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Abstract. The model of random interlacements on Z
d , d ≥ 3, was recently introduced in [Vacant set of random interlacements

and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density
of random interlacements on Z

d . In the present note we investigate connectivity properties of the vacant set left by random inter-
lacements at level u, in the non-percolative regime u > u∗, with u∗ the non-degenerate critical parameter for the percolation of the
vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints],
[Comm. Pure Appl. Math. 62 (2009) 831–858]. We prove a stretched exponential decay of the connectivity function for the vacant
set at level u, when u > u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab. 37 (2009) 1715–1746]. It is
presently an open problem whether u∗∗ actually coincides with u∗.

Résumé. Le modèle des entrelacs aléatoires sur Z
d , d ≥ 3, a été récemment introduit dans [Vacant set of random interlacements

and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. Un nombre positif ou nul u contrôle la densité des
entrelacs aléatoires sur Z

d . Dans la note présente, nous étudions les propriétés de connectivité du complémentaire de l’entrelac
au niveau u, dans le régime non percolatif u > u∗, avec u∗ le nombre positif qui est le paramètre critique de la percolation
du complémentaire des entrelacs, voir [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.
ch/u/sznitman/preprints], [Comm. Pure Appl. Math. 62 (2009) 831–858]. Nous montrons une propriété de décroissance sous-
exponentielle de la fonction de connectivité au niveau u, lorsque u > u∗∗, où u∗∗ est un autre paramètre critique introduit dans
[Ann. Probab. 37 (2009) 1715–1746]. La question de savoir si u∗ et u∗∗ sont égaux est pour le moment ouverte.
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0. Introduction

In this note we derive stretched exponential bounds on the connectivity function for the vacant set of random inter-
lacements on Z

d , d ≥ 3. The model of random interlacements has been introduced in [4]. It heuristically describes the
microscopic structure left in the bulk by random walk on a cylinder with base a large (d − 1)-dimensional discrete
torus, or by random walk on a large d-dimensional torus, when the walk respectively runs for times proportional to
the square of the number of sites in the base, or to the number of sites in the torus, cf. [5,10]. Further extensions to
more general graphs can be found in [8,11].

The bounds presented here pertain to a very specific region of the non-percolative regime of the vacant set of
random interlacements. Knowing whether this region actually coincides with the whole non-percolative regime outside
the critical point is an important question with direct implications for the asymptotic behavior of the disconnection
time of discrete cylinders with bases which become large, cf. [6]. The results in the present note do not answer this
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question, but they indicate that in the case where the two regions differ, there is a marked transition in the decay
properties of the connectivity function (roughly from a polynomial to a stretched exponential decay), as one moves
across another (and then distinct) critical point, which has been introduced in [6].

We will now describe the model and state our main result. We refer to Section 1 for precise definitions. Random
interlacements consists of a cloud of paths which constitute a Poisson point process on the space of doubly infinite
Z

d -valued trajectories modulo time-shift, tending to infinity at positive and negative infinite times. A non-negative
parameter u plays the role of a multiplicative factor of the intensity measure of this Poisson point process. In a
standard fashion one constructs on the same probability space (Ω, A,P), see below (1.6), the whole family I u, u ≥ 0,
of random interlacements at level u ≥ 0, cf. (1.10). They come as traces on Z

d of the cloud of trajectories modulo
time-shift with labels at most u. The subsets I u increase with u and for u > 0 are random connected subsets of Z

d ,
ergodic under space translations, cf. Theorem 2.1, Corollary 2,3 of [4]. The complement V u of I u in Z

d is the so-
called vacant set at level u. It is known from Theorem 3.5 of [4] and Theorem 3.4 of [3] that there is a non-degenerate
critical value u∗ ∈ (0,∞) such that

(i) for u > u∗, P-a.s. all connected components of V u are finite,
(0.1)

(ii) for u < u∗, P-a.s. there exists an infinite component in V u.

It is also known from [7], that when u is such that V u percolates (i.e. there is P-a.s. an infinite connected component
in V u), the infinite cluster is almost surely unique. It is presently unknown whether V u∗ percolates or not. Another
critical point u∗∗ ∈ [u∗,∞) has been introduced in [6]:

u∗∗ = inf
{
u ≥ 0;α(u) > 0

}
, where

(0.2)
α(u) = sup

{
α ≥ 0; lim

L→∞Lα
P
[
B(0,L)

V u←→ S(0,2L)
] = 0

}
for u ≥ 0,

here the event under the probability refers to the existence of a nearest neighbor path in V u joining B(0,L), the closed
ball or radius L and center 0 for the �∞-distance, with S(0,2L), the sphere with radius 2L and center 0 for the same
distance. The supremum in the second line of (0.2) is by convention equal to zero when the set is empty (this is for
instance the case when u < u∗). The critical parameter u∗∗ explicitly enters the upper bound on the disconnection time
of discrete cylinders derived in Corollary 4.6 of [6]. It is an important question whether in fact u∗ and u∗∗ coincide.
The present work does not address this question but shows that the probability, which appears in the second line
of (0.2), has a stretched exponential decay in L for u > u∗∗. Our main result is

Theorem 0.1. For u > u∗∗, the connectivity function in the vacant set at level u has stretched exponential decay.
Namely there exist positive constants α1, α2, and 0 < ρ < 1, solely depending on d and u, such that with similar
notation as in (0.2):

P
[
0

V u←→ x
] ≤ α1 exp

{−α2|x|ρ}
for all x ∈ Z

d . (0.3)

In case u∗ and u∗∗ differ, the above theorem forces a sharp transition in the decay properties of the connectiv-
ity function of the vacant set as u crosses the value u∗∗, cf. Remark 3.1(1). We also discuss in Remark 3.1(2) a
variant of (0.3), cf. (3.12), where I u is replaced by its R-neighborhood, and instead of assuming u > u∗∗, we pick
R large enough. Let us mention that when d = 3, the left-hand side of (0.3) does not decay exponentially in |x|,
cf. Remark 3.1(3).

