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Abstract. A new class of relativistic diffusions encompassing all the previously studied examples has recently been introduced in
the article of C. Chevalier and F. Debbasch (J. Math. Phys. 49 (2008) 043303), both in a heuristic and analytic way. A stochastic
approach of these processes is proposed here, in the general framework of Lorentzian geometry. In considering the dynamics of
the random motion in strongly causal spacetimes, we are able to give a simple definition of the one-particle distribution function
associated with each process of the class and prove its fundamental property. This result not only provides a dynamical justification
of the analytical approach developped up to now (enabling us to recover many of the results obtained so far), but it provides a
new general H -theorem. It also sheds some light on the importance of the large scale structure of the manifold in the asymptotic
behaviour of the Franchi–Le Jan process. This approach is also the source of many interesting questions that have no analytical
counterparts.

Résumé. C. Chevalier et F. Debbasch ont récemment introduit dans l’article (J. Math. Phys. 49 (2008) 043303) une nouvelle
classe de diffusions relativistes comprenant toutes celles étudiées jusqu’à̀ présent. Leur approche est heuristique et analytique. On
propose dans cet article une approche stochastique de cette classe de processus, dans le cadre général d’une variété lorentzienne
quelconque. Le cas des variétés fortement causales permet de donner une définition claire et simple de la “one-particle distribution
function” associée à̀ chacun de ces processus et donne un cadre adéquat pour y prouver une propriété fondamentale. Ce résultat
donne non seulement une justification dynamique de l’approche anaytique utilisée jusqu’à̀ présent (recouvrant au passage la plupart
des résultats obtenus jusqu’alors), mais il fournit aussi un H-théorème général. Il met aussi en lumière l’importance de la structure
à̀ grande échelle de la variété dans le comportement asymptotique de la diffusion de Franchi–Le Jan. Cette approche est aussi la
source de nombreuses questions intéressantes qui n’ont pas leur pendant analytique.
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1. Introduction

The present article is at the confluence of two different stories that have met recently.
The first was initiated by Dudley in a paper [16], written in 1966, where he describes the class of random Markov

timelike paths in Minkowski spacetime whose laws are defined independently of any rest frame. These random paths
represent the trajectories of particles whose speed is less than the speed of light, and whose laws are invariant by
the action of the isometry group of the space. He proves in this article that there exists essentially a unique way of
constructing C 1 random paths having the above properties. The phase space (R × R3) × H is well adapted to describe
it. We write here H for the half-unit sphere {ζ = (t, x) ∈ R × R3;q(ζ ) := t2 − |x|2Eucl = 1, t > 0} of the spacetime
R × R3, equipped with the quadratic form q . The restriction of q to any tangent hyperplane of H is definite-negative.
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Any C 1 timelike path whose t -co-ordinate increases can always be re-parametrized in such a way that its speed belongs
to H. Random C 1 timelike paths {γs}s≥0 = {γ0 + ∫ s

0 γ̇r dr} are determined by their H-valued speed process {γ̇s}s≥0
which has no other choice than being a Brownian motion on H (up to a constant time scaling). Minkowski spacetime
thus has a canonical diffusion, in the same way as Brownian motion is canonically associated to Euclidean space.

This fundamental work had to wait for the development of stochastic analysis and the article [21] of Franchi and
Le Jan, in 2005, to see its scope extended to the realm of general relativity. They defined a diffusion in any Lorentzian
manifold using a stochastic development procedure similar in spirit to the construction of Brownian motion promoted
by Malliavin and Elworthy, using stochastic differential equations in the orthonormal frame bundle of the manifold.

The other story was born immediately after Einstein’s theory of relativity and gravitation was accepted and spread
in the scientific community. It deals with the extension of Boltzmann theory of gases to the relativistic framework.
Although Boltzmann model is primarily a particle model of gases, most of the works have been on understanding the
macroscopic behaviour of relativistic gases through the study of the raltivistic Boltzmann equation. One had to wait
the nineties and the article [13] of F. Debbasch, K. Mallick and J. P. Rivet to see the introduction of a probabilistic
mesoscopic model of diffusion of a particle in a fluid, under the form of a special relativistic counterpart of Ornstein–
Uhlenbeck process. Generalisations of this model to the framework of general relativity have been given in later
articles.

These two stories have recently met with the proposition, made in the article [9] of C. Chevalier and F. Debbasch,
to define a class of random processes including Dudley’s process and the relativistic Ornstein–Uhlenbeck process,
and characterized by the following property. There exists at each (proper) time (of the moving particle) a (local) rest
frame where the acceleration of the particle is Brownian in any spacelike direction of the frame, when computed using
the time of the rest frame. The processes of this class were named relativistic diffusions in reference to the diffusion
phenomenon they modelize. The authors of the article have started the study of this class developing an analytical
approach to the situation based on a transport equation. We would like to propose in the present article a pathwise
approach to this class of processes on a general Lorentzian manifold. With in mind the diffusion phenomenon of
colloidal particles in fluids, we shall describe their dynamics as random perturbations of differential equations. In the
spirit of the work of Franchi and Le Jan, we shall lift these dynamics to the frame bundle of the manifold, where they
will be defined as flows of stochastic differential equations. This framework will enable us to re-prove directly many
of the results obtained so far as well as new results and prospects stemming from the pathwise nature of our approach.

We have organized the exposition as follows. Section 2 is dedicated to describing the class of relativistic processes
in Minkowski spacetime, so as to separate probability and geometry problems. The class of relativistic diffusions
is thus motivated and defined in Section 2.1. We give in Section 2.2 a probabilistic definition of the one-particle
distribution function for each relativistic diffusion, and prove that it satisfies a fundamental equation. Section 3 is
dedicated to investigating the general situation where the geometric background is any Lorentzian manifold. After
having defined the dynamics in the orthonormal frame bundle in Section 3.1, we shall spend some time in Section
3.2 looking at what can happen in the unit sub-bundle of the tangent bundle. We shall define in Section 3.3.1 the
one-particle distribution function for each relativistic diffusion under a mild hypothesis on the global geometry of
spacetime. The relevance of this notion in the study of the Poisson and Martin boundaries of the Franchi–Le Jan
process will be discussed in Section 3.3.2. Finally, we shall prove in Section 3.4 a general H -theorem. A number of
open problems are scattered throughout the text. Numerous examples have been included so as to help the reader to
get an idea of the state of the field.

Notation. We shall write ◦d for the Stratonovich differential. The sign d will be used for the usual differentiation with
respect to the time, or for Ito’s differential.

2. Relativistic diffusions in Minkowski spacetime

2.1. Definitions and examples

(a) Geometric framework. Recall Minkowski space is the product R × R3 equipped with the metric

∀ζ = (t, x) ∈ R1 × R3, q(ζ ) = t2 − ((
x1)2 + (

x2)2 + (
x3)2)

,
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if we write (t, x1, x2, x3) for the co-ordinates of ζ in the canonical basis {ε0, ε1, ε2, ε3} of R × R3. To distinguish
Minkowski spacetime from the Euclidean space R4, we shall denote the former by R1,3. The half-unit sphere

H = {
ζ = (t, x) ∈ R1,3;q(ζ ) = 1, t > 0

}
inherits from the ambient (non-definite positive) metric q a Riemannian metric of constant curvature, which makes
it a model of the (3-dimensional) hyperbolic space. As any C 1 timelike path can be re-parametrized so that its speed
should belong to H, we shall look at the space R1,3 × H as the configuration space of timelike C 1 trajectories of a
point of R1,3. The set of direct linear isometries of q is the group SO(1,3). Any element g of SO(1,3) represents a
rest frame g = (g0,g1,g2,g3) of R1,3. The function ζ ∈ R1,3 �→ q(g0, ζ ) will be called the time function associated
with the frame g.

It will also be fruitful to define the motion of a(n infinitesimally small) rigid object. The configuration space of
this dynamics will be the set R1,3 × SO(1,3). We shall look at a point (m, (g0,g1,g2,g3)) as the infinitesimal rigid
object2 m + ConvHull(δg1, δg2, δg3) contained in the affine spacelike hyperplane m + span(g1,g2,g3), and having
4-velocity g0. An element of R1,3 × SO(1,3) can also be seen as an observer.

Notice that SO(1,3) has 4 connected components; we shall denote by SO0(1,3) the connected component of the
identity. To shorten notations, we shall write OR1,3 for R1,3 × SO0(1,3).

The introduction of the following notations will clarify the description of the dynamics we are interested in.
We shall denote by Ei ∈ so(1,3) the Lie element such that exp(tEi) is the hyperbolic rotation of angle t in the
2-dimensional plane generated by ε0 and εi . In matrix notations

E1 =
⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ , E2 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠ , E3 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠ .

Four vector fields on OR1,3 will be of particular interest.

H0
(
(m,g)

) = (
g0,0

)
,

(2.1)
for i = 1, . . . ,3, Vi

(
(m,g)

) = (0, gEi).

Note that the R1,3-part of the integral lines of the vector field H0 are the geodesics of R1,3, which are straight lines.
We shall set HmR1,3 = {(m, ζ ) ∈ R1,3 × H} and write OmR1,3 for {(m,g) ∈ OR1,3;g ∈ SO0(1,3)}.

An important feature of our approach to relativistic diffusions is that we have chosen to describe the dynamics in
the phase space OR1,3, where it has a natural and simple form; this corresponds to look at the motion of a small rigid
object. We shall look at what happens in R1,3 × H in a later section.

(b) Dynamics.

• Unperturbed system. We have indicated in the introduction that relativistic diffusions should be considered
as a class of toy models of diffusion in different media. We are going to define them as random perturbations of
deterministic evolutions given by the flow of a vector fields V on R1,3. With in mind diffusion of particles in a fluid,
we shall make the hypothesis that V has no R1,3-part and acts only on the SO(1,3)-part of OR1,3, although this
assumption could be relaxed. The unperturbed sytsem is defined by the differential equation

dms = g0
s ds,

(2.2)
dgs = V (gs)ds.

Note that the requirement that dms

ds
= g0

s ∈ H implies that the parameter s is the proper time of the timelike path
{ms}s≥0 of R1,3.

2δ is some infinitesimal positive number.
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• Action of the surrounding medium. How should we model the form taken by the random perturbation of the
dynamics associated with a given medium? Maybe the proper way to proceed would consist in giving first a description
of the microscopic thermodynamical and electro-magnetical properties of the medium in order to put forwards the
source of randomness, and to infer from this description a description of the random perturbation it induces on the
dynamics of a test object. We have chosen to propose a rather general action model which should convey the essential
features of many situations, and not to model the medium itself.

The action of the fluid on the moving object {es}s≥0 = {(ms,gs)}s≥0 will be represented by the datum of an
OR1,3-valued previsible process {zs}s≥0 such that zs(e·) = zs((m·,g·)) = (ms, fs) for some orthonormal basis fs =
(f 0

s , f 1
s , f 2

s , f 3
s ) of Tms R

1,3.3 The random perturbation induced by the medium on the dynamics results in adding to
the deterministic acceleration a random part which is determined by the following requirement. When computed in the
rest frame zs , i.e. using its associated time, the acceleration of ms has a deterministic part and a random part which
is Brownian in any spacelike direction belonging to span(f 1

s , f 2
s , f 3

s ). To complete this description, we shall ask the
vectors g1

s ,g2
s ,g3

s to be transported parallelly along the “Brownian” increment of g0
s .

(c) A preliminary example. Before giving a mathematically clean definition of this class of processes, let us look at
the heuristic description of what happens when V = 0 and the ‘vertical’ action process z· is constant, equal to Id, i.e.
fs = {ε0, . . . , ε3} for any s.

Denote by {(ms,gs)}s≥0 the OR1,3-valued process corresponding to these data and write ts for the ε0-component
of ms . As we have dms = g0

s ds, the function s �→ ts is a C 1 increasing function that can be used as a parameter of the
process. Given t ∈ R, set τt = inf{s ≥ 0; ts = t} and look at the re-parametrized process {(mτt ,gτt )}t≥q(ε0,m0)

; denote
it by {(m̂t , ĝt )}t≥q(ε0,m0)

. The above description of the action of the surrounding medium on the dynamics means that
the span(ε1, ε2, ε3)-part of d̂g0

t is a Brownian increment.
The Brownian spacelike part

∑
i=1,...,3ε

i◦dŵi
t of the increment of the speed can be seen in Fig. 1, in red; the

increment itself is in green. The notation ŵ stands here for a 3-dimensional Brownian motion. If we write ◦d̂g0
t =∑

i=1,...,3̂gj
t ◦dβ̂

j
t , then

◦dŵi
t = −

∑
j=1,...,3

q
(
εi, ĝj

t

)◦dβ̂
j
t .

Denote by A(g) the 3 × 3 matrix with coefficients (i, j) ∈ [1,3]2 equal to q(εi,gj ). This matrix being invertible,

◦dβ̂t = −A(̂gt )
−1◦dŵt . (2.3)

Back to the proper time s of the process, we shall write ◦dg0
s = ∑

j=1,...,3 gj
s ◦dβ

j
s . Write As for A(gs). Identity (2.3)

implies that

◦dβs = q
(
ε0,g0

s

)1/2
A−1

s ◦dws

Fig. 1. Dynamics when z = Id and V = 0.

3Note that zs and es have the same R1,3-part equal to ms .
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for some 3-dimensional Brownian motion w. The R3-valued process β is the process that really drives the dynamics.
Last, we shall ask the vectors g1

s ,g2
s ,g3

s to be parallelly transported along the paths {g0
s }s≥0 in H. The above heuristic

description gives rise to the following equations of motion

◦dms = g0
s ds,

◦dgs = gsEi◦dβi
s .

(d) Definition. We shall now leave appart this example to write down the equations of the dynamics of {(ms,gs)}s≥0
corresponding to general data V and z. Recall the surrounding medium will be represented by the datum of a previsible
process {zs}s≥0 = {zs(e·)}s≥0 such that zs = (ms, fs) = (ms, (f

0
s , . . . , f 3

s )) belongs to Oms R
1,3. Its action on the dy-

namics has been heuristically described in paragraph (b). Define the random matrix process {As}s≥0, with coefficient
(i, j) ∈ [1,3]2 equal to q(f i

s ,gj
s ) at time s; set

◦dβs = q
(
f 0

s ,g0
s

)1/2
A−1

s ◦dws. (2.4)

Definition 1. Define the R3-valued process β as above. A (V , z)-diffusion is a process {es}s≥0 = {(ms,gs)}s≥0 satys-
fying the stochastic differential equations

◦dms = g0
s ds

(2.5)
◦dgs = V (es)ds + gsEi◦dβi

s ,

where Einstein’s summation convention is used, as in the sequel.

