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Abstract. Consider a stochastic heat equation ∂tu = κ ∂2
xxu + σ(u)ẇ for a space–time white noise ẇ and a constant κ > 0. Under

some suitable conditions on the initial function u0 and σ , we show that the quantities

lim sup
t→∞

t−1 sup
x∈R

ln E
(∣∣ut (x)

∣∣2)
and lim sup

t→∞
t−1 ln E

(
sup
x∈R

∣∣ut (x)
∣∣2)

are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ . Our proof works by demonstrating quan-
titatively that the peaks of the stochastic process x �→ ut (x) are highly concentrated for infinitely-many large values of t . In the
special case of the parabolic Anderson model – where σ(u) = λu for some λ > 0 – this “peaking” is a way to make precise the
notion of physical intermittency.

Résumé. Nous considérons l’équation de la chaleur stochastique ∂tu = κ∂2
xxu + σ(u)ẇ avec un bruit blanc spatio-temporel ẇ et

une constante κ > 0. Sous des conditions adéquates sur la condition initiale u0 et sur σ , nous montrons que les quantités

lim sup
t→∞

t−1 sup
x∈R

ln E
(∣∣ut (x)

∣∣2)
et lim sup

t→∞
t−1 ln E

(
sup
x∈R

∣∣ut (x)
∣∣2)

sont égales. Par ailleurs, nous les bornons inférieurement et supérieurement par des constantes strictement positives et finies dépen-
dant explicitement de 1/κ . Nos démonstrations reposent sur la preuve quantitative de la forte concentration des pics du processus
x �→ ut (x) pour de grandes valeurs de t infiniment nombreuses. Dans le cas particulier du modèle d’Anderson parabolique-où
σ(u) = λu pour un λ > 0 – ce phénomène de pics est une façon de préciser la notion physique d’intermittence.

MSC: Primary 35R60; 37H10; 60H15; secondary 82B44

Keywords: Stochastic heat equation; Intermittency

1. Introduction

We consider the stochastic heat equation,

∂ut (x)

∂t
= κ

∂2ut (x)

∂x2
+ σ

(
ut (x)

)
ẇ(t, x) for t > 0 and x ∈ R, (1.1)
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where κ > 0 is fixed, σ : R → R is Lipschitz continuous with σ(0) = 0, ẇ denotes space–time white noise, and the
initial data u0 : R → R is nonrandom. There are several areas to which (1.1) has deep and natural connections; perhaps
chief among them are the stochastic Burgers’ equation [10] and the celebrated KPZ equation of statistical mechanics
[11,12]; see also [13], Chapter 9.

It is well known that (1.1) has an almost-surely unique, adapted and continuous solution {ut (x)}t≥0,x∈R ([5],
Theorem 6.4, p. 26). In addition, the condition that σ(0) = 0 implies that if u0 ∈ L2(R), then ut ∈ L2(R) a.s. for all
t ≥ 0; see Dalang and Mueller [6]. Note that our conditions on σ ensure that∣∣σ(u)

∣∣ ≤ Lipσ |u| for all u ∈ R, (1.2)

where

Lipσ := sup
−∞<x<x′<∞

∣∣∣∣σ(x) − σ(x′)
x − x′

∣∣∣∣. (1.3)

Our goal is to establish the following general growth estimate.

Theorem 1.1. Suppose there exists Lσ ∈ (0,∞) such that |σ(u)| ≥ Lσ |u| for all u ∈ R. Suppose also that u0 	≡ 0 is
Hölder-continuous of order ≥ 1/2, nonnegative, and supported in [−K,K] for some finite K > 0. Then, (1.1) has an
almost-surely unique, continuous and adapted solution {ut (x)}t≥0,x∈R such that ut ∈ L2(R) a.s. for all t ≥ 0, and

L4
σ

8κ
≤ lim sup

t→∞
t−1 sup

x∈R
ln E

(∣∣ut (x)
∣∣2) = lim sup

t→∞
t−1 ln E

(
sup
x∈R

∣∣ut (x)
∣∣2

)
≤ Lip4

σ

8κ
.

Because of Mueller’s comparison principle [14] (see also [7,16]), the nonnegativity of u0 implies that
supt,x E(|ut (x)|) = supt,x E(ut (x)), and this quantity has to be finite because u0 is bounded; confer with (1.5). Con-
sequently,

sup
x∈R

∥∥ut (x)
∥∥

L1(P)
� sup

x∈R

∥∥ut (x)
∥∥

L2(P)
as t → ∞. (1.4)

When Lipσ = Lσ , (1.1) becomes the well-studied parabolic Anderson model [1,3]. And (1.4) makes precise the
physical notion that the solution to (1.1) concentrates near “very high peaks” [1,3,11,12].

