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Abstract. We identify the limit of the internal DLA cluster generated by Sinai’s walk as the law of a functional of a Brownian
motion which turns out to be a new interpretation of the Arcsine law.

Résumé. On détermine la loi limite du cluster de diffusion à agrégation limitée interne comme celle d’une fonctionnelle du
mouvement brownien, qui donne une nouvelle interprétation de la loi de l’Arcsinus.
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1. Introduction

The internal diffusion limited aggregation method was first introduced by Diaconis and Fulton in 1982 (see [2]) and
gives a protocol for building a sequence of growing random sets A(n),n ≥ 0 using random walks. At each iteration, the
set A(n+1) is obtained from A(n) by addition of the first site visited by a walk starting from 0 outside A(n). When the
walk is a simple random walk on Z

d , the cluster has the ball as asymptotic limit shape [4]. In the special and trivial case
of dimension one, the cluster A(n) is an interval denoted by [gn, dn] and dn/n converges almost surely to 1/2. In this
paper, we consider the case where the cluster is generated by one-dimensional walks evolving in an inhomogeneous
random medium. More precisely we are dealing with one-dimensional recurrent random walks in random environment
often called Sinai’s walks. One can rapidly understand that depending on the profile of the potential associated to the
environment the cluster may be drastically asymmetric. One can even prove that lim supdn/n = 1 and lim infdn/n =
0 almost surely (Theorem 2). But beyond this rough result we are able to prove, under the annealed measure, a
convergence in law for dn/n towards the Arcsine law (Theorem 1). The Arcsine law comes out of a new functional of
the Brownian motion which in our case is the scaling limit of the potential. This functional stems from the exploration
of the potential by the growing cluster. It involves in Sinai’s terminology the largest valley of width smaller than one
containing the origin. Let us recall that the limit law of the walk in Sinai’s theorem after scaling by ln2 n involves the
smallest valley of height one.

Finally, we mention that this result provides a new understanding of the Arcsine law which is different from the
two classical ones (last zero of the Brownian motion before 1, and the time spent by the Brownian motion above 0
before 1).
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2. Notations and main results

We first introduce Sinai’s random walk in random environment. An environment ω is a collection (ω(i))i∈Z of num-
bers in [0,1]. We denote by Ω := [0,1]Z the set of environments.

For a given environment ω, we define a Markov chain (Xn)n∈N of law P̃ω , often called quenched law, by

P̃ω(X0 = 0) = 1,

and for every x ∈ Z and n ∈ N,

P̃ω(Xn+1 = x + 1|Xn = x) = ω(x),

P̃ω(Xn+1 = x − 1|Xn = x) = 1 − ω(x).

We endow Ω with its canonical σ -field and a probability measure P of the form P := μ⊗Z, where μ is a probability
on [0,1]. We can now define a probability P̃ on the space of trajectories, called the annealed law, by:

P̃ =
∫

Ω

P̃ω dP.

Introducing the notation ρ(i) := 1−ω(i)
ω(i)

, we make the following assumptions on μ:

(i) μ(ω(0) = 0) = μ(ω(0) = 1) = 0;
(ii) Eμ(logρ(0)) = 0;

(iii) Eμ[(logρ(0))2] < ∞.

A random walk in random environment satisfying the assumptions above is usually called a Sinai walk, referring
to the famous article of Sinai [8] proving the convergence in law of Xn/(logn)2 under the annealed law:

• Assumption of ellipticity (i) is an irreducibility assumption.
• Assumption (ii) ensures that P̃ω is recurrent P-almost surely (see [9] for a survey on one dimensional random walks

in random environments).
• Assumption (iii) makes it possible to apply Donsker’s principle to the potential Vω (see (1) below).

Let us now explain the construction of the internal diffusion limited aggregation cluster for a given environment
ω ∈ [0,1]Z.

Let (Xj (n))n∈N be an i.i.d. family of random walks such that ∀j ∈ N, (Xj ) has law P̃ω. We now define our cluster
A(n) as a classical internal diffusion limited aggregation cluster using this family of random walks. Define A(n) and
the stopping times (θk)k∈N recursively in the following way:

θ0 = 0,

A(0) = {0} = {
X0(θ0)

}
, and for all j > 0,

θj = inf
{
n ≥ 0: Xj(n) /∈ A(j − 1)

}
,

A(j) = A(j − 1) ∪ {
Xj(θj )

}
.

Remark 2.1. We stress the fact that under the annealed law, the same environment is used throughout the construction
of A(n).