Using notations (2.1), Eq. (2.5) can be written

◦des = H0(es)ds + V (es)ds + Vi(es)◦dβi
s . (2.6)

In reference to the interpretation of OR1,3 in terms of infinitesimal rigid objects given in paragraph (a), this equation
can be interpreted as describing the random motion of an infinitesimal rigid object in R1,3; there are nonetheless no
need to understand it that way if you do not feel comfortable with infinitesimals. In any case, the simple and intrinsic
character of this equation should be compared with the co-ordinate approach proposed up to now, as presented for
instance in the article [10] of C. Chevalier and F. Debbasch. The simplicity of the formalism of stochastic differential
equations will enable us not to rely on the covariant treatment used so far.

Note that since zs(e·) might depend on the whole history of e· until time s, the increment ◦dβs shares this property,
and Eqs (2.4) and (2.6) do not generally define a Markov process. This might be relevant from a modelization point of
view if we consider an object having internal parameters evolving with time, and whose value at proper time s could
influence the way the surrounding medium acts on it. Let us give three (Markovian) examples before commenting any
further.

(e) Previously studied examples. Three (V , z)-diffusions have attracted attention up to now.

1. The Dudley(–Franchi–Le Jan) process introduced by Dudley in [16] (and generalized in [21] by Franchi and Le
Jan) is a perturbation of the geodesic flow. It corresponds to taking V = 0 and zs = es . The dynamics driving
process β is then equal to the Brownian motion w, and no time-change is needed.4 It is described in a simple way
saying that

• {g0
s }s≥0 is a Brownian motion on the hyperbolic space H,

• (g1
s ,g2

s ,g3
s ) ∈ Tg0

s
H is obtained from (g1

0,g2
0,g3

0) by parallel transport along the path {g0
r }0≤r≤s , and

• ms = m0 + ∫ s

0 g0
r dr .

4That is, the time scaling q(f 0
s ,g0

s ) is here equal to 1.
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This process is the only process determined entirely by the datum of the geometric background (a result due to
Dudley in [16].5) This property gives it a special position in the family of (V , z)-diffusions. Yet, its drawback as a
model in Minkowski spacetime of a diffusing particle is that, except if we locate the source of motion in the particle
itself, it is not clear what entity could give rise to such an interaction process. So it might be less interesting from
a modelization point of view. Consult yet the article [15] of Dowker, Henson and Sorkin for a physical motivation
from quantum mechanics. Nevertheless, the long-time behaviour of this process and its Lorentzian version may
have many things to say about the geometry at infinity of spacetime; this might happen to be of some (theoretical)
physical interest. We shall discuss this point in Section 3.3.2.

2. The relativistic Ornstein–Uhlenbeck process (R.O.U.P.) was introduced by F. Debbasch, K. Mallick and J. P. Rivet
in the article [13] as a model of diffusing particle in a fluid at equilibrium. It corresponds to the (V , Id)-diffusion
with

V
(
(m,g)

) = −α grad(lnγ )

for some positive constant α. We have written here γ for q(ε0,g0) and grad for the gradient in H. In this case,
the dynamics driving process β is not equal to the Brownian motion w. The existence for this process of an
invariant measure of the form6 ae−bγ dm ⊗ dg found by Jüttner in [25] was a motivation for its introduction; see
the introduction of the article [13]. We shall see in the general framework of Section 3.2, that this OR1,3-valued
diffusion gives rise to an HR1,3-valued diffusion, which is the R.O.U.P. as defined in [13] and the subsequent
works of the authors and their co-authors.

3. Last, Dunkel and Hänggi introduced in their article [17] a kind of mixing of the previous two models in which
the frame zs = es , as in the Dudley–Franchi–Le Jan diffusion, and V is constructed in such a way that the process
admits the same awaited invariant measure as the R.O.U.P.

We shall come back to these models in the general framework of Section 3.

(f) Non-isotropic medium. This way of defining (V , z)-diffusions has the advantage to be flexible enough to provide
models of what should be a relativistic diffusion in a non-isotropic medium. We shall take into account the non-
isotropy of the motion replacing the up to now isotropic input ◦dws by a non-isotropic semimartingale in Eqs (2.4) and
(2.5) of dynamics. Setting for instance M = diag(1,1,2) and denoting by {Bs}s≥0 an R3-valued Brownian motion, the
use in the R.O.U.P. dynamics of an input ◦dws = M◦dBs will give rise to a motion in a medium where one spacelike
(fixed) direction differs from the others. One could also replace w by any continuous semi-martingale to adapt the
model to a given situation. Jumps could even be introduced to take into account possible shocks.

The article [4] of J. Franchi and J. Angst proposes another model in Minkowski spacetime of random dynamics in
a non-isotropic medium.

(g) Probabilistic matters. Let us be more precise in the definition of a (V , z)-diffusion.7 Let (W, {Ht }t≥0) denote
the Polish space C(R+,OR1,3), endowed with the filtration generated by its co-ordinate process. Let z : R+ × W →
OR1,3 be a previsible path functional. A (V , z)-diffusion will consist in the datum of a filtered probability space
(Ω, {Ft }t≥0,P) satisfying the usual conditions, an ({Ft }t≥0,P)-Brownian motion w on R3, and a C(R+,OR1,3)-
valued process e defined on (Ω, {Ft }t≥0) such that Eqs (2.4) and (2.5) hold. These sorts of details will be implicit in
the sequel.

Existence and uniqueness results exist for equations such as (2.4) and (2.5). Consult [34] and the references given
therein for example. These issues will raise no problem in the example we shall consider.

We should apologize for the mis-use of the word “diffusion” in this context, as it is usually used when zs(e·) = z(es),
which is not supposed here. We have chosen to keep this denomination in reference to the situation it modelizes. The
word “diffusion” will keep in the sequel its usual meaning, and we shall always write (V , z)-diffusion for a process of
our class.

Last, we shall use the notation {es}s≥0, indexing the trajectories by R+, regardless of the possibly finite lifetime of
the process. One can add a cemetery point to the space to deal with such issues.

5Note that we have uniqueness up to a time scaling by a constant in the H-Brownian motion {g0
s }s≥0.

6The measure dg is a Haar measure on the unimodular group SO0(1,3), and a and b are positive constants.
7Refer to the Chapter V.8 of the book [34] by Rogers and Williams for all this paragraph.
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2.2. One-particle distribution function of Markovian (V , z)-diffusions

As explained in the introduction, the main aim of his article is to convince the reader of the usefulness of a pathwise
approach to relativistic diffusions. This section will illustrate this point giving a clear definition of the one-particle dis-
tribution function of a (V , z)-diffusion. We refer to the article [14] of F. Debbasch, J. P. Rivet and W. A. van Leeuwen
for a physical discussion of this concept of statistical physics and for the interest of a clear definition of this notion.8

We shall investigate the general situation on a Lorentzian manifold in Section 3.3. Let us first describe the framework
of the problem.

(a) Framework. We shall suppose in this section that

zs(e·) = z(es)

for some function z : OR1,3 → OR1,3 such that z((m,g)) = (m, (f 0(e), . . . , f 3(e))). It follows that the process
{es}s≥0 = {(ms,gs)}s≥0 is an OR1,3-valued Markov process. Write A(e), or simply A, for the 3 × 3 matrix with
coefficient (i, j) ∈ [1,3]2 equal to q(f i(e),gj ). The generator of the (V , z)-process is given by the formula

L := H0 + V + λ

2
ViB

ijVj , (2.7)

where B = (A−1)∗A−1 is a 3 × 3 non-negative symmetric matrix. Here as in the sequel, a vector field is seen as a first
order differential operator; so, an expression like ViB

ijVjf should be more properly written Vi(B
ijVj (f )). The use

of the notation

λ := q
(
f 0(e),g0)

will be useful to shorten formulas, here as in the sequel. Recall we have supposed that the flow of V preserves each
fiber of the projection (m,g) ∈ OR1,3 → m ∈ R1,3.

We shall denote by dg the Haar measure on (the unimodular group) SO0(1,3) whose image by the projection
g ∈ SO0(1,3) �→ g0 is the Riemannian measure on H. Last, we shall associate to any subset A of R1,3 the (principal)
bundle

OA := {(
m′,g′) ∈ OR1,3;m′ ∈ A,g′ ∈ SO0(1,3)

}
.

If A is a spacelike hypersurface of R1,3, denote by σA(dm′) the volume measure induced by q on A; we define the
measure

VOLOA

(
dg′ ∧ dm′) := dg′ ⊗ σA

(
dm′)

on the bundle OA.

(b) One-particle distribution function. A few more notations are needed to define the one-particle distribution
function and state its main properties. Fix a point e = (m,g) ∈ OR1,3, and define the hyperplane of R1,3

Ve = {
m′ ∈ R1,3;m′ ∈ m + (

g0)⊥};
denote by He the hitting time

He = inf{s > 0; es ∈ OVe}.
We shall associate to any α ∈ SO0(1,3) and any t ∈ R the hyperplane Vt,α := {m′ ∈ R1,3;q(m′, α0) = t} and the
hitting time Ht,α = inf{s > 0; es ∈ OVt,α}.

8The article [24] of W. Israel can also be consulted on this subject.
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Fig. 2. Re-parametrized process.

Notice that the Liouville measure induced by q on OR1,3 is the product measure

VOL(dg ∧ dm) := dg ⊗ LEB4(dm).

We shall denote by L∗ the L2(VOL)-dual of the operator L; we have V ∗
i = −Vi and H ∗

0 = −H0.

Theorem/Definition 2.

1. Let e0 ∈ OR1,3 be different from e. The random variable eHe1He<∞ has under Pe0 a smooth density f (e0; (m′,g′))
with respect to the measure VOLOVe(dg′ ∧ dm′) on OVe.

The function e ∈ OR1,3\{e0} �→ f (e0; e) is called the one-particle distribution function of the (V , z)-diffusion
started from e0.

2. We have

Ee0

[
f (eHt,α )

] =
∫

f (e)q
(
α0,g0)f (e0; e)VOLOVt,α

(de) (2.8)

for any bounded function f on OVt,α .
3. The function f (e0; ·) satisfies the equation

L∗f (e0; ·) = 0 (2.9)

on OR1,3\{e0}.

It is clear from its definition that this function is defined in an intrinsic way; physicists use to say that f (e0; e) is
a Lorentz scalar. We shall prove in Section 3.3.1 a similar theorem in the general framework presented in Section 3.
We have chosen to present here a heuristic proof of point 2 and to give a detailed proof of the general statement after
Proposition 6, in Section 3.3.1. Points 1 and 3 of Theorem/Definition 2 are proved in detail below.

Proof of Theorem/Definition 2.
1. The strategy of the proof is simple. Given e = (m,g), we are going to re-parametrize the process as a function of

the time associated to the frame g and see that f (e0; ·) is the density with respect to VOLOVe of the position at some
fixed time of a hypoelliptic diffusion.

Define the chronological past of OVe as the set I−(OVe):{(
γ (0),g′) ∈ OR1,3;γ future-oriented timelike path from γ (0) to a point of the set m + (

g0)⊥
,g′ ∈ SO(1,3)

}
.

The random variable eHe 1He<∞ being identically equal to 0 if e0 does not belong to the chronological past of OVe,
we shall suppose in the sequel that e0 belongs to it, in which case He is almost surely finite.
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Set t
g
0 = q(m0,g) and define the stopping times

∀t ∈ R, S
g
t = inf

{
s ≥ 0;q(

g0,ms

) = t
}
.

The process {eSt }t≥t
g
0

is the process e· re-parametrized by the time associated with g. It has generator

1

λg
L,

where λg = λg(g′) = q(g0,g′0). We shall write

eS
g
t
= ((

tg0 + xS
g
t

)
,g′

S
g
r

) ∈ OR1,3 with xS
g
t
∈ span

(
g1,g2,g3),

and shall look at

eg
t := (

xS
g
t
,g′

S
g
t

) ∈ O span
(
g1,g2,g3).

The random variable eHe is equal to m0 + t1g0 + eg
t1

, with t1 = q(m − m0,g0). We shall prove the first point of
Theorem 2 showing that the O span(g1,g2,g3)-valued diffusion eg· is a hypoelliptic diffusion. The distribution at time
t1 of this diffusion will then have a smooth density with respect to the volume element on O span(g1,g2,g3) to be
defined below. The measure VOLOVe being the image of the volume element by R1,3-translation by m0 + t1g0, this
will imply that eHe has a smooth density with respect to VOLOVe .

To complete this program we shall denote by ag := (x,g′) a generic element of O span(g1,g2,g3). Note that
since g has determinant equal to 1, the change of variable formula says us that the volume element induced by q

on the 3-dimensional vector space spanned by g1,g2, and g3 is the 3-dimensional Lebesgue measure. We shall write
VOLO sp(g1,g2,g3)(dg′ ∧ dx) = dg′ ⊗ LEB3(dx) the volume measure on the bundle O span(g1,g2,g3).

To describe the generator Lg of the process eg· , denote first by ∂x the differentiation operation in the direction of
the vector space span(g1,g2,g3) and decompose g′0 as

g′0 = λgg0 +
3∑

i=1

ẋigi .

Using these notations, we can write for any smooth function f

Lf

λg
= ∂tf + (∂xf )(ẋ)

λg
+ Vf

λg
+ λ

2λg
ViB

ijVjf.

So the generator Lg of the process eg· is given by the formula

Lgf = ∂xf (ẋ)

λg
+ Vf

λg
+ λ

2λg
ViB

ijVjf.

Write h
g
e0(t,dag) for the law of eg

t , t ≥ t
g
0 . As is well known, these distributions satisfy the heat equation

∂th
g
e0 = (

Lg)∗g
h

g
e0 , (2.10)

where (Lg)∗g is the L2(VOLO sp(g1,g2,g3))-dual of the operator Lg. Since the matrix B = (A−1)∗A−1 is symmetric and

V
∗g
i = −Vi , we have

(
Lg)∗g

h
g
e0 = −(

∂xh
g
e0

)( ẋ

λg

)
+ V ∗g

(
h

g
e0

λg

)
+ 1

2

(
ViB

ijVj

)(
λ

h
g
e0

λg

)
.
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It is easy to see on this formula that the operator ∂t − (Lg)∗g on R×O span(g1,g2,g3) satisfies Hörmander’s criterion
for hypoellipticity. It follows that h

g
e0(t, ·) has a smooth density with respect to the measure VOLO sp(g1,g2,g3)(dag)

on O span(g1,g2,g3), for t > q(m0,g0). We have seen that it implies that eHe has a smooth density with respect to
VOLOVe .