We now give some comments on the proof of Theorem 0.1. The main difficulty stems from the long range de-
pendence of random interlacements. We use an adaptation of the renormalization and sprinkling technique, which
appears in Section 3 of [4]. The main difference resides in the fact that here we separate the combinatorial complexity
bounds from the probabilistic estimates on crossings we derive, see (2.10), Lemma 2.1 and Proposition 2.2. A similar
separation is for instance also used in [9] for the very percolative regime of small u. In our context this separation
leads to finer probabilistic estimates in the renormalization scheme, which instead of producing polynomial decay in
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L for quantities such as P[B(0,L)
V u←→ S(0,2L)], when u is sufficiently large, cf. Section 3 of [4], yield a stretched

exponential decay of such quantities, when u > u∗∗.
We will now describe the organization of this note.
In Section 1 we introduce further notation and recall some facts about random interlacements. In Section 2 we

develop the renormalization scheme. The main result is Proposition 2.2. The main consequences of this proposition
for the next section appears in Proposition 2.5. In Section 3 we complete the proof of Theorem 0.1. We provide further
comments and discuss some extensions in Remark 3.1.

Finally let us explain the convention we use for constants. Throughout the text c or c′ denote positive constants
that solely depend on d , with values changing from place to place. Numbered constants c0, c1, . . . are fixed and refer
to the value pertaining to their first appearance in the text. Dependence of constants on additional parameters appears
in the notation, so that for instance c(u) denotes a constant depending on d and u.

1. Notation and a brief review of random interlacements

In this section we introduce some notation and recall some facts concerning random interlacements. A more detailed
review of random interlacements can also be found in Section 1 of [3].

We let | · | and | · |∞ respectively denote the Euclidean and the �∞-distance on Z
d . Throughout we implicitly

assume d ≥ 3. By finite path we mean a sequence x0, x1, . . . , xN in Z
d such that xi and xi+1 are neighbors, i.e.

|xi+1 − xi | = 1, for 0 ≤ i < N . We sometimes simply write path when this causes no confusion. The notation B(x, r)

and S(x, r) with x ∈ Z
d and r ≥ 0, for | · |∞-balls and spheres is explained below (0.2). For A,B subsets of Z

d ,
we write A + B for the set of x + y with x in A and y in B , and d(A,B) = inf{|x − y|∞; x ∈ A,y ∈ B} for the
mutual �∞-distance between A and B . When A is a singleton {x}, we simply write d(x,A). The notation K ⊂⊂ Z

d

means that K is a finite subset of Z
d . Given U ⊆ Z

d , we denote with |U | the cardinality of U , with ∂U = {x ∈
Uc; ∃y ∈ U , |x − y| = 1} the boundary of U and with ∂intU = {x ∈ U ; ∃y ∈ Uc, |x − y| = 1}, the interior boundary
of U .

We denote with W+ the space of nearest neighbor Z
d -valued trajectories defined for non-negative times and tending

to infinity. We let W+, (Xn)n≥0, (θn)n≥0, stand for the canonical σ -algebra, the canonical process, and the canonical
shift on W+. Since we assume d ≥ 3, simple random walk is transient on Z

d , and we denote with Px the restriction
of the canonical law of simple random walk starting at x ∈ Z

d , to the set W+, which has full measure. We write
Ex for the corresponding expectation. We also define Pρ = ∑

x∈Zd ρ(x)Px , when ρ is a measure on Z
d and write

Eρ for the corresponding expectation. Given U ⊆ Z
d , we let HU = inf{n ≥ 0;Xn ∈ U}, H̃U = inf{n ≥ 1;Xn ∈ U},

and TU = inf{n ≥ 0;Xn /∈ U}, respectively stand for the entrance time in U , the hitting time of U , and the exit time
of U .

We denote with g(·, ·) the Green function of the walk:

g(x, y) =
∑
n≥0

Px[Xn = y], x, y ∈ Z
d . (1.1)

It is a symmetric function and due to translation invariance g(x, y) = g(y − x), where g(y) = g(0, y). Given
K ⊂⊂ Z

d , we write eK for the equilibrium measure of K and cap(K) for its total mass, the so-called capacity of K :

eK(x) = Px[H̃K = ∞]1K(x), x ∈ Z
d , cap(K) =

∑
x∈K

Px[H̃K = ∞]. (1.2)

The capacity is subadditive (this fact easily follows from (1.2)):

cap
(
K ∪ K ′) ≤ cap(K) + cap

(
K ′) for K,K ′ ⊂⊂ Z

d . (1.3)

Further the probability to enter K can be expressed as:

Px[HK < ∞] =
∑
y∈K

g(x, y)eK(y) for x ∈ Z
d, (1.4)
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and one has the bounds, cf. (1.9) of [4]

∑
y∈K

g(x, y)
/

sup
z∈K

(∑
y∈K

g(z, y)

)

≤ Px[HK < ∞] ≤
∑
y∈K

g(x, y)
/

inf
z∈K

(∑
y∈K

g(z, y)

)
for x ∈ Z

d . (1.5)

With classical bounds on the Green function, cf. [2], p. 31, it then follows that

cLd−2 ≤ cap
(
B(0,L)

) ≤ c′Ld−2 for L ≥ 1. (1.6)

We now turn to random interlacements. They are defined on a probability space (Ω, A,P), where a certain canoni-
cal Poisson point process can be constructed, and we refer to (1.16), (1.42) of [4] or (1.9)–(1.12) of [3] for the precise
definition of this probability space. In the present note we will only use the fact one can define on (Ω, A,P) families of
finite Poisson point processes on (W+, W+), μK,u(dw), u ≥ 0, K ⊂⊂ Z

d , and μK,u′,u(dw), 0 ≤ u′ < u, K ⊂⊂ Z
d ,

so that

μK,u′,u and μK,u′ are independent with respective intensity measures

(u − u′)PeK
and u′PeK

, for any 0 ≤ u′ < u and K ⊂⊂ Z
d , (1.7)

