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Abstract. We consider a general discrete model for heterogeneous semiflexible polymer chains. Both the thermal noise and the
inhomogeneous character of the chain (the disorder) are modeled in terms of random rotations. We focus on the quenched regime,
i.e., the analysis is performed for a given realization of the disorder. Semiflexible models differ substantially from random walks on
short scales, but on large scales a Brownian behavior emerges. By exploiting techniques from tensor analysis and non-commutative
Fourier analysis, we establish the Brownian character of the model on large scales and we obtain an expression for the diffusion
constant. We moreover give conditions yielding quantitative mixing properties.

Résumé. On considère un modèle discret pour un polymère semi-flexible et hétérogène. Le bruit thermique et le caractère hétéro-
gène du polymère (le désordre) sont modélisés en termes de rotations aléatoires. Nous nous concentrons sur le régime de désordre
gélé, c’est-à-dire, l’analyse est effectuée pour une réalisation fixée du désordre. Les modèles semi-flexibles diffèrent sensiblement
des marches aléatoires à petite échelle, mais à grande échelle un comportement brownien apparaît. En exploitant des techniques
de calcul tensoriel et d’analyse de Fourier non-commutative, nous établissons le caractère brownien du modèle à grande échelle
et nous obtenons une expression pour la constante de diffusion. Nous donnons aussi des conditions qui entraînent des propriétés
quantitatives de mélange.
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1. Introduction

1.1. Homogeneous semiflexible polymer models

In the vast polymer modeling literature an important role is played by random walks, in fact self-avoiding random
walks (e.g. [2,3]). However, they are expected to model properly real polymers only on large scales. On shorter scales
one observes a stiffer behavior of the chain, and other models have been proposed, notably the semiflexible one (see
e.g. [9,16] and references therein). A semiflexible polymer is a natural and appealing mathematical object and, in
absence of self-avoidance, it has been implicitly considered in the probability literature for a long time. Consider in
fact a probability measure Q on the Lie group SO(d) – the rotations in Rd (d = 2,3, . . .) – and sample from this, in
an independent fashion, a sequence of rotations r1, r2, . . . . Fixing an arbitrary rotation R ∈ SO(d) and denoting by
e1, . . . , ed the unit coordinate vectors in Rd , the process {vn}n≥0 defined by

v0 := Red, vn := (Rr1r2 · · · rn)ed, n = 1,2, . . . , (1.1)
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Fig. 1. A sample bidimensional trajectory, with n = 1400 and {θi }i=1,2,... drawn uniformly from (−π/10,π/10), while θ0 is 0 (the notation is the
one of Remark 1.1). In the inset there is a zoom of the starting portion of the polymer (the starting point is marked by the arrow). It is clear that
the starting orientation v0 = (1,0) sets up a drift that is forgotten only after a certain number of steps. Moreover, even if the starting orientation
eventually fades away, in the sense that the expectation of the scalar product of vn and v0 vanishes as n becomes large, the local orientation is
carried along for a while. A precise meaning to this is brought by the key concept of persistence length �, that can be defined as the reciprocal
of the rate of exponential decay of E〈v0, vn〉, where 〈·, ·〉 denotes the standard scalar product in Rd and E is the average over the variables {ri }i .
Intuitively, one expects that on a scale much larger than the persistence length, the semiflexible polymer X

v0
n is going to behave like a random

walk. Note that if we view the elements of SO(d) as linear operators, we can define r := Er1 (not a rotation unless r1 is trivial!) and we have
E〈v0, vn〉 = 〈ed , rned 〉, which shows that the decay of E〈v0, vn〉 is indeed of exponential type.

is nothing but a random walk on the unit sphere Sd−1 ⊂ Rd starting at v0, a much studied object (e.g. [11,13]). Then
the process {Xv0

n }n=0,1,... defined by

Xv0
n := v0 +

n∑
j=1

vj =
n∑

j=0

vj , (1.2)

is a homogeneous semiflexible polymer model in dimension d . The reason for writing (Rr1r2 · · · rn) instead of
(rnrn−1 · · · r1R) in (1.1) is explained in Remark 1.2 below.

Remark 1.1. The reader can get some intuition on the process by having a look at the two-dimensional case of
Fig. 1. This case is in reality particularly easy to analyze in detail (and it does not capture the full complexity of
the d > 2 case) because the rotations in two dimensions commute and they are characterized by only one parameter.
More precisely, if we identify the random rotation rj with the angle θj , for j ≥ 1, and we take θ0 such that v0 =
(cos θ0, sin θ0), by setting ϕn := θ0 + θ1 + · · · + θn we can write

Xv0
n = v0 +

(
n∑

j=1

cos(ϕj ),

n∑
j=1

sin(ϕj )

)
. (1.3)

This explicit expression allows an easy and complete analysis of the two-dimensional case, cf. Appendix A. Of course,
in general no such simplification is possible for d > 2.

Homogeneous semiflexible chains have been used in a variety of contexts [16,17] and they do propose challenging
questions that are still only partially understood (even in their continuum version, see Remark 1.3), also because it
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is difficult to obtain explicit expressions for very basic quantities like the loop formation probability, i.e. the hitting
probability. As a matter of fact, a more realistic model would have to take into account a self-avoiding constraint,
which is more properly called excluded volume condition, that imposes that the sausage-like trajectory does not self-
intersect. This of course makes the model extremely difficult to deal with. Added to that, models need to embody the
fact that often real polymers are inhomogeneous, i.e. they are not made up of identical monomers and that this does
affect the geometry of the configurations. It is precisely on this latter direction that we are going to focus.

1.2. Heterogeneous models

Heterogeneous semiflexible chains have attracted a substantial amount of attention (see e.g. [1,10,15–17]), often (but
not only) as a modeling frame for DNA or RNA (single or double stranded) chains. The information that we want
to incorporate in the model is the fact that the monomer units may vary along the chain: for the DNA case, the four
bases A, T, G and C are the origin of the inhomogeneity and couple of monomer units have an associated typical bend
that depends on their bases. The model we are interested in is therefore still based on randomly sampled rotations
r1, r2, . . . , independent and identically distributed with a given marginal law Q (this represents the thermal noise in
the chain), but associated to that there is a sequence of rotations ω1,ω2, . . . that is fixed and does not fluctuate with the
chain. If we want to stick to the DNA example, the ω-sequence is fixed once the base sequence is given. The model is
then defined by giving once again the orientation v0 = Red ∈ Sd−1 of the initial monomer and by defining for n ≥ 0

Xv0,ω
n := v0 +

n∑
j=1

vω
j with vω

j := (Rω1r1 · · ·ωj rj )e
d . (1.4)

It should be clear that the rotation ωi sets up the equilibrium position of the ith monomer with respect to the (i − 1)st.
In different terms, the sequence ω1,ω2, . . . defines the backbone around which the semiflexible chain fluctuates.

The aim of this paper is to study the large scale behavior of the process {Xv0,ω
n }n when the sequence ω is disordered,

i.e. it is chosen as the typical realization of a random process. The simplest example is of course the one in which the
variables ωn are independent and identically distributed, but we stress from now that we are interested in the much
more general case when ω is an ergodic process (see Assumption 1.5 for the definition of ergodicity). This includes
strongly correlated sequences of random variables and, in particular, the ones that have been proposed to mimic the
base distributions along the DNA (e.g. [15] and references therein). Other aspects of this model deserve attention,
notably the analysis of the persistence length in the heterogeneous set-up (see the caption of Fig. 1) and other kind of
scaling limits, like the Kratky–Porod limit (see Remark 1.3): these issues are taken up in a companion paper.

Remark 1.2. Let us comment on the order of the rotations appearing in Eqs (1.4) and (1.1). The key point is the
following consideration: in defining the rotations ri and ωi , we assume that the ith monomer lies along the direc-
tion ed . Therefore, before applying these rotations, we have to express them in the actual reference frame of the ith
monomer. Let us be more precise, considering first the homogeneous case given by (1.1). The rotation r1 describes
the thermal fluctuations of the first monomer assuming that its equilibrium position is ed . However, the equilibrium
position of the first monomer is rather v0 = Red , therefore we first have to express r1 in the reference frame of
v0, obtaining Rr1R

−1, and then apply it to v0, obtaining v1 = (Rr1R
−1)v0 = (Rr1)e

d . The same procedure yields
v2 = (Rr1)r2(Rr1)

−1v1 = (Rr1r2)e
d , and so on. The inhomogeneous case of Eq. (1.4) is analogous: we first apply

ω1 expressed in the reference frame of v0, getting v′
0 = (Rω1R

−1)v0 = (Rω1)e
d , then we apply r1 expressed in the

reference frame of v′
0, obtaining vω

1 = (Rω1)r1(Rω1)
−1v′

0 = (Rω1r1)e
d , and so on.

Remark 1.3. Most of the physical literature focuses on a continuum version of the homogeneous semiflexible model,
often called wormlike chain or Kratky–Porod model (e.g. [16] and references therein), which can be obtained in a
large scale/high stiffness limit of discrete models. As for the discrete semiflexible model we had a discrete length
parameter n that was in fact counting the monomers along the chain, here we have a continuous parameter t ≥ 0
and the location X̃t of the wormlike chain at t is equal to

∫ t

0 B
(d)(s)ds, where {B(d)(s)}s≥0 is a Brownian motion

on Sd−1 (e.g. [12]). Note that the initial orientation v0 is here replaced by the choice of B(d)(0). For d = 2, once
again, this process becomes particularly easy to describe since B(2)(t) = (cos(B(t) + x0), sin(B(t) + y0)), where B
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is a standard Brownian motion. We point out that in the physical literature the continuum model is just used for some
formal computations and, in the heterogeneous set-up, the model is often ill-defined and in fact when simulations are
performed usually one goes back to a discrete model [1,10,15–17].