In order to explain the idea behind our proof, we introduce the following.

Definition 1.2. We say that a continuous random field f := {f (t, x)}t≥0,x∈R has effectively-compact support [in the
spatial variable x] if there exists a nonrandom measurable function p : R+ → R+ of at-most polynomial growth such
that:

(a) lim supt→∞ t−1 ln
∫
|x|≤p(t)

E(|f (t, x)|2)dx > 0 and

(b) lim supt→∞ t−1 ln
∫
|x|>p(t)

E(|f (t, x)|2)dx < 0.

We might refer to the function p as the radius of effective support of f .

One of the ideas here is to use Mueller’s comparison principle [14] to compare supx∈R |ut (x)| with the L2(R)-
norm of x �→ ut (x), which is easier to analyze. We carry these steps out in Lemma 3.3. We also appeal to the fact
that the compact-support property of u0 implies that ut (x) has an effectively-compact support [Proposition 3.7]. This
can be interpreted as a kind of optimal regularity theorem. However, these matters need to be handled delicately, as
“effectively compact” cannot be replaced by “compact”; see Mueller [14].

Our method for establishing an effectively-compact support property is motivated strongly by ideas of Mueller
and Perkins [15]. In the cases that ut (x) denotes the density of some particles at x at time t , our effectively-compact
support property implies that most of the particles accumulate on a very small set. This method might appeal to the
reader who is interested in mathematical descriptions of physical intermittency.
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Throughout this paper we use the mild formulation of the solution, in accordance with Walsh [17]. That is, u is the
a.s.-unique adapted solution to

ut (x) = (pt ∗ u0)(x) +
∫ t

0

∫ ∞

−∞
pt−s(y − x)σ

(
us(y)

)
w(ds dy), (1.5)

where pτ (z) := (4κτπ)−1/2 exp(−z2/(4κτ)) denotes the heat kernel corresponding to the operator κ ∂2/∂x2, and the
stochastic integral is understood in the sense of Walsh [17]. Some times we write ‖X‖p in place of {E(|X|p)}1/p .

2. A preliminary result

As mentioned in the Introduction, the strategy behind our proof of Theorem 1.1 is to relate the global maximum of
the solution to a “closed-form quantity” that resembles supx |ut (x)| for large values of t . That closed-form quantity
turns out to be the L2(R)-norm of x �→ ut (x). Our next result analyses the growth of the mentioned closed-form
quantity. We related it to supx |ut (x)| in the next section. The methods of this section follow closely the classical ideas
of Choquet and Deny [4] that were developed in a determinstic setting.

Theorem 2.1. Suppose σ : R → R is Lipschitz continuous, σ(0) = 0, and there exists Lσ ∈ (0,∞) such that Lσ |u| ≤
|σ(u)| for all u ∈ R. If u0 ∈ L2(R) and u0 	≡ 0, then (1.1) has an almost-surely unique, continuous and adapted
solution {ut (x)}t≥0,x∈R such that ut ∈ L2(R) a.s. for all t ≥ 0, and

L4
σ

8κ
≤ lim sup

t→∞
t−1 ln E

(‖ut‖2
L2(R)

) ≤ Lip4
σ

8κ
. (2.1)

Proof. It suffices to establish (2.1). Note that

E
(∣∣ut (x)

∣∣2) = ∣∣(pt ∗ u0)(x)
∣∣2 +

∫ t

0
ds

∫ ∞

−∞
dy E

(∣∣σ (
us(y)

)∣∣2) · ∣∣pt−s(y − x)
∣∣2

. (2.2)

Because |σ(u)| ≥ Lσ |u|,

E
(‖ut‖2

L2(R)

) = ‖pt ∗ u0‖2
L2(R)

+
∫ t

0
ds

∫ ∞

−∞
dy E

(∣∣σ (
us(y)

)∣∣2) · ‖pt−s‖2
L2(R)

≥ ‖pt ∗ u0‖2
L2(R)

+ L2
σ ·

∫ t

0
E
(‖us‖2

L2(R)

) · ‖pt−s‖2
L2(R)

ds. (2.3)

We can multiply the preceding by exp(−λt) throughout and integrate [dt] to find that if

U(λ) :=
∫ ∞

0
e−λtE

(‖ut‖2
L2(R)

)
dt, (2.4)

then

U(λ) ≥
∫ ∞

0
e−λt‖pt ∗ u0‖2

L2(R)
dt + L2

σ · U(λ) ·
∫ ∞

0
e−λt‖pt‖2

L2(R)
dt. (2.5)