As the construction of the cluster uses an i.i.d sequence of walks, the following notations will be helpful to state
our theorems,

Pω = P̃ ⊗N

ω and P =
∫

Ω

Pω dP.
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The crucial tool introduced by Sinai in [8] is the potential associated to a given environment:

Vω(0) = 0,

Vω(i) =
i∑

k=1

lnρ(k) if i ≥ 1, (1)

Vω(i) = −
0∑

k=i+1

lnρ(k) if i ≤ −1.

For all n ≥ 0, we define the renormalized potential

V (n)
ω (t) = 1√

n
Vω

(
nt�).
It follows from Donsker’s principle and assumption (iii) that, as n goes to infinity, (V

(n)
ω (t))t∈R converges in law

to the Wiener law. Let us notice finally that, by construction, the cluster A(n) is an interval we will denote by [gn, dn].
We can now state our main result:

Theorem 1. Under P , dn/n converges in law to the Arcsine law. Namely, for all 0 ≤ a ≤ b ≤ 1,

P

(
dn

n
∈ (a, b)

)
−−−−→
n→∞

∫ b

a

1

π
√

x(1 − x)
dx.

Moreover, the following theorem describes the almost sure behavior of the DLA cluster in a typical environment:

Theorem 2. P-a.s., with Pω probability one,

lim sup
n→∞

dn

n
= 1 and lim inf

n→∞
dn

n
= 0.

3. Proof of Theorem 1

The proof of Theorem 1 can be decomposed in the three following steps.

3.1. Good environments

For each n, we define the set of good environments which will turn out to be of high probability and on which we will
be able to control the position of the cluster at step n.

For all cadlag functions v : R → R, we define,

T +
y (v) = inf

{
t ≥ 0, such that v(t) ≥ y

}
,

T −
y (v) = − sup

{
t ≤ 0, such that v(t) ≥ y

}
, (2)

ȳ = sup
{
y ≥ 0, such that T +

y + T −
y ≤ 1

}
.

We introduce the length of the excursion of v below its maximum at T +
ȳ :

α = inf
{
t ≥ 0, such that v

(
T +

ȳ + t
) ≥ v

(
T +

ȳ

)}
,

and the length of the excursion of v below its maximum to the left of −T −
ȳ :

β = inf
{
t ≥ 0, such that v

(
T −

ȳ − t
) ≥ v

(
T −

ȳ

)}
.
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In order to make the computation more readable, we will use for all n ∈ N the following notations:

T +
ȳn

= T +
ȳ

(
V (n)

)
, T −

ȳn
= T −

ȳ

(
V (n)

)
, ȳn = ȳ

(
V (n)

)
,

αn = α
(
V (n)

)
, βn = β

(
V (n)

)
.

Let (Bt )t∈R be a real standard Brownian motion defined on an abstract probability space (Ω,F,P). We introduce the
notations,

T+
ȳ = T +

ȳ (B), T−
ȳ = T −

ȳ (B), ȳ = ȳ(B),

α = α(B), β = β(B).

These notations (as well as d∗ and g∗ introduced in the next section) are illustrated in Fig. 1 in the case of the Brownian
motion.

Remark 3.1. Throughout the paper we make use of Donsker’s principle for the functionals α,β,T+
ȳ ,T−

ȳ , ȳ, as well
as d∗ (introduced in the next section), which are not continuous with respect to the Skorohod topology. However, we
observe, for all these functionals, that the set on which they are discontinuous is a subset of trajectories having two
local maxima at the same height which has Wiener measure 0. Hence, Donsker’s principle applies to these functionals.

For all ε > 0 and n > 0, we define the following events:

Bε,+
n =

{
sup

[−T −
ȳn

−βn−ε,−T −
ȳn

−βn]
V (n)

ω ≥ ȳn + n1/3

√
n

}
∩ {βn < ε},

Bε,−
n =

{
sup

[T +
ȳn

+αn,T +
ȳn

+αn+ε]
V (n)

ω ≥ ȳn + n1/3

√
n

}
∩ {αn < ε},

Cε,+
n =

{
sup

[−T −
ȳn

+ε,0]
V (n)

ω ≤ ȳn − n1/3

√
n

}
,

Cε,−
n =

{
sup

[0,T +
ȳn

−ε]
V (n)

ω ≤ ȳn − n1/3

√
n

}
.