1.3. The Brownian scaling

In order to study the large scale behavior of our model, we introduce its diffusive rescaling, i.e. the continuous time
process B

v0,ω
N (t) defined for N ∈ N and tN ∈ N ∪ {0} by

B
v0,ω
N (t) := 1√

N
X

v0,ω
Nt . (1.5)

This definition is extended to every t ∈ [0,∞) by linear interpolation, so that B
v0,ω
N (·) ∈ C([0,∞)) and it is piecewise

affine, where C([0,∞)) denotes the space of real-valued continuous functions defined on [0,∞) and is equipped as
usual with the topology of uniform converge over the compact sets and with the corresponding σ -field. The precise
hypothesis we make on the thermal noise is as follows.

Assumption 1.4. The variables ({rn}n≥1,P) taking values in SO(d) are independent and identically distributed, and
the law Q of r1 satisfies the following irreducibility condition: there do not exist linear subspaces V,W ⊆ Rd such
that Q(g ∈ SO(d): gV = W) = 1, except the trivial cases when V = W = {0} or V = W = Rd .

We point out that this assumption on Q (actually on its support) is very mild. It is fulfilled for instance whenever the
support of Q contains a non-empty open set A ⊆ SO(d) (this is a direct consequence of the fact that an open subset of
SO(d) spans SO(d)), in particular when Q is absolutely continuous with respect to the Haar measure on SO(d), a very
reasonable assumption for thermal fluctuations (see Section 3.1 for details on the Haar measure). We stress however
that absolute continuity is not necessary and in fact several interesting cases of discrete laws are allowed (e.g., for
d = 3, when Q is supported on the symmetry group of a Platonic solid). Also notice that for d = 2 Assumption 1.4
can be restated more explicitly as follows: denoting by Rθ ∈ SO(2) the rotation by an angle θ , there does not exist
θ ∈ [0,π) such that Q({Rθ,Rπ+θ }) = 1.

Next we state precisely our assumption on the disorder.

Assumption 1.5. The sequence ({ωn}n≥1,P) is stationary, i.e. {ωn+1}n≥1 and {ωn}n≥1 have the same law, and er-
godic, i.e. P({ωn}n≥1 ∈ A) ∈ {0,1} for every shift-invariant measurable set A ⊆ SO(d)N. Shift-invariant means that
{x1, x2, . . .} ∈ A if and only if {x2, x3, . . .} ∈ A, while measurability is with respect to the product σ -field on SO(d)N.

We can now state our main result.

Theorem 1.6. If Assumptions 1.4 and 1.5 are satisfied, then P(dω)-almost surely and for every choice of v0 the
process B

v0,ω
N converges in distribution on C([0,∞)) as N → ∞ toward σB , where B = {(B1(t), . . . ,Bd(t))}t≥0 is

a standard d-dimensional Brownian motion and the positive constant σ 2 is given by

σ 2 := 1

d
+ 2

d

∞∑
k=1

EE
〈
ed,ω1r1 · · ·ωkrke

d
〉
, (1.6)

where the series in the right-hand side converges.

This result says, in particular, that the disorder affects the large scale behavior of the polymer only through the
diffusion coefficient σ 2. Let us now consider some special cases in which σ 2 can be made more explicit. Notice first
that, by setting r := E(r1), we can rewrite EE〈ed,ω1r1 · · ·ωkrke

d〉 = E〈ed,ω1r · · ·ωkre
d〉:
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• When r = cI , where I denotes the identity matrix and c is a constant (necessarily |c| < 1), the expression for σ 2

becomes

σ 2 = 1

d
+ 2

d

∞∑
k=1

ckE
〈
ed, (ω1 · · ·ωk)e

d
〉
. (1.7)

Notice that the non-disordered case is recovered by setting ωi ≡ I , so that the diffusion constant becomes 1/d +
2c/(d(1 − c)). Assume now that c > 0 and let us switch the disorder on: if we exclude the trivial case when
P(ω1e

d = ed) = 1, we see that the diffusion constant decreases, whatever the disorder law is.
We point out that by Schur’s lemma the relation r = cI is fulfilled when the law of r1 is conjugation invariant,

i.e., P(r1 ∈ ·) = P(hr1h
−1 ∈ ·) for every h ∈ SO(d).

• When the variables ωn are independent (and identically distributed), and with no extra-assumption on r , by setting
ω := E(ω1) we can write

σ 2 = 1

d
+ 2

d

∞∑
k=1

〈
ed, (ωr)ked

〉= 1

d
+ 2

d

〈
ed,

ωr

1 − ωr
ed

〉
. (1.8)

Notice in fact that Assumption 1.4 yields ‖r‖op < 1, where ‖ · ‖op denotes the operator norm (see Section 2), hence
the geometric series converges.

In the general case, the expression for the variance is not explicit, but of course it can be evaluated numerically.
In order to get some intuition on the model, in particular on the role of the disorder and why it leads to (1.6), we

suggest to have a look at Appendix A, where we work out the computation of the asymptotic variance of X
v0
n in the

two-dimensional case, where elementary tools are available because SO(2) is Abelian. As a matter of fact, these ele-
mentary tools would allow to prove for d = 2 all the results we present in this paper. However, the higher dimensional
setting is much more subtle and in particular the proof of Theorem 1.6 for d > 2 requires more sophisticated tech-
niques: in Section 2, using tensor analysis, we prove that Theorem 1.6 follows from Assumption 1.5 plus a general
condition of exponential convergence of some operator norms, cf. Hypothesis 2.1 below, and we then show that this
condition is a consequence of Assumption 1.4.

Remark 1.7. In the homogeneous case, i.e., when disorder is absent, our method yields a proof of the result in
Theorem 1.6 under a generalized irreducibility condition that is weaker than Assumption 1.4 (see Appendix B). This
generalized condition is fulfilled in particular whenever the support of Q generates a dense subset in SO(d). We point
out that this last requirement is exactly the assumption under which Theorem 1.6 (in the homogeneous case) was
proven in [7,14].

1.4. On strong decay of correlations

The persistence length (cf. caption of Fig. 1) does characterize the loss of the initial direction, but from a probabilistic
standpoint this is not completely satisfactory, since other information could be carried on much further along the chain.
For this reason, we study the mixing properties of the variables vω

i (see (1.4)) and this leads to a novel correlation
length, that guaranties decorrelation of arbitrary local observables. As we will see, we have only a bound on this new
correlation length and we can establish such a result only for a restricted (but sensible) class of models.

In order to state the result, let us introduce the σ -field F ω
m,n := σ(vω

i :m ≤ i ≤ n) for m ∈ N, n ∈ N ∪ {∞} and for
fixed ω. Then the mixing index αω(n) of the sequence {vω

i }i is defined for n ∈ N by

αω(n) := sup
{∣∣P(A ∩ B) − P(A)P(B)

∣∣: A ∈ F ω
1,m,B ∈ F ω

m+n,∞,m ∈ N
}
. (1.9)

We work under either one of the following two hypotheses:

H-1 The law Q of r1 is conjugation invariant, i.e., P(r1 ∈ ·) = P(hr1h
−1 ∈ ·) for every h ∈ SO(d), and for some n0

the law Q∗n0 of (r1 · · · rn0) has an L2 density with respect to the Haar measure on SO(d) (see Section 3.1).
H-2 The law Q of r1 has an L2 density with respect to the Haar measure on SO(d).
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Assumption H-1 is sensibly weaker than H-2 (of course on the conjugation invariant measure), however requiring an
L2 density is quite a reasonable assumptions for thermal fluctuations. Then we have:

Proposition 1.8. Under assumptions H-1 or H-2 there exist two constants C ∈ (0,∞) and h ∈ (0,1) such that
αω(n) ≤ Chn for every n and every ω.

The proof of Proposition 1.8 relies on Fourier analysis on SO(d): it is given in Section 3, where one can find also
an explicit characterization of the constant h (see (3.19)).

2. The invariance principle

In this section we prove the invariance principle in Theorem 1.6, including the formula (1.6) for the diffusion con-
stant, under some abstract condition, see Hypothesis 2.1 below, which is then shown to follow from Assumption 1.4.
Throughout the section we set

ϕω
m,n := ωmrmωm+1rm+1 · · ·ωnrn, m ≤ n, (2.1)

so that vω
j = Rϕω

1,j e
d (see (1.4)). We recall that v0 = Red is an arbitrary element of Sd−1, with R ∈ SO(d), and that Q

denotes the law of r1.

2.1. Tensor products and operator norms

Unless otherwise specified, in this section the vector spaces are assumed to be real (i.e., R is the underlying field)
and to have finite dimension. The tensor product of two vector spaces V and W can be introduced for example
by considering first the Cartesian product V × W and the (infinite-dimensional) vector space V × W for which the
elements of V × W are a basis. Then the tensor product V ⊗ W is defined as the quotient space of V × W under the
equivalence relations

(v1 + v2) × w ∼ v1 × w + v2 × w, v × (w1 + w2) ∼ v × w1 + v × w2,

c(v × w) ∼ (cv) × w ∼ v × (cw)

for c ∈ R, v(i) ∈ V and w(i) ∈ W . The equivalence class of v × w is denoted by v ⊗ w and we have the properties
(v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2 and c(v ⊗ w) = (cv) ⊗ w = v ⊗ (cw). Given a
basis {vi}i=1,...,n of V and a basis {wi}i=1,...,m of W , {vi ⊗wj }i,j is a basis of V ⊗W , which is therefore of dimension
nm. We stress that not every vector in V ⊗ W is of the form v ⊗ w for some v ∈ V , w ∈ W .