According to Plancherel’s theorem, the following holds for all finite Borel measures μ on R:

‖pt ∗ μ‖2
L2(R)

= 1

2π

∫ ∞

−∞
∣∣μ̂(ξ)

∣∣2e−2κtξ2
dξ. (2.6)

Therefore, Tonelli’s theorem ensures that∫ ∞

0
e−λt‖pt ∗ μ‖2

L2(R)
dt = 1

2π

∫ ∞

0

|μ̂(ξ)|2
λ + 2κξ2

dξ. (2.7)
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We apply this identity twice in (2.3): Once with μ := δ0; and once with dμ/dx := u0. This leads us to the following.

U(λ) ≥ 1

2π

∫ ∞

0

|û0(ξ)|2
λ + 2κξ2

dξ + L2
σ · U(λ) · 1

2π

∫ ∞

0

dξ

λ + 2κξ2

= 1

2π

∫ ∞

0

|û0(ξ)|2
λ + 2κξ2

dξ + L2
σ · U(λ) · 1

2
√

2κλ
. (2.8)

Since u0 	≡ 0, the first [Fourier] integral is strictly positive. Consequently, the above recursive relation shows that
U(λ) = ∞ if λ ≤ L4

σ /(8κ). This and a real-variable argument together imply the first inequality in (2.1). Indeed, we
follow the argument in [8] in this way: Suppose, to the contrary, that the first inequality in (2.1) failed. This means
that for all ε > 0 there exists t0 > 0 such that for all t > t0,

E
(‖ut‖2

L2(R)

) ≤ exp

(
t

{
L4

σ

8κ
− ε

})
. (2.9)

We multiply this by exp(−λt) and integrate [dt] to deduce that U(λ) < ∞ for all λ > L4
σ /(8κ) − ε. And this contra-

dicts the earlier finding that U(λ) = ∞ for all λ ≤ L4
σ /(8κ).

For the other bound we use a Picard-iteration argument in order to obtain an a priori estimate. Let u
(0)
t (x) := u0(x)

and iteratively define

u
(n+1)
t (x) := (pt ∗ u0)(x) +

∫ t

0

∫ ∞

−∞
pt−s(y − x)σ

(
u(n)

s (y)
)
w(ds dy). (2.10)

Since ‖pt ∗ u0‖L2(R) ≤ ‖u0‖L2(R) and |σ(u)| ≤ Lipσ |u|, Hölder’s inequality yields

E
(∥∥u

(n+1)
t

∥∥2
L2(R)

) ≤ ‖u0‖2
L2(R)

+ Lip2
σ ·

∫ t

0
E
(∥∥u(n)

s

∥∥2
L2(R)

) · ‖pt−s‖2
L2(R)

ds. (2.11)

Therefore, if we set

M(k)(λ) := sup
t≥0

[
e−λtE

(∥∥u
(k)
t

∥∥2
L2(R)

)]
, (2.12)

then it follows that

M(n+1)(λ) ≤ ‖u0‖2
L2(R)

+ Lip2
σ · M(n)(λ) ·

∫ ∞

0
e−λ(t−s)‖pt−s‖2

L2(R)
ds

= ‖u0‖2
L2(R)

+ Lip2
σ

2
√

2κλ
M(n)(λ). (2.13)

Thus, in particular, supn≥0 M(n)(λ) < ∞ if λ > Lip4
σ /(8κ). We can argue similarly to show also that if λ > Lip4

σ /(8κ),
then ∑

n

sup
t≥0

[
e−λtE

(∥∥u
(n+1)
t − u

(n)
t

∥∥2
L2(R)

)]1/2
< ∞. (2.14)

In particular, uniqueness shows that if λ > Lip4
σ /(8κ), then

lim
n→∞ sup

t≥0

[
e−λtE

(∥∥u
(n)
t − ut

∥∥2
L2(R)

)] = 0. (2.15)

Consequently, if λ > Lip4
σ /(8κ), then

sup
t≥0

[
e−λtE

(‖ut‖2
L2(R)

)] = lim
n→∞M(n)(λ) ≤ sup

k≥0
M(k)(λ) < ∞. (2.16)

The second inequality of (2.1) follows readily from this bound. �
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3. Proof of Theorem 1.1

Our proof of Theorem 1.1 hinges on a number of steps, which we develop separately. First we recall the following.

