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Abstract. In this article, we study the numerical approximation of stochastic differential equations driven by a multidimensional
fractional Brownian motion (fBm) with Hurst parameter greater than 1/3. We introduce an implementable scheme for these equa-
tions, which is based on a second-order Taylor expansion, where the usual Lévy area terms are replaced by products of increments
of the driving fBm. The convergence of our scheme is shown by means of a combination of rough paths techniques and error
bounds for the discretization of the Lévy area terms.

Résumé. Nous étudions dans cet article l’approximation numérique d’équations différentielles dirigées par un mouvement brow-
nien fractionnaire (mBf) de coefficient de Hurst H > 1/3. L’algorithme effectif que nous proposons repose sur un développement
au second ordre, où l’aire de Lévy est remplacée par un produit d’incréments du mBf. Nous obtenons la convergence de notre
schéma en combinant des méthodes issues de la théorie des trajectoires rugueuses et des résultats sur l’approximation de l’aire de
Lévy.

MSC: Primary 60H35; secondary 60H07; 60H10; 65C30
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1. Introduction and main results

Fractional Brownian motion (fBm in short for the remainder of the article) is a natural generalization of the usual
Brownian motion, insofar as it is defined as a centered Gaussian process B = {Bt ; t ∈ R+} with continuous sample
paths, whose increments

(δB)st := Bt − Bs, s, t ∈ R+,

are characterized by their variance

E
[
(δB)2

st

]= |t − s|2H .

Here the parameter H ∈ (0,1), which is called Hurst parameter, governs in particular the Hölder regularity of the
sample paths of B by a standard application of Kolmogorov’s criterion: fBm has Hölder continuous sample paths of
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order λ for all λ < H . The particular case H = 1/2 corresponds to the usual Brownian motion, so the cases H �= 1/2
are a natural extension of the classical situation, allowing e.g. any prescribed Hölder regularity of the process. More-
over, fBm is H -self similar, i.e. for any c > 0 the process {cH Bt/c; t ∈ R+} is again a fBm, and also has stationarity
increments, that is for any h ≥ 0 the process {Bt+h − Bh; t ∈ R+} is a fBm.

These properties (partially) explain why stochastic equations driven by fBm have received considerable attention
during the last two decades. Indeed, many physical systems seem to be governed by a Gaussian noise with different
properties than classical Brownian motion. Fractional Brownian motion as driving noise is used e.g. in electrical
engineering [14,15], or biophysics [7,29,42]. Moreover, after some controversial discussions (see [5] for a summary
of the early developments) fBm has established itself also in financial modelling, see e.g. [3,19]. For empirical studies
of fractional Brownian motion in finance see e.g. [8,10,46]. All these situations lead to different kind of stochastic
differential equations (SDEs), whose simplest prototype can be formally written as

Yt = a +
m∑

i=1

∫ t

0
σ (i)(Yu)dB(i)

u , t ∈ [0, T ], a ∈ R
d, (1)

where σ = (σ (1), . . . , σ (m)) is a smooth enough function from R
d to R

d×m and B = (B(1), . . . ,B(m)) is a m-
dimensional fBm with Hurst parameter H > 1/3.

At a mathematical level, fractional differential equations of type (1) are typically handled (for H �= 1/2) by path-
wise or semi-pathwise methods. Indeed for H > 1/2, the integrals

∫ t

0 σ (i)(Yu)dB
(i)
u , i = 1, . . . ,m, in (1) can be

defined using Young integration or fractional calculus tools, and these methods also yield the existence of a unique
solution, see e.g. [41,47]. When 1/4 < H < 1/2, the existence and uniqueness result for Eq. (1) can be seen as the
canonical example of an application of the rough paths theory. The reader is referred to [17,30] for the original version
of the rough paths theory, and to [20] for a (slightly) simpler algebraic setting which will be used in the current article.
In Section 2, we will recall the main features of this approach for driving rough paths that are γ -Hölder continuous
with γ > 1/3, which includes the case of fBm with H > 1/3. In the latter situation, the rough path machinery can be
summarized very briefly as follows: assume that our driving signal B allows to define iterated integrals with respect
to itself. Then one can define and solve Eq. (1) in a reasonable class of processes.

Once SDEs driven by fBm are solved, it is quite natural (as in the case of SDEs driven by the usual Brownian
motion) to study the stochastic processes they define. However, even if some progress has been made in this direction,
e.g. concerning the law of the solution [2,6,35] or its ergodic properties [23], the picture here is far from being
complete. Moreover, explicit solutions of stochastic differential equations driven by fBm are rarely known, as in the
case of SDEs driven by classical Brownian motion. Thus one has to rely on numerical methods for the simulation of
these equations.