A more concrete construction of V ⊗ W is possible in special cases, e.g., when V = W = L(Rd), the vector space
of linear operators on Rd (that will be occasionally identified with the corresponding representative matrices in the
canonical basis). In fact L(Rd) ⊗ L(Rd) is isomorphic to L(L(Rd)), the space of all linear operators on L(Rd), and
this identification will be used throughout the paper. Let us be more explicit: given g,h ∈ L(Rd), we can view g ⊗ h

as the linear operator sending m ∈ L(Rd) to

(g ⊗ h)(m) := gmh∗, that is
[
(g ⊗ h)(m)

]
ij

:=
d∑

k,l=1

gikhjlmkl, (2.2)

where (h∗)ij = hji is the adjoint of h. We are going to use this construction especially for g,h ∈ SO(d), which of
course is not a vector space, but can be viewed as a subset of L(Rd). A useful property of this representation of g ⊗ h

as an operator is that

(g1 ⊗ h1)(g2 ⊗ h2) = (g1g2) ⊗ (h1h2), (2.3)
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which is readily checked from (2.2). Another crucial fact is the following one: given s1, s2 ∈ L(Rd)∗, the bilinear form
(g,h) �→ s1(g)s2(h) can be written as a linear form s1 ⊗ s2 on the tensor space L(Rd) ⊗ L(Rd), defined on product
states g ⊗ h by

(s1 ⊗ s2)(g ⊗ h) := s1(g)s2(h) (2.4)

and extended to the whole space by linearity. This linearization procedure is the very reason for introducing tensor
spaces, as we are going to see below.

Let us recall the definition and properties of some operator norms. Given a vector space V endowed with a scalar
product 〈·, ·〉 and an operator A ∈ L(V ), we define

‖A‖op := sup
v,w∈V \{0}

|〈w,Av〉|
‖v‖‖w‖ = sup

v∈V \{0}
‖Av‖
‖v‖ , ‖A‖hs :=

√
Tr
(
A∗A

)
, (2.5)

where Tr(A) is the trace of A and A∗ is the adjoint operator of A, defined by the identity 〈w,Av〉 = 〈A∗w,v〉 for all
v,w ∈ V . If we fix an orthonormal basis {ei}i=1,...,n of V and we denote by Aij the matrix of A in this basis, we can
write ‖A‖2

hs :=∑
i,j |Aij |2. It is easily checked that for all operators A,B ∈ L(V ) we have

‖AB‖op ≤ ‖A‖op‖B‖op, ‖A‖op ≤ ‖A‖hs, ‖AB‖hs ≤ ‖A‖op‖B‖hs. (2.6)

In what follows, the space L(Rd) is always equipped with the scalar product 〈v,w〉hs := Tr(v∗w) =∑
i,j vijwij . We

can then give some useful bound on the operator norm of g ⊗ h acting on L(Rd): by (2.2) and (2.6)

‖g ⊗ h‖op = sup
v∈L(Rd )\{0}

‖gvh∗‖hs

‖v‖hs
≤ sup

v∈L(Rd )\{0}
‖g‖op‖vh∗‖hs

‖v‖hs
≤ ‖g‖op‖h‖op, (2.7)

where we have used that ‖h∗‖op = ‖h‖op.
Let us denote by Γ the orthogonal projection on the subspace of symmetric operators in L(Rd), defined for v ∈

L(Rd) by

Γ (v) := 1

2

(
v + v∗), i.e. Γ (v)ij = 1

2
(vij + vji). (2.8)

Of course Γ ∈ L(L(Rd)), and for any linear operator m ∈ L(L(Rd)) we denote by m its symmetrized version:

m := Γ mΓ. (2.9)

Note that g ⊗ g = (g ⊗ g)Γ = Γ (g ⊗ g), for every g ∈ L(Rd).
Finally, consider s ∈ L(Rd)∗ of the form s(g) = 〈v,gw〉, where v,w are vectors in Rd with ‖v‖ = ‖w‖ = 1. For

every linear operator m ∈ L(L(Rd)) we have

(s ⊗ s)(m) = (s ⊗ s)(Γ m) = (s ⊗ s)(mΓ ) = (s ⊗ s)(m), (2.10)

as one easily checks using coordinates, since (s ⊗ s)(m) =∑
ijkl vivjmij,klwkwl . It is also easily seen that∣∣(s ⊗ s)(m)

∣∣≤ ‖m‖op. (2.11)

These relations are easily generalized to higher-order tensor products: in particular

s⊗4(m) = s⊗4(m(Γ ⊗ Γ )
)

and
∣∣s⊗4(m)

∣∣≤ ‖m‖op (2.12)

for every m ∈ L(Rd)⊗4.
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2.2. An abstract condition

We are ready to state a condition on Q that will allow us to prove the invariance principle in Theorem 1.6.
Let us consider Eϕω

m,n, which is an element of L(Rd) (we recall that ϕω
m,n is defined in (2.1)). We need to assume

that, when k is large, Eϕω
n,n+k is exponentially close to the zero operator on Rd , uniformly in n. We are also interested

in the asymptotic behavior of E[ϕω
n,n+k ⊗ ϕω

n,n+k], which by (2.2) is a linear operator on L(Rd): we need that, when k

is large and uniformly in n, the symmetrized version E[ϕω
n,n+k ⊗ ϕω

n,n+k] of this operator, cf. (2.9) and (2.8), is expo-
nentially close to the linear operator Π defined as the orthogonal projection on the one-dimensional linear subspace
of L(Rd) spanned by the identity matrix (Id)i,j = δi,j , 1 ≤ i, j ≤ d , that is

Π(v) := 1

d
Tr(v)Id, v ∈ L

(
Rd

)
. (2.13)

The reason why the operator Π should have this form will be clear in Section 2.5. Let us now state more precisely the
hypothesis we make on Q.

Hypothesis 2.1. The law Q of r1 is such that, for P-almost every ω, we have

C(ω) := sup
n≥1

{ ∞∑
k=0

∥∥E
[
ϕω

n,n+k

]∥∥
op +

∞∑
k=0

∥∥E
[
ϕω

n,n+k ⊗ ϕω
n,n+k

]− Π
∥∥

op

}
< ∞. (2.14)

The next paragraphs are devoted to showing that Theorem 1.6 holds if we assume Hypothesis 2.1 together with
Assumption 1.5. We then show in Section 2.5 that Hypothesis 2.1 indeed follows from Assumption 1.4.

2.3. The diffusion constant

We start identifying the diffusion coefficient σ 2, given by Eq. (1.6). For any Rd -valued random variable Z we denote
by Cov(Z) its covariance matrix: Cov(Z)i,j = cov(Zi,Zj ).

Proposition 2.2. If Hypothesis 2.1 and Assumption 1.5 hold, then for P-almost every ω and for every v0 ∈ Sd−1 we
have that

lim
n→∞

1

n
CovP

(
Xv0,ω

n

)= σ 2Id, (2.15)

where

σ 2 = 1

d

(
1 + 2

∞∑
k=1

EE
〈
ed,ϕω

1,ke
d
〉)

, (2.16)

the series in the right-hand side being convergent.

Proof. By a standard polarization argument it is enough to prove that for any v ∈ Sd−1

lim
n→∞

1

n
varP

(〈
v,Xv0,ω

n

〉)= σ 2, P(dω)-a.s., (2.17)

because

covP
(〈
ei,Xv0,ω

n

〉
,
〈
ej ,Xv0,ω

n

〉)= varP

(〈
ei + ej

√
2

,Xv0,ω
n

〉)
− varP

(〈
ei − ej

√
2

,Xv0,ω
n

〉)
. (2.18)
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We recall that X
v0,ω
n = v0 +∑n

k=1 Rϕω
1,ke

d , where we set v0 = Red for some R ∈ SO(d). For notational simplicity, we
redefine X

v0,ω
n := X

v0,ω
n − v0 for the rest of the proof (notice that this is irrelevant for the purpose of proving (2.17)).

Introducing the notation

sv(g) := 〈
v,Rged

〉
for g ∈ L

(
Rd

)
, (2.19)

we have the simple estimate

∣∣E〈v,Xv0,ω
n

〉∣∣= ∣∣∣∣∣sv
(

n∑
k=1

Eϕω
1,k

)∣∣∣∣∣≤∑
k∈N

∥∥Eϕω
1,k

∥∥
op < ∞, (2.20)

by Hypothesis 2.1. This shows that, in order to establish (2.17), it is sufficient to consider

E
[〈
v,Xv0,ω

n

〉2]=
n∑

k=1

E
[(

sv
(
ϕω

1,k

))2]+ 2
n∑

k=1

n−k∑
l=1

E
[
sv
(
ϕω

1,l

)
sv
(
ϕω

1,l+k

)]
. (2.21)

By (2.4) and (2.10) we can write (sv(ϕ
ω
1,k))

2 = (sv ⊗ sv)(ϕ
ω
1,k ⊗ ϕω

1,k), and by (2.11) together with Hypothesis 2.1 we
can rewrite the first sum as

n∑
k=1

E
[(

sv
(
ϕω

1,k

))2]= s⊗2
v

(
n∑

k=1

E
[
ϕω

1,k ⊗ ϕω
1,k

])= ns⊗2
v (Π) + O(1). (2.22)

In the same spirit the control the off-diagonal terms. We first observe that by (2.3)

ϕω
1,l ⊗ ϕω

1,l+k = ϕω
1,l ⊗ (

ϕω
1,lϕ

ω
l+1,l+k

)= (
ϕω

1,l ⊗ ϕω
1,l

)(
Id ⊗ ϕω

l+1,l+k

)
, (2.23)

where Id ∈ L(Rd) is the identity operator. Then by (2.4) and (2.10) we can write

sv
(
ϕω

1,l

)
sv
(
ϕω

1,l+k

)= s⊗2
v

(
Γ ϕω

1,k ⊗ ϕω
1,l+k

)= s⊗2
v

((
ϕω

1,l ⊗ ϕω
1,l

)(
Id ⊗ ϕω

l+1,l+k

))
. (2.24)