Proposition 3.1 (Theorem 2.1 and Example 2.9 of [8]). If u0 is bounded and measurable, then ut (x) ∈ Lp(P) for
all p ∈ [1,∞). Moreover, γ (p) < ∞ for all p ∈ [1,∞) and γ (2) ≤ Lip4

σ /(8κ), where

γ (p) := lim sup
t→∞

t−1 sup
x∈R

ln E
(∣∣ut (x)

∣∣p)
< ∞. (3.1)

[Note that, in the preceding, the supremum is outside the expectation.]
Next, we record a simple though crucial property of the function γ .

Remark 3.2. Suppose X is a nonnegative random variable with finite moments of all orders. By Hölder’s inequality,
p �→ ln E(Xp) is convex on [1,∞). It follows that γ is convex – in particular continuous – on [1,∞).

Now we begin our analysis, in earnest, by deriving an upper bound on the Lk(P)-norm of the solution ut (x) that
includes simultaneously a sharp decay rate in x and a sharp explosion rate in t .

Lemma 3.3. Suppose that u0 	≡ 0, and u0 is supported in [−K,K] for some finite constant K > 0. Then, for all real
numbers k ∈ [1,∞) and p ∈ (1,∞),

lim sup
t→∞

t−1 sup
x∈R

(
x2

4t2
+ k + 1 − (1/p)

k
ln E

(∣∣ut (x)
∣∣k)) ≤ γ (kp)

p
. (3.2)

Proof. According to Mueller’s comparison principle ([14]; more specifically, see [5], Theorem 5.1, p. 130; see also
[7,16]), the solution to (1.1) has the following nonnegativity property: Because u0 ≥ 0 then outside a single null set,
ut ≥ 0 for all t ≥ 0. Since ut (x) ∈ L2(P) [e.g., by Proposition 3.1], the stochastic integral in (1.5) is a martingale-
measure stochastic integral in L2(P) [say], and consequently has mean zero. And therefore,

∥∥ut (x)
∥∥

1 = (pt ∗ u0)(x) = 1√
4κπt

∫ K

−K

e−(x−y)2/(4κt)u0(y)dy. (3.3)

Because (x − y)2 ≥ (x2/2) − K2,

∥∥ut (x)
∥∥

1 ≤ const · e−x2/(4t) for all x ∈ R and t ≥ 1. (3.4)

The constant appearing in the above display depends on K . Next we note that for every θ ∈ (0,∞),

E
(∣∣ut (x)

∣∣k) ≤ θk + E
(∣∣ut (x)

∣∣k;ut (x) ≥ θ
)

≤ θk + (
E
(∣∣ut (x)

∣∣kp))1/p · (P
{
ut (x) > θ

})1−(1/p)
. (3.5)

Proposition 3.1 implies that

sup
x∈R

(
E
(∣∣ut (x)

∣∣kp))1/p ≤ exp

(
t

γ (kp) + o(1)

p

)
, (3.6)

where o(1) → 0 as t → ∞. Also, we can apply (3.4) together with the Chebyshev inequality to find that

(
P
{
ut (x) > θ

})1−(1/p) ≤ const · θ−1+(1/p) exp

(
−x2

4t
·
[

1 − 1

p

])
. (3.7)
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In light of (3.6) and (3.7), we can deduce that the following from (3.5):

E
(∣∣ut (x)

∣∣k) ≤ inf
θ>0

(
θk + αθ−1+(1/p)

)
, (3.8)

where

α := exp

(
−x2

4t
·
[

1 − 1

p

]
+ t

γ (kp) + o(1)

p

)
. (3.9)

Some calculus shows that the function g(θ) := (θk + αθ−1+1/p)1(0,∞)(θ) attains its minimum at θ := ((p − 1)/

kp)p/(kp+p−1). Consequently,

E
(∣∣ut (x)

∣∣k) ≤ αkp/(kp+p−1)

(
p − 1

kp

)kp/(kp+p−1)

·
(

1 − p − kp

1 − p

)
. (3.10)

We now divide both sides of the above display by αkp/(kp+p−1) and take the appropriate limit to obtain the result. �

Our next lemma is a basic estimate of continuity in the variable x. It is not entirely standard as it holds uniformly
for all times t ≥ 0. We emphasize that the constant p is assumed to be an integer. We will deal with this shortcoming
subsequently.