μK,u = μK,u′ + μK,u′,u for any 0 ≤ u′ < u and K ⊂⊂ Z
d . (1.8)

Moreover the following compatibility relations hold for K ⊂ K ′ ⊂⊂ Z
d :

μK,u =
m∑

i=0

δθHK
(wi)1

{
HK(wi) < ∞}

if μK ′,u =
m∑

i=0

δwi
, (1.9)

together with similar compatibility relations with μK,u′,u and μK ′,u′,u in place of μK,u and μK ′,u. We refer for
instance to (1.13)–(1.15) of [3], or to (1.18)–(1.21) and Proposition 1.3 of [4], for more details.

Given ω ∈ Ω , the interlacement at level u ≥ 0 is the random subset of Z
d defined for ω ∈ Ω via:

I u(ω) =
⋃

K⊂⊂Zd

⋃
w∈SuppμK,u(ω)

w(N), (1.10)

where the notation SuppμK,u(ω) refers to the support of the finite point measure μK,u(ω)(dw), and N = {0,1, . . .}.
The vacant set at level u is then defined as

V u(ω) = Z
d \ I u(ω) for ω ∈ Ω,u ≥ 0. (1.11)

One finds that, cf. (1.54) of [4]:

I u(ω) ∩ K =
⋃

w∈SuppμK ′,u(ω)

w(N) ∩ K for K ⊂ K ′ ⊂⊂ Z
d, u ≥ 0,ω ∈ Ω. (1.12)

It also follows from (1.7) that

P[V u ⊇ K] = exp
{−ucap(K)

}
for all K ⊂⊂ Z

d, u ≥ 0. (1.13)

This concludes this short review of random interlacements, which will suffice for the purpose of the present note.
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2. The renormalization scheme

In this section we develop the renormalization scheme, which will be the main tool in the derivation of Theorem 0.1.
It comes as a variation on the method developed in Section 3 of [4], and in particular uses the sprinkling technique
of [4] to control the long range interactions present in the model. The main step comes in Proposition 2.2 and its
consequences for the proof of Theorem 0.1 in the next section appear in Proposition 2.5.

We introduce a sequence of length scales

Ln = L0�
n
0 for n ≥ 0, where L0 ≥ 1 and �0 ≥ 100 is a multiple of 10. (2.1)

We organize Z
d in a hierarchical fashion with L0 corresponding to the finest scale and L1 < L2 < · · · to coarser and

coarser scales. To this effect we introduce the set of labels at level n:

In = {n} × Z
d, n ≥ 0, (2.2)

and to each m = (n, i) ∈ In, with n ≥ 0, we attach the boxes

Cm = (
iLn + [0,Ln)

d
) ∩ Z

d , C̃m =
⋃

m′∈In,d(Cm′ ,Cm)≤1

Cm′ . (2.3)

We write Sm = ∂intCm and S̃m = ∂intC̃m, for m ∈ In, n ≥ 0. Given m ∈ In, n ≥ 1, we consider H1(m), H2(m) ⊆ In−1
defined by

H1(m) = {m ∈ In−1;Cm ⊆ Cm and Cm ∩ Sm �= ∅},
(2.4)

H2(m) =
{
m ∈ In−1;Cm ∩

{
z ∈ Z

d;d(z,Cm) = Ln

2

}
�= ∅

}
.

Note that for all n ≥ 1, m ∈ In:

m1 ∈ H1(m) and m2 ∈ H2(m) implies that C̃m1 ∩ C̃m2 = ∅ and
(2.5)

C̃m1 ∪ C̃m2 ⊆ C̃m.

Given m ∈ In, n ≥ 0, we consider Λm the collection of subsets T of
⋃

0≤k≤n Ik , such that setting T k = T ∩ Ik one
has

T n = {m}, (2.6)

any m′ ∈ T k , 1 ≤ k ≤ n, has two “descendants” m1
(
m′) ∈ H1

(
m′) and

m2
(
m′) ∈ H2

(
m′), such that T k−1 =

⋃
m′∈T k

{
m1

(
m′),m2

(
m′)}. (2.7)

In other words any T ∈ Λm has a natural structure of binary tree of depth n with root m(∈ In) and for 0 ≤ k ≤ n,
|T k| = 2n−k , moreover the C̃m′ , for m′ ∈ T k , are pairwise disjoint.

Given n ≥ 0, m ∈ In, and T ∈ Λm, one can attach to each m′ ∈ T a binary tree Tm′ ∈ Λm′ , which, roughly speaking,
consists of the descendants of m′ in T :

Tm′ = {
m′′ ∈ T ; C̃m′′ ⊆ C̃m′

}
, (2.8)

and for any 1 ≤ k ≤ n, m′ ∈ T k , one has the identity

Tm′ = {
m′} ∪ Tm1(m

′) ∪ Tm2(m
′) (disjoint union), (2.9)

where mi(m
′) ∈ Hi (m

′), i = 1,2, are as in (2.7), see also (2.5) and Fig. 1.



Connectivity bounds for the vacant set of random interlacements 981

Fig. 1. An illustration of the boxes Cmi
and C̃mi

, i = 1,2.

For m ∈ In one has the following rough bound on the cardinality of Λm, the collection of binary trees attached
to m:

|Λm| ≤ (
c�d−1

0

)2(
c�d−1

0

)4 · · · (c�d−1
0

)2n = (
c�d−1

0

)2(2n−1) = (
c0�

2(d−1)
0

)2n−1
. (2.10)

We then introduce the events

Au
m = {

Cm
V u←→ S̃m

}
for u ≥ 0,m ∈ In, n ≥ 0, (2.11)

where the notation is similar as in (0.2). The role of Λm as a way to separate combinatorial complexity and proba-
bilistic estimates comes in the next simple lemma.