By (2.11), (2.7) and (2.6) we then obtain E[sv(ϕω
1,l )sv(ϕ

ω
1,l+k)] ≤ ‖Eϕω

l+1,l+k‖op, hence by Hypothesis 2.1 it is the
clear that

lim
m→∞ lim sup

n→∞
1

n

n∑
k=m

n−k∑
l=1

E
[
sv
(
ϕω

1,l

)
sv
(
ϕω

1,l+k

)]= 0. (2.25)

This allows us to focus on studying the limit as n → ∞ and for fixed k of

1

n

n−k∑
l=1

E
[
sv
(
ϕω

1,l

)
sv
(
ϕω

1,l+k

)]= 1

n

n−k∑
l=1

s⊗2
v

(
E
[
ϕω

1,l ⊗ ϕω
1,l

](
Id ⊗ Eϕω

l+1,l+k

))
. (2.26)

In this expression we can replace E[ϕω
1,l ⊗ ϕω

1,l] by its limit Π by making a negligible error (of order 1/n), by Hy-
pothesis 2.1. Furthermore, by the ergodic theorem

lim
n→∞

1

n

n−k∑
l=1

s⊗2
v

(
Π
(
Id ⊗ Eϕω

l+1,l+k

))= s⊗2
v

(
Π
(
Id ⊗ EEϕω

1,k

))
, P(dω)-a.s. (2.27)

We have therefore proven that P(dω)-a.s.

lim
n→∞

1

n
varP

〈
v,Xv0,ω

n

〉= s⊗2
v (Π) + 2

∞∑
k=1

s⊗2
v

(
Π
(
Id ⊗ EEϕω

1,k

))
. (2.28)
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Let us simplify this expression: by (2.13) the representative matrix of Π is Πij,kl = 1
d
δij δkl and by (2.19) we can write

sv(g) =∑
m(R∗v)mgmd , hence

s⊗2
v (Π) =

∑
ij

(
R∗v

)
i

(
R∗v

)
j
Πij,dd = 1

d

∥∥R∗v
∥∥2 = 1

d
, (2.29)

because R ∈ SO(d) and v is a unit vector. The second term in the right-hand side of (2.28) is analogous: setting for
simplicity m := EEϕω

l+1,l+k ∈ L(Rd), the matrix of the operator Π(Id ⊗ m) is given by

[
Π(Id ⊗ m)

]
ij,kl

=
d∑

a,b=1

Πij,ab(Id ⊗ m)ab,kl = 1

d

d∑
a,b=1

δij δabδakmbl = 1

d
δijmkl, (2.30)

hence

s⊗2
v

[
Π(Id ⊗ m)

]=
∑
ij

(
R∗v

)
i

(
R∗v

)
j

[
Π(Id ⊗ m)

]
ij,dd

= 1

d
mdd. (2.31)

Since mdd = EE〈ed,ϕω
1,ke

d〉, we have shown that the right-hand side of (2.28) coincides with the formula (2.16)

for σ 2 and therefore Eq. (2.17) is proven. �

2.4. The invariance principle

Next we turn to the proof of the full invariance principle. The main tool is a projection of the increments of our process
{Xv0,ω

n }n on martingale increments, to which the Martingale Invariance Principle can be applied.
We start setting ŝ(g) := Rged , so that

ŝ
(
ϕω

1,n

)= vω
n = Xv0,ω

n − X
v0,ω
n−1 , (2.32)

cf. (1.4) and (2.1). Recalling the definition (2.19) of sv(g), we have ŝ(g) =∑d
i=1 sei (g)ei . For n = 1,2, . . . we intro-

duce the Rd -valued process

Yn := ŝ
(
ϕω

1,n

)− E
[
ŝ
(
ϕω

1,n

)]
. (2.33)

We now show that, for P-a.e. ω,

sup
n≥1

{ ∞∑
k=0

∥∥E
[
Yn+k|F ω

1,n

]∥∥
L∞(P;Rd )

}
< ∞, (2.34)

where we recall that F ω
m,n := σ(ϕω

1,i : m ≤ i ≤ n). Observe that E[Yn+k|F ω
1,n] = ŝ(E[ϕω

1,n+k|F ω
1,n] − E[ϕω

1,n+k]) and
we can write

E
[
ϕω

1,n+k|F ω
1,n

]− E
[
ϕω

1,n+k

] = ϕω
1,nE

[
ϕω

n+1,n+k

∣∣F ω
1,n

]− E
[
ϕω

1,n

]
E
[
ϕω

n+1,n+k

]
= (

ϕω
1,n − E

[
ϕω

1,n

])
E
[
ϕω

n+1,n+k

]
. (2.35)

Since ‖ϕω
1,n − E[ϕω

1,n]‖op ≤ 2, we have∥∥E
[
Yn+k|F ω

1,n

]∥∥
L∞(P;Rd )

≤ 2
∥∥E

[
ϕω

n+1,n+k

]∥∥
op, (2.36)

hence (2.34) follows from Hypothesis 2.1.
We are now ready to prove the invariance principle. It is actually more convenient to redefine B

v0,ω
N (t), which was

introduced in (1.5), as 1√
N

X
v0,ω�Nt�, where �a� ∈ N ∪ {0} denotes the integer part of a. In this way, B

v0,ω
N (·) is a process
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with trajectories in the Skorohod space D([0,∞)) of càdlàg functions, which is more suitable in order to apply the
Martingale Invariance Principle. However, since the limit process σB has continuous paths, it is elementary to pass
from convergence in distribution on D([0,∞)) to convergence on C([0,∞)), thus recovering the original statement
of Theorem 1.6.

Theorem 2.3. If Hypothesis 2.1 and Assumption 1.5 hold, then P(dω)-a.s. and for every choice of v0 the Rd -valued
process B

v0,ω
N converges in distribution on C([0,∞)) to σB , where B is a standard d-dimensional Brownian motion

and σ 2 is given by (1.6).

Proof. Let us set for n ≥ 1

Un :=
∞∑

k=0

E
[
Yn+k|F ω

1,n−1

]
and Zn :=

∞∑
k=0

(
E
[
Yn+k|F ω

1,n

]− E
[
Yn+k|F ω

1,n−1

])
, (2.37)

where we agree that F ω
1,0 is the trivial σ -field. Note that Un and Zn are well defined, because by Eq. (2.34) the

series in (2.37) converge in L∞(P;Rd), for P-a.e. ω. The basic observation is that E[Zn|F ω
1,n−1] = 0, hence Zn is a

martingale difference sequence, i.e., the process {Tn}n≥0 defined by

T0 := 0, Tn :=
n∑

i=1

Zi, (2.38)

is a {F ω
1,n}n-martingale (taking values in Rd ). Moreover, we have by construction

Yn = E
[
Yn|F ω

1,n

]= Zn + (Un − Un+1), (2.39)

that is Yn is just Zn plus a telescopic remainder. Therefore the process {Tn}n is very close to the original process
{Xv0,ω

n }n, because the variables Yn are nothing but the centered increments of the process {Xv0,ω
n }n, see (2.32)

and (2.33).
For this reason, we start proving the invariance principle for the rescaled process T N = {T N(t)}t∈[0,∞) defined by

T N(t) := 1√
N

T�Nt�. By the Martingale Invariance Principle in the form given by [8], Corollary 3.24, Chapter VIII, the

Rd -valued process T N converges in law to σ̃B , where σ̃ > 0 and B denotes a standard Rd -valued Brownian motion,
provided the following conditions are satisfied:

(i) the (random) matrix (Vn)i,j =∑n
k=1 E[〈ei,Zk〉〈ej ,Zk〉

∣∣F ω
1,k−1], with 1 ≤ i, j ≤ d , is such that

1

n
Vn

n→∞−→ σ̃ 2Id in P-probability; (2.40)

(ii) the following integrability condition holds:

1

n

n∑
k=1

E
[|Zk|2; |Zk| > ε

√
n
] n→∞−→ 0. (2.41)

The second condition is trivial because the variables Zn are bounded, P(dω)-a.s. The first condition requires more
work. We first show that varP( 1

n
(Vn)i,j ) → 0 as n → ∞, for all i, j = 1, . . . , d and for P-a.e. ω, and then we prove

the convergence of E[ 1
n
Vn].

We start controlling the variance of Vn. By definition (Vn)i,j ≤ 1
2 ((Vn)i,i + (Vn)j,j ), hence it suffices to show that

varP( 1
n
(Vn)i,i ) → 0 for every i = 1, . . . , d . We observed that Zn has a nice explicit formula:

Zn = ŝ

(
ϕω

1,n−1

(
ϕω

n,n − E
[
ϕω

n,n

])( ∞∑
k=0

E
[
ϕω

n+1,n+k

]))
, (2.42)
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where we agree that ϕω
n+1,n is the identity operator on Rd (this convention will be used throughout the proof). Since

ŝ(g) =∑d
i=1 sei (g)ei , where sv(g) is defined in (2.19), a simple computation then yields

E
[〈
ei,Zn

〉2|F ω
1,n−1

]= s⊗2
ei

(
E
[
Zn ⊗ Zn|F ω

1,n−1

])= s⊗2
ei

((
ϕω

1,n−1

)⊗2
Θω

n

)
, (2.43)

where we have applied (2.4) and (2.3) and we have set

Θω
n := (

E
[
ϕω

n,n ⊗ ϕω
n,n

]− E
[
ϕω

n,n

]⊗ E
[
ϕω

n,n

])( ∞∑
k=0

E
[
ϕω

n+1,n+k

]⊗
∞∑
l=0

E
[
ϕω

n+1,n+l

])
. (2.44)

Applying (2.43) together with (2.4) and (2.3) we obtain

varP

(
(Vn)i,i

n

)
= 1

n2
E
[( ∑

1≤k≤n

s⊗2
ei

(((
ϕω

1,k−1

)⊗2 − E
[(

ϕω
1,k−1

)⊗2])
Θω

k

))2]

≤ 2

n2

∑
1≤k≤l≤n

s⊗4
ei

(
E
[((

ϕω
1,k−1

)⊗2 − E
[(

ϕω
1,k−1

)⊗2])
⊗ ((

ϕω
1,l−1

)⊗2 − E
[(

ϕω
1,l−1

)⊗2])](
Θω

l ⊗ Θω
k

))
. (2.45)

Observe that by (2.3) we can write(
ϕω

1,l−1

)⊗2 − E
[(

ϕω
1,l−1

)⊗2] = (
ϕω

1,k−1

)⊗2(
ϕω

k,l−1

)⊗2 − E
[(

ϕω
1,k−1

)⊗2]E[(ϕω
k,l−1

)⊗2]
= ((

ϕω
1,k−1

)⊗2 − E
[(

ϕω
1,k−1

)⊗2])E[(ϕω
k,l−1

)⊗2]
+ (

ϕω
1,k−1

)⊗2{(
ϕω

k,l−1

)⊗2 − E
[(

ϕω
k,l−1

)⊗2]} (2.46)

and notice that the term inside the curly brackets is independent of F ω
1,k−1 and vanishes when we take the expectation.