2. As said above, we present here a heuristic proof of point 2. The reader will find the detailed proof of the general
statement after Proposition 6, in Section 3.3.1. We are going to explain the situation for Dudley’s process, nothing
else than additionnal notations being necessary to understand the general case of Markovian (V , z)-diffusions.

• We shall get a clearer image of the situation considering the continuous dynamics described by equation

des = H0 ds + Vi◦dwi
s (2.11)

as the dynamics of a random walk {̃es}s≥0 = {(m̃s, g̃s)}s≥0 making infinitesimal steps.

Given an ‘infinite’ integer N (i.e. a nonstandard hyperfinite integer), the quantity 1
N

is a positive infinitesimal.
Let us denote by {Δk} a ‘sequence’ of i.i.d. Rd -valued centered Gaussian random variables with variance 1

N
. The

dynamics of the random walk is defined on each interval of the form [ k
N

, k+1
N

), k ≥ 1 as follows.

• The process g̃s has a jump at time k
N

: g̃k/N = g̃(k/N)− . exp(EiΔwi
k). The process {m̃s}s≥0 has no jumps at that time.

• g̃s is constant and dm̃s = g̃0
s ds, in the time interval ( k

N
, k+1

N
).

g̃s is constant and dm̃s = g̃0
s ds in the first interval [0, 1

N
). The statement “The random walk {̃es}s≥0 provides the

solution of Eq. (2.11)” can be given a precise meaning in the framework of non-standard analysis, and holds true,
when correctly interpreted. This way of saying things is, in any case, useful (justified) and intuitive.

Notations. We shall denote by P̃e0 the law of the random walk started from e0. Given two possibly infinite real numbers
a and b, we shall say that a and b are equal up to a negligible quantity if a

b
is infinitesimally close to 1; we shall write

a � b. The notation Haar(·) will stand for a Haar measure on SO0(1,3).

• Formula (2.8) will hold true if we can prove it for any function f on OVt,α of the form

f
(
m′,g′) = 1A

(
m′)1G

(
g′),

for sufficiently small infinitesimal open sets A ⊂ Vt,α and G ⊂ SO0(1,3). We shall suppose, without loss of generality,
that A×G is a (connected) neighbourhood of a given point e = (m,g) ∈ OVt,α . We shall associate to e the hyperplane
Ve = {m′ ∈ R1,3;m′ ∈ m + (g0)⊥}. To distinguish the Lebesgue measures induced by q on Vt,α and Ve, we shall
denote them by LEB

t,α
3 and LEBe

3 respectively.

If we let A′ be the set of points of Ve of the form x + sg′0, for x ∈ A, s ∈ R and g′ ∈ G, the LEBe
3-measure of A′

is equal to

LEBe
3

(
V ′) � q

(
α0,g0)LEB

t,α
3 (A).

Let now M be an infinite integer and let run M independent infinitesimal random walks started from e0 ∈ OR1,3.
Write NA×G and NA′×G for the (random) numbers of trajectories of the random walk that hit OVt,α and OVe in
A × G and A′ × G respectively. If A is small enough for NLEB

t,α
3 (A) to be infinitesimally close to 0 and M is large

enough,9 (P⊗M
e0

-almost surely) ‘almost all’ the trajectories of the random walks hitting A × G will hit it in a time
interval where gs is constant. As the length of this time interval is much bigger than the time needed by any timelike
path to go from A to A′, the trajectories of the random walk will hit A′ × G on the same time interval where they hit
A×G. As only a negligeable quantity of trajectories hitting A′ ×G will not hit A×G, we shall have on the one hand

NA×G � NA′×G, P̃⊗M
e0

-almost surely.

9Equal to an infinite integer depending on N and LEB
t,α
3 (A).
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As the strong law of large numbers ensures us that

NA×G � M × hα
e0

(e)Haar(G)LEB
t,α
3 (A),

NA′×G � M × f (e0; e)Haar(G)LEBe
3

(
A′) � M × q

(
α0,g0)f (e0; e)Haar(G)LEB

t,α
3 (A),

on the other hand, it follows that

hα
e0

(e) � q
(
α0,g0)f (e0; e).

Both quantities being standard reals, we actually have equality.
3. We are now going to use Eq. (2.8) to give a proof of Eq. (2.9). This will be done fixing a frame α ∈ SO0(1,3)

and proving that we have L∗(
hλ

e0
λα

) = 0, where we have denoted by λα the function e = (m,g) �→ q(α0,g0).
A frame α having been chosen, define the stopping times

∀r ∈ R, Sr = inf
{
s > 0;q(

α0,ms

)
> r

}
,

and the process eα in the same way as the process eg has been defined above. It can be proved as above that the random
variable eα

r has a smooth density hα
e0

(r, ·) with respect to VOLO sp(α1,α2,α3), under Pe0 ; it is defined for r ≥ q(m0, α
0).

The function hα
e0

(r, ·) is defined as equal to 0 for r < q(m0, α
0). Identifying (r, (m′,g′)) ∈ R × (O sp(α1, α2, α3)) to

the point (rα0 + m′,g′) of OR1,3, the function hα
e0

will be seen as a function on OR1,3\{e0}. Three more notations
will be needed: Lα will stand for the generator of the O span(α1, α2, α3)-valued diffusion eα· , we shall write Dmhα

e0

for the partial differential of hα
e0

with respect to m(10) and use the notation Dx to refer to the partial differentiation
operation in the direction of span(α1, α2, α3); last we shall decompose a vector g0 ∈ H as

g0 = q
(
g0, α0)α0 +

3∑
i=1

ẋiα
i .

Note the relation

(
Dmhα

e0

)( g0

q(g0, α0)

)
= ∂rh

α
e0

+ (
Dxh

α
e0

)( ẋ

q(g0, α0)

)
,

which can be written

−(
Dxh

α
e0

)( ẋ

q(g0, α0)

)
= −H0

(
hα

e0

q(g0, α0)

)
+ ∂rh

α
e0

. (2.12)

Recall that we write λα for q(α0,g0). It can be proceeded like in the proof of Theorem/Definition 2 to show that
hα

e0
(·, ·) satisfies the heat equation

∂rh
α
e0

= (
Lα

)∗α
hα

e0
, (2.13)

where

(
Lα

)∗α
hα

e0
= −(

Dxh
α
e0

)( ẋ

λα

)
+ V ∗α

(
hα

e0

λα

)
+ 1

2

(
ViB

ijVj

)( λ

λα

hα
e0

)

and the operation ∗α is the L2(VOLO sp(α1,α2,α3))-dual operation. Using Eq. (2.12), the heat Eq. (2.13) can be written

−H0

(
hα

e0

λα

)
+ V ∗α

(
hα

e0

λα

)
+ 1

2

(
ViB

ijVj

)(
λ

hα
e0

λα

)
= 0. (2.14)

10The map Dmhα
e0 |e is for any e ∈ OR1,3 the linear form ζ ∈ R1,3 �→ limη,0

hα
e0

(e+ηζ )−hα
e0

(e)
η ; this limit is denoted by (Dmhα

e0 |e)(ζ ), or simply

(Dmhα
e0

)(ζ ).
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Note that since the vector field V acts only on SO0(1,3) we have V ∗α = V ∗; we have recalled above that H ∗
0 = −H0.

So, Eq. (2.14) can take its final form: L∗(
hα

e0
λα

) = 0, i.e. L∗f (e0; ·) = 0. �

This theorem/definition needs a few comments.

• Formula (2.9) is fundamental in the approach developped by Debbasch, Rivet and their co-workers. Their
analysis of the situation entilery rests on a similar transport equation. Although it can be argued that since Eq. (2.8)
implies that the one-particle distribution function determines the hitting distributions of the process at any times of
any rest frame, a theorem of Blumenthal–Geetor and McKean ensures us that this function essentially determines the
process, such a position should be taken with care. Indeed, the development of stochastic analysis has shown that one
can gain much insight in the situation looking at the pathwise behaviour of processes rather than looking at analytic
quantities such like their semi-group. We hope to illustrate this point throughout this article. In any case, Theorem 2
makes it clear that the fundamental quantity is not a hitting distribution hα

e0
but the one-particle distribution function;

a fact which was not put forwards in the article [8] of C. Barbachoux, F. Debbasch and J. P. Rivet.
• Equation (2.9) has a clear meaning from a Markov process point of view. It says that the measures

f (e0; e)VOL(de) on OR1,3 are invariant for the (V , z)-diffusion. It is tempting to ask wether these measures and
their possible renormalized limits as e0 goes to infinify are sufficient to describe the set of all invariant measures. For
instance, it would be interesting, in the study of the R.O.U.P. in Minkowski space, to see if the strong recurrence of the
process {gs}s≥0 is sufficient to prove that the Jüttner measure ae−bγ VOL(de), alluded to above, is the only measure
we obtain sending e0 at infinity, while imposing the limit measure to have mass in any open set.11 Even though a
complete answer of the general question is out of reach at the moment, we shall come back in Section 3.3 to related
matters in the general framework that we are going to present now.

3. Relativistic diffusions in a Lorentzian manifold

We shall now proceed to defining (V , z)-diffusions on a Lorentzian manifold. Let (M, q) denote a (1+d)-dimensional
Lorentzian manifold, endowed with its Levi–Civita connection. As in Minkowski space, we shall construct the dynam-
ics in a bigger space than M. We shall first recall in Section 3.1(a) how one can construct this space (the orthonormal
frame bundle over (M, q)) and the analogue of the above vector fields H0 and Vi before defining the class of (V , z)-
diffusions in Section 3.1(b). We shall then see in Section 3.2 that some situations give rise to a sub-diffusion in the
(future-oriented) unit tangent bundle of M. Several examples will be discussed before returning in Section 3.3 to the
study of (V , z)-diffusions. We shall define in this section the one-particle distribution function of the (V , z)-diffusion
and prove its fundamental property. This result will shed some light on the structure of L-harmonic functions (Sec-
tion 3.3.2) and will provide a simple proof of a general H-theorem (Section 3.4).

Hypothesis. We shall suppose from now on that (M, q) is oriented and time-oriented.

3.1. (V , z)-diffusions in OM

(a) Geometrical objects in play. Given some point m ∈ M, it will be useful to consider an orthonormal basis
{g0, . . . ,gd} of the tangent space TmM to M at m as an isometry from (R1,d , q) to (TmM, q);12 so, strictly speaking,
gi = g(εi).

The orthonormal frame bundle of M is just the collection

OM = {
(m,g);m ∈ M,g an orthonormal basis of TmM

}
.

We shall write OU = {(m,g);m ∈ U ,g an orthonormal basis of TmM} for any subset U of M. One defines the man-
ifold structure of OM as follows. This structure being local, it suffices to define the structure of OU for any (small)

11Other measures can be obtained if we do not impose this condition.
12The letter q has here two different meanings.
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domain U of M; take it small enough to be the domain of a chart x : U → R1+d . Applying Gram–Schmidt orthonor-
malisation procedure to the family of vectors {∂xi }i=0,...,3 in each tangent plane, on defines a section σ : U → OU .
The identification

i : U × O(1,3) → OU , (m,g) �→ (
m,σ(m)g

)
gives OU its differentiable structure (compatible with changes of charts).13 Note that O(1, d) acts on OM on the
right: the action of g′ on (m,g) in the above chart i is

(m,g).g′ = (
m,σ(m)gg′). (3.1)

Note that OM has several connected components. We shall be interested in dynamics leaving these components
globally fixed. We choose to consider only one of them, specified by the requirement that g0 should be future-oriented
and that the orientation of g should be direct (we have supposed the space oriented). The above action of the connected
component of identity in SO(1, d) preserves our connected component. We shall also denote it by OM, as there will
be no risk of confusion.

Action (3.1) enables us to define vector fields on OM:

Vi

(
(m,g)

) = d

dt

∣∣∣∣
t=0

(
(m,g).etEi

)
, i = 1, . . . , d.

Last, we shall define the vector field H0 as the infinitesimal generator of the geodesic flow on OM. The dynamics
{(ms,gs)} of this flow is described by asking that dms

ds
= g0

s , and gs should be transported parallely along the path {ms}.
One has for instance H0((m,g)) = (g0,0) in Minkowski’s flat spacetime, in accordance with the previous definition
of H0 given above.

Notation. We shall write e for a generic element of OM.

(b) (V , z)-diffusions. We are going to define (V , z)-diffusions following the same approach as in Minkowski space.
We shall thus consider these diffusions as random perturbations of the flow of a differential equation in OM of the
form

des = H0(es)ds + V (es)ds

where V is any vector field on OM. As in Section 2.1, we shall not modelize the surrounding medium itself but just its
action on the dynamics. This action will be given through the datum of an OM-valued previsible process {zs}s≥0 such
that zs(e·) = zs((m·,g·)) = (ms, fs) for some orthonormal basis fs of Tms M. Roughly speaking, it has the property
that, when computed in the rest frame zs(e·), i.e. using its associated time, the acceleration of m· has a deterministic
part and a random part which is Brownian in any spacelike direction belonging to span(f 1

s (e·), f 2
s (e·), f 3

s (e·)).
Define {As}s≥0 as the d × d random matrix process with coefficient (i, j) ∈ [1, d]2 equal to q(f i

s ,gj
s ) at time s,

and set

◦dβs = q
(
f 0

s ,g0
s

)1/2
A−1

s ◦dws. (3.2)

Definition 3. Define the Rd -valued process β as above. A (V , z)-diffusion in (M, q) is an OM-valued process
{es}s≥0 = {(ms,gs)}s≥0 satysfying the stochastic differential equation

◦des = H0(es)ds + V (es)ds + Vi(es)◦dβi
s . (3.3)

If you do not feel comfortable with this stochastic differential equation, we shall give a step-by-step description of
the dynamics in the next section. The remarks on probabilistic formalism and existence and uniqueness results made in

13Consult for instance chapter 10 of the book [27] of P. Malliavin.
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Section 2.1(g) apply here. Let us emphasize the interest that the above general definition might have for modelization.
It provides a model of evolution of an object which has internal parameters (such as a spin) influencing the way it
interacts with the surrounding medium, and whose value at some proper time depends on its past history. Challenging
questions arise from this non-Markovianity of the model; yet, as only Markovian examples have been studied so far,
we shall mainly explore this situation in the sequel.

Example (Franchi–Le Jan diffusion using co-ordinates). This diffusion is the (0, e·)-diffusion, first defined in [21].
Note that the (0, e·)-diffusion is essentially the unique (V , z)-diffusion determined entirely by the geometric back-
ground (M, q). We asked in Section 2.1(e) which entity could give rise to the random excitement Vi(es)◦dwi

s that en-
ters in the equations of motion of the Dudley(–Franchi–Le Jan)-diffusion process in the empty spacetime of Minkowski.
This objection disappears when we consider the (0, e·)-diffusion in any spacetime (M, q) containing matter. It is in
that case possible to add to the macroscopic description of matter given through the stress-energy-momentum (non-
null) tensor a microscopic (quantum) description of matter from which randomness can be infered to come.14

Equation (3.3) takes for this process the form

◦des = H0(es)ds + Vi(es)◦dwi
s.