Lemma 2.1 (n ≥ 0,m ∈ In,u ≥ 0).

P
[
Au

m

] ≤ |Λm|pn(u),

where pn(u) = sup
T ∈Λm

P[Au
T ] and Au

T =
⋂

m′∈T 0

Au
m′ (recall T 0 = T ∩ I0). (2.12)

Proof. Observe that when n ≥ 1, m ∈ Im, any path in V u originating in Cm and ending in S̃m must go through some
Cm1,m1 ∈ H1(m), reach S̃m1 and then go through some Cm2,m2 ∈ H2(m) and reach S̃m2 . Hence one has the inclusion

Au
m ⊆

⋃
mi∈Hi (m),i=1,2

Au
m1

∩ Au
m2

.

Note that when m ∈ I0, Au
m = Au

T , with T = {m} the unique element of Λm. Therefore with a straightforward induc-
tion on n, using the above inclusion, one finds that Au

m ⊆ ⋃
T ∈Λm

Au
T , for all m ∈ In, n ≥ 0, u ≥ 0. The claim (2.12)

readily follows. �

Unlike what was done in Section 3 of [4] we will not estimate P[Au
m], m ∈ In, by induction on n (this quantity does

not depend on which m ∈ In we consider, due to translation invariance). Instead we will estimate pn(u) by induction
on n. This will lead to a finer specification of the possible long range dependence effects. As in [4], we will use
sprinkling, i.e. we will control pn+1(un+1) in terms of pn(un), along an increasing sequence un. The additional paths
entering the random interlacement corresponding to the increase of un into un+1 will enable to dominate long range
dependence. The main step comes in the next proposition (compare with Proposition 3.1 of [4]).
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Proposition 2.2 (d ≥ 3). There exist positive constants c1, c2, c such that for �0 ≥ c, for increasing sequences un,
n ≥ 0, in (0,∞) and non-decreasing sequences rn, n ≥ 0, of positive integers, such that

un+1 ≥ un

(
1 + c12n�

−(n+1)(d−2)
0

)rn+1
for n ≥ 0, (2.13)

one has for all n ≥ 0,

pn+1(un+1) ≤ pn(un+1)
(
pn(un) + unL

d−2
0

(
cn+1

2 �
−(n+1)(d−2)
0

)rn
)
. (2.14)

(Note that pn(·) is a non-increasing function and pn(un+1) ≤ pn(un).)

Proof. We consider some n ≥ 0, m ∈ In+1, T ∈ Λm, and write m1,m2 for the unique elements of H1(m), H2(m) in
T n(= T ∩ In). We also consider 0 < u′ < u, respectively playing the role of un and un+1, as well as an integer r ≥ 1,
playing the role of rn. We write T 1 and T 2 in place of Tm1 and Tm2 . We also define

V = Ĉ1 ∪ Ĉ2, where Ĉi =
⋃

m′∈T i∩I0

C̃m′ ⊆ C̃mi
for i = 1,2. (2.15)

We then introduce the decomposition, see (1.7) for the notation,

μV,u = μ1,1 + μ1,2 + μ2,1 + μ2,2, (2.16)

where for i �= j in {1,2} we have set

μi,j = 1{X0 ∈ Ĉi ,HĈj
< ∞}μV,u and

μi,i = 1{X0 ∈ Ĉi ,HĈj
= ∞}μV,u.

This is similar to (3.14) of [4], except that Ĉi , i = 1,2, now plays the role of C̃mi
, i = 1,2 in (3.14) of [4]. Similarly

with μV,u′ , and μV,u′,u, see (1.7) for the notation, we define with analogous formulas

μV,u′ = μ′
1,1 + μ′

1,2 + μ′
2,1 + μ′

2,2,

μV,u′,u = μ∗
1,1 + μ∗

1,2 + μ∗
2,1 + μ∗

2,2 so that

μ′
i,j , μ∗

i,j , 1 ≤ i, j ≤ 2, are independent Poisson point processes on W+. (2.17)

When μ is a random point process on W+ defined on Ω (i.e. a measurable map from Ω into the space of point
measures on W+), it will be convenient to define for T ∈ Λm, with m ∈ In

AT (μ) =
⋂

m′∈T ∩I0

{
ω ∈ Ω; there is a path in C̃m′

∖( ⋃
w∈Suppμ(ω)

w(N)

)

joining Cm′ with S̃m′
}
. (2.18)

In particular for m ∈ In, T ∈ Λm, one finds that, cf. (1.12),

Au

T = AT (μK,u) for any finite K ⊇
⋃

m′∈T ∩I0

C̃m′ .

With (2.9) it follows that Au
T = Au

T 1
∩ Au

T 2
, and taking into account that w ∈ Suppμ2,2 implies that w(N) ∩ Ĉ1 = ∅,

we have

Au
T = Au

T 1
∩ Au

T 2
= Au

T 1
(μ1,1 + μ1,2 + μ2,1) ∩ Au

T 2
(μV,u)

⊆ Au

T 1
(μ1,1 + μ1,2 + μ2,1) ∩ Au

T 2
(μ2,2).
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Using the independence of the μi,j , 1 ≤ i, j ≤ 2, we find that

P
[
Au

T
] ≤ P

[
AT 1

(μ1,1 + μ1,2 + μ2,1)
]
P
[
AT 2

(μ2,2)
]

= P
[
Au

T 1

]
P
[
AT 2

(μ2,2)
] ≤ pn(u)P

[
AT 2

(μ2,2)
]
. (2.19)

We will now bound P[AT 2
(μ2,2)] (1.8)= P[AT 2

(μ′
2,2 +μ∗

2,2)] in terms of pn(u
′) when u−u′ is substantial enough. For

this purpose cf. (2.34) below, we will dominate the influence on Ĉ2 of μ′
2,1 +μ′

2,1 by μ∗
2,2. This has the same spirit as

what appears in Proposition 3.1 of [4], however Ĉ2 now replaces C̃m2 . The sprinkling technique will come into action
during this step.