Lemma 3.4. Suppose that the initial function u0 is Hölder continuous of order ≥ 1/2. Then, for all integers p ≥ 1
and β > γ (2p) there exists a constant Ap,β ∈ (0,∞) such that the following holds: Simultaneously for all t ≥ 0,

sup
j∈Z

sup
j≤x<x′≤j+1

∥∥∥∥ut (x) − ut (x
′)

|x − x′|1/2

∥∥∥∥
2p

≤ Ap,βeβt/(2p). (3.11)

Proof. Burkholder’s inequality [2] and Minkowski’s inequality together imply that∥∥ut (x) − ut

(
x′)∥∥

2p
≤ ∣∣(pt ∗ u0)(x) − (pt ∗ u0)

(
x′)∣∣

+ z2p

∥∥∥∥
∫ t

0
ds

∫ ∞

−∞
dy

∣∣σ (
us(y)

)∣∣2 · ∣∣pt−s(y − x) − pt−s

(
y − x′)∣∣2

∥∥∥∥
1/2

p

≤ ∣∣(pt ∗ u0)(x) − (pt ∗ u0)
(
x′)∣∣

+ z′
2p

∥∥∥∥
∫ t

0
ds

∫ ∞

−∞
dy

∣∣us(y)
∣∣2 · ∣∣pt−s(y − x) − pt−s

(
y − x′)∣∣2

∥∥∥∥
1/2

p

, (3.12)

where zp is a positive and finite constant that depend only on p, and z′
p := zp Lipσ .

On one hand,

sup
t≥0

sup
|x−x′|≤δ

∣∣(pt ∗ u0)(x) − (pt ∗ u0)
(
x′)∣∣ ≤ sup

|a−b|≤δ

∣∣u0(a) − u0(b)
∣∣

≤ const · δ1/2. (3.13)

On the other hand, the generalized Hölder inequality suggests that if p ≥ 1 is an integer, then for all s1, . . . , sp ≥ 0
and y1, . . . , yp ∈ R,

E

(
p∏

j=1

∣∣usj (yj )
∣∣2

)
≤

p∏
j=1

∥∥usj (yj )
∥∥2

2p
. (3.14)
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[It might help to recall that the generalized Hölder inequality states that E(ζ1 · · · ζp) ≤ ∏p

j=1 ‖ζj‖p for all nonnegative
random variables ζ1, . . . , ζp .] Therefore,

∥∥∥∥
∫ t

0
ds

∫ ∞

−∞
dy

∣∣us(y)
∣∣2 · ∣∣pt−s(y − x) − pt−s

(
y − x′)∣∣2

∥∥∥∥
p

≤
∫ t

0
ds

∫ ∞

−∞
dy

∥∥us(y)
∥∥2

2p
· ∣∣pt−s(y − x) − pt−s

(
y − x′)∣∣2

. (3.15)

[Write the pth power of the left-hand side as the expectation of a product and apply (3.14).]
A proof by contradiction shows that Proposition 3.1 gives the following [see [8] for more details]:

cβ := sup
s≥0

sup
y∈R

[
e−βsE

(∣∣us(y)
∣∣2p)]

< ∞ for all β > γ (2p). (3.16)

We omit the details, but state instead that the argument is quite similar to the real-variable method that was employed
earlier, in the paragraph that preceeds (2.9).

Consequently,∥∥∥∥
∫ t

0
ds

∫ ∞

−∞
dy

∣∣us(y)
∣∣2 · ∣∣pt−s(y − x) − pt−s

(
y − x′)∣∣2

∥∥∥∥
p

≤ c
1/p
β ·

∫ t

0
ds

∫ ∞

−∞
dy eβs/p · ∣∣pt−s(y − x) − pt−s

(
y − x′)∣∣2

≤ c
1/p
β eβt/p ·

∫ ∞

0
ds e−βs/p

∫ ∞

−∞
dy

∣∣ps(y − x) − ps

(
y − x′)∣∣2

. (3.17)

Since p̂s(ξ) = exp(−κsξ2), Plancherel’s theorem tells us that the right-hand side of the preceding inequality is equal
to

c
1/p
β eβt/p

π
·
∫ ∞

0
ds e−βs/p

∫ ∞

−∞
dξ e−2κsξ2[

1 − cos
(
ξ
(
x − x′))]

= 2c
1/p
β eβt/p

π
·
∫ ∞

0

[1 − cos(ξ(x − x′))]
(β/p) + 2κξ2

dξ. (3.18)

Because 1 − cos θ ≤ min(1, θ2), a direct estimation of the integral leads to the following bound:∥∥∥∥
∫ t

0
ds

∫ ∞

−∞
dy

∣∣us(y)
∣∣2 · ∣∣pt−s(y − x) − pt−s

(
y − x′)∣∣2

∥∥∥∥
p

≤ const · eβt/p · ∣∣x − x′∣∣, (3.19)

where the implied constant depends only on p, κ , and β . This, (3.13), and (3.12) together imply the lemma. �

The preceding lemma holds for all integers p ≥ 1. In the following, we improve it [at a slight cost] to the case that
p ∈ (1,2) is a real number.

