂1 = sup [ t : 1 + tβ1 > 0 ] with β1 = λ̄ − σλ

√
n − 1.

Another bound t̂2 is due to the fact that |λi| ≤ ‖λ‖ for all i

t̂2 = sup [ t : 1 + tβ2 > 0 ] with β2 = −‖λ‖.

Then, 0 < t̂2 ≤ t̂1 ≤ t̂ ≤ +∞. As already said, the inequality t̂ ≥ t̂1 is a
consequence of Proposition 2. To prove that t̂1 ≥ t̂2 it is enough to prove that
‖λ‖2 ≥ β2

1 . This inequality is equivalent to

0 ≤ (n − 1)λ̄2 + σ2
λ + 2σλλ̄

√
n − 1 = (λ̄

√
n − 1 + σλ)2.

Another strategy consists in minimizing an upper-approximation θ̃ of θ. To be
efficient, this approximation must be simple and close enough to θ. Here we
require

0 = θ̃(0), ‖λ‖2 = θ̃′′(0) = −θ̃′(0).

Theorem 5 provides such an approximation: set xi = 1 + tλi, then x̄ = 1 + tλ̄ and
σx = tσλ. Next, define

θ0(t) = γ0t − (n − 1) ln(1 + α0t) − ln(1 + β0t),

with

γ0 = nλ̄ − ‖λ‖2, α0 = λ̄ +
σλ√
n − 1

and β0 = β1 = λ̄ − σλ

√
n − 1.
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It is clear that θ0 is convex, its domain is [0, t̂0) with t̂0 = t̂1 and

θ(t) ≤ θ0(t) ∀ t ≥ 0, θ0(0) = 0 and θ′′0 (0) = −θ′0(0) = ‖λ‖2.

One can also thought of simpler functions than θ0 involving only one logarithm.
We consider functions of the following type

θ̃(t) = γ̃t − δ̃ ln(1 + β̃t), t ∈ [0, t̃)

where in order to fulfill the requirements

‖λ‖2 = δ̃β̃2 = δβ̃ − γ̃, t̃ = sup [ t : 1 + tβ̃ > 0 ].

Such functions are convex.
Of course t̃ ≤ t̂ is required. In line with the lower-bounds t̂1 and t̂2, we consider

the two functions θ1 and θ2 corresponding to β1 and β2. In the following result,
we compare θ0, θ1 and θ2 . As in other parts of the paper ln(r) = −∞ if r ≤ 0.

Proposition 3. θi, i = 0, 1, 2, is strictly convex on [0, t̂i), θi(t) → +∞ when
t → t̂i. Furthermore, θ(t) ≤ θ0(t) ≤ θ1(t) ≤ θ2(t) ≤ +∞ for all t > 0.

Proof. The first part is immediate. The inequality θ(t) ≤ θ0(t) is a straight
consequence of Theorem 5. Set ν(t) = θ1 − θ0. Because β0 = β1 and α0 ≥ β0 one
has for t > 0

ν′′(t) =
δ1β

2
1 − β2

0

(1 + β0t)2
− (n − 1)α2

0

(1 + α0t)2
=

(n − 1)α2
0

(1 + β0t)2
− (n − 1)α2

0

(1 + α0t)2
≥ 0.

Because ν(0) = ν′(0) = 0, one deduces that ν(t) ≥ 0 for t > 0.
Next, set µ(t) = θ2 − θ1. Then, µ(0) = µ′(0) = 0 and

µ′′(t) = ‖λ‖2

[
1

(1 + β2t)2
− 1

(1 + β1t)2

]
≥ 0.

Here again µ(t) ≥ 0 for all t > 0. �

We deduce that the function θi reaches its minimum in one unique value t̄i
which is the root of the equation θ′i(t) = 0. For i = 1, 2 one has

t̄i =
δi

γi
− 1

βi
and θi(t̄i) =

‖λ‖2

βi
+

‖λ‖2

β2
i

ln(1 − β).