We introduce the �∞-neighborhood of size Ln+1
10 of C̃m2 ( Ln+1

10 is an integer since �0 ≥ 100 is a multiple of 10,
cf. (2.1)):

U =
{
z ∈ Z

d ;d(z, C̃m2) ≤ Ln+1

10

}
. (2.20)

We then consider the times of successive returns to Ĉ2 and departures from U :

R1 = HĈ2
, D1 = TU ◦ θR1 + R1 and by induction

(2.21)
Rk+1 = R1 ◦ θDk

+ Dk, Dk+1 = D1 ◦ θDk
+ Dk for k ≥ 1,

so that 0 ≤ R1 ≤ D1 ≤ · · · ≤ Rk ≤ Dk ≤ · · · ≤ ∞.
We then introduce the decompositions:

μ′
2,1 =

∑
1≤�≤r

ρ�
2,1 + ρ2,1, μ′

1,2 =
∑

1≤�≤r

ρ�
1,2 + ρ1,2,

(2.22)
μ∗

2,2 =
∑

1≤�≤r

ρ�
2,2 + ρ2,2,

where for i �= j in {1,2} and � ≥ 1, we have set

ρ�
i,j = 1{R� < D� < R�+1 = ∞}μ′

i,j , ρi,j = 1{Rr+1 < ∞}μ′
i,j and

ρ�
2,2 = 1{R� < D� < R�+1 = ∞}μ∗

2,2, ρ2,2 = 1{Rr+1 < ∞}μ∗
2,2.

As a result of (2.17) and the above formulas we see that:

μ′
2,2, ρ

�
i,j ,1 ≤ � ≤ r, ρi,j ,1 ≤ i, j ≤ 2, with i or j �= 1, are independent

Poisson point processes on W+. (2.23)

We denote with ξ2,1 and ξ1,2 the respective intensity measures of ρ2,1 and ρ1,2. We have

ρ2,1(W+) = u′PeV
[X0 ∈ Ĉ2,HĈ1

< ∞,Rr+1 < ∞]

≤ u′cap(Ĉ2) sup
x∈Ĉ2

Px[Rr+1 < ∞]
strong

Markov≤ u′cap(Ĉ2)
(

sup
x∈Uc

Px[HĈ2
< ∞]

)r

. (2.24)

Note that with standard estimates on the Green function, cf. [2], p. 31, as well as (1.3), (1.4), (1.6), we find that

sup
x∈Uc

Px[HĈ2
< ∞] ≤ c2n

Ld−2
0

Ld−2
n+1

(2.1)= c2n�
−(n+1)(d−2)
0 . (2.25)
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Therefore with (2.24), and (1.3), (1.6), we find that

ξ2,1(W+) ≤ cu′2nLd−2
0

(
c2n�

−(n+1)(d−2)
0

)r

r≥1≤ u′Ld−2
0

(
c4n�

−(n+1)(d−2)
0

)r
. (2.26)

In a similar fashion, we also have

ξ1,2(W+) = u′PeV
[X0 ∈ Ĉ1,HĈ2

< ∞,Rr+1 < ∞]
≤ u′Ld−2

0

(
c4n�

−(n+1)(d−2)
0

)r
. (2.27)

We will now prove that the trace on Ĉ2 of paths in the support of
∑

1≤�≤r ρ�
2,1 and

∑
1≤�≤r ρ�

1,2 is dominated by the
corresponding trace of paths in the support of μ∗

2,2 if u − u′ is not too small.

We consider Wf the collection of finite paths in Z
d and for � ≥ 1, the measurable map φ� from {D� < R�+1 =

∞} ⊆ W+ into W×�
f such that

φ�(w) = (
w(Rk + ·)0≤·≤Dk−Rk

)
1≤k≤�

∈ W×�
f for w ∈ {D� < R�+1 = ∞}. (2.28)

In other words φ�(w) keeps track of the parts of the trajectory w going from the successive returns to Ĉ2 up to
departure from U . We view the ρ�

i,j , i or j �= 1, with � ≥ 1 fixed, as point processes on {D� < R�+1 = ∞} ⊆ W+, and

denote with ρ̃�
i,j the respective images under φ�, which are Poisson point processes on W×�

f . We write ξ̃ �
i,j for the

corresponding intensity measures. With (2.23) it follows that

μ′
2,2, ρ̃

�
i,j ,1 ≤ � ≤ r, ρi,j ,1 ≤ i, j ≤ 2,

i or j �= 1, are independent point processes. (2.29)

Our next step is the following lemma, which is an adaption of Lemma 3.2 of [4].

Lemma 2.3. For �0 ≥ c, for all n ≥ 0, m ∈ In+1, T ∈ Λm, x ∈ ∂U , y ∈ ∂intĈ2, one has

Px[HĈ1
< R1 < ∞,XR1 = y] ≤ c2n�

−(n+1)(d−2)
0 Px[HĈ1

> R1,XR1 = y], (2.30)

Px[HĈ1
< ∞,R1 = ∞] ≤ c2n�

−(n+1)(d−2)
0 Px[R1 = ∞ = HĈ1

]. (2.31)

Proof. We begin with the proof of (2.30). For z ∈ ∂U , y ∈ ∂intĈ2, one finds with the strong Markov property that

Pz[HĈ1
< R1 < ∞,XR1 = y]

= Ez

[
HĈ1

< R1,PXH
Ĉ1

[R1 < ∞,XR1 = y]]
= Pz

[
HĈ1

< R1,EXH
Ĉ1

[
H∂U < ∞,PXH∂U

[R1 < ∞,XR1 = y]]],
where we have used in the last step that for z′ ∈ Ĉ1, Pz′ -a.s., R1 = H∂U + R1 ◦ θH∂U