Lemma 3.5. Suppose the conditions of Lemma 3.4 are met. Then for all p ∈ (1,2) and δ ∈ (0,1) there exists a
constant Bp,δ ∈ (0,∞) such that the following holds: Simultaneously for all t ≥ 0 and x, x′ ∈ R with |x − x′| ≤ 1,

E
(∣∣ut (x) − ut

(
x′)∣∣2p) ≤ Bp,δ · ∣∣x − x′∣∣p · e(1+δ)λpt , (3.20)
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where

λp := (2 − p)γ (2) + (p − 1)γ (4). (3.21)

Proof. We start by writing E(|ut (x) − ut (x
′)|2p) as

E
(∣∣ut (x) − ut

(
x′)∣∣2(2−p)∣∣ut (x) − ut

(
x′)∣∣4(p−1))

. (3.22)

We can apply Hölder’s inequality to conclude that for all p ∈ (1,2), t ≥ 0, and x, x′ ∈ R,

E
(∣∣ut (x) − ut

(
x′)∣∣2p) ≤ [

E
(∣∣ut (x) − ut

(
x′)∣∣2)]2−p[

E
(∣∣ut (x) − ut

(
x′)∣∣4)]p−1

. (3.23)

We now use Lemma 3.4 to obtain the following:

[
E
(∣∣ut (x) − ut

(
x′)∣∣2)]2−p ≤ ∣∣x − x′∣∣(2−p)

A
2(2−p)

1,β1
eβ1(2−p)t (3.24)

and [
E
(∣∣ut (x) − ut

(
x′)∣∣4)]p−1 ≤ ∣∣x − x′∣∣2(p−1)

A
4(p−1)

2,β2
eβ2(p−1)t , (3.25)

where A1,β1 ,A2,β2 ∈ (0,∞) and β1 > γ̄ (2) and β2 > γ̄ (4) are fixed and finite constants. The proof now follows by
combining the above and choosing β1 and β2 such that (1 + δ)γ̄ (2) > β1 > γ̄ (2) and (1 + δ)γ̄ (4) > β2 > γ̄ (4). �

The preceding lemma allows for a uniform modulus of continuity estimate, which we record next.

Lemma 3.6. Suppose the conditions of Lemma 3.4 are met. Then for all p ∈ (1,2) and ε, δ ∈ (0,1) there exists
Cp,ε,δ ∈ (0,∞) such that simultaneously for all t ≥ 0,

sup
j∈Z

∥∥∥∥ sup
j≤x<x′≤j+1

|ut (x) − ut (x
′)|2

|x − x′|1−ε

∥∥∥∥
p

≤ Cp,ε,δ · e(1+δ)λpt , (3.26)

where λp was defined in (3.21).

Proof. The proof consists of an application of the Kolmogorov continuity theorem. Recall that the spatial dimension
is 1 and we are choosing a continuous version of the solution (t, x) �→ ut (x). Since p > 1 in Lemma 3.5, we can use
a suitable version of Kolmogorov continuity theorem, for example Theorem 4.3 of reference [5], p. 10, to obtain the
result. The stated dependence of the constant, Cp,ε,δ is consequence of the explicit form of inequality (3.20) and the
proof of Theorem 4.3 in [5]. �

Before we begin our proof of Theorem 1.1, we prove that under some condition the L2(P)-norm of the solution
has an effectively-compact support.

Proposition 3.7. If the conditions of Theorem 1.1 are met, then there exists a finite and positive constant m such that
ut (x) has an effectively-compact support with radius of effective support p(t) = mt .

Proof. We begin by noting that for all m, t > 0,∫
|x|>mt

∣∣ut (x)
∣∣2 dx ≤

∫
|x|>mt

ut (x)dx +
∫

|x|>mt
ut (x)≥1

∣∣ut (x)
∣∣2 dx. (3.27)

Therefore,

E

(∫
|x|>mt

∣∣ut (x)
∣∣2 dx

)
≤

∫
|x|>mt

(pt ∗ u0)(x)dx +
∫

|x|>mt

E
(∣∣ut (x)

∣∣2;ut (x) ≥ 1
)

dx. (3.28)
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Since u0 has compact support, (3.4) implies that∫
|x|>mt

(pt ∗ u0)(x)dx = O
(
e−m2t/2) as t → ∞. (3.29)

Next we estimate the final integral in (3.28).
Thanks to (3.4) and Chebyshev’s inequality,