In particular,

t̄2 =
1

1 + ‖λ‖ and θ2(t̄2) = −‖λ‖ + ln(1 + ‖λ‖).
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The solution of θ′0(t) = 0 leads to the equation t2 − 2bt + ct = 0 with

b =
1
2

(
n

γ0
− 1

α0
− 1

β0

)
and c = − ‖λ‖2

α0β0γ0
,

whose the two roots are t = b±√
b2 − c. For t̄0 we take the root which belongs to

the interval (0, t̂0) (there is only one).
Thus, the three values t̄0, t̄1 and t̄2 are explicitly computed. It is clear that

θ(t̄2) ≤ θ2(t̄2), θ(t̄1) ≤ θ1(t̄1) ≤ θ1(t̄2) ≤ θ2(t̄2)

and

θ(t̄0) ≤ θ0(t̄0) ≤ θ0(t̄1) ≤ θ1(t̄1) ≤ θ2(t̄2).

7. Description of the algorithm

Initialization: One decides for a step-size strategy and we choose the pa-
rameters ε > 0, r > 0, ρ > 0, σ ∈ (0, 1). We start with some y ∈ Ŷ .

Main step: (a) Compute B = B(y) and L such that LLt = B.
(b) Compute g = b − rb(y) and H = r∆(y).
(c) Solve the equation Hd = −g. Compute E, trace(E) and trace(E2).
(d) Compute λ̄ and σ̄λ.
(e) Obtain t̄ using the step-size strategy. Take ȳ = y + t̄d.
(f) If |bty − btȳ| > ρnr, do y = ȳ and go to (a).
(g) If nr > ε, do y = ȳ, r = σr and go to (a).
(h) Stop: ȳ is an approximate solution of the problem (D).

As said previously, the optimal solution of problem (Dr) is only one approximate
solution of problem (D), more r is close to 0, more the approximation is good.
Unfortunately, more r is close to 0, more (Dr) is badly conditioned. It is the
reason why we use in the first iterations of the algorithm large r instead of dealing
directly with a value of r such that nr < ε. The reason for the updating of r is the
following: if y(r) is the exact solution of problem (Dr), then bty(r) ∈ [md, md+nr],
it is wasting time to continue iterations on (Dr) when |bty − btȳ| ≤ ρnr, with ρ
near 1. For ρ one can consider for instance the values 0.5, 1, 2 , 3. For σ, we can
take for instance the values 0.1, 0.25, 0.5. We describe now four different strategies
for the step-size:

• Strategy Ls: A classical line-search of Armijo-Goldstein-Price type.
• Strategy Si, i = 0, 1, 2 : t̄ = t̄i with t̄i defined as in the last section.
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8. Numerical experiments

The computations have been performed on a D 810 station with Delphi 5.

8.1. Example cube

n = 2m, C is the n × n identity matrix, b = (2, ..., 2)t ∈ Rm and the entries of
the n × n matrix Ak, k = 1, · · ·m, are given by:

Ak[i, j] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if i = j = k or i = j = k + m,
a2 if i = j = k + 1 or i = j = k + m + 1,
−a if i = k, j = k + 1 or i = k + m, j = k + m + 1,
−a if i = k + 1, j = k or i = k + m + 1, j = k + m,
0 otherwise.

a ∈ R is given.

Test 1. (m, n) = (50, 100) and a = 0. Then, it is known that the vector
y = (1, ..., 1)t ∈ Rm is the optimal solution and y0 = (1.5, ..., 1.5)t ∈ Rm is feasible.
We take for parameters in the algorithm ρ = 1, σ = 0.125, r0 = 0.3, ε = 0.1 and
for initial point y0 . The following array describes the results.

Strategy Computational time Number of iterations
S0 34 s 3
S1 34 s 4
S2 660 s 25
Ls dvg dvg

dvg means that the algorithm does not terminate within a finite time.

Test 2. In this test, the data are the same as in the first test, except ρ = 2 in
place of ρ = 1.

Strategy Computational time Number of iterations
S0 33 s 3
S1 34 s 4
S2 480 s 18
Ls dvg dvg

The results of these two tests show that the strategies S2 and Ls do not compete
with S0 and S1 and a = 2 or 5. In the next experiments, we continue only with
S0 and S1.

Test 3. Same data as in test 1 except C = −2I in place of C = I . We start the
algorithm with the feasible point y0 = (0, ..., 0)t and we take ρ = 1.
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Strategy S0 S1

a 2 5 2 5
computational time 165 s 80 s 180 s 120 s
number of iterations 10 5 12 13

Test 4. Same data as in test 3 except ρ = 2 in place of ρ = 1.

Strategy S0 S1

a 2 5 2 5
computational time 130 s 50 s 135 s 56 s
number of iterations 7 3 10 5
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