Fig. 1. On this example α > 0 while β = 0. The bold part of the path corresponds to the “theoretical” part of the potential that is explored by the
cluster.
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These events can be described as follows. On B
ε,+
n , the length of the excursion below the supremum to the left of

−T −
ȳn

is smaller than ε. Furthermore, to the left of this excursion the potential increases enough to build an obstacle

for the walk. On C
ε,+
n , there is no significant obstacle between 0 and −T −

ȳn
+ε. On the intersection of these two events,

we expect the left border of the cluster to be close to −T −
ȳn

while the right border should go beyond T +
ȳn

. The events
indexed by “−” refer to the symmetric situation and can be described in the same way.

Lemma 3.1. For all ε > 0,

lim
n→∞ P

((
Bε,+

n ∩ Cε,+
n

) ∪ (
Bε,−

n ∩ Cε,−
n

)) = 1.

Proof. We define the following filtration:

F0 = σ
(
Vω(i), i ≥ 0

)
, (3)

Fk = σ
(
Vω(i), i ≥ −k

)
for all k > 0. (4)

The process (Vω(−i))i≥0 is Markovian and adapted to F := (Fj )j≥0. The Markov property at the F -stopping time
(−nT −

ȳn
− nβn) and classical properties of random walks yield

P

(
sup

[−T −
ȳn

−βn−ε,−T −
ȳn

−βn]
V (n)

ω ≥ ȳn + n1/3/
√

n
)

−−−−→
n→∞ 1.

The same argument holds for the symmetric case.
It follows from Donsker’s principle that

P
({βn < ε} ∪ {αn < ε}) → P

({β < ε} ∪ {α < ε}).
As (T +

y (B))y≥0 and (T −
y (B))y≥0 are two strictly increasing subordinators without drift, their sum is also a strictly

increasing subordinator without drift, and goes almost surely above the level 1 while jumping (see Proposition 1.9
in [1]). Furthermore, they are independent so they never jump at the same time (for background on subordinators, we
refer to [1]). As a consequence, almost surely under Wiener measure, either α > 0 and β = 0 or α = 0 and β > 0,
hence

P
({β < ε} ∪ {α < ε}) → 1 as ε tends to 0.

It follows from the same argument that, a.s., one of T+
ȳ and T−

ȳ is a local maximum (while the other is not). Notice

also that (−n1/3/
√

n,+∞) increases to (0,+∞), hence from Donsker’s principle,

P
(
Cε,−

n ∩ Cε,+
n

)−−−−→
n→∞ P

(
sup

[−T−
ȳ +ε,T+

ȳ −ε]
B ≤ ȳ

)
.

This happens almost surely because the Brownian motion already has a local maximum with value ȳ at T+
ȳ or T−

ȳ . �

3.2. The quenched localization of dn

We can now limit our study to the good environments, where with high probability dn is localized near its theoretical
position d∗

n that is a deterministic functional of the potential. More precisely, we define for any cadlag function v from
R to R,

d∗(v) = T +
ȳ (v) + 1α(v)>β(v)

(
1 − (

T +
ȳ (v) + T −

ȳ (v)
))

,

and we will use the following notations:

d∗
n = d∗(V (n)

)
, d∗ = d∗(B), g∗ = 1 − d∗.
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We will also use the notation

g∗
n = d∗

n − 1.

Proposition 3.1. For all ε > 0 and η > 0,

P

(
Pω

(∣∣∣∣dn

n
− d∗

n

∣∣∣∣ > ε

)
> η

)
−−−−→
n→∞ 0.

Proof. If (Xn)n≥0 is a Markov chain on Z, we will use, for any q in Z, the notation σq to denote the hitting time of q

by Xn, namely

σq = inf{n ≥ 0,Xn = q}.

Using the fact that the function hω defined on Z by

hω(k) =
k−1∑
i=0

exp
(
Vω(i)

)
for k > 0,

hω(0) = 0,

hω(k) = −
−1∑
i=k

exp
(
Vω(i)

)
for k < 0

is harmonic for Xn under P̃ω (i.e. hω(Xn) is a martingale under P̃ω, which is a classical fact in birth and death
processes, see [3]), we deduce from the optional sampling theorem that, for any ω ∈ Ω ,

P̃ω(σ−b < σa) =
∑a−1

i=0 exp(Vω(i))∑a−1
i=−b exp(Vω(i))

(5)

(see, for example, [9], p. 196, for a use of this identity in the framework of random walks in random environ-
ment).