. As a result we obtain

sup
z∈∂U

Pz[HĈ1
< R1 < ∞,XR1 = y]

≤ sup
z∈∂U

Pz[HĈ1
< ∞] sup

z∈∂U

Pz[R1 < ∞,XR1 = y]

≤ c2n�
−(n+1)(d−2)
0 sup

z∈∂U

Pz[R1 < ∞,XR1 = y], (2.32)

with a similar bound as in (2.25) in the last step.
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Now observe that Pz[R1 < ∞,XR1 = y] = Pz[HĈ2
< ∞,XHĈ2

= y], z ∈ Ĉc
2 is a positive harmonic function and

with Harnack inequality, cf. Theorem 1.7.2, p. 42 of [2], together with a standard covering argument we have

sup
z∈∂U

Pz[R1 < ∞,XR1 = y] ≤ c inf
z∈∂U

Pz[R1 < ∞,XR1 = y].

Thus coming back to (2.32) we find that

sup
z∈∂U

Pz[HĈ1
< R1 < ∞,XR1 = y]

≤ c′2n�
−(n+1)(d−2)
0 inf

z∈∂U
Pz[R1 < ∞,XR1 = y]

= c′2n�
−(n+1)(d−2)
0 inf

z∈∂U

(
Pz[HĈ1

< R1 < ∞,XR1 = y] + Pz[HĈ1
> R1,XR1 = y]).

For large �0, we find that c′2n�
−(n+1)(d−2)
0 ≤ 1

2 , for all n ≥ 0, with c′ as above and hence for x ∈ ∂U :

Px[HĈ1
< R1 < ∞,XR1 = y] ≤ 2c′2n�

−(n+1)(d−2)
0 Px[HĈ1

> R1,XR1 = y],

and this proves (2.30).
We then turn to the proof of (2.31) which is more straightforward. We observe that

inf
x∈∂U

Px[R1 = ∞,HĈ1
= ∞] = inf

x∈∂U
Px[HV = ∞] ≥ c,

using the invariance principle to let the walk move at a distance of C̃m1 ∪ C̃m2 , which is a multiple of Ln+1, as well as
(1.5), (1.6) and standard bounds on the Green function. On the other hand the left-hand side of (2.31) with a similar
bound as in (2.25) is smaller than c2n�

−(n+1)(d−2)
0 and the claim follows. �

The main control on the intensity measure ξ̃ �
1,2 + ξ̃ �

2,1 of ρ̃�
1,2 + ρ̃�

2,1 in terms of the intensity measure ξ̃ �
2,2 of ρ̃�

2,2
comes from

Lemma 2.4 (�0 ≥ c).

ξ̃ �
1,2 + ξ̃ �

2,1 ≤ u′

u − u′
[(

1 + c12n�
−(n+1)(d−2)
0

)�+1 − 1
]̃
ξ�

2,2 for � ≥ 1. (2.33)

Proof. This is a repetition of the proof of Lemma 3.3 of [4], with Ĉi , i = 1,2, replacing C̃mi
, i = 1,2 in [4], and

c2n�
−(n+1)(d−2)
0 replacing c�

−(d−2)
n in the notation of [4], thanks to (2.30), (2.31) of Lemma 2.3 above. �

We now suppose that �0 ≥ c, so that the Lemmas 2.3 and 2.4 apply, and that

u ≥ (
1 + c12n�

−(n+1)(d−2)
0

)r+1
u′

(2.34)(
hence

u′

u − u′
[(

1 + c12n�
−(n+1)(d−2)
0

)r+1 − 1
] ≤ 1

)
.

In our present notation, (2.34) coincides with (2.13). We now bound P[AT 2
(μ2,2)] in terms of pn(u

′) ≥ P[Au′
T 2

] as

follows. We first express the trace of I u′
on Ĉ2 as the union

I u′ ∩ Ĉ2 = I ′ ∪ Ĩ ∪ I, (2.35)
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where

I ′ =
⋃

w∈Supp(μ′
2,2)

w(N) ∩ Ĉ2,

Ĩ =
⋃

1≤�≤r

⋃
(w1,...,w�)∈Supp ρ̃�

1,2+ρ̃�
2,1

(range w1 ∪ · · · ∪ range w�) ∩ Ĉ2,

I =
⋃

w∈Suppρ1,2+ρ2,1

w(N) ∩ Ĉ2. (2.36)

If we now define I ∗ replacing ρ̃�
1,2 + ρ̃�

2,1 by ρ̃�
2,2 in the second line of (2.36), we find that with (2.29)

the random sets I ′, Ĩ, I, I ∗ are independent under P. (2.37)

Now with (2.33), (2.34) we also find that

Ĩ is stochastically dominated by I ∗. (2.38)

As as result we can write that

P

[
AT 2

(
μ′

2,2 +
∑

1≤�≤r

ρ�
2,2

)]

= P
[
for each m′ ∈ T 2 ∩ I0, there is a path in C̃m′ \ (

I ′ ∪ I ∗) from Cm′ to S̃m′
]

≤ P
[
for each m′ ∈ T 2 ∩ I0, there is a path in C̃m′ \ (

I ′ ∪ Ĩ
)

from Cm′ to S̃m′
]

= P

[
AT 2

(
μ′

2,2 +
∑

1≤�≤r

ρ�
2,1 + ρ�

1,2

)]
, (2.39)

and hence that

P
[
AT 2

(μ2,2)
] = P

[
AT 2

(
μ′

2,2 + μ∗
2,2

)] ≤ P

[
AT 2

(
μ′

2,2 +
∑

1≤�≤r

ρ�
2,2

)]

(2.39)≤ P

[
AT 2

(
μ′

2,2 +
∑

1≤�≤r

ρ�
2,1 + ρ�

1,2

)]