Therefore we have

E
[((

ϕω
1,k−1

)⊗2 − E
[(

ϕω
1,k−1

)⊗2])⊗ ((
ϕω

1,l−1

)⊗2 − E
[(

ϕω
1,l−1

)⊗2])]
= E

[(
ϕω

1,k−1

)⊗4 − E
[(

ϕω
1,k−1

)⊗2]⊗2](
I ⊗ E

[(
ϕω

k,l−1

)⊗2])
, (2.47)

where we have applied again (2.3) and where I denotes the identity operator on L(Rd). We can therefore rewrite the
term in the sum in (2.45) as

s⊗4
ei

(
E
[(

ϕω
1,k−1

)⊗4 − E
[(

ϕω
1,k−1

)⊗2]⊗2](
I ⊗ E

[
ϕω

k,l−1 ⊗ ϕω
k,l−1

])(
Θω

l ⊗ Θω
k

))
= s⊗4

ei

(
E
[(

ϕω
1,k−1

)⊗4 − E
[(

ϕω
1,k−1

)⊗2]⊗2](
I ⊗ E

[
ϕω

k,l−1 ⊗ ϕω
k,l−1

])(
Θω

l ⊗ Θω
k

))
, (2.48)

where we have applied the first relation in (2.12) together with the following relations:

Θω
l Γ = Θω

l and E
[
ϕω

k,l−1 ⊗ ϕω
k,l−1

]
Θω

k Γ = E
[
ϕω

k,l−1 ⊗ ϕω
k,l−1

]
Θω

k , (2.49)

which follow from the fact that (g ⊗ g)Γ = g ⊗ g for every g ∈ L(Rd).
We know from Hypothesis 2.1 that when l � k the operator E[ϕω

k,l−1 ⊗ ϕω
k,l−1] is close to Π . Furthermore, if we

replace E[ϕω
k,l−1 ⊗ ϕω

k,l−1] by Π inside (2.48) we get zero: in fact, since trivially g⊗2Π = Π for every g ∈ SO(d), we
have

E
[(

ϕω
1,k−1

)⊗4 − E
[(

ϕω
1,k−1

)⊗2]⊗2]
(I ⊗ Π)

= E
[(

ϕω
1,k−1

)⊗2 ⊗ ((
ϕω

1,k−1

)⊗2
Π
)]− E

[(
ϕω

1,k−1

)⊗2]⊗ E
[(

ϕω
1,k−1

)⊗2
Π
]= 0. (2.50)
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So it remains to take into account the contribution of the error E[ϕω
k,l−1 ⊗ ϕω

k,l−1] − Π inside (2.48). However, using
Hypothesis 2.1, (2.7) and the triangle inequality, we have∥∥E

[(
ϕω

1,k−1

)⊗4 − E
[(

ϕω
1,k−1

)⊗2]⊗2]∥∥
op ≤ 2,

∥∥Θω
l ⊗ Θω

k

∥∥
op ≤ 4

(
1 + C(ω)

)4
, (2.51)

hence, using the second relation in (2.12), from (2.45) and (2.48) we obtain

varP

(
(Vn)i,i

n

)
≤ 8(1 + C(ω))4

n2

∑
1≤k≤n,m≥0

∥∥E
[
ϕω

k,(k−1)+m ⊗ ϕω
k,(k−1)+m

]− Π
∥∥

op ≤ 8(1 + C(ω))5

n
, (2.52)

having applied Hypothesis 2.1 again. We have therefore shown that varP( 1
n
(Vn)i,j ) → 0 as n → ∞, for all 1 ≤ i, j ≤ d

and for P-almost every ω.
It remains to prove that E[ 1

n
Vn] → σ̃ 2Id as n → ∞ and to identify σ̃ 2. Let us first note that by (2.32) and (2.33)

n∑
k=1

Yk = Xv0,ω
n − E

[
Xv0,ω

n

]=: X̃n. (2.53)

We also set Zi
n := 〈ei,Zn〉, X̃i

n := 〈ei, X̃n〉 and Ui
n := 〈ei,Un〉 for short. Since E[Zn|F ω

1,n−1] = 0 and in view of (2.39),
we can write

E
[
(Vn)i,j

]=
n∑

k=1

E
[
Zi

kZ
j
k

]=
n∑

k,l=1

E
[
Zi

kZ
j
l

]= E
[(

X̃i
n + Ui

n+1

)(
X̃

j
n + U

j

n+1

)]
(2.54)

(note that U1 = 0). We recall that by Proposition 2.2 we have as n → ∞, for P-a.e. ω,

E
[
X̃i

nX̃
j
n

]= (
CovP

(
Xv0,ω

n

))
i,j

= nσ 2δi,j + o(n), (2.55)

where σ 2 is given by (2.16) (equivalently by (1.6)). Since supn ‖Un‖L∞(P;Rd ) < ∞ by (2.34), it follows from (2.54)
that as n → ∞, for P-a.e. ω, we have

E
[
(Vn)i,j

]= E
[
X̃i

nX̃
j
n

]+ o(n) = nσ 2δi,j + o(n). (2.56)

This completes the proof that the rescaled process T N = {T N(t)}t∈[0,∞) converges in distribution as N → ∞ to σ 2B ,
where σ 2 is given by (1.6).

It finally remains to obtain the same statement for B
v0,ω
N (t) := 1√

N
X

v0,ω�Nt�. Notice that by (2.38), (2.39) and (2.53)
we can write

sup
1≤k≤n

∥∥Xv0,ω
k − Tk

∥∥≤ sup
1≤k≤n

∥∥E
[
X

v0,ω
k

]∥∥+ sup
1≤k≤n

‖Uk+1‖, (2.57)

where ‖ · ‖ denotes the Euclidean norm in Rd . However, the right-hand side is bounded in n in L∞(P;Rd), for
P-a.e. ω (for the first term see (2.20) while for the second term we already know that supn ‖Un‖L∞(P;Rd ) < ∞).

Therefore, supt∈[0,M] ‖Bv0,ω
N (t) − T N(t)‖ ≤ (const.)/

√
N for every M > 0, and the proof is completed. �

2.5. Proof of Theorem 1.6

We now show that the abstract condition expressed by Hypothesis 2.1 is a consequence of Assumption 1.4. In view of
Theorem 2.3, this completes the proof of Theorem 1.6.

We start by controlling E[ϕω
n,n+k], which is quite easy: the independence of the ri yields

E
[
ϕω

n,n+k

]= ωnE(r1)ωn+1E(r1) · · ·ωn+kE(r1). (2.58)
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It is clear that ‖E(r1)‖op ≤ 1. We now show that Assumption 1.4 yields ‖E(r1)‖op < 1, so that for every ω we have

∞∑
k=1

∥∥E
[
ϕω

n,n+k

]∥∥
op ≤

∞∑
k=1

∥∥E(r1)
k
∥∥

op ≤
∞∑

k=1

∥∥E(r1)
∥∥k

op < ∞. (2.59)

To prove that ‖E(r1)‖op < 1, we argue by contradiction: if ‖E(r1)‖op = 1 there would exist two vectors x, y ∈ Sd−1

such that

1 = 〈
y,E(r1)x

〉= ∫
SO(d)

〈y,gx〉Q(dg). (2.60)

Since |〈y,gx〉| ≤ 1, for this equality to hold it is necessary that gx = y for Q-almost every g ∈ SO(d). Setting
V := {λx: λ ∈ R} and W := {λy: λ ∈ R}, this would mean that gV = W for Q-almost every g ∈ SO(d), which is in
contradiction with Assumption 1.4.

Next we turn to the analysis of E[ϕω
n,n+k ⊗ ϕω

n,n+k], which is a linear operator on the vector space L(Rd), equipped

with the standard scalar product 〈v,w〉hs = Tr(v∗w). We decompose L(Rd) = H1 ⊕ H 0
s ⊕ Ha as a sum of the orthog-

onal subspaces consisting respectively of the multiples of the identity, of the symmetric matrices with zero trace and
of the antisymmetric matrices:

H1 := {λId : λ ∈ R}, H 0
s := {

v ∈ L
(
Rd

)
: v∗ = v and Tr(v) = 0

}
,

Ha := {
v ∈ L

(
Rd

)
: v∗ = −v

}
.