P
{
ut (x) ≥ 1

} ≤ const · e−x2/(4t), (3.30)

uniformly for all x ∈ R and t ≥ 1. Also, from Proposition 3.1, there exists a constant b ∈ (0,∞) such that

sup
x∈R

E
(∣∣ut (x)

∣∣4) ≤ bebt/4 for all t ≥ 1. (3.31)

Using the preceding two inequalities, the right-hand side of inequality (3.28) reduces to

E

(∫
|x|>mt

∣∣ut (x)
∣∣2 dx

)

≤ O
(
e−m2t/2) + const ·

∫
|x|>mt

√
E
(∣∣ut (x)

∣∣4)e−x2/(8t) dx

≤ O
(
e−m2t/2) + const · b1/2ebt/8 ·

∫
|x|>mt

e−x2/(8t) dx. (3.32)

We now choose and fix m >
√

b to obtain from the preceding that

lim sup
t→∞

t−1 ln E

(∫
|x|>mt

∣∣ut (x)
∣∣2 dx

)
< 0. (3.33)

This implies part (b) of Definition 1.2 with p(t) = mt . We now prove the remaining part of Definition 1.2. From
Theorem 2.1 and the preceding, we obtain for infinitely-many values of t → ∞:

exp

([
L4

σ

8κ
+ o(1)

]
t

)
≤ E

(∫ ∞

−∞
∣∣ut (x)

∣∣2 dx

)

= E

(∫ mt

−mt

∣∣ut (x)
∣∣2 dx

)
+ o(1). (3.34)

This finishes the proof. �

We will need the following elementary real-variable lemma from the theory of slowly-varying functions. It is
without doubt well known; we include a derivation for the sake of completeness only.

Lemma 3.8. For every q,η ∈ (0,∞),

∫ ∞

e
exp

(
−q(lnx)η+1

t

)
dx = O

(
t1/η exp

{
(t/q)1/η

})
(3.35)

as t → ∞.

Proof. The proof uses some standard tricks. First we write the integral as∫ ∞

e
e−q(lnx)η+1/t dx =

∫ ∞

1
e−qzη+1/tez dz. (3.36)
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Next we change variables [w := z/θ ], for an arbitrary θ > 0, and find that

∫ ∞

e
e−q(lnx)η+1/t dx = θ

∫ ∞

1/θ

exp

(
−qθη+1

t
wη+1 + θw

)
dw. (3.37)

Upon choosing θ := (t/q)1/η , we obtain

−qθη+1

t
wη+1 + θw =

(
t

q

)1/η(
w − wη+1),

and this yields

∫ ∞

e
e−q(lnx)η+1/t dx = (t/q)1/η

∫ ∞

(q/t)1/η

e(t/q)1/η·(w−wη+1) dw. (3.38)

Therefore, for t sufficiently large, we split the integral on the right-hand side of the previous display as follows:

∫ ∞

e
e−q(lnx)η+1/t dx = (t/q)1/η(I1 + I2), (3.39)

where

I1 :=
∫ 1

(q/t)1/η

exp
(
(t/q)1/η · (w − wη+1))dw,

(3.40)

I2 :=
∫ ∞

1
exp

(−(t/q)1/η · w(
wη − 1

))
dw.

Clearly,

I2 ≤ 1 +
∫ ∞

2
exp

(−(
2η − 1

)
(t/q)1/η · w)

dw = O(1). (3.41)

The lemma follows because the integrand of I1 is at most exp((t/q)1/η). �

We are now ready to establish Theorem 1.1.

Proof of Theorem 1.1. The proof of the first inequality of the theorem is a continuation of the proof Proposition 3.7.
Indeed, from (3.34), we obtain

exp

([
L4

σ

8κ
+ o(1)

]
t

)
≤ E

(∫ ∞

−∞
∣∣ut (x)

∣∣2
dx

)

≤ E

(∫ mt

−mt

∣∣ut (x)
∣∣2 dx

)
+ o(1)

≤ 2mt · sup
x∈R

E
(∣∣ut (x)

∣∣2) + o(1), (3.42)

valid for t → ∞. We obtain first inequality of the theorem after taking the appropriate limit.
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Next we prove the second inequality of the theorem by first observing that for every j ≥ 1, every increasing
sequence of real numbers {aj }∞j=1 with supj≥1(aj+1 − aj ) ≤ 1, p ∈ (1,2), ε ∈ (0,1), and t ≥ 0,

sup
aj ≤x≤aj+1

∣∣ut (x)
∣∣2p = sup

aj ≤x≤aj+1

∣∣ut (aj ) + ut (x) − ut (aj )
∣∣2p

≤ 22p−1
(∣∣ut (aj )