≤ P
[
AT 2

(
μ′

2,2 + μ′
2,1 + μ′

1,2

)
, ρ2,1 = ρ1,2 = 0

] + P[ρ2,1 or ρ1,2 �= 0]
= P

[
AT 2

(μV,u′), ρ2,1 = ρ1,2 = 0
] + P[ρ2,1 or ρ1,2 �= 0]

below (2.18)≤ pn

(
u′) + ξ2,1(W+) + ξ1,2(W+)

(2.26),(2.27)≤ pn

(
u′) + 2u′Ld−2

0

(
c4n�

−(n+1)(d−2)
0

)r
. (2.40)

This proves (2.14). �

We will now consider sequences un,n ≥ 0, and rn, n ≥ 0, of the form

un = u0 exp

{
c1

∑
0≤k<n

(rk + 1)2k�
−(k+1)(d−2)
0

}
, (2.41)

rn = r02n, (2.42)
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where u0 is a positive number and r0 a positive integer. The choice (2.41) ensures in particular that (2.13) holds.
Observe also that the increasing sequence un has a finite limit

u∞ = u0 exp

{
c1

�d−2
0

(
r0

1 − 4�
−(d−2)
0

+ 1

1 − 2�
−(d−2)
0

)}
, (2.43)

where we recall that �0 is at least 100 and even.
The next proposition encapsulates bounds on pn(un), which can be propagated with the help of Proposition 2.2, if

we can initiate the induction. This will be our main tool in the proof of Theorem 0.1 in the next section.
With (2.43) we will view u∞ as a function of u0, r0, �0.

Proposition 2.5. There exists a positive constant c such that when u0 > 0, r0 ≥ 1, �0 ≥ c, L0 ≥ 1, K0 > log 2 are
such that in the notation of (2.14), (2.43),

u∞Ld−2
0 ∨ eK0 ≤

(
�d−2

0

c2

)r0/2

(2.44)

and

p0(u0) ≤ e−K0 , (2.45)

then

pn(un) ≤ e−(K0−log 2)2n

for each n ≥ 0. (2.46)

Proof. We assume �0 ≥ c, so that Proposition 2.2 applies. Note that due to (2.44) one has �d−2
0 ≥ c2.

The inequality (2.46) will result from an induction argument relying on (2.14). For this purpose we observe that
the last term in the right-hand side of (2.14) can be bounded as follows:

unL
d−2
0

(
cn+1

2 �
−(n+1)(d−2)
0

)rn ≤ u∞Ld−2
0

(
c2

�d−2
0

)r0(
c2�

−(d−2)
0

)nrn
(2.44)≤ (

c2�
−(d−2)
0

)rn/2
.

As a result we see that (2.14) implies that for all n ≥ 0,

pn+1(un+1) ≤ pn(un)
(
pn(un) + (

c2�
−(d−2)
0

)r02n/2)
. (2.47)

We then define by induction a sequence Kn, n ≥ 0, such that

Kn = K0 −
∑

0≤n′<n

1

2n′+1
log

(
1 + eKn′ 2n′ (

c2�
−(d−2)
0

)r02n′
/2) for n ≥ 1. (2.48)

Note that Kn ≤ K0 so that

Kn ≥ K0 −
∑
n′≥0

2−(n′+1) log
(
1 + eK02n′ (

c2�
−(d−2)
0

)r02n′
/2)

(2.44)≥ K0 −
∑
n′≥0

2−(n′+1) log 2 = K0 − log 2 > 0. (2.49)

We will now check by induction that

pn(un) ≤ e−Kn2n

for all n ≥ 0. (2.50)
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In view of (2.49) this will imply (2.46). The assumption (2.45) ensures that (2.50) holds when n = 0. We then assume
that it holds for n and find with (2.47) that

pn+1(un+1) ≤ e−Kn2n(
e−Kn2n + (

c2�
−(d−2)
0

)r02n/2)
= e−Kn2n+1(

1 + eKn2n(
c2�

−(d−2)
0

)r02n/2)
= e−2n+1[Kn−(1/2n+1) log(1+eKn2n

(c2�
−(d−2)
0 )r02n/2)] (2.48)= e−Kn+12n+1

.

This proves (2.50) for n + 1, and concludes the proof by induction of (2.50) and hence of Proposition 2.5. �

3. Denouement

We will now prove Theorem 0.1 with the help of Proposition 2.5 of the previous section. We recall the notation
from (0.2).

Proof of Theorem 0.1. We consider u > u∗∗ and define u0 = 1
2 (u + u∗∗) ∈ (u∗∗, u). We know from (0.2) that for

some ε(u) ∈ (0,1), one has

lim
L→∞Lε

P
[
B(0,L)

V u0←→ S(0,2L)
] = 0. (3.1)

This readily implies that in the notation of (2.3), (2.11)

lim
L0→∞Lε

0P
[
Au0

m

] = 0 for arbitrary m ∈ I0. (3.2)

We select the parameters r0,K0, �0, which appear in Proposition 2.5 as follows:

r0 =
[

12

ε
(d − 1)

]
+ 1, (3.3)

K0 = log
(
c0�

2(d−1)
0

) + 2 log 2
(
see (2.10) for the notation

)
, (3.4)

�0 = 200
([

L
ε/(3(d−1))

0

] + 1
)
. (3.5)

There remains to select L0. We will now see that

when L0 ≥ c(u), (2.44) and (2.45) are fulfilled. (3.6)

We first observe that in view of (2.43), for L0 ≥ c(u), u∞ < u. As a result for L0 ≥ c′(u) we find that

(
�d−2

0

c2

)r0/2
(3.3),(3.5)≥ (

cL
(d−2)ε/(3(d−1))

0

)6(d−1)/ε = c(u)L
2(d−2)
0 ≥ uLd−2

0 ≥ u∞Ld−2
0 ,

and that

eK0 = 4c0�
2(d−1)
0 ≤

(
�d−2

0

c2

)r0/2

,

when we have used that r0(d − 2) > 4(d − 1).
This takes care of condition (2.44). As for (2.45) we note that for L0 ≥ c(u), one has

e−K0 = (
4c0�

2(d−1)
0

)−1 (3.5)≥ cL
−2ε/3
0

(3.2)≥ p0(u0).