To describe how we can write Eq. (3.3) using co-ordinates, note first that the data of local co-ordinates xi on
M induces local co-ordinates on T M: a vector p ∈ TmM will be written p = ∑

i=0,...,d pi ∂xi . Denoting then by
Γ : R1+d ×R1+d → R1+d the Christofel map associated with these co-ordinates, the dynamics of the Franchi–Le Jan
diffusion takes the form

◦dms = g0
s ds,

◦dg0
s = −Γ

(
g0
s ,g0

s

)
ds +

∑
i=1,...,d

gi
s◦dwi

s, (3.4)

◦dgj
s = −Γ

(
g0
s ,gj

s

)
ds + g0

s◦dw
j
s for j = 1, . . . , d.

These equations have to be written using the preceding co-ordinates. If one wishes to use Ito differentials, the system
becomes

dms = g0
s ds,

dg0
s =

(
−Γ

(
g0
s ,g0

s

) + d

2
g0
s

)
ds +

∑
i=1,...,d

gi
s dwi

s, (3.5)

dgj
s =

(
−Γ

(
g0
s ,gj

s

) + 1

2
gj
s

)
ds + g0

s dw
j
s for j = 1, . . . , d.

Remark that if we write Qm the matrix of the metric in these co-ordinates at point m, then the co-variance matrix of
the martingale

∑
i=0,...,d gi

s dwi
s is equal to g0

s (g
0
s )

∗ − Q−1
ms

.15 The fact that it depends only on ms and g0
s implies that

the sub-process {(ms,g0
s )}s≥0 is itself a diffusion. The investigation of such situations is the object of the next section.

Note, in passing, that since we can read the matrix Qms on the co-variance of the martingale part of g0
s , it means

that the local geometry of (M, q) can be recovered from the pathwise study of the sub-process {(ms,g0
s )}s≥0. To

determine what amount of information on the large scale structure of the space (M, q) can be obtained from the
pathwise study of this process or of the (V , z)-diffusion is a much harder task; we shall come back to it in Section 3.3.2.

The heuristic explained in Section 2.1 and motivating the above definition of (V , z)-diffusions should make it clear
that (V , z)-processes should be considered as models of diffusion in a homogeneous medium. Note yet that the input
of a non-isotropic excitement in place of dw in Eqs (3.2), (3.3) would provide models of diffusions in a non-isotropic
medium.

14Consult the article [15] for results in this direction.
15We write here g0 for the vector of its co-ordinates in the basis {∂

xi }i=0,...,d .
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Hypothesis for the remainder of the article. With in mind the diffusion of particles in a fluid, we shall suppose from
now on that the flow of the vector field V leaves each fiber of the projection (m,g) ∈ OM �→ m ∈ M stable.

3.2. Sub-diffusions in HM

As emphasized in Section 2.1(a) in the framework of Minkowski spacetime, (V , z)-diffusions defined above can be
considered as models of random motion of an infinitesimal rigid object in a relativistic medium. It might be interesting
in some situations to define what could be the random motion of a point in such a medium. To investigate a physically
motivated classical framework, we shall concentrate on Markovian processes.

As noted after Definition 3, the (V , z)-diffusions are not Markovian unless we choose a Markovian previsible
process z:

zs(e·) = z(es).

This requirement is not sufficient yet to ensure that the sub-process {(ms,g0
s )}s≥0 of {es}s≥0 is itself a Markov process.

We give in paragraph (a) a simple condition which is proved to be sufficient in paragraph (b). Several examples are
examined in paragraph (c).

Throughout this section, we shall suppose z regular enough to have existence and strong uniqueness in the system
(3.2), (3.3). We shall denote by16

HM = {(
m,g0) ∈ T M;m ∈ M,g0 ∈ TmM future-oriented unit vector

}
the (future-oriented) unit sub-bundle of T M. This space is the phase space of the set of C 1 timelike paths in (M, q).
The map

π : OM → M

will denote the projection (m,g) �→ m, and π̃ : OM → HM the projection (m,g) �→ (m,g0).

(a) A sufficient condition to have a sub-diffusion in HM. In addition to the hypothesis π∗V = 0 made above, we
shall suppose that

• there exists a vector field V̂ on HM such that V is the horizontal lift of V̂ to OM.17

We shall begin our investigation with the particular case of the (0, e·)-diffusion of Franchi and Le Jan. Remember
equation (3.1) describing the action of O(1,3) on OM. This action induces a right action of O(3) ⊂ O(1,3) on OM,
which amounts to rotate the vectors g1,g2,g3 in the Euclidean space they generate and leaves HM ⊂ OM stable.
Given the Brownian input w in Eqs (3.2), (3.3), denote by

e(s, e0;w) (3.6)

the (unique strong) solution started from e0. We have for any g ∈ O(3)

π̃
(
e(s, e0g;w)

) = π̃
(
e(s, e0;gw)

)
.

Since gw is also a Brownian motion, the law of {π̃(e(s, e0;gw))}s≥0 does not depend on g ∈ O(3), but only depends
on π̃ (e0) ∈ HM. The sub-process {π̃(e(s, e0;w))}s≥0 is thus a diffusion in HM.

(b) A step-by-step description of the dynamics. The general case is covered by the following theorem.

16Recall that we have supposed (M, q) time-oriented.
17Denote by ϕt (·) the flow of the vector field V on OM and by {ϕ̂t }t≥0 the flow of V̂ on HM. The above hypothesis means that the point

ϕt (m, (g0,g1, . . . ,gd )) ∈ OmM is obtained by parallel transport of (g1, . . . ,gd ) along the path {ϕ̂s ((m,g0))}s≤t in HmM.
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Theorem 4. Suppose there exists a function z0 : OM → HM such that

• z0(e) = z0((m,g)
) ∈ HmM depends only on (m,g0), and

(3.7)
• z(es) = (

ms,
(
z0(es), f

1(es), . . . , f
d(es)

))
for some functions f 1, . . . , f d . Let (m,g0) ∈ HM. Then, given any choice of e0 ∈ OM such that π̃(e0) = (m,g0), the
law of the HM-valued process π̃(e(·, e0;w)) depends only on (m,p) and the function z0, and not on the particular
choice of f 1, . . . , f d and e0. The process π̃ (e(·, e0;w)) is a diffusion in HM.

We shall present a heuristic proof of this fact, the remaining work being just a matter of formalism. Equations (3.2)
and (3.3) are the mathematical expression of the following heuristic dynamics explaining how on constructs es+δs

from es .

1. Set ms+δs = ms + g0
s ds,

2. then, set g0
s+δs = g0

s + δg0
s + V̂(ms,g0

s )
δs. The increment δg0

s is the only vector of Tg0
s
(HmM) such that its

projection in span(f 1(es), . . . , f
d(es)) parallelly to z0((ms,g0

s )) is equal to the scaled Brownian increment
q(z0(es),g0

s )
1/2∑d

i=1f
i(es)◦dwi

s .
3. Last, transport parallelly {g1

s , . . . ,gd
s } along the increment δg0

s + V̂(ms,g0
s )

of g0
s .

Examining this description of the dynamics, we see that any previsible orthonormal transform of the basis
{f 1(es), . . . , f

d(es)} will leave the law of the Brownian increment unchanged, so that the law of δg0
s will also be

left unchanged. Note also that the changing e0 ∈ OM to another starting point with the same HM-projection will only
influence the dynamics of g1

s , . . . ,gd
s . These remarks justify Theorem 4. To put this argument in a polished probabilis-

tic form is a matter of formalism.

(c) Examples.

1. Dudley–Franchi–Le Jan diffusion in Minkowski spacetime [16,21]. We have already given its description in
Section 2.1(f), 2: {g0

s }s≥0 is a Brownian motion on H and ms = m0 + ∫ s

0 g0
r dr . The usual stochastic development

procedure can be applied to this process to construct its HM-version from its HR1,3-version; see [21], Theorem 1.
2. R.O.U.P. in Minkowski spacetime [13]. This process is the HR1,3-sub-process of the (V , Id)-diffusion on

OR1,3, where V ((m,g)) = −α grad(lnγ ), for some positive constant α and γ = q(ε0,g0). In this flat spacetime
with global co-ordinates (t, x), the dynamics may be re-parametrized by the time t ; the state space then becomes
{(x, q) ∈ R3 × R3}, where (t, x) are the co-ordinates of m and q is the span(ε1, ε2, ε3)-part of g0. With these no-

tations, γ = γ (q) =
√

1 + |q|2Eucl. The step-by-step description of the dynamics (or, more formally, the stochastic
differential Eq. (3.3)) immediately yields the following stochastic differential equations for (xt , qt ), where w is an
R3-Brownian motion:

◦dxt = qt

γ (qt )
dt,

(3.8)
◦dqt = −2α

qt

γ (qt )
dt + ◦dwt ;

this is the original description of the R.O.U.P. up to some constants.
Notice that the process {qt }t≥0 is a Kolmogorov diffusion in R3. It has a unique invariant measure μ, which

is a probability and has a density with respect to Lebesgue measure proportional to e−4αγ (q). As we have
lim|q|→∞(|4α∇γ |2 − 4α�γ )(q) = 16α2 > 0, a well known theorem ensures us that μ satisfies a Poincaré inequality.

As is also well known,18 this implies that the semi-group of the process {qt }t≥0 converges to equilibrium exponen-

18See for instance the book [1] of C. Ané et al.
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tially fast in L2(μ), with speed no greater than e−16(α2−δ)t , for any δ > 0. This fact sheds some light on the numerical
simulations made in Section 4 of the article [13].

R.O.U.P. in an arbitrary inertial frame.19 It might be enlightening to write down the equation of the dynamics
using the time r and the (x,q)-co-ordinates associated with any orthonormal frame g of R1,3. We shall write F(r,qr )

for the damping force in these co-ordinates; note that is depends on r and qr . Its precise expression is unimportant.
To take advantage of the description of the OR1,3 process given in the above step by step description of the

dynamics, and to take advantage of the irrelevance of the precise orthonormal frame {g1
s ,g2

s ,g3
s } of Tg0

s
H we use in

this construction, we chose to take as a basis of Tg0
s
H the family

{
g1 − (

g1,g0
s

)
g0
s ,g2 − (

g2,g0
s

)
g0
s ,g3 − (

g3,g0
s

)
g0
s

}
and write down the Vect(g1,g2,g3)-part of the increment of dg0

s as

(∗) =
∑

k=1,...,3

( ∑
j=1,...,3

(
gj − (

gj ,g0
s

)
g0
s ,gk

)◦dβ
j
s

)
gk.

In this expression, the matrix As used to define β has coefficient (i, j) equal to (εi,gj −(gj ,g0
s )g

0
s ); it depends only on

g0
s . Switching from the description in terms of proper time s to the evolution in terms of time r results in multiplying

(∗) by ( dr
ds

)1/2 = q(g0,g0
s )

−1/2 = γ (qr )
−1/2. This finally gives

◦dxr = qr

γ (qr )
dr,

(3.9)

◦dqr = F(r,qr )dr + γ (qr )
−1/2

∑
k=1,...,3

( ∑
j=1,...,3

(
gj − (

gj ,g0
r

)
g0
r ,gk

)◦dβ
j
r

)
gk.

The vector g0
r ∈ H is determined by qr . No other choice of g1

s ,g2
s ,g3

s would give something fundamentally simpler.
This complicated expression of the dynamics means nothing else than the inadequacy of the choice of co-ordinates to
describe it.

3. R.O.U.P. in the spacially flat Robertson–Walker spacetime [12]. This model of expanding universe is the prod-
uct R × R3 equipped with a metric of the form dt2 − a(t)2 dx2, where a > 0. As in the preceding example, one can
describe the trajectories of the R.O.U.P. using the absolute time t and the state space {(x, q) ∈ R3 × R3}. We shall

write γt (q) =
√

1 + a(t)2|q|2Eucl. The step-by-step scheme (or Eq. (3.3)) yields the equations of dynamics:

◦dxt = qt

γt (qt )
dt,

(3.10)

◦dqt = −2αa(t)2 qt

γt (qt )
dt + 1

a(t)
◦dwt ;

the gradient part in HmM gives rise to the term −2αa(t)2 qt

γt (qt )
dt , w is an R3-Brownian motion, and the 1

a(t)
◦dwt

term is the Brownian increment in the Euclidean space (R3,−a(t)2dx2).20 It can be proved that this diffusion has an
infinite lifetime.

4. Franchi–Le Jan diffusion in the spacially flat Robertson–Walker spacetime. We shall use the notation (m,g0)

for a point of HM to describe the dynamics of this process. Using the canonical co-ordinates (t, x) in R × R3 and
denoting by ((t, x), (ṫ , ẋ)) the associated co-ordinates in T M, we have seen in Eq. (3.5) that the equations of the

19Compare with the article [8].
20Compare the derivation of these equations with the approach of the article [12] of F. Debbasch. Note that the dynamics is described in this paper
not in HM ⊂ T M but in T ∗M.
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dynamics take the form21

dms = g0 ds,

dṫs =
(

3

2
ṫs − (

aa′)(ts)‖ẋs‖2
Eucl

)
ds + dMṫ

s , (3.11)

dẋs =
(

3

2
− 2

a(ts)

a′(ts)
ṫs

)
ẋs ds + dMẋ

s ,

where the R4-valued local martingale M = (Mṫ ,Mẋ) has co-variance(
ṫ2
s − 1 ṫs ẋ

∗
s

ṫs ẋs ẋs ẋ
∗
s + a−2(ts) Id3

)
.

It has been shown by J. Angst that this diffusion has an infinite lifetime. Remark that the R2-valued sub-process
{(ts , ṫs)}s≥0 is a diffusion. This kind of decomposition of the diffusion into smaller dimensional diffusions has been
the key of the previous investigations in Schwarzschild and Gödel’s spacetimes. See [21] and the article [20] of
J. Franchi.

3.3. One-particle distribution function

The aim of this section is to clarify the so-called notion of one-article distribution function in the general framework
of Markovian (V , z)-diffusions on any Lorentzian manifold. We shall define it properly in Section 3.3.1 and prove in
Theorem 11 that it satisfies a remarkable equation. This theorem will justify the analytic approach developped by F.
Debbasch and his co-workers, as exposed in [10] or [9] and the references cited therein. The relevance of this notion
in the study of L-harmonic functions will be described in Section 3.3.2.