Let n be in N \ {0} and ω be in B
ε,+
n ∩ C

ε,+
n , then

Pω

(
gn < −nT −

ȳn
− 2εn

) ≤ n2 exp
(−n1/3). (6)

Indeed suppose that Vω(T +
ȳn

) = ȳn, then

P̃ω(σ−nT −
ȳn

−2εn < σn∧(nT +
ȳn

+nαn−1)) =
∑n∧(nT +

ȳn
+nαn−1)−1

i=0 exp(Vω(i))∑n∧(nT +
ȳn

+nαn−1)−1

i=−nT −
ȳn

−2εn
exp(Vω(i))

≤ n exp(ȳn)

exp(ȳn + n1/3)
= n exp

(−n1/3).
Now as n(T +

ȳn
+T −

ȳn
+2ε+αn) > n, the probability in (6) can be controlled by the probability that one of n independent

random walks in the environment ω exits of the interval [−nT −
ȳn

− 2εn,nT +
ȳn

+nαn − 1] by the left-hand side, namely

Pω

(
gn < −nT −

ȳn
− 2εn

)
< 1 − (

1 − n exp
(−n1/3))n ≤ n2 exp

(−n1/3). (7)
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Suppose now that Vω(T +
ȳn

) > ȳn then

P̃ω(σ−nT −
ȳn

−2εn < σnT +
ȳn

−1) =
∑nT +

ȳn
−2

i=0 exp(Vω(i))∑nT +
ȳn

−2

i=−nT −
ȳn

−2εn
exp(Vω(i))

≤ n exp(ȳn)

exp(ȳn + n1/3)
= n exp

(−n1/3).
It follows from the definition of ȳn that n(T +

ȳn
+ T −

ȳn
+ βn) ≥ n which leads to the same kind of control as in (7) and

concludes the proof of (6). We now complete the study of gn on B
ε,+
n ∩ C

ε,+
n by proving the following inequality,

Pω

(
gn ≥ nT −

ȳn
+ εn

) ≤ n2 exp
(−n1/3). (8)

Using (5) again, we get

P̃ω(σnT +
ȳn

< σ−nT −
ȳn

+εn) =
∑−nT −

ȳn
+εn−1

i=0 exp(Vω(i))∑−nT −
ȳn

+εn−1

i=nT +
ȳn

exp(Vω(i))

≤ n exp(ȳn − n1/3)

exp(ȳn)
= n exp

(−n1/3).
As nT +

ȳn
+ nT −

ȳn
+ εn ≥ n, we control the probability of the complementary event in (8) with the probability that n

independent random walks in the environment ω exit [−nT −
ȳn

+ εn,nT +
ȳn

] through the left-hand side, namely

Pω

(
gn ≥ −nT −

ȳn
+ εn

) ≤ 1 − (
1 − n exp

(−n1/3))n ≤ n2 exp
(−n1/3).

Notice now that on B
ε,+
n ∩ C

ε,+
n , |T +

ȳn
− g∗

n| < ε. With a similar study of the event B
ε,−
n ∩ C

ε,−
n and Lemma 3.1, it

is easy to complete the proof of Proposition 3.1. �

3.3. Characterization of the law of d∗

Using Donsker’s principle and Proposition 3.1, we conclude that dn/n converges in law towards d∗. To complete the
proof of Theorem 1, we characterize the law of d∗.

Lemma 3.2. The law of d∗ is the Arcsine law.

Proof. We note (Lt )t≥0 the local time at 0 of B and

τt = sup{u ≥ 0,Lu < t}
the left continuous inverse of L.

Remark 3.2. The process (T +
y (B))y≥0 is left continuous. Consequently, even if it is unusual, we prefer to work with

the left continuous version of the inverse local time of Bt . We will also use the name subordinator for a left continuous
increasing process with independent increments.

For all t ≥ 0, denote

A+
t =

∫ t

0
1{Bs>0} ds,
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the time spent by B above 0 up to time t ; and similarly

A−
t =

∫ t

0
1{Bs<0} ds.

Now A+
τt

+ A−
τt

= τt is a subordinator and, as τt follows the same law as the hitting time of t by the Brownian motion,
it is a 1/2-stable subordinator. Moreover, it is a consequence of Ito’s excursion theorem (see Theorem 2.4 of [7])
that both processes (A+

τt
) and (A−

τt
) are independent subordinators with the same law. Each of them deals indeed

respectively with one of the disjoint set of positive and negative excursions of B up to time τt . Hence

(
A+

τt
,A−

τt

) (law)= 1

4

(
T +

t (B), T −
t (B)

)
(9)

(we refer to the lecture notes of Yor [10] for explanations and applications of this identity). Hence

ȳ
(law)= sup

{
t ≥ 0,A+

τt
+ A−

τt
≤ 1

}
(law)= sup{t ≥ 0, τt ≤ 1}
(law)= L1.