All of these subspaces are invariant under g ⊗ g, for every g ∈ L(Rd), hence they are invariant under
E[ϕω

n,n+k ⊗ ϕω
n,n+k]. We recall that Π is the orthogonal projection on H1, cf. (2.13), while Γ is the orthogo-

nal projection on H1 ⊕ H 0
s , cf. (2.8). Since Π and E[ϕω

n,n+k ⊗ ϕω
n,n+k] are zero on Ha and they coincide on H1,

‖E[ϕω
n,n+k ⊗ ϕω

n,n+k] − Π‖op is nothing but the operator norm of E[ϕω
n,n+k ⊗ ϕω

n,n+k] restricted to the subspace H 0
s ,

therefore with obvious notation we can write for every ω

∞∑
k=1

∥∥E
[
ϕω

n,n+k ⊗ ϕω
n,n+k

]− Π
∥∥

op =
∞∑

k=1

∥∥E
[
ϕω

n,n+k ⊗ ϕω
n,n+k

]∥∥
H 0

s ,op. (2.61)

However, from (2.3) and from the fact that the ri are independent and identically distributed we have

E
[
ϕω

n,n+k ⊗ ϕω
n,n+k

]= (ωn ⊗ ωn)E[r1 ⊗ r1] · · · (ωn+k ⊗ ωn+k)E[r1 ⊗ r1], (2.62)

hence

∞∑
k=1

∥∥E
[
ϕω

n,n+k ⊗ ϕω
n,n+k

]− Π
∥∥

op ≤
∞∑

k=1

(∥∥E[r1 ⊗ r1]
∥∥

H 0
s ,op

)k
. (2.63)

We are finally left with showing that ‖E[r1 ⊗ r1]‖H 0
s ,op < 1. Let us assume by contradiction that there exist v,w ∈

H 0
s with ‖v‖hs = ‖w‖hs = 1 such that

1 = 〈
w,E[r1 ⊗ r1]v

〉
hs =

∫
SO(d)

〈
w,gvg∗〉

hsQ(dg). (2.64)

However, ‖gvg∗‖hs = ‖v‖hs = 1, hence 〈w,gvg∗〉hs ≤ 1 and we must have w = gvg∗ = gvg−1 for Q-a.e. g in SO(d).
In particular, the matrices v and w are similar and therefore they have the same eigenvalues λ1, . . . , λk , with k ≤ d .
Recall that by the spectral theorem v and w are diagonalizable. Denoting by Kv and Kw respectively the eigenspaces
of v and w corresponding to λ1, we have that 1 ≤ dim(Kv) = dim(Kw) ≤ d − 1, where the last inequality follows
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from the fact that v and w, having zero-trace and not being identically zero, cannot be multiples of the identity. Let us
now fix g such that w = gvg−1 and take an arbitrary x ∈ gKv : since g−1x ∈ Kv we have

wx = gvg−1x = g
(
λ1g

−1x
)= λ1x, (2.65)

which yields x ∈ Kw . Therefore gKv ⊆ Kw and since the two subspaces have the same dimension we must have
gKv = Kw , for Q-almost every g. This being in contradiction with Assumption 1.4, we have indeed that ‖E[r1 ⊗
r1]‖H 0

s ,op < 1 and the proof of Theorem 1.6 is completed.

3. Decay of correlation

3.1. General notations

We denote by λ the normalized Haar measure on SO(d). We recall that λ is the only probability measure that is left-
and right-invariant, i.e., such that λ(Ag) = λ(gA) = λ(A) for all g ∈ SO(d) and (measurable) A ⊆ SO(d). In the
special case d = 3, λ describes a (random) rotation around the vector w of angle θ , where w is uniform on S2 and θ

is uniform on [0,2π). For more on the Haar measure we refer to [4].
We recall that Q denotes the law of r1. For fixed ω, we denote by Lω

m,n the law of ϕω
m,n under P, so that for any

bounded and measurable function F : SO(d) → R

E
[
F
(
ϕω

m,n

)]=
∫

SO(d)

F (g)Lω
m,n(dg). (3.1)

We also set

Eω(k) := 2 sup
n

∥∥Lω
n+1,n+k − λ

∥∥
TV, (3.2)

where the total variation (TV) distance between the probability measures μ and ν is defined as ‖μ − ν‖TV :=
supA |μ(A) − ν(A)|. We observe that ‖μ − ν‖TV coincides with 1

2 sup|g|≤1

∫
g dμ − ∫

g dν, in particular if μ is

absolutely continuous with respect to ν, with f := dμ/dν, we have ‖μ − ν‖TV = 1
2

∫ |f − 1|dν.

3.2. Reminders of harmonic analysis on compact groups

Throughout this section, we assume that G is a compact topological group, equipped with the Borel σ -field, and λ is
the normalized Haar measure on G (of course we have in mind the specific case where G = SO(d), d ≥ 2). We start
recalling some basic facts about harmonic analysis on G, taking inspiration from [5,6].

Given a (complex) Hilbert space H , a representation of G on H is a group homomorphism U :G → B(H), i.e.,
U(gh) = U(g)U(h) for all g,h ∈ G, where B(H) denotes the set of bounded linear operators from H to itself. The
representation U is said to be:

• continuous if the map g �→ 〈x,U(g)y〉 from G to C is continuous, for all x, y ∈ H ;
• irreducible if there is no closed subspace M of H such that U(g)M ⊆ M for every g ∈ G, except the trivial case

when M = {0} or M = H ;
• unitary if U(g) is a unitary operator for every g ∈ G, i.e., 〈U(g)x,U(g)y〉 = 〈x, y〉 for all x, y ∈ H , where 〈·, ·〉

denotes the scalar product in H (that we take skew-linear in the first argument and linear in the second).

Finally, two representations U , U ′ of G on the Hilbert spaces H , H ′ are said to be equivalent if there exists a linear
isometry T :H → H ′ such that U(g) = T −1U ′(g)T for every g ∈ G. The set of equivalence classes of continuous,
irreducible, unitary representations of G is denoted by Σ , which is a countable set (sometimes called the dual object
of G).

We point out that, since G is compact, all irreducible representations are finite-dimensional, that is, they act on
a finite-dimensional Hilbert space. Given α ∈ Σ , we denote by Uα an arbitrary representation in the class α, act-
ing on the Hilbert space Hα of finite dimension dα ∈ N. In each space Hα we fix an (arbitrary) orthonormal basis
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{ζ α
i , i = 1, . . . , dα} and we denote by uα

ij (g) = 〈ζ α
i ,Uα(g)ζ α

j 〉 the matrix of Uα(g) on this basis. Notice that uα
ij (·) is a

continuous function from G to C. We have the following orthogonality relations, valid for all α,β ∈ Σ , 1 ≤ j, k ≤ dα ,
1 ≤ l,m ≤ dβ :∫

G

uα
jk(g)u

β
lm(g)λ(dg) = 1

dα

δαβδjlδkm, (3.3)

where x denotes the complex conjugate of x and δij is the Kronecker delta. Therefore {√dαuα
i,j (·)}α∈Σ,1≤i,j≤dα is an

orthonormal set in L2(G,dλ). A crucial result is that it is also complete, i.e., the functions uα
i,j (·) span L2(G,dλ), by

the Peter–Weil theorem.
Next we introduce the Fourier transform μ̂ of a probability measure μ on G, which is the element of the space

S :=∏
α∈Σ B(Hα) defined by

μ̂(α) :=
∫

G

Uα(g)μ(dg), α ∈ Σ. (3.4)

More explicitly, μ̂(α) is the linear operator acting on Hα whose matrix in the basis {ζ α
i }i is given by μ̂(α)i,j =∫

G
uα

i,j (g)μ(dg), for α ∈ Σ and 1 ≤ i, j ≤ dα .
It follows directly from the definition (3.4) and (2.5) that ‖μ̂(α)‖op ≤ 1 for every probability measure μ on G and

for every α ∈ Σ . As a matter of fact, when G is connected, this inequality is strict for a large class of μ, as we show
in the following lemma (where we denote by α = 0 the trivial representation, with H0 = C and U0(g) = 1 for every
g ∈ G).

Lemma 3.1. Let μ be a probability measure on G with support V . Assume that V −1V := {h−1g :h,g ∈ V } generates
a dense set in G, i.e., the set

⋃∞
n=1(V

−1V )n is dense in G. Then ‖μ̂(α)‖op < 1 for every α ∈ Σ , α �= 0.

Proof. Suppose that ‖μ̂(α)‖op = 1. Then there must exist x, y ∈ Hα with ‖x‖ = ‖y‖ = 1 such that 〈y, μ̂(α)x〉 = 1.
Now

1 = �〈y, μ̂(α)x
〉= ∫

�〈y,Uα(g)x
〉
ν(dg). (3.5)

The function r(g) = �〈y,Uα(g)x〉 is real and such that r(g) ≤ 1, and so must be constant on the support of μ and
equal to 1. This implies that Uα(g)x = y for any g ∈ V , hence

Uα
(
h−1g

)
x = Uα

(
h−1)Uα(g)x = Uα

(
h−1)y = x (3.6)

for all g,h ∈ V . This means that the relation Uα(g)x = x holds for all g ∈ V −1V and hence for all g ∈⋃∞
n=1(V

−1V )n.
By assumption the latter set is dense in G and the continuity of the representation Uα yields that Uα(g)x = x for all
g ∈ G, which is impossible unless α is the trivial representation. �

We conclude this paragraph noting that the Fourier transform provides an easy tool to check whether a probability
measure μ has an L2 density with respect to the Haar measure λ. More precisely, we have the following lemma.

Lemma 3.2 (Fourier inversion theorem). A probability measure μ on G is such that∑
α∈Σ

dα

∥∥μ̂(α)
∥∥2

hs< ∞ (3.7)

if and only if it is absolutely continuous with respect to λ with density in L2(G,dλ). In this case, the density f =
dμ/dλ is given by

f (g) =
∑
α∈Σ

dα Tr
(
μ̂(α)Uα(g)∗

)=
∑
α∈Σ

∑
1≤i,j≤dα

dαμ̂(α)i,j u
α
i,j (g), (3.8)
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where the series converges in L2(G,dλ).