Connectivity bounds for the vacant set of random interlacements 989

This completes the proof of (3.6). We can thus select L0 = c(u), such that with the choices (3.3)–(3.5), u∞ < u, and
the assumptions of Proposition 2.5 are satisfied, hence:

pn(u) ≤ pn(un) ≤ e−(K0−log 2)2n

for all n ≥ 0. (3.7)

Together with (2.10) and (2.12) this implies that for all n ≥ 0 and m ∈ In,

P
[
Cm

V u←→ S̃m

] (2.12)≤ |Λm|pn(u)
(2.10)≤
(3.7)

(
c0�

2(d−1)
0

)2n−1(2c0�
2(d−1)
0

)−2n ≤ 2−2n

. (3.8)

Observe that setting ρ = log 2
log�0

, we have 2n = (Ln

L0
)ρ . Hence for x in Z

d outside B(0,2L0), we pick Ln such that
2Ln < |x|∞ ≤ 2Ln+1, and find with (3.8) that

P
[
0

V u←→ x
] ≤ c(u)e−c′(u)|x|ρ∞ for x with |x|∞ > 2L0. (3.9)

Adjusting constants we can ensure that this holds when |x|∞ ≤ 2L0 as well. The claim (0.3) now readily follows, and
Theorem 0.1 is proven. �

Remark 3.1.

(1) The results in the present note do not settle the important question of knowing whether u∗ and u∗∗ coincide. Let

us mention that in case they differ our results point to a marked transition in the decay properties of P[0 V u←→ S(0,L)],
for large L and u > u∗, depending on whether u∗ < u < u∗∗ or u > u∗∗. Indeed from the absence of an infinite cluster
in V u one knows that

lim
L→∞ P

[
0

V u←→ S(0,L)
] = 0 for u > u∗.

Then it follows from (0.2) that

when u∗ < u < u∗∗, lim
L→∞L(d−1)+η

P
[
0

V u←→ S(0,L)
] = ∞ for all η > 0, (3.10)

whereas in view of (0.3), one finds that

for u > u∗∗, P
[
0

V u←→ S(0,L)
]

has a stretched exponential decay in L. (3.11)

(2) One can replace I u and V u with I u,R , the closed R-neighborhood for the �∞-distance of I u, and V u,R , its
complement in Z

d . The proof of Theorem 0.1 with minor modifications now shows that for any u > 0, there exist a
positive integer R, and c, c′, δ > 0, all depending on d and u, for which one has (the notation is as in (0.3)):

P
[
0

V u,R←→ x
] ≤ c exp

{−c′|x|δ} for all x ∈ Z
d . (3.12)

The proof of (3.12) involves the following changes. In (2.1) one now assumes that L0 > R. One defines A
u,R
m as Au

m

in (2.11), with V u replaced by V u,R , and S̃m replaced by S̃R
m , the set of points of C̃m at �∞-distance R from S̃m.

Introducing pR
n (u) as pn(u) in (2.12), with Au

T replaced by A
u,R
T (defined similarly as Au

T , with A
u,R
m′ in place of

Au
m′ , m′ ∈ T 0), Lemma 2.1 and Proposition 2.2 hold with A

u,R
m and pR

n (u) in place of Au
m and pn(u). For the proof

of Proposition 2.2 one only needs to replace in (2.36) and in the definition of I ∗ below (2.36), w(N) as well as
range wi , 1 ≤ i ≤ �, by their closed R-neighborhood for the �∞-distance. Then Proposition 2.5 holds for pR

n (u)

with the additional constraint L0 > R, and pR
n (u0) in place of pn(u0) in (2.45). In order to initiate the induction

and check (2.44), (2.45), one picks u0 = 1
2u, r0 = 12, K0 as in (3.4), �0 = L0, and R = [L3/(2(d−1))

0 ] + 1. When L0
is large, one readily sees that (2.44) holds. To check (2.45) one notes that when the closed R-neighborhood for the
�∞-distance of the starting point of the trajectories in the support of μCm,u0 covers Sm, then A

u,R
m does not hold.
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One further notes with a straightforward lower bound on Pz[H̃Cm = ∞], for z ∈ Sm, that in the notation of (1.2),
eCm(B(z,R)) ≥ cRd−1L−1

0 , for z ∈ Sm and m ∈ I0. As a result one finds that

pR
0 (u0) ≤ cLd−1

0 exp
{−u0cR

d−1L−1
0

} ≤ cLd−1
0 exp

{−cuL
1/2
0

}
.

Hence (2.45) holds when L0 ≥ c(u). The proof of (3.12) then proceeds in the same way as the proof of (0.3).

(3) It is an interesting problem to determine the exact nature of the decay in L of P[0 V u←→ S(0,L)], for u > u∗.
Let us point out that when d = 3, this decay cannot be exponential, as in the case of subcritical Bernoulli percolation,
cf. [1], Theorem 5.4, p. 86. Indeed denoting with SL the discrete segment along the first coordinate positive half-axis
joining 0 with S(0,L) one has for any u ≥ 0,

P
[
0

V u←→ S(0,L)
] ≥ P

[
V u ⊇ SL

] (1.7)= exp
{−ucap(SL)

}
≥ exp

{
−cu

L

logL

}
for L ≥ 1, when d = 3,

using for instance (1.4), (1.5) and standard estimates on the Green function to bound cap(SL). When d ≥ 4, cap(SL)

grows linearly with L, and the above calculation does not preclude an exponential decay of P[0 V u←→ S(0,L)] in L

for some (or all) u > u∗.
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