From the choice of the left continuous version of the inverse local time (see Remark 3.2) we deduce

T+
ȳ

(law)= A+
τL1

= A+
g1

, (10)

where

g1 = sup{t < 1,Bt = 0}
is the last zero of (Bt )t≥0 before 1. Let us remind that

d∗ = T+
ȳ + 1{α>β}

(
1 − (

T+
ȳ + T−

ȳ

))
. (11)

Notice now that (T+
ȳ ,T−

ȳ ) is independent of 1{α>β}. Indeed, using (9), it is equivalent to check the independence of
the sign of B1 and (A+

g1
,A−

g1
). Gathering this independence with (11) and (10), we obtain

d∗ (law)= A+
g1

+ χ
(
1 − (

A+
g1

+ A−
g1

)) = A+
g1

+ χ(1 − g1), (12)

where χ is a Bernoulli variable with parameter 1/2 independent of all other variables. The decomposition of the path
of the Brownian motion on [0,1] into a path on [0, g1] and an incomplete excursion of independent sign on [g1,1]
yields

A+
g1

+ χ(1 − g1)
(law)= A+

1 . (13)

We conclude by recalling Paul Lévy’s well-known result (formula (53), p. 325 of [5], or [6], p. 121 for a modern
reference) which states that A+

1 follows the Arcsine law. �

Remark 3. Notice that the Proof of Lemma 3.2 has a non-trajectorial nature as shown by the key identity in law (9),
which allows to reduce the study of the functional of two independent Brownian motions to that of the functional of a
single one.

Remark 4. The random sign χ in identity (12) corresponds to the left–right symmetry of the problem, whereas in the
classical decomposition (13) it has an up–down meaning.
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4. Proof of Theorem 2

We will only prove the first statement as the second one can be easily deduced using the symmetry of the model.

Lemma 4.1. P-a.s.,{
T +

ȳn
> 1 − ε

}
i.o.

Proof. Let k be in N
∗. From Donsker’s invariance principle, we deduce that there exist k independent Brownian

motions (B1, . . . ,Bk) on (Ω,F,P) such that

(
V (n), . . . , V (nk)

) (law)�⇒ (
B1, . . . ,Bk

)
.

We will also use the fact that for any real Brownian motion B ,

P
(
T +

ȳ (B) ≥ 1 − ε
)
> 0,

see, for example, (10). Now

lim inf
{
T +

ȳn
≤ 1 − ε

} ⊂ lim inf
{{

T +
ȳn

≤ 1 − ε
} ∩ · · · ∩ {

T +
ȳk
n
≤ 1 − ε

}}
and

P
(
lim inf

{
T +

ȳn
≤ 1 − ε

}) ≤ lim inf P
({

T +
ȳn

≤ 1 − ε
} ∩ · · · ∩ {

T +
ȳk
n
≤ 1 − ε

})
≤ P

(
T +

ȳ

(
B1) ≤ 1 − ε

) · · ·P
(
T +

ȳ

(
Bk

) ≤ 1 − ε
)

≤ P
(
T +

ȳ

(
B1) ≤ 1 − ε

)k
.

As k can be chosen arbitrarily big, this concludes the proof of Lemma 4.1. �

We deduce from Lemma 4.1 and the previous study of C
ε,−
n (see the Proof of Theorem 1) that C

ε,−
n ∩{T +

ȳn
> 1− ε}

occurs infinitely often. Fix ω in Ω and n in N such that ω ∈ C
ε,−
n ∩ {T +

ȳn
> 1 − ε}. Formula (5) yields

P̃ω(σnT −
ȳn

< σn(T +
ȳn

−ε)) ≤
∑n(Tȳn−ε)−1

i=0 exp(Vω(i))∑n(Tȳn−ε)−1

i=nT −
ȳn

exp(Vω(i))

≤ neȳn−n1/3

eȳn
≤ ne−n1/3

.

The probability of the event {dn ≤ T +
ȳn

− ε} is smaller than the probability that one of n independent random walks in

the environment ω exits [−nT +
ȳn

, n(T +
ȳn

− ε)] through the left-hand side. Hence,

Pω

(
dn ≤ T +

ȳn
− ε

) ≤ 1 − (
1 − ne−n1/3)n

≤ n2e−n1/3
.

We conclude using Borel Cantelli’s lemma on a subsequence (nj )j≥0 such that C
ε,+
nj

∩ {T +
ȳn

> 1 − ε} holds for all
j ≥ 0 (the P-a.s. existence of such a subsequence is a consequence of Lemma 4.1).
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