Proof. Since {√dαuα
i,j (·)}α∈Σ,1≤i,j≤dα is a complete orthonormal set in L2(G,dλ), the same is true if we replace

uα
i,j (·) by uα

i,j (·), therefore condition (3.7) guarantees that the right-hand side of (3.8) does define a function f ∈
L2(G,dλ). Consider then the (a priori complex) measure dν := f dλ. Using (3.3) it is easy to check that

ν̂(α)i,j :=
∫

G

uα
i,j (g)ν(dg) = μ̂(α)i,j (3.9)

for all α ∈ Σ and 1 ≤ i, j ≤ dα . By Theorem 27.42 of [6] this implies that μ = ν. Vice versa, if a func-
tion f is in L2(G,dλ), the right-hand side of (3.8) is nothing but its Fourier series in the orthonormal set
{√dαuα

i,j (·)}α∈Σ,1≤i,j≤dα , hence relation (3.7) holds true. Finally, the second equality in (3.8) is easily checked. �

3.3. Exponential decay of the total variation norm

In this subsection we need to assume that G is also connected (which is of course the case for G = SO(d)). We show
that, assuming hypotheses H-1 or H-2 (cf. Section 1.4), for P-a.e. ω, we have∑

k∈N

Eω(k) < ∞, (3.10)

where we recall that Eω(k) has been introduced in (3.2). As a matter of fact, we are going to prove the much stronger
result that there exist positive constants c1, c2 such that

sup
ω

Eω(k) ≤ c1e−c2k for all k ∈ N. (3.11)

It is convenient to introduce the convolution μ ∗ ν of two probability laws μ,ν on G by

(μ ∗ ν)(A) :=
∫

G

μ
(
Ah−1)ν(dh) =

∫
G

ν
(
g−1A

)
μ(dg), (3.12)

so that if X, Y are two independent random elements of G with marginal laws μ, ν, then μ ∗ ν is the law of XY .
Therefore we can express Lω

m,n as

Lω
m,n = δωm ∗ Q ∗ δωm+1 ∗ Q ∗ · · · ∗ δωn ∗ Q, (3.13)

where δg denotes the Dirac mass at g ∈ G. We stress that in general the convolution is not commutative. A basic

property is that μ̂ ∗ ν(α) = μ̂(α)ν̂(α) for every α ∈ Σ , or more explicitly μ̂ ∗ ν(α)i,j =∑dα

k=1 μ̂(α)i,kν̂(α)k,j , as one
easily checks from (3.4).

In the next crucial lemma we give an explicit bound on Eω(k) in terms of the Fourier transform Q̂ of Q. We recall
that we denote by α = 0 the trivial representation.

Lemma 3.3. The following relation holds true for every k ∈ N:(
sup
ω

Eω(k)
)2 ≤

∑
α∈Σ,α �=0

dα

∥∥Q̂(α)
∥∥2

hs

∥∥Q̂(α)
∥∥2(k−1)

op . (3.14)

Proof. From (3.13) we can write

L̂ω
n+1,n+k(α) = Uα(ωn+1)Q̂(α) · · ·Uα(ωn+k)Q̂(α), (3.15)

and using the inequalities in (2.6) we get

∥∥L̂ω
n+1,n+k(α)

∥∥2
hs ≤ ∥∥Q̂(α)

∥∥2
hs

∥∥Q̂(α)
∥∥2(k−1)

op

k∏
i=1

∥∥Uα(ωn+i )
∥∥2

op ≤ ∥∥Q̂(α)
∥∥2

hs

∥∥Q̂(α)
∥∥2(k−1)

op , (3.16)
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where we used that ‖Uα(ωn+i )‖2
op = 1 because the representation is unitary. Now assume that the right-hand side

of (3.14) is finite (otherwise there is nothing to prove). By Lemma 3.2, Lω
n+1,n+k has a density f ∈ L2(G,dλ) with

respect to λ, therefore by Jensen’s inequality we can write

4
∥∥Lω

n+1,n+k − λ
∥∥2

TV =
(∫

G

|f − 1|dλ

)2

≤
∫

G

f 2 dλ − 1 =
∑

α∈Σ,α �=0

dα

∥∥L̂ω
n+1,n+k(α)

∥∥2
hs, (3.17)

where in the last equality we have used Parseval’s identity, observing that 〈f,uα
i,j 〉 = (L̂ω

n+1,n+k(α))i,j and that triv-
ially μ̂(0) = 1 for every probability measure μ on G. Recalling the definition (3.2) of Eω(k), relation (3.14) is
proven. �

Proof of (3.11) under hypothesis H-2. Let us set f := dQ/dλ ∈ L2(G,dλ). By Parseval’s identity we have

‖f ‖2
2 :=

∫
G

f 2 dλ =
∑
α∈Σ

dα

∥∥Q̂(α)
∥∥2

hs < ∞. (3.18)

In particular, for every ε > 0, ‖Q̂(α)‖hs ≤ ε for every α /∈ Γ , with Γ a finite subset of Σ . Since ‖Q̂(α)‖op ≤
‖Q̂(α)‖hs, we have that ‖Q̂(α)‖op ≤ ε for every α ∈ Σ , α /∈ Γ . Next observe that Lemma 3.1 can be ap-
plied, because by hypothesis the support of Q contains a non-empty open set A, hence A−1A is open too
and therefore it generates the whole G (it is easily seen that, for any non-empty open subset B ,

⋃∞
n=1 Bn is

non-empty and both open and closed, hence it must be the whole G, which is connected). This observation
yields

h := sup
α∈Σ,α �=0

∥∥Q̂(α)
∥∥

op < 1. (3.19)

Therefore from Lemma 3.3 we have that

sup
ω

Eω(k) ≤ ‖f ‖2 · h(k−1), (3.20)

which proves (3.11) under hypothesis H-2. �

Proof of (3.11) under hypothesis H-1. Since the law Q is assumed to be conjugation invariant, we have∫
G

f (g)Q(dg) = ∫
G

f (t−1gt)Q(dg), for every t ∈ G. Then for any law ν on G and for any bounded measurable
function f : G → R we have∫

G

f d(Q ∗ ν) =
∫

G

∫
G

f (gh)Q(dg)ν(dh) =
∫

G

∫
G

f (hg)Q(dg)ν(dh) =
∫

G

f d(ν ∗ Q), (3.21)

hence Q ∗ ν = ν ∗ Q. In particular, taking ν = δg , the operator Q̂(α) commutes with Uα(g), for every g ∈ G. Schur
lemma then yields that Q̂(α) is a multiple of the identity Iα on Hα : Q̂(α) = cαIα for cα ∈ C. Then from (3.15) it
follows that

L̂ω
n+1,n+k(α) = Uα(ωn+1 · · ·ωn+k)Q̂(α)k, (3.22)

hence ‖L̂ω
n+1,n+k(α)‖2

hs = ‖Q̂(α)k‖2
hs. Since by assumption for k ≥ n0 the measure Q∗k has a density fk :=

dQ∗k/dλ ∈ L2(G,dλ), it follows that also Lω
n+1,n+k(α) has a density gω

n,k = dLω
n+1,n+k/dλ ∈ L2(G,dλ) (cf.

Lemma 3.2) and by Parseval’s identity we have∫
G

(
gω

n,k

)2 dλ = ∥∥gω
n,k

∥∥2
2 = ‖fk‖2

2 =
∑
α∈Σ

dα

∥∥Q̂(α)k
∥∥2

hs < ∞. (3.23)
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Arguing as above and recalling that Q̂(α) = cαIα , it follows that (3.19) still holds. We therefore have for k ≥ n0

4
∥∥Lω

n+1,n+k(α) − λ
∥∥2

TV ≤
(∫

G

∣∣gω
n,k − 1

∣∣dλ

)2

≤
∫

G

(
gω

n,k

)2 dλ − 1 =
∑

α∈Σ,α �=0

dα

∥∥Q̂(α)k
∥∥2

hs

≤
∑

α∈Σ,α �=0

dα

∥∥Q̂(α)n0
∥∥2

hs

∥∥Q̂(α)
∥∥2(k−n0)

op = ‖fn0‖2
2 · h2(k−n0).

Then supω Eω(k) ≤ ‖fn0‖2h
k−n0 and the proof of Eq. (3.11) is complete. �

Proof of Proposition 1.8. It suffices to prove that for every n and every ω we have αω(n) ≤ 2Eω(n). Since {ϕ1,n}n
is a (inhomogeneous) Markov process we directly see that

αω(n) ≤ sup
u,w

∣∣E[u(ϕω
1,m

)
w
(
ϕω

1,m+n

)]− E
[
u
(
ϕω

1,m

)]
E
[
w
(
ϕω

1,m+n

)]∣∣, (3.24)

where u and w vary in the set of measurable maps from G to [0,1]. Since∣∣E[u(ϕω
1,m

)
w
(
ϕω

1,m+n

)]− E
[
u
(
ϕω

1,m

)]
E
[
w
(
ϕω

1,m+n

)]∣∣
≤
∣∣∣∣∫

G

u(g)

(∫
G

w
(
gg′)(Lω

m+1,m+n

(
dg′)− λ

(
dg′)))Lω

1,m(dg)

∣∣∣∣
+
∣∣∣∣∫ u(g)Lω

1,m(dg)

∫
G

(∫
G

w
(
gg′)(Lω

m+1,m+n

(
dg′)− λ

(
dg′)))Lω

1,m(dg)