The approach to one-particle distribution functions developped here is similar in spirit to the physical approach
exposed in the article [14], in a physical/mathematical style.22 It should be noted yet that only the special relativistic
situation is investigated in this article, whereas we deal below with the general relativistic case.

In order to ease the understanding of the situation, we shall make a hypothesis on the global geometry of the space
(M, q). We shall suppose the spacetime(M, q) strongly causal: every point of M has arbitrary small (connected)
neighbourhoods which no non-spacelike paths intersect more than once. This is a mild global assumption on the
geometry of the space, satisfied by most of the models of physical spacetimes. This excludes, yet, pathological spaces
where closed timelike paths exist, like Gödel’s spacetime.

We shall also use the following local property, shared by all Lorentzian open manifold. Any point has an open (rel-
atively compact connected) neighbourhood on which a time function is defined. By time function we mean a smooth
function whose level sets are spacelike hypersurfaces.23 We shall denote by Um such a neighbourhood associated to
a point m ∈ M. We shall suppose Um small enough to have the property that no non-spacelike paths intersect it more
than once. As a consequence, it will enjoy the following extra property. Any timelike path in (M, q) will hit any
spacelike hypersurface of Um at most once. This property will be the main ingredient used to define of the one-particle
distribution of (V , z)-diffusions.

3.3.1. One-particle distribution function
The initial point e0 of the (V , z)-diffusion will be fixed throughout this paragraph. Given a point e = (m,g) ∈ OM,
different from e0, define the collection

Ve = {
V; spacelike hypersurfaces of M contained in Um and such that m ∈ V and TmV = (

g0)⊥}
.

21Consult for instance Proposition 35, p. 206 of the book [30] by O’Neill for the computation of the Christoffel symbols in a warped product.
22Consult also the article [24] of W. Israel for a similar point of view.
23We shall construct these neighbourhoods in the beginning of the proof of Proposition/Definition 5.
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Associate to any V ∈ Ve the hitting time

H = inf{s ≥ 0;ms ∈ V}.
Given any point m′ in M we shall denote by VOLm′(dg) the Haar measure on Om′M, normalized in such a way that
its projection on Hm′M is the Riemannian volume element induced by q . Recall the definition of OV = {(m̂, ĝ) ∈
OM; m̂ ∈ V, ĝ ∈ TmM}. Let us insist on the fact that even if V is a sub-manifold of M, the element g′ of a point
(m̂, ĝ) ∈ OV is not an orthonormal basis of Tm̂V, but an orthonormal basis of Tm̂M. We shall write ê = (m̂, ĝ) for a
generic element of OV and shall denote by σV(dm̂) the volume element induced by q on V. With these notations, we
shall endow the bundle OV with the measure

VOLOV(d̂e) = VOLm̂(d̂g) ⊗ σV(dm̂).

Recall that the point e = (m,g) ∈ OM has been fixed above.

Proposition/Definition 5. Let V ∈ Ve.

1. The random variable eH 1H<∞ has a smooth density fV(e0; ê) with respect to the measure VOLOV(d̂e) on OV.
2. We have fV′(e0; e) = fV(e0; e) for any other V′ in Ve.

So this quantity fV(e0; e) is independent from V ∈ Ve; call it the value at point e of the one-particle distribution
function of the (V , z)-diffusion started from e0. We shall denote it by f (e0; e); it is defined for e �= e0.

As is clear from its definition, this function takes the same value on points with the same HM-projection. Given
any point e0 ∈ OM, we shall adopt the usual conventions and shall denote by

I+(e0) = I+(
(m0,g0)

) = {(
γ (1),g′) ∈ OM;γ future-oriented timelike path, γ (0) = m0,g′ ∈ Oγ (1)M

}
the chronological future of e0. This is an open set of OM. It comes from the support theorem of Stroock and Varadhan
that f (e0; ·) is positive in I+(e0) and null outside the closure of I+(e0).24

We describe here the proof of Proposition/Definition 5 without technicalities.
We use the same idea as in Section 2.2 where a family of constant time hyperplanes was used to re-parametrize the

process. These global objects will be here replaced by local ones: the normal variation {Vε}ε∈(−η,η) of the spacelike
hypersurface V. Their local definition is illustrated in Fig. 3. Suppose that e0 belongs to V−η; the timelike path {es}s≥0

Fig. 3. Constructing the one-particle distribution function.

24In Minkowski spacetime, this result comes from Proposition 8 in the article [5] of I. Bailleul. A similar proof can be given in the general
framework of Markovian (V , z)-diffusions on any OM.
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will then hit each Vε once, at increasing ε. So we can use ε as a time parameter in place of s. Using the flow of the
normal variation, we can consider the re-parametrized path as a hypoelliptic diffusion in V. We shall then get the
conlcusion from Hörmander’s theorem on hypoellipticity.

The second point of Proposition/Definition 5 is established using the property of the sets Um mentionned in the in-
troduction. Indeed, suppose that V′ and V not only have the same tangent space at m but are equal in a neighbourhood
U of m in V. Then, since V′ is a spacelike hypersurface of M contained in Um and since no spacelike path of (M, q)

can hit V′ or V more than once, the set of trajectories of the (V , z)-process hitting OV′ in OU is the same as the set
of trajectories hitting OV in OU . So the densities of eHV′ 1HV′<∞ and eHV

1HV<∞ are under Pe0 equal on OU , i.e.
fV′(e0; ê) = fV(e0; ê) for any ê ∈ U . Shrinking U to {m} formally gives the second point of Proposition/Definition 5.

Proof of Proposition/Definition 5.
1. Normal variation of a spacelike hypersurface. Let V ∈ Ve. For m̂ ∈ V and ε small enough, define φε(m̂) as the

position at time ε of the geodesic started from m̂ leaving V orthogonally, in the future direction. Then there exists
(as a consequence of the local inversion theorem) a positive constant η and an open set U ⊂ M such that the map
φ : (−η,η) × V → U , (ε, m̂) �→ φε(m̂) is a diffeomorphism. It has the following properties, where we write Vε for
φε(V).

• φ0(m̂) = m̂,
• ∂εφε(m̂) ∈ Hφε(m̂)M, and
• ∂εφε(m̂) is orthogonal to Tφε(m̂)Vε .

The family of spacelike hypersurfaces {Vε}ε∈(−η,η) is called the normal variation of V. The open set U has the
function ε as a time function.25 We shall suppose without loss of generality that U is diffeomorhic to an open set
of R1+d . The diffeomorphism φ can be extended to (−η,η) × OV → OU . To that end, given ε ∈ (−η,η) transport
parallelly g ∈ Om̂M along the path {φt (m̂)}t∈[0,ε]; write T

φ
ε←0g for the element of Tφε(m̂)M obtained that way. The

map (
ε, (m̂,g)

) ∈ (−η,η) × OV → (
φε(m̂), T

φ
ε←0g

) ∈ OU

is easily seen to be a diffeomorphism extending φ. We shall still denote it by φ.

Notations. Given a point m ∈ Vε , we shall denote by �(m) the future unit timelike vector orthogonal to TmVε . We
can extend this vector fields � on U ⊂ M to a vector field on OU lifting it horizontally; we shall still denote it by � .
In addition to this vector field � on OU we shall need some more notations.

• γ := q(�(e),g0) will be a function of e = (m,g) ∈ OM.
• The ∗OVε -operation will stand for taking the L2(VOLOVε

)-dual.
• Last, Hε will denote the hitting time of OVε ⊂ OM.

Given a point e ∈ OM, we shall denote by I−(e) its timelike past:

I−(e) = I−(
(m,g)

) = {(
γ (1),g′) ∈ OM;γ past-oriented timelike path, γ (0) = m,g′ ∈ Oγ (1)M

}
.

The timelike past of a set will be the union of the timelike past of its elements.
(a) We shall suppose first that e0 belongs to OU . If e0 = (m0,g0) does not belong to the (closure of the) timelike

past of V, then no timelike path started from m0 can ever hit V, so the function f (e0; ·) is null in a neighbourhood of
OV. As we are interested in what happens near OV, we shall make the hypothesis that e0 belongs to the timelike past
of V. We shall suppose, without loss of generality , that e0 ∈ V−η; it will be fixed throughout this paragraph.

As the hitting times Hε will be Pe0 -almost surely finite under the preceding hypothesis, we can consider the re-
parametrized process {eHε }ε∈(−η,η); it has generator γ −1L. We shall decompose this operator under the form

∀e = φε(̂e),
Lf

γ
(e) = (�f )(e) + L̂(f ◦ φε)(̂e) = (�f )(e) + (Lf )(e), (3.12)

25These sets U are those used in the introduction to construct the sets Um.
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where L̂ is a (smooth) second order differential operator on OV, and where, as a consequence, L acts only on OVε .
Now, define the OV-valued process {̂eε}ε∈(−η,η) := {φ−1

ε (eHε)}ε∈(−η,η) and denote by �̂ε its time-dependent generator.
The vector fields V and Vi acting only on the fibers of the projection OM → M, it is easily seen that �̂ε is a hypoelliptic
operator, so the random variable êε has for any ε ∈ (−η,η) a smooth density with respect to VOLOV. It follows that
eH = ê0 also has a smooth density with respect to VOLOV.

(b) To deal with the general case where e0 does not belong to OU , we can suppose without loss of generality that
V is a subset of a spacelike hypersurface V′ such that the analysis of point (a) applies and such that any timelike path
hitting OU hits V′

−η′ before. Then, denoting by h(e0; ê)VOLOV′(d̂e) the smooth hitting distribution of OV′ by the
process e· under Pe0 , we have

∀A ⊂ OV, Pe0(eH ∈ A,H < ∞) =
∫

A

(∫
h(e0; ê)f

(̂
e; e′)VOLOV′

−η′ (d̂e)
)

VOLOV

(
de′);

from which we conclude that the random variable eH 1H<∞ has under Pe0 a smooth density with respect to VOLOV,
equal to fV(e0; e) = ∫

h(e0; ê)f (̂e; e′)VOLOV′
−η′ (d̂e).

2. The formal proof of this point proceeds using a slightly different point of view than the heuristic described before
the beginning of the proof of Proposition/Definition 5. Fix e = (m,g) ∈ OM and let η0 > 0 be smaller than the radius
of definition of the (Lorentzian) exponential map expm :TmM → M, and small enough for the geodesic ball of radius
η0 to be included in Um. Given η < η0, denote by Aη the hypersurface of M defined as

Aη := {
expm(sT ); |s| < η,T ∈ (

g0)⊥}
.

For η0 small enough, the hypersurface Aη0 will be spacelike; pick such an η0. Denote also by Bη the set of points of
M of the form expm′(sU) for m′ ∈ Aη, |s| < η2 and U ∈ Tm′M.

The set Bη has two important properties. We use the notation V for any spacelike hypersurface belonging to Ve.
Recall that σV stands for the volume element induced by q on V:

VOL(Bη)

ηd+2
−→
η,0+ cd (3.13)

If we write VBη for the intersection of V with the chronological past and future of Bη in Um, we have

σV(VBη)

ηd
−→
η,0+ cd . (3.14)

The constant cd appearing above is the Euclidean volume of the unit ball of Rd . Given now any hypersurface V ∈ Ve,
0 < η < η0 and a positive integer N , run N independent (V , z)-diffusions started from e0. We shall write e(i)

H (i) for the

random position of the ith diffusion stopped at the random time H(i) where it hits OV (provided this time is finite).
Associate to a given real valued Lipschitz function ϕ on OUm the random variable

FN(η) :=
∑

i=1,...,N

ϕ
(
e(i)

H (i)

)
1H(i)<∞1e(i)

H(i)
∈OVBη

. (3.15)

The almost sure following limit is a consequence of the strong law of large numbers:

lim
N+∞

FN(η)

N
=

∫
OVBη

ϕ(̂e)fV(e0; ê)VOLOV(d̂e).
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If we now let H
(i)
Bη

be the hitting time of the set Bη by the ith (V , z)-diffusion, set

GN(η) :=
∑

i=1,...,N

ϕ
(
e(i)

H
(i)
Bη

)
1
H

(i)
Bη

<∞.

Since ϕ is Lipschitz and Bη has a ‘height’ of order η2, we have∣∣ϕ(
e(i)

H (i)

)
1H(i)<∞1e(i)

H(i)
∈OVBη

− ϕ
(
e(i)

H
(i)
Bη

)
1
H

(i)
Bη

<∞
∣∣ ≤ Cη2

for some positive constant C; it follows that∣∣∣∣ lim
N,∞

(
GN(η)

N
− FN(η)

N

)∣∣∣∣ ≤ Cη2.

Together with Eqs (3.13), (3.14), (3.15), this equation gives us the existence and the value of the limit

lim
η,0

(
VOL(Bη)

−d/(d+2) lim
N,∞

GN(η)

N

)
=

∫
OmM

ϕ(m, ĝ)fV

(
e0; (m, ĝ)

)
VOLm(d̂g).

The left hand side being independent of V, the functionnal of the Lipschitz function ϕ defined by the right hand side
is also independent of V. The class of Lipschitz functions if rich enough to conclude from that fact that the measure
fV(e0; ·)VOLm(·) is independent of V ∈ Ve, which implies that fV(e0; e) itself is independent of V ∈ Ve. �

To state the next proposition on f (e0; ·) we shall write V for a spacelike hypersurface of M and shall denote by
H the hitting time of OV. Given a point ê = (m̂, ĝ) ∈ OV, we shall denote by �V(̂e) the future unit timelike vector
orthogonal to Tm̂V (in accordance with the previous notation). This fundamental proposition extends the second point
of Theorem 2 to the general framework adopted in this section.

Proposition 6. Let e0 be a point of OM not belonging to OV. We have

Ee0

[
f (eH )1H<∞

] =
∫

OV

f (̂e)q
(̂
g0,�V(̂e)

)
f (e0; ê)VOLOV(d̂e) (3.16)

for any bounded function f on OV.

Proof. We shall use the notation fV(e0; ·) to denote the (smooth) density of the law of the random variable eH 1H<∞
under Pe0 , with respect to VOLOV. Given a point e ∈ OV, we are going to prove that

fV(e0, e) = q
(
�V(e),g0)f (e0; e). (3.17)

This point e = (m,g) is now fixed. We shall denote by W a hypersurface of Ve; we have seen in Proposi-
tion/Definition 5 that f (e0; e) = fW(e0; e).