So far, some numerical schemes for equations like (1) have already been studied in the literature. In the following,
we consider uniform grids of the form {tnk = kT /n;0 ≤ k ≤ n} for a fixed T > 0. The simplest approximation method
is the Euler scheme defined by

Yn
0 = a,

Y n
tnk+1

= Yn
tnk

+
m∑

i=1

σ (i)
(
Yn

tnk

)
δB

(i)

tnk tnk+1
, k = 0, . . . , n − 1.

For H > 1/2, the Euler scheme converges to the solution of the SDE (1). See e.g. [31], where an almost sure con-
vergence rate n−(2H−1)+ε with respect to the maximum error in the discretization points is established for ε > 0.
A detailed analysis of the one-dimensional case is given in [34], where the exact convergence rate n−2H+1 and the
asymptotic error distribution are derived.

However, the Euler scheme is not appropriate to approximate SDEs driven by fBm when 1/3 < H < 1/2. This is
easily illustrated by the following one-dimensional example, in which B denotes a one-dimensional fBm: consider
the equation

dYt = Yt dBt , t ∈ [0,1], Y0 = 1,
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whose exact solution is

Yt = exp(Bt ), t ∈ [0,1].

The Euler approximation for this equation at the final time point t = 1 can be written as

Yn
1 =

n−1∏
k=0

(
1 + (δB)k/n,(k+1)/n

)
.

So for n ∈ N sufficiently large and using a Taylor expansion, we have

Yn
1 = exp

(
n−1∑
k=0

log
(
1 + (δB)k/n,(k+1)/n

))= exp

(
B1 − 1

2

n−1∑
k=0

∣∣(δB)k/n,(k+1)/n

∣∣2 + ρn

)
,

where limn→∞ ρn
a.s.= 0 for H > 1/3. Now it is well known that

n−1∑
k=0

∣∣(δB)k/n,(k+1)/n

∣∣2 a.s.−→ ∞

for H < 1/2 as n → ∞, which implies that limn→∞ Yn
1

a.s.= 0. This is obviously incompatible with a convergence
towards Y1 = exp(B1). In the case H = 1/2 this phenomenon is also well known: here the Euler scheme converges to
the Itô solution of SDE (1) and not to the Stratonovich solution (which coincides with the rough path solution).

To obtain a convergent numerical method Davie proposed in [11] a scheme of Milstein type. For this, assume that
all iterated integrals of B with respect to itself are collected into a m × m matrix B2, i.e. set

B2
st (i, j) =

∫ t

s

∫ u

s

B(i)
v dB

(j)
u , 0 ≤ s < t ≤ T ,1 ≤ i, j ≤ m.

The matrix B2 (respectively its elements) is (are) usually called Lévy area. Davie’s scheme is then given by

Yn
0 = a,

(2)

Yn
tnk+1

= Yn
tnk

+
m∑

i=1

σ (i)
(
Yn

tnk

)
δB

(i)

tnk tnk+1
+

m∑
i,j=1

D(i)σ (j)
(
Yn

tnk

)
B2

tnk tnk+1
(i, j), k = 0, . . . , n − 1,

with the differential operator D(i) = ∑d
l=1 σ

(i)
l ∂xl

. (Recall that we use the notation δB
(i)
st = B

(i)
t − B

(i)
s for s, t ∈

[0, T ].) This scheme is shown to be convergent as long as H > 1/3 in [11], with an almost sure convergence rate
of n−(3H−1)+ε for ε > 0 arbitrarily small. This result has then been extended in [17] to an abstract rough path with
arbitrary regularity, under further assumptions on the higher order iterated integral of the driving signal.

As the classical Milstein scheme for SDEs driven by Brownian motion, the Milstein-type scheme (2) is in general
not a directly implementable method. Indeed, unless the commutativity condition

D(i)σ (j) = D(j)σ (i), i, j = 1, . . . ,m,

holds, the simulation of the iterated integrals B2
tnk tnk+1

(i, j) is necessary. However, the law of these integrals is unknown,

so that they cannot be simulated directly and have to be approximated.
In this article we replace the iterated integrals by a simple product of increments, i.e. we use the approximation

B2
tnk tnk+1

(i, j) ≈ 1

2
δB

(i)

tnk tnk+1
δB

(j)

tnk tnk+1
. (3)
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This leads to the following simpler Milstein-type scheme: Set Zn
t0

= a and

Zn
tnk+1

= Zn
tnk

+
m∑

i=1

σ (i)
(
Zn

tnk

)
δB

(i)

tnk tnk+1
+ 1

2

m∑
i,j=1

D(i)σ (j)
(
Zn

tnk

)
δB

(i)

tnk tnk+1
δB

(j)

tnk tnk+1
(4)

for k = 0, . . . , n − 1. Moreover, for t ∈ (tnk , tnk+1), define

Zn
t = Zn

tnk
+ t − tnk

T /n

(
δZn

)
tnk tnk+1

, (5)

i.e. if t ∈ [0, T ] is not a discretization point, then Zn
t is defined by piecewise linear interpolation. This scheme is now

directly implementable and is still convergent.