∣∣2p + sup
aj ≤x≤aj+1

∣∣ut (x) − ut (aj )
∣∣2p

)

≤ 22p−1(∣∣ut (aj )
∣∣2p + (aj+1 − aj )

p(1−ε)Ω
p
j

)
, (3.43)

where

Ωj := sup
aj ≤x<x′≤aj+1

|ut (x) − ut (x
′)|2

|x − x′|1−ε
. (3.44)

Consequently,

E
(

sup
aj ≤x≤aj+1

∣∣ut (x)
∣∣2p

)
≤ 22p−1(E

(∣∣ut (aj )
∣∣2p) + (aj+1 − aj )

p(1−ε)E
(
Ω

p
j

))
. (3.45)

We use inequality (3.2) of Lemma 3.3 with k := 2p and x := aj to find that

E
(∣∣ut (aj )

∣∣2p) ≤ const · exp

(
βp ·

[
t
γ (2p2) + o(1)

p
− a2

j

4t2

])
, (3.46)

where

βp := p

p + 1 − (1/p)
, (3.47)

the implied constant does not depend on j or t , and o(1) → 0 as t → ∞, uniformly for all j . Also, Lemma 3.6 implies
that

sup
j≥1

E
(
Ω

p
j

) ≤ Cp,ε,δ · ep(1+δ)λpt , (3.48)

where δ is an arbitrarily-small positive constant, which we will choose and fix appropriately later on. We can combine
the preceding inequalities to deduce that

E
(

sup
aj ≤x≤aj+1

∣∣ut (x)
∣∣2p

)
≤ const · e−βpa2

j /(4t2) · eβpt (γ (2p2)+o(1))/p + const · (aj+1 − aj )
p(1−ε)ep(1+δ)λpt . (3.49)

Choose and fix an integer ν ≥ 1. We apply the preceding with p(1 − ε) > 1; we also choose the al’s so that a1 := 0,
0 ≤ aj+1 − aj ≤ 1 for all j ≥ 1, and aj := (log j)ν for all j sufficiently large. Because aj+1 − aj = O((ln j)ν/j) as
j → ∞,

∞∑
j=1

(aj+1 − aj )
p(1−ε) < ∞. (3.50)

Also, for all J > 1 + e, sufficiently large,

∞∑
j=J

e−βpa2
j /(4t) ≤

∫ ∞

J−1
e−βp(lnx)2ν/(4t2) dx

= O
(
t1/(2ν−1)e(4t2/βp)1/(2ν−1))

(t → ∞), (3.51)
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where we have used Lemma 3.8 for the last equality. We can choose ν := 1
2 (δ−1 + 1) so that 1/(2ν − 1) = δ. We can

combine these terms to deduce the following:

E
(

sup
x≥aJ

∣∣ut (x)
∣∣2p

)
≤

∞∑
j=J

E
(

sup
aj ≤x≤aj+1

∣∣ut (x)
∣∣2p

)

= O
(
tδe(4t2/βp)δ+βpt (γ (2p2)+o(1))/p + ep(1+δ)λpt

)
. (3.52)

A similar – though slightly simpler – argument can be used to derive the very same upper bound for the quantity
E(sup0≤x<aJ

|ut (x)|2p). We now use symmetry and let δ ↓ 0,

lim sup
t→∞

t−1 ln E
(

sup
x∈R

∣∣ut (x)
∣∣2p

)
≤ max

{
βpγ (2p2)

p
,pλp

}
. (3.53)

Let us substitute the evaluation of βp in terms of p to find that

lim sup
t→∞

t−1 ln E
(

sup
x∈R

∣∣ut (x)
∣∣2p

)
≤ max

{
γ (2p2)

p + 1 − (1/p)
,pλp

}
. (3.54)

This and Jensen’s inequality together prove that

lim sup
t→∞

t−1 ln E
(

sup
x∈R

∣∣ut (x)
∣∣2

)
≤ 1

p
max

{
γ (2p2)

p + 1 − (1/p)
,pλp

}
, (3.55)

and this valid for all p ∈ (1,2). As p ↓ 1, λp → γ (2). Moreover, γ (2p2) → γ (2) because γ is convex and hence
continuous on [1,∞) [Remark 3.2]. It follows that

lim sup
t→∞

t−1 ln E
(

sup
x∈R

∣∣ut (x)
∣∣2

)
≤ γ (2), (3.56)

and this is ≤ Lip4
σ /(8κ) by Proposition 3.1. The latter proposition implies the theorem because E(supx |ut (x)|2) ≥

supx E(|ut (x)|2).
�
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