∣∣∣∣, (3.25)

the desired bound follows since both |u(·)| and |w(·)| are bounded by 1. �

Appendix A. The elementary approach to the two-dimensional case

We give here a partial proof of Theorem 1.6 in the 2-dimensional case. We identify in particular the variance σ 2,
cf. (1.6), of the limit process. We set T := R/(2πZ) and we denote by Rα the rotation by an angle α. With reference
to (1.4), we write ωj = Rγj

and rj = Rθj
, with γj and θj random variables taking values in T. The Fourier coefficients

of the law Q of θ1 are
∫

T
eimxQ(dx) =: q̂m, for m ∈ Z. Recall that we are assuming that Q({θ0, θ0 +π}) < 1 for every

θ0 and this is equivalent to |q̂n| < 1 for n = 1 and n = 2.
We set Θn := θ1 + · · · + θn and Γn := γ1 + · · · + γn for n ∈ N, along with Φn := Γn + Θn. Therefore the real and

complex part of the random variable Zω
N := eiΦ1 + · · · + eiΦN coincide with the components of the random vector

X
v0,ω
N , v0 = (1,0). Our goal is to compute the asymptotic covariance matrix of X

v0,ω
N as N → ∞. Note that no

centering is needed, since

E
[
Zω

N

]=
N∑

m=1

eiΓmE
[
eiΘm

]=
N∑

m=1

eiΓmq̂m
1 , (A.1)

and therefore |E[ZN ]| ≤ |q̂1|/(1 − |q̂1|) < ∞, because |q̂1| < 1.
We can therefore focus on the second moments. For simplicity, we fix an arbitrary direction eiξ0 in R2 � C, with

ξ0 ∈ T, and we look at the projection {Zω,ξ0
n }n of the process {Zω

n }n in this direction, i.e.

Z
ω,ξ0
0 := 0, Zω,ξ0

n := cos(Φ1 − ξ0) + · · · + cos(Φn − ξ0). (A.2)

For n ∈ N and m ∈ N ∪ {0} one directly computes with x = Θm + Γm+n − ξ0

E
[
cos(Φn+m − ξ0)

∣∣Θm

]= E
[
cos(x + Θn)

]= �(q̂n
1 eix)= |q̂1|n cos(Θm + θ̄n + Γm+n − ξ0), (A.3)
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where θ̄ is such that eiθ̄ = q̂1/|q̂1|. We observe also that for a, b ∈ T

E
[
cos(Θm + a) cos(Θm + b)

]= 1

2
cos(a − b) + 1

2
�(q̂m

2 ei(a+b)
)
, (A.4)

and from (A.3) and (A.4) we directly see that

E
[
cos(Φm − ξ0) cos(Φn+m − ξ0)

]= 1

2
|q̂1|n

{
cos(Γm+n − Γm + θ̄n) + �(q̂m

2 ei(Γm+n+Γm+θ̄n−2ξ0)
)}

, (A.5)

and the latter expression actually holds also for n = 0. We are now ready to estimate E[(Zξ0,ω
N )2]. The expression

contains diagonal terms and for those we have

N∑
m=1

E
[
cos2(Φm − ξ0)

]= N

2
+ o(N), (A.6)

by (A.5) with n = 0 (recall that |q̂2| < 1). The off-diagonal terms instead give

2
N−1∑
m=1

N−m∑
n=1

E
[
cos(Φm − ξ0) cos(Φn+m − ξ0)

]=
N−1∑
n=1

q̂n
1

N−n∑
m=1

cos(Γm+n − Γm + θ̄n) + o(N). (A.7)

For every fixed n ∈ N, by the ergodic theorem we have that P(dω)-a.s. as N → ∞
N−n∑
m=1

cos(Γm+n − Γm + θ̄n) = E
(
cos(Γn + θ̄n)

) · N + o(N), (A.8)

and therefore that P-a.s.

N−1∑
n=1

q̂n
1

N−n∑
m=1

cos(Γm+n − Γm + θ̄n) =
( ∞∑

n=1

q̂n
1 E

(
cos(Γn + θ̄n)

)) · N + o(N), (A.9)

so that finally we have P(dω)-a.s.

1

N
E
[(

Z
ω,ξ0
N

)2]= 1

N

N∑
i,j=1

E
(
cos(Φi − ξ0) cos(Φj − ξ0)

) N→∞−→ 1

2
+

∞∑
n=1

|q̂1|nE
[
cos(Γn + θ̄n)

]
, (A.10)

which matches with (1.6). Note that the diffusion coefficient is independent of the direction ξ0 and that it depends on
the law of θ1 just through the first Fourier coefficient q̂1.

Appendix B. The homogeneous case

The aim of this appendix is to argue that, if disorder is absent, Theorem 1.6 holds under the assumption that the
support of Q generates a dense set in SO(d).

In order to do this, let us first observe that, when disorder is absent, we can weaken Assumption 1.4 to the following
generalized condition: there exist m ∈ N such that∥∥(E(r1)

)m∥∥
op < 1 and

∥∥(E(r1 ⊗ r1)
)m∥∥

H 0
s ,op < 1, (B.1)

where we recall that H 0
s denotes the space of symmetric real matrices with zero trace. We have shown in Section 2.5

that this condition with m = 1 follows from Assumption 1.4. The fact that, when disorder is absent, Eq. (B.1) is
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sufficient to yield Hypothesis 2.1, and hence Theorem 1.6, is immediately checked: for instance, by (2.58) we can
write

∞∑
k=1

∥∥E
[
ϕω

n,n+k

]∥∥
op ≤

∞∑
k=1

∥∥(E(r1)
)m∥∥�k/m�

op < ∞ (B.2)

and analogously one shows that
∑∞

k=1 ‖E[ϕω
n,n+k ⊗ ϕω

n,n+k] − Π‖op < ∞, cf. (2.63).
We recall that, for an arbitrary linear operator A on some vector space and for any fixed operator norm ‖ · ‖,

the sequence ‖Am‖1/m converges as m → ∞ toward the spectral radius of A, denoted Sp(A). Furthermore, by sub-
additivity (since ‖Am+n‖op ≤ ‖Am‖op‖An‖op) we have Sp(A) = infm∈N ‖Am‖1/m, hence we can restate (B.1) as

Sp
(
E(r1)

)
< 1, Sp

(
E(r1 ⊗ r1)|H 0

s

)
< 1. (B.3)

Let us finally show that Eq. (B.3) is satisfied whenever the support V of Q generates a dense set in SO(d), i.e.,
whenever the closure of

⋃
k∈Z

V k is the whole SO(d), where we set V −1 := {g−1: g ∈ V }, V 2 := {gh: g,h ∈ V }, and
so on. Since this fact is easily checked for d = 2, in the following we assume that d ≥ 3.

We argue by contradiction: if the spectral radius of E(r1) is equal to one, there exists v ∈ Cd with ‖v‖ = 1 such
that E(r1)v = eiθ v, with θ ∈ [0,2π), hence

1 = �〈eiθ v,E(r1)v
〉= ∫

SO(d)

�〈eiθ v, gv
〉
Q(dg). (B.4)

In the preceding relations we have denoted by 〈·, ·〉 the standard Hermitian product on Cd , i.e., 〈a, b〉 :=∑d
k=1 akbk ,

where a denotes the complex conjugate of a. Since �〈eiθ v, gv〉 ≤ 1 for every g ∈ SO(d), we must have gv = eiθ v

for every g ∈ V , the support of Q. Writing v1 + iv2 with v1, v2 ∈ Rd and denoting by U the linear subspace of Rd

spanned by v1, v2, it follows that gU = U for every g ∈ V . Since by assumption V generates a dense set in SO(d), by
continuity we must have gU = U for every g ∈ SO(d), which is clearly impossible because 1 ≤ dim(U) ≤ 2 (recall
that we assume d ≥ 3).

With analogous arguments, if the spectral radius of E(r1 ⊗ r1) on the space H 0
s equals one, there must exist

v1, v2 ∈ H 0
s with ‖v1‖2

hs + ‖v2‖2
hs = 1 and θ ∈ [0,2π) such that g(v1 + iv2)g

−1 = eiθ (v1 + iv2), for every g ∈ V .
Denoting by U the linear subspace of H 0

s spanned by v1, v2, it follows that gUg−1 = U for every g ∈ V . Since by
assumption V generates a dense set in SO(d), by continuity we must have gUg−1 = U for every g ∈ SO(d). However,
this is not possible, because the only linear subspaces W such that gWg−1 ⊆ W for every g ∈ SO(d) are W = {0} and
W = H 0

s (i.e., the representation SO(d) � g �→ g ⊗ g on the vector space H 0
s is irreducible).

Let us check this fact. We take w ∈ W not identically zero: by the spectral theorem, there exists g ∈ SO(d) such that
v := gwg−1 ∈ W is diagonal: vij = λiδij . Since v is not identically zero and it has zero trace, there exist i0, j0 such
that λi0 �= λj0 . Let us now take h ∈ SO(d) to be the matrix that permutes the coordinates i0 and j0, i.e., hij := δij for
i, j /∈ {i0, j0} while hi0j = hji0 := δj0j and hij0 = hj0i := δii0 . It is clear that ṽ := hvh−1 ∈ W is such that ṽij = λ̃iδij ,
where λ̃i = λi for i /∈ {i0, j0} while λ̃i0 = λj0 and λ̃j0 = λi0 . Therefore, z := 1

(λi0−λj0 )
(v− ṽ) ∈ W is such that zi0i0 = 1,

zj0j0 = −1, and zij = 0 for all the other values of i, j . By considering gxg−1, where g ∈ SO(d) is an arbitrary
permutation matrix, we obtain all the matrices defined like z but with arbitrary i0, j0. These matrices span the linear
subspace consisting of all the diagonal matrices with zero trace, which are therefore contained in W . However, again
by the spectral theorem, for any matrix u ∈ H 0

s we can find g ∈ SO(d) such that gug−1 is diagonal with zero trace,
hence we must have W = H 0

s and the proof is completed.
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