Idea of the proof. The idea of the proof is simple and illustrated in Fig. 4. Pick a positive integer N ; it will be sent
to infinity at the end of the proof. Let {Vε}ε∈(−η,η) be the normal variation of V. The positive real η is chosen in such a
way that any timelike geodesic started from V−η, of length ≥ 1

N
, hits Vη . It implicitly depends on N ; we choose it as

a decreasing function of N converging to 0 as N increases to infinity. We shall write V′−η for the set of points of V−η

from which any future-oriented timelike path hits V. We can suppose without loss of generality that the hypersurface
W is included in U = ⋃

ε=(−η,...,η) Vε .
Given a point ẽ = (m̃, g̃) ∈ OV′−η , we shall write mV(̃e) for the intersection of the future-oriented geodesic γ̃e

started from m̃ in the direction g̃0 and by gV(̃e) the image at the point mV(̃e) of g̃ by parallel transport along γ̃e. We
set

XV(̃e) := (
mV(̃e),gV(̃e)

)
.
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Fig. 4. Proof of Proposition 6.

The point XW(̃e) is defined similarly using W in place of V. Let us denote by H ′−η the hitting time of OV′−η and set

XV := XV(eH ′−η
)1H ′−η<∞ ∈ OV and XW := XW(eH ′−η

)1H ′−η<∞ ∈ OW.

We are going to see that these random points have smooth densities at e which satisfy Eq. (3.17); they both depend
on N . Equation (3.17) itself will be obtained as a limit, sending N to infinity.

Proof. Given a (small) open neighbourhood A of m in V define B ⊂ W as the intersection of W with the chrono-
logical past and future of A in U . Pick A and η small enough in such a way that any timelike path hitting A or B hits
V′−η before. All open sets A used hereafter will implicitly be supposed to be included in this fixed A.

The following lemma is proved noting that the maps XV :X−1
V

(OA) → OA and XW :X−1
W

(OB) → OB are well
defined smooth diffeomorphisms; as such, the push forwards of any smooth measure on OV′−η by these maps are
smooth measures on OA and OB respectively.

Lemma 7. The laws of the random variables XV1XV∈OA and XW1XW∈OB under Pe0 have smooth densities with
respect to 1OAVOLOV and 1OB VOLOW respectively.

These densities are denoted by f
(N)
V

(e0; ·) and f
(N)
W

(e0; ·) respectively.26 We are going to prove that we have

q
(
�V(e),g0)f (N)

W
(e0; e) = f

(N)
V

(e0; e); (3.18)

we shall then get identity (3.17) using the following lemma.

Lemma 8.

• f
(N)
V

(e0; e) −→N+∞ fV(e0; e).

• f
(N)
W

(e0; e) −→N+∞ f (e0; e).

To proceed further and establish identity (3.18), we need to give some definitions. If V and η are chosen small
enough, there exists a bundle isomorphism trivializing OU :

ψ : R1,d × SO0(1, d) → OU .

We shall denote by (ζ, g) the point ψ−1(e) = ψ−1((m,g)); the set Z will be the intersection of a small Euclidean
ball of M1+d(R), of center g, with SO0 (1, d). Set AZ := OA ∩ ψ(R1,d × Z). The set BZ ⊂ W is the defined as

26Recall η, and so XV and XW , depend on N .



A stochastic approach to relativistic diffusions 783

the set of points of W of the form expm̂(sT̂ 0), with (m̂, T̂ ) ∈ AZ . The collection of all the (m′,g′) ∈ OBZ where
m′ = expm̂(sT̂ 0) and g′ is the image of T̂ by parallell transport along the geodesic expm′(·T 0) is denoted by BZ .
Similarly, A′

Z is defined as the set of points of V of the form expm̂(sT̂ 0), with (m̂, T̂ ) ∈ BZ . The collection of all the
(m′,g′) ∈ OV, where m′ = expm̂(sT̂ 0), (m̂, T̂ ) ∈ BZ , and g′ is the image of T̂ by parallell transport along the geodesic
expm̂(·T̂ 0), is denoted by A′

Z . The range of s in these definitions is restricted in such a way that the geodesics exp·(·T 0)

remain in U .
To prove identity (3.18) we start from the inclusions

{XV ∈ AZ} ⊂ {XW ∈ BZ} ⊂ {
XV ∈ A′

Z

}
to get the inequalities

1 ≤ Pe0(XW ∈ BZ)

Pe0(XV ∈ AZ)
≤ Pe0(XV ∈ A′

Z)

Pe0(XV ∈ AZ)
,

i.e.

1 ≤
∫

f
(N)
W

(e0; ê)1BZ
(̂e)VOLOW(d̂e)∫

f
(N)
V

(e0; ê)1AZ
(̂e)VOLOV(d̂e)

≤ Pe0(XV ∈ A′
Z)

Pe0(XV ∈ AZ)
. (3.19)

We are going to obtain identity (3.18) taking successively the supremum limit in the above inequalities, first as A

decreases to {m}, and then as Z descreases to {g}. This final step rests on the following fact.

Lemma 9.

lim
Z↘{g} lim

A↘{m}
Pe0(XV ∈ A′

Z)

Pe0(XV ∈ AZ)
= 1.

This comes from the fact that the ratio of the VOLOV−η
-volume of the sets {̃e ∈ OV′−η;XV(̃e) ∈ AZ} and {̃e ∈

OV′−η;XV(̃e) ∈ A′
Z} converges to 1 as A ↘ {m} and Z ↘ {g}. Recall σV and σW are the volume element induced by

q on V and W respectively. It remains to evaluate the ratio of the integals in Eq. (3.19) to get the conclusion; to that
end we use the following fact.

Lemma 10.

• The limit limA↘{m} σW(BZ)
σV(A)

exists, and
• there exists a positive function c(Z) of Z, decreasing to 0 as Z decreases to {g}, and such that we have

(
1 − c(Z)

)
q
(
�V(e),g0) ≤ lim

A↘{m}
σW(BZ)

σV(A)
≤ (

1 + c(Z)
)
q
(
�V(e),g0)

for Z small enough.

◦ To see where this result comes from, write expV
m :TmV → V for the exponential map in V at point m, and

expW
m :TmW → W for the exponential map in W at point m. We measure volumes in TmV and TmW using the

(constant) volume elements VOLV
m and VOLW

m induced by q on TmV and TmW respectively. Writing A = expV
m(Ã) we

have

σV(A)

VOLV
m(Ã)

−→
A↘{m} 1 (3.20)

Associate to g̃ ∈ OmM ∩ ψ(R1,d × Z) the set B̃g̃ ⊂ TmM, image of Ã ⊂ TmV by the projection map TmM → TmW

parallelly to g̃0. We have on the one hand

VOLW
m (

⋃
g̃ B̃g̃)

σW(BZ)
−→

A↘{m} 1,
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where the union is taken over all g̃ ∈ OmM ∩ ψ(R1,d × Z), and on the other hand

VOLW
m (B̃g̃)

VOLV
m(Ã)

= q
(
�V(e), g̃0).

Together with limit (3.20) these two estimates imply Lemma 10. ◦
Decomposing BZ into the union of its fibers: BZ =: ⋃m̂∈BZ

Bm̂
Z , we can write the integral

∫
f

(N)
W

(e0; ê)1BZ
(̂e) ×

VOLOW(d̂e) as∫
W

(∫
Om̂M

f
(N)
W

(
e0; (m̂, ĝ)

)
1Bm̂

Z
(̂g)VOLm̂(d̂g)

)
1BZ

(m̂)VOLW(dm̂).

A similar decomposition can be written for
∫

f
(N)
V

(e0; ê)1AZ
(̂e)VOLOV(d̂e) using the decomposition AZ =:⋃

m̂∈BZ
Am̂

Z of AZ into fibers:

∫
V

(∫
Om̂M

f
(N)
V

(
e0; (m̂, ĝ)

)
1Am̂

Z
(̂g)VOLm̂(d̂g)

)
1AZ

(m̂)VOLV(dm̂).

Note that AZ and BZ have the same fiber at point m, namely Bm
Z = OmM ∩ ψ(R1,d × Z). We get as a consequence

of Lemma 10 the following two inequalities:

(
1 − c(Z)

)
q
(
�V(e),g0)∫

OmM
f

(N)
W

(e0; (m,g))1Bm
Z
(g)VOLOmM(dg)∫

OmM
f

(N)
V

(e0; (m,g))1Bm
Z
(g)VOLOmM(dg)

≤ lim
A↘{m}

∫
f

(N)
W

(e0; ê)1BZ
(̂e)VOLOW(d̂e)∫

f
(N)
V

(e0; ê)1AZ
(̂e)VOLOV(d̂e)

and

lim
A↘{m}

∫
f

(N)
W

(e0; ê)1BZ
(̂e)VOLOW(d̂e)∫

f
(N)
V

(e0; ê)1AZ
(̂e)VOLOV(d̂e)

≤ (
1 + c(Z)

)
q
(
�V(e),g0)∫

OmM
f

(N)
W

(e0; (m,g))1Bm
Z
(g)VOLOmM(dg)∫

OmM
f

(N)
V

(e0; (m,g))1Bm
Z
(g)VOLOmM(dg)

.

Taking the supremum limit as Z decreases to {g} and using Lemma 10 we obtain

lim
Z↘{g} lim

A↘{m}

∫
f

(N)
W

(e0; ê)1BZ
(̂e)VOLOW(d̂e)∫

f
(N)
V

(e0; ê)1AZ
(̂e)VOLOV(d̂e)

= q
(
�V(e),g0)f

(N)
W

(e0; e)

f
(N)
V

(e0; e)
.

As Eq. (3.19) together with Lemma 9 tells us that this supremum limit is equal to 1, we conclude that

q
(
�V(e),g0)f (N)

W
(e0; e) = f

(N)
V

(e0; e).

Identity (3.17) follows from Lemma 8 sending N to infinity. �

The property of the one-particle distribution function emphasized in Proposition 6 will be used to prove the fol-
lowing fundamental theorem.

Theorem 11. We have L∗f (e0; ·) = 0 in OM\{e0}.

The approach to relativistic Ornstein–Uhlenbeck process and (general) relativistic diffusions developped so far in
the work of F. Debbasch and his co-authors relies entirely on a similar (manifestly covariant) transport equation, which
is given as the fundamental object in their approach. This theorem provides a dynamical justification of this approach.
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Proof of Theorem 11. As Theorem 11 is of a local nature, we are going to take for each point e �= e0 a V ∈ Ve and
work in the neighbourhood OU of e constructed in the proof of Proposition/Definition 5 using the normal variation
of V. We shall use here the same notations as there; notice in addition that in an expression like q(�(e),g0), the
vector �(e) will be seen as an element of TmM rather than its horizontal lifting.

The beginning of the proof is exactly the same as in point 1(a) of the proof of Proposition/Definition 5. We repeat
it here to ease the reading; it is quoted between the two stars (∗).

(1) (∗) We shall suppose first that e0 belongs to OU . If e0 = (m0,g0) does not belong to the (closure of the) timelike
past of U , then no timelike path started from m0 can ever hit V, so the function f (e0; ·) is null in a neighbourhood of
OV. As we are interested in what happens near OV, we shall make the hypothesis that e0 belongs to the timelike past
of V. We shall suppose, without loss of generality, that e0 ∈ V−η. It will be fixed throughout this paragraph.

As the hitting times Hε will be Pe0 -almost surely finite under the preceding hypothesis, we can consider the re-
parametrized process {eHε }ε∈(−η,η); it has generator γ −1L. We shall decompose this oeprator under the form

∀e = φε(̂e),
Lf

γ
(e) = (�f )(e) + L̂(f ◦ φε)(̂e) = (�f )(e) + (Lf )(e), (3.21)

where L̂ is a second order differential operator on OV, and where, as a consequence, L acts only on OVε . Now,
define the OV-valued process {̂eε}ε∈(−η,η) := {φ−1

ε (eHε)}ε∈(−η,η) and denote by �̂ε its time-dependent generator.(*)
This operator is seen to be hypoelliptic, so the random variable êε has for any ε ∈ (−η,η) a smooth density ρ̂(e0; ε, ·)
with respect to VOLOV which satisfies the equation

∀ε ∈ (−η,η), ∂ερ̂(e0; ε, ·) = �̂∗OV
ε ρ̂(e0; ε, ·).

�̂
∗OV
ε stands here for the L2(VOLOV)-dual of �̂ε . Let us now denote by VOLε

OV
the pull-back on OV by φε

of the measure VOLOVε
on OVε , and denote by Gε its density with respect to VOLOV. Then êε has a density

μ̂ε(e0; ε, ·) = ρ̂ε(e0;ε,·)
Gε

with respect to VOLε
OV

; it satisfies the equation

∂εμ̂ε(e0; ε, ·) + ∂εGε

Gε

μ̂ε(e0; ε, ·) = �̂∗OV;ε
ε μ̂ε(e0; ε, ·). (3.22)

We have here �̂
∗OV;ε
ε g = �̂

∗OV
ε (Gεg)

Gε
for any smooth function g. Denote by μ(e0; ε, ·) the density of eSε with respect

to VOLOVε
, and consider μ and G as functions of ε and e ∈ Vε , i.e. consider them as functions defined on the open

set U . Then, Eq. (3.22) can be written

�μ(e0; ·) + �G

G
μ(e0; ·) = L

∗OVε
μ(e0; ·). (3.23)

The operator L has been introduced in Eq. (3.21). It is useful at that stage to remark that we have27

L
∗OVε = L

∗

as a consequence of the change of variable formula, and since we have a normal variation of V. The following lemma
is needed to make the final step.

Lemma 12. We have for any smooth function f

� ∗f + �f + �G

G
f = 0.

27Recall that VOL is the Liouville measure on OM and that the ∗-operation is the L2(VOL)-dual operation.
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◦ As above, this is consequence of the change of variable formula and the fact that we have a normal variation
of V. We have, for any smooth function ϕ with compact support,∫ (

� ∗f
)
(e)ϕ(e)VOL(de) =

∫
f (e)(�ϕ)(e)VOL(de) =

∫
f (ε, ê)(∂εϕ)(ε, ê)Gε(̂e)σ0(d̂e)dε

= −
∫

(∂εf )(ε, ê)ϕ(ε, ê)Gε(̂e)σ0(d̂e)dε −
∫

(f ϕ)(ε, ê)∂εGε(̂e)σ0(d ê)dε

= −
∫ (

�f + �G

G

)
(e)ϕ(e)VOL(de).

As a consequence of this lemma we can use the decomposition given in Eq. (3.21) to write Eq. (3.23) as

L∗
(

μ(e0; ·)
γ

)
= 0.

Proposition 6 enables to conclude that L∗f (e0; ·) = 0 in U .
(2) To deal with the general case where e0 does not belong to OU , denote by V′ ⊂ V an open subset of V such that

any timelike path hitting V′ hits V−η before. Such a manifold V′ will exist provided η is small enough. For a small
enough δ > 0, the set φ(−δ,δ)(V

′) := {φε(m̂) ∈ M; m̂ ∈ V′ and |ε| < δ} will have the property that any timelike path
hitting it hits V−η before. Set

U ′ := Oφ(−δ,δ)

(
V′);

this is an open set of OM. To prove Theorem 11 on U ′, it suffices to remark that for e ∈ U ′, we have

f (e0; e) = Ee0

[
f (eH ; e)1H<∞

]
,

where H is the hitting time of V−η. The previous part of the proof applies to each function f (eH ; ·). It follows then
from the above identity that f (e0; ·)|U ′ is an L∗-harmonic function, as a mean of L∗-harmonic functions. �

3.3.2. L-harmonic functions
We shall see in Section 3.4 an important application of Theorem 11 in relation with statistical irreversibility. Before
turning oursleves to that side, we would like to stress in this section the importance that Theorem 11 might have from
a geometrical point of view. To that end, we shall investigate its meaning in the study of the (0, e·)-diffusion of Franchi
and Le Jan. As emphasized after Definition 3, this (V , z)-diffusion is the only process of this class determined entirely
by the geometric background (M, q); this property gives it a special status. Its generator is

L = H0 + 1

2

d∑
i=1

V 2
i .

We shall call a C 2 function on OM satisfying the relation Lf = 0 an L-harmonic function. The class of bounded
L-harmonic functions and the asymptotic behaviour of the (0, e·)-diffusion are two faces of the same object: the
boundary at infinity of the manifold (M, q).

(a) Ideal boundaries of manifolds and invariant σ -algebra. Let us illustrate this correspondence recalling what
happens to Brownian motion on some special Riemannian manifolds; as the (0, e·)-diffusion, Brownian motion is
entirely determined by the geometric environment. Suppose (M, q) is a simply connected Cartan–Hadamard manifold:
it is a Riemannian manifold, diffeomorphic to some Rn, with curvature bounded by two negative constants. The
exponential polar co-ordinates (r, θ) ∈ R+ × Sd−1 associated with any point provide global co-ordinates on M. These
manifolds have the property any sequence of balls {Bi}i≥0, with constant radius, whose centers leave any compact,
appear uniformly small when seen from within a compact set: For any compact set K and given any ε > 0, there exists
an index iε such that for any i ≥ iε and any point m ∈ K , whose accociated system of polar co-ordinates is denoted by
(rθ), any point of Bi has polar angle θ contained in a region of Sd−1 of diameter no greater than ε. These manifolds
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also enjoy the following property: Given any geodesic {γt }t≥0 and any point m′, there exists a unique geodesic {γ ′
t }t≥0

started from m′ such that the distance between γ ′
t and γt remains bounded. These properties motivate the introduction

of a compactification of M, homeomorphic to Sd−1, and where a path converges to a point of the boundary if its polar
angle converges in any polar system of co-ordinates. Any geodesic converges to some point of the boundary.28

From a probabilistic point of view, we can investigate the far end of a manifold looking at what happens to Brownian
motion {wt }t≥0 on (M, q) as time goes to ∞. To that end, we define the invariant σ -algebra of the process as being
generated by the real-valued functionals F(w·) depending only on the asymptotic beahaviour of w·, i.e. satisfying the
identity F({wt }t≥0) = F({ws+t }t≥0) for any s ≥ 0.

Back in the above Cartan–Hadamard manifold (M, q), pick a point m ∈ M and denote by (rt , θt ) the m-polar co-
ordinates of wt . It can be proved29 that {wt }t≥0 converges Pw0 -as to some random point of ∂M, characterized by the
fact that θt → θ∞ ∈ Sd−1. It can also be shown that the invariant σ -algebra is Pw0 -indistiguishable from the algebra
generated by θ∞. This fact gives a probabilistic meaning to ∂M, or, conversely, gives a geometric meaning to the
invariant σ -algebra of Brownian motion.

The situation appears to be similar, though subtler, in the Lorentzian framework of Minkowski space. Recall the
causal boundary C of R1,3 is the ideal boundary of R1,3 characterized by the property that two timelike paths {γt }t≥0
and {γ ′

t }t≥0 converge to the same boundary point iff they have the same chronological past: I−(γ ) = I−(γ ′). The
following theorem has been proved in the articles [5] of I. Bailleul and [6] of I. Bailleul and A. Raugi. It holds for any
starting point e0 of the (0, e·)-diffusion.

Theorem 13 ([5,6]).

• The R1,d -part {ms}s≥0 of the (0, e·)-diffusion converges Pe0 -almost surely to some random point m∞ of C.
• The σ -algebra generated by m∞ coincides with the tail σ -algebra of {ξs}s≥0, up to Pe0 -null sets.

So, we can find back the causal boundary in the probabilistic invariant σ -algebra. This is a nice feature that
might help clarify geometrically more complicated situations, giving a simple probabilistic picture of what happens.
J. Franchi has for example undertaken in [20] the study of the (0, e·)-diffusion in Gödel’s spacetime. This space has a
trivial causal boundary, reduced to one point. Yet, he has been able to prove that the invariant σ -algebra of the process
is not trivial. This suggested, in return, the definition of a purely geometric boundary.

(b) Poisson and Martin boundaries. The link between geometry and probability illustrated above is complemented
by the existing link between invariant σ -algebra on the one hand and the set of bounded L-harmonic functions on the
other hand.30 It is equivalent to determine one or the other. The set of bounded L-harmonic functions is called the
Poisson boundary of (L,M). So, the Poisson boundary of L, the invariant σ -algebra and the geometry at infinity of
(M, q) may be seen as three faces of a same object.

Let us give a last picture of the Riemannian/Brownian situation. We shall get a clearer image looking at any
elliptic smooth second order differential operator L0 on a connected (relatively compact) open set D of Rn. Recall the
Martin boundary of (L0,D) is the collection of non-negative L0-harmonic functions on D.31 Martin gave in [29] a
methof to construct this set and proved that any non-negative L0-harmonic function can be uniquely represented as the
barycenter of a finite measure on the set of extreme points of his boundary. This construction is now well understood
from a probabilistic point of view (see for instance Chapter 7 of Dynkin’s book [18]). Let us briefly describe it. Denote
by G(x,y) the Green kernel of L0 in D, and define the function

K(x,y) = G(x,y)

G(x0, y)
, x ∈ D,y ∈ D\{x0},

where x0 is a fixed point. Observe that the function K(·, y) is L0-harmonic on D\{y}, for any y ∈ D\{x0}. It follows
that we shall construct L0-harmonic functions on D sending y to the boundary of D, provided the limit limy K(·, y)

28See for instance the article [2] of Anderson, or Chapter 8 of the book [32] of R. Pinsky.
29See for instance the pioneering article [2] of Anderson, or the article [26] of Y. Kifer.
30Consult for instance Chapter 8 of the book [32] of R. Pinsky for the Riemannian case, and Proposition 8 in the article [5] for the hypoelliptic
situation appearing in the study of the (0, e·)-diffusion in Minkowski space.
31This set contains the Poisson boundary of L0 in D.
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Fig. 5. (0, e·)-diffusion and (
←
e ·,0)-diffusion.

exists. Martin’s boundary is made up of all the functions obtained that way. A sequence {yn}n≥0 of points of D leaving
every compact D, and such that the function K(·, yn) converges,32 is called a fundamental sequence for (L0,D). In
short, Martin’s theory asserts that the knowledge of fundamental sequences is equivalent to the knowledge of the set
of non-negative L0-harmonic functions.

Pinsky gave in [31] a probabilistic proof of a useful characterisation of fundamental sequences, known from poten-
tial theorists before.33 L∗

0 will denote the L2(LEB)-dual of L0 and {̃Px}x∈D the laws of the diffusion {Xt } in D with
generator L∗

0. We shall denote by ζ its exit time from D, and, given a compact subset U of D, we shall denote by HU

the hitting time of U by {Xt }0≤t<ζ .

Theorem 14 (Pinsky [31]). The sequence {yn}n≥0 is fundamental for (L0,D) iff, for any smooth compact subset U

of D, the sequence of conditional distributions {̃Pyn(XHU
∈ ·|HU < ζ)}n≥0 converges.

(c) A conjecture. Theorem 11 bringing into play L∗ and hitting distributions, through f (e0; ·), it is now time to
examine it. Note that

L∗ = −H0 + 1

2

d∑
i=1

V 2
i .

So, L∗ is the genrator of an OM-valued diffusion analogue to the (0, e·)-process, except that the speed dms

ds
= −g0

s

is past-directed. Call it (0,
←
e ·)-diffusion and denote by

←
P e0 its law when started from e0 ∈ OM. It is clear from its

construction that the paths of
←
e · started from e0 take values in the chronological past I−(e0) of e0. Any open set of

I−(e0) is visited by the process with positive probability, and any spacelike hypersurface V is hit with positive proba-
bility. As noted in Proposition 6, these hitting distributions are determined by the one-particle distribution function of

the (0,
←
e ·)-process. We shall denote it by

←
f (e0; ·), e0 ∈ OM. Theorem 11 can be restated as follows.

Theorem 15. The function
←
f (e0; ·) is L-harmonic on OM\{e0}.

It is tempting, after reading paragraph (b), to renormalize
←
f (e0; ·) and try to get possibly non-null L-harmonic

functions sending the singularity e0 to infinity. This could be made looking at

←
f (e0; ·)
←
f (e0; c)

32Uniformly locally on compact subsets of D.
33See the notes of Chapter 7 in [32].



A stochastic approach to relativistic diffusions 789

for some c ∈ OM, or

(m,g) ∈ OM �→
←
f (e0; (m,g))∫

OmM

←
f (e0; (m,g′))VOLm(dg′)

.

As emphasized in Proposition 6, the use of the second ratio essentially amounts to look at the convergence of the

hitting distributions Pe0(
←
e HV

∈ ·|HV < ∞) of
←
e · on any spacelike (smooth) hypersurface V. All this brings us to

conjecture the following equivalence.

Conjecture 16. The following statements are equivalent.

1. The sequence {en}n≥0 is fundamental for L in (M, q).
2. For any spacelike smooth hypersurface V of M the sequence of conditional distributions

←
P en (

←
e HV

∈ ·|HV < ∞)

converges.

3. For any c ∈ OM, the sequence of L-harmonic functions34 {←
f (en; ·)/

←
f (en; c)}n≥0 converges uniformly on com-

pact subsets of I−(c).

This fact would explain why the causal boundary of (M, q) is likely to appear in the picture. In order for the con-

ditional distributions
←
P en (

←
e HV

∈ ·|HV < ∞) to converge, the support of each of these probabilities has to converge,
for any spacelike hypersurface V. This cannot happen unless the chronological past I−(en) = I−((mn,gn)) of en

converges, i.e. unless the sequence {mn}n≥0 has a limit in the causal boundary of (M, q). Yet, the study of Gödel’s
spacetime by J. Franchi in [20] has made it clear that this geometric boundary might not be appropriate to describe
the Poisson or the Martin boundary in some situations. Note, yet, that the above analysis using the one-particle distri-
bution function does not apply in this non-strongly causal spacetime; no good definition of one-particle distribution
function is available at the moment in such a framework.

Last, we should oppose the difficulty of this problem on the large scale structure of (M, q) to the previously
mentionned fact that the local geometry of spacetime can be recovered looking at the pathwise behaviour of the
(0, e·)-process. Complications come from infinity. . . We shall come back to the above conjecture in a near future.

3.4. H-theorem

We give in this last section a proof of the analogue of the H-theorem first proved in [7] for the R.O.U.P. in Minkowski
space, as defined there through a ‘Kolmogorov equation.’ It has been then extended in [33] to the R.O.U.P. (as defined
in [12]) in any Lorentzian manifold, and finally in [10] to a larger class of ‘diffusions’ in Minkowski space. We deal
here with the general case of (V , z)-diffusions in any Lorentzian manifold. We refer to the articles [7], [33] and [24]
for physical motivations.

Let U ⊂ OM be a relatively compact open set and f and g be two positive smooth functions on U satisfying the
relations L∗f = L∗g = 0.35 We shall denote by Y a continuous unit vector field on U ; define the function ρ : OU →
(0,+∞), (m,g) �→ q(Ym,g0).

We shall make the following assumptions on f and g; they are sufficient to ensure the existence of the integrals
below, and to differentiate them.

• ln f
g

is bounded.
• There exists positive constants C and ε such that f and its first and second derivatives are uniformly bounded by

Ce−ρ1+ε (m,g) in U .

34Given a compact set K and a sequence {en}n≥0 of points of OM leaving every compact, the function
←
f (en; ·) is well defined on K for n large

enough.
35These functions could for example be of the form f (e0; ·) and f (e′

0; ·) if the strong causality assumption on (M, q) is satisfied.
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Define now on U the vector field

X(m) = −
∫

OmM

g0f (m,g) ln
f (m,g)

g(m,g)
VOLm(dg).

The main result of this section is the following theorem; no assumption on the geometry of space or on the data V, z

is needed.

Theorem 17 (H-theorem). We have divX ≥ 0 for any two L∗-harmonic functions f and g, and X defined as above.

We shall begin the proof of this theorem proving the following lemma.36

Lemma 18. Given any (good) smooth function h on OM set

X(m) =
∫

OmM

g0h(m,g)VOLm(dg).

Then,

(divX)(m) =
∫

OmM

(H0h)(m,g)VOLm(dg).

Proof. Given a C 1 path γ in M and two time s, t we shall denote by T
γ
s←t :Tγt M → Tγs M the parallel transport

operation along the path {γr}r∈[s,t]. It is an isometry between the two tangent spaces. We shall denote by ∇ the
Levi–Civita connection on (M, q). Recall that we have

∇γ̇0X = lim
s→0

T
γ

0←sXγs − Xγ0

s
.

Recall also that the divergence of X is the (Lorentzian) trace of the map ∇·X. It means that given any choice of
orthonormal frame g of TmM, the sum

d∑
i=0

q
(
gi ,gi

)
q
(∇gi X,gi

)
is independent of g ∈ OmM; this is, by definition, (divX)(m). Last, recall that the vector field H0 is defined as the
generator of the lift to OM of the geodesic flow on HM. Its dynamics {(ms,gs)} is determined by the condition
dms

ds
= g0

s and the fact that gs is parallelly transported along the path {ms}.
Choose now a frame g ∈ OmM and a path γ i such that γ i(0) = m and γ̇ i (0) = gi . Since parallel transport is an

isometry, we can write

Xγ i
s
=

∫
Oγs M

ĝ0h
(
γ i
s , ĝ

)
VOLγ i

s
(d̂g) =

∫
OmM

T
γ i

s←0g0h
(
γ i
s , T

γ i

s←0g
)
VOLm(dg),

so we have

T
γ i

0←sXγ i
s
=

∫
OmM

g0h
(
γ i
s , T

γ i

s←0g
)
VOLm(dg)

and

T
γ i

0←sXγ i
s
− Xm

s
=

∫
OmM

g0 h(γ i
s , T

γ i

s←0g) − h(m,g)

s
VOLm(dg).

36Compare with the Appendix to the article [33] of F. Debbasch and M. Rigotti.
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Send s to 0 and sum over i to get the result:

(divX)(m) =
d∑

i=0

q
(
gi ,gi

)
q
(∇gi X,gi

) =
∫

OmM

(H0h)(m,g)VOLm(dg).
�

With this lemma in hand we can prove Theorem 17. Recall that L = H0 + V + 1
2ViB

ijVj and L∗ = −H0 + V ∗ +
1
2ViB

ijVj .

Proof of Theorem 17. First, use Lemma 18 to write

−divX =
∫

H0

(
f ln

f

g

)
VOL(dg) =

∫
(H0f ) ln

f

g
VOL(dg) +

∫ (
H0f − f

g
H0g

)
VOL(dg).

Use then the relations L∗f = L∗g = 0 to get

−divX =
∫ (

V ∗f + 1

2
Vi

(
BijVj (λf )

))(
ln

f

g
+ 1

)
VOL(dg) −

∫
f

g

(
V ∗g + 1

2
Vi

(
BijVj (λg)

))
VOL(dg)

=
∫ ((

V ∗f
)(

ln
f

g
+ 1

)
− f

g
V ∗g

)
VOL(dg)

+ 1

2

∫ ((
ln

f

g
+ 1

)
Vi

(
BijVj (λf )

) − f

g
Vi

(
BijVj (λg)

))
VOL(dg).

Integrating by parts and using the relation V (ln f
g
) = g

f
V (

f
g
), the first integral is seen to be equal to

∫ (
gV

(
f

g

)
− V

(
ln

f

g
+ 1

))
VOL(dg) = 0.

Recall V ∗
i = −Vi . Use integration by parts in the second integral and the relation Vj (λf ) = Vj (λg)

f
g

+ λgVj (
f
g
), to

get

−divX = −1

2

∫
Vi

(
ln

f

g

)
BijVj (λf )VOL(dg) + 1

2

∫
Vi

(
f

g

)
BijVj (λg)VOL(dg)

= −1

2

∫ (
g

f
Vi

(
f

g

)
BijVj (λf ) − Vi

(
f

g

)
BijVj (λg)

)
VOL(dg)

= −1

2

∫ {
Vi

(
f

g

)
Bij

(
Vj (λg) + λg2

f
Vj

(
f

g

))
− Vi

(
f

g

)
BijVj (λg)

}
VOL(dg)

= −1

2

∫
λg2

f
Vi

(
f

g

)
BijVj

(
f

g

)
VOL(dg). (3.24)

We get the conlustion from the non-negativeness of the matrix B = (A−1)∗A−1. �

• Attention should be paid to the range of application of Theorem 17. It seems tempting, indeed, in a strongly
causal spacetime, to apply it to functions of the form f (e0; ·) and f (e′

0; ·). However, today’s state of art is far from
being sufficient to provide estimates on these functions good enough to ensure that hypothese like those made at
the beginning of the section hold.37 This is a difficult topic where the non-ellipticity of the operator L complicates
everything. As a first step towards such results, it would be interesting to determine small time estimates of its heat
kernel; known results are unsufficient to answer this question.

37The boundedness hypothesis on f
g is even most likely to be untrue for such functions.
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• Theorem 17 proves that the flow of the vector field X is volume increasing. It is not clear how one should
interpret this result from a physical point of view when M is different from R1,d . In this special case, choose a rest
frame g ∈ SO(1, d) and denote by t its associated time. Then, the integral of X over any hyperplane of constant
time is an increasing function of t (provided X is equal to 0 at space infinity). This fact justifies that we should call
Theorem 17 an H -theorem in that case. Things are less clear in any Lorentzian manifold, where time does not exist
globally.

Things are even less satisfying from an information theoretic point of view. Recall that the relative entropy of a
probability P with respect to another probability Q is infinite if P is not absolutely continuous with respect to Q, and
equal to

H(P;Q) = EP

[
ln

dP

dQ

]
,

if P is absolutely continuous with respect to Q. We write EP for the expectation operator associated with P. Relative
entropy is always non-negative, as is clear from the inequality a ln a

b
≥ a − b.

Suppose for clarity that P and Q are probabilities on [0,1].38 Let X1,X2, . . . be i.i.d. random variables, with
common law P or Q. Then, given any numbers x1, . . . , xn in [0,1], we have

“
P⊗n(X1 = x1, . . . ,Xn = xn)

Q⊗n(X1 = x1, . . . ,Xn = xn)
” := dP⊗n

dQ⊗n
(x1, . . . , xn) = dP

dQ
(x1) · · · dP

dQ
(xn) = e

∑n
i=1 ln(dP/dQ)(xi ).

P⊗∞ will stand for the product measure P ⊗ P ⊗ · · · on [0,1]N. Taking now the xi ’s to be i.i.d. random variables with
common law P, it follows from the law of large numbers that we have P⊗∞-almost surely

P⊗n(X1 = x1, . . . ,Xn = xn)

Q⊗n(X1 = x1, . . . ,Xn = xn)
�

n,∞ enEP[ln dP
dQ

]
,

in a sense that should be made more precise. The above estimate roughly means that the support of the probability
P⊗n in [0,1]n has Q⊗n-measure of order e−nEP[ln(dP/dQ)], when n is large.

One owes to the statistician Charles Stein a rephrasing of this fact in terms of tests, which should be clear from the
above description.39

Lemma 19 Stein. Let X1, . . . ,Xn be i.i.d. [0,1]-valued random variables with common law P . Consider the hypothe-
ses “H0: P = P,” and “H1: P = Q,” and suppose we want to test hypothesis H0 against H1. The quality of a decision
region An ⊂ [0,1]n is measured by the errors P⊗n(Ac

n) and Q⊗n(An). Given ε > 0, set βε
n = inf{Q⊗n(An);An ⊂

[0,1]n,P⊗n(Ac
n) < ε}. Then we have

lim
ε,0

lim
n∞

1

n
logβε

n = −H(P;Q).

To understand this lemma, imagine you want to test the hypothesis “H0: P = P,” with a given (very) small bound
on the two errors. Then, the smaller H(P;Q) will be, the bigger n will have to be in order to design a test achieving
the requirements on errors.

If now P and Q depend on some ‘time’ s and H(Ps;Qs) decreases, then you will need more and more data
to achieve the test, as time passes. It could be said of a situation where H(Ps;Qs) decreases to 0 that the process
(X1(s),X2(s), . . .) forgets its law as time increases, as it is more and more difficult to distiguish if it has common
distribution Ps or Qs .

38This is not a serious restriction as any probability on a Borel space is isomorphic to a probability measure on [0,1]. This class of spaces is large
enough to encompass most of the useful situations. See the Appendix of the book [19] of Dynkin and Yushkevich.
39Consult for example Section 11.7 of the book [11] of Cover and Thomas for a proof of this lemma.
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From that point of view, a satisfying H -theorem for the (V , z)-processes would be completely different from
Theorem 17. Given a C 1 path γ in M and a (proper) time s (of γ ), define

h
γ
s (e0;g) = q(γ̇s,g0)f (e0; (γs,g))∫

Oγs M
q(γ̇s, ĝ0)f (e0; (γs, ĝ))VOLγs (d̂g)

.

Let V be any (small) spacelike hypersurface such that γs ∈ V and (γ̇s)
⊥ = Tγs V. The probability h

γ
s (e0; (γs,g)) ×

VOLγs (dg) is the conditional law of the random variable eHV
1HV<∞, given that mHV

= γs ; we have seen in Sec-
tion 3.3.1 that this conditional probability does not depend on V but only on γs and γ̇s . Given two initial conditions
e0, e′

0 of the (V , z)-diffusion, define the time-dependent relative entropy associated to the path γ as

H
γ

e0,e′
0
(s) :=

∫
Oms M

h
γ
s (e0;g) ln

h
γ
s (e0;g)

h
γ
s (e′

0;g)
VOLγs (dg).

A satisfying H -theorem would take the form of the following conjecture.

Conjecture 20. The HM-valued (V , z)-diffusion process (γ·, γ ′· ) = {(ms,g0
s )}s≥0 ∈ HM almost surely forgets its law

as time increases: the relative entropy H
γ

e0,e′
0
(s) decreases Pe0 -almost surely to 0, for any e0, e′

0 ∈ OM.

It would also be interesting to see if the following holds.

Conjecture 21. A freely falling observer has more and more difficulties in distinguishing Pe0 from Pe′
0
.

We shall adress these questions in a near future. As a last comment, let us notice that Theorem 17 can be given an
information theoretic flavour. Consider indeed that each open set of spacetime initially has a quantity of “information”
equal to its volune, and that this “information” travels with the flow of the vector field X. Then, Theorem 17 means
that the quantity of information that can be found in a fixed open set decreases as the flow-time increases. Yet, this
interpretation is far from being as clear as the above two conjectures.

4. Comments

It is now time to forget the details of the proofs and summarize the main ideas and results exposed above.
A general class of relativistic diffusions was first presented in the article [9]. Although the authors only consider dy-

namics in Minkowski spacetime, their class of processes is essentially the same as the above class of (V , z)-diffusions.
It is characterized by the existence at each time of a rest frame with the property that the moving object has, in ad-
dition to a deterministic accelearation, a Brownian acceleration in any spacelike direction of the rest frame, when
computed using the time of the rest frame. Yet, the authors’ analysis of the situation rests entirely on a transport equa-
tion; an approach similar in spirit to the semi-group analysis of Markov processes, as opposed to the pathwise study
of the process. We propose in this article a simple and direct construction of relativistic diffusions on any Lorentzian
manifold as flows of stochastic differential equations. This construction necessitates to build the diffusions in the
orthonormal frame bundle of (M, q), as was done by Malliavin or Elworthy for Brownian motion in a Riemannian
manifold, and by Franchi and Le Jan in the Lorentzian framework. This change of framework is worth being made.
Not only are we able to recover directly many of the results established so far, but this pathwise approach presents
several other advantages over the analytical method used up to now.

First, it provides a direct (co-ordinate free) description of the dynamics in OM which is given as the fundamental
mathematical object of the model. Simple hypotheses can be given (Section 3.2) to construct a diffusion in the more
familiar phase space HM from the diffusion on OM. An interesting outcome of this approach is the clear new def-
inition of the one-particle distribution function that can be given using the pathwise behaviour of the (V , z)-process
(Proposition/Definition 5). The fundamental equation it satisfies (Theorem 11) provides a dynamical justification of
the approach used up to now, and sheds some light on the study of the Poisson and Martin boundaries of the (0, e·)-
process (Section 3.3.2). Last, but not least, the formalism of vector fields enables us to give in Section 3.4 a concise
and clear proof of a general H -theorem.
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Although these results are encouraging, it would be desirable to discuss the adequacy of the models provided by
(V , z)-diffusions to situations of physical interest. To paraphrase what was written in the introduction of the seminal
article [13], the models provided by (V , z)-diffusions40 should not be considered as accurate models of motion of a
“colloidal particle immersed in a real (relativistic) medium.” Rather, they should be considered as toy models designed
to provide a framework for the study of the main characteristics of the diffusion phenomenon. In this direction, it would
certainly be useful to develop an approach to the relativistic Boltzmann equation in terms of hydrodynamic limit of a
system of interacting particles.41 Propagation of chaos results could justify the use of (V , z)-diffusions as models of
diffusion dynamics. Other dynamics, as the one introduced by L. Markus in the article [28], might happen to be of
physical relevance. Note also the interest that the possibility to define (V , z)-diffusions in non-isotropic media might
have.

Nevertheless, one can consider as one of the merits of our approach the fact that it provides new questions. A few
of them have been written under the form of conjectures in Sections 3.3.2 and 3.4; we would like to put forwards two
other problems concerning the (0, e·)-process, as we think this is a fundamental object.

Lifetime

The question of explosion of a general (V , z)-diffusion may appear irrelevant from a physical point of view, after
reading the above comments. Yet, the study of this problem for the ‘geometric’ (0, e·)-diffusion might happen to be
extremely fruitful in its possible links with the existence of singularities of the spacetime itself. Indeed, all the studies
made so far, in Minkowski, Robertson-Walker, Schwarzschild and Gödel spacetimes42 tend to reinforce the feeling
that the M-part of the (0, e·)-diffusion eventually behaves like a lightlike geodesic.43 So its seems natural to ask the
following question.

Open Problem 22. Is null geodesic incompleteness equivalent to explosion of the (0, e·)-process with positive proba-
bility?

This link between geometry and probability would provide a new approach to the existence of singularities on
Lorentzian manifolds. It would be interesting for instance to see wether the hypotheses of Penrose’s theorem44 are
relevant from a probabilistic point of view or not. One of its potential benefits is that the explosion problem has an
analytical counterpart which is a linear problem. Explosion is equivalent to any of the following two conditions.45

1. Let λ > 0. There exists a non-null bounded smooth function f such that (L − λ)f = 0.
2. Let T > 0. There exists a non-null solution to the Dirichlet problem ∂tf = Lf , on [0, T ] × M, with initial condi-

tion 0.

The use of the one-particle distribution function
←
f λ(e0; ·) of the (0,

←
e ·)-process killed at constant rate λ will certainly

help to see if condition 1 holds. To begin with, it would be interesting to find an example of a geodesically timelike
complete Lorentzian manifold whose (0, e·)-diffusion explodes. No such manifold has been found yet.

A probabilistic interpretation of Einstein tensor?

In so far as the local geometry of spacetime can be recovered from the pathwise behaviour of the (0, e·)-process,46

it is tempting to ask if one can ultimately give a probabilistic interpretation of Einstein tensor determining matter in
terms of (0, e·)-diffusion. This question brings us far from the present day knowledge. . . We hope it will have some
day a positive answer.

40By the R.O.U.P. in this article.
41Consult the article [24] for a discussion of Boltzmann equation in a relativistic framework. The article [3] of Andersson and Comer is also a
valuable source of information on relativistic fluid dynamics from a macorscopic point of view.
42In [5,6,21] and [20].
43The almost-sure convergence of the R1,d -part of the (0, e·)-process to a random point of the causal boundary of R1,d , proved in [6], is the
clearest proof of this fact.
44Consult the original article [23] of Hawking and Penrose or the books [30] for instance.
45See the article [22] of A. Grigor’yan.
46As was noticed in the example following Definition 3.
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