Theorem 1.1. Assume that σ ∈ C3(Rd ;R
d×m) is bounded with bounded derivatives. Let Y be the solution to Eq. (1)

and Zn the Milstein approximation given by (4) and (5). Moreover, let 1/3 < γ < H . Then, there exists a finite and
non-negative random variable ηH,γ,σ,T such that∥∥Y − Zn

∥∥
γ,∞,T

≤ ηH,γ,σ,T ·√log(n) · n−(H−γ ) (6)

for n > 1.

Here ‖ · ‖κ,∞,T denotes the κ-Hölder norm of a function f : [0, T ] → R
l , i.e.

‖f ‖κ,∞,T = sup
t∈[0,T ]

∣∣f (t)
∣∣+ sup

s,t∈[0,T ]
|f (t) − f (s)|

|t − s|κ . (7)

Our strategy to prove the above theorem consists of two steps. First we determine the error between Y and its
Wong–Zakai approximation

Z
n

t = a +
m∑

i=1

∫ t

0
σ (i)

(
Z

n

u

)
dB(i),n

u , t ∈ [0, T ], a ∈ R
d, (8)

where

Bn
t = Btnk

+
(

t − tnk

T /n

)
(δB)tnk tnk+1

, t ∈ [0, T ],

i.e. B in Eq. (1) is replaced with its piecewise linear interpolation. Here, we denote the Lévy area corresponding to
Bn by Bn. Using the Lipschitz continuity of the Itô map of Y , i.e. the solution of Eq. (1) depends continuously in
appropriate Hölder norms on B and the Lévy area B (see Theorem 2.6), and error bounds for the difference between
B and Bn resp. B and Bn, we obtain∥∥Y − Z

n∥∥
γ,∞,T

≤ η
(1)
H,γ,σ,T ·√log(n) · n−(H−γ ), (9)

where η
(1)
H,γ,σ,T is a finite and non-negative random variable.

In the second step we analyze the difference between Z
n

and Zn. The second-order Taylor scheme with stepsize
T/n for classical ordinary differential equations applied to the Wong–Zakai approximation (8) gives our modified
Milstein scheme (4). So to obtain the error bound∥∥Zn − Z

n∥∥
γ,∞,T

≤ η
(2)
H,γ,σ,T ·√log(n) · n−(H−γ ), (10)

we can proceed in a similar way as for the numerical analysis of classical ordinary differential equations. We first
determine the one-step error and then control the error propagation using a global stability result with respect to the
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initial value for differential equations driven by rough paths (see Theorem 2.6 and Proposition 4.1). The latter can be
considered as a substitute for Gronwall’s lemma in this context.

Combining both error bounds then gives Theorem 1.1.

Remark 1.2. For H = 1/2 the scheme (2) corresponds to the classical Milstein scheme for Stratonovich SDEs driven
by Brownian motion, while our scheme (4) corresponds to the so called simplified Milstein scheme. See e.g. [28].

Remark 1.3. Instead of replacing the Lévy terms in Davie’s scheme by the “rough” approximation (3) one could
discretize these terms very finely using the results contained in [37], where (exact) convergence rates for approxima-
tions of the Lévy area are derived. However, it is well known that already for SDEs driven by Brownian motion such a
scheme is rarely efficient, if the convergence rate of the scheme is measured in terms of its computational cost. For a
survey on the complexity of the approximation of SDEs driven by Brownian motion, see e.g. [32].

Remark 1.4. Theorem 1.1 requires σ to be bounded. However, if σ ∈ C3(Rd;R
d×m) is neither bounded nor has

bounded derivatives but Eq. (1) has still a unique pathwise solution in the sense of Theorem 2.6, then the assertion of
Theorem 1.1 is still valid. This follows from a standard localisation procedure, see e.g. [26], and applies in particular
to affine-linear coefficients.

Remark 1.5. If the Wong–Zakai approximation is discretized with an arbitrary numerical scheme for ODEs of at
least second-order (e.g. Heun, Runge–Kutta 4), then the arising scheme for Eq. (1) satisfies the same error bound as
the proposed modified Milstein scheme. So, the strategy of our proof is in fact an instruction for the construction of
arbitrary implementable and convergent numerical schemes for SDEs driven by fBm.

Remark 1.6. The error bound of Theorem 1.1 is sharp. To see this, consider the simple equation

dY
(1)
t = dB

(1)
t , t ∈ [0, T ], Y0 = a ∈ R

for which our approximation obviously reduces to Zn = Bn. Then, due to a result of [4] for the maximum in a
stationary Gaussian sequence, one can prove that

P
(

lim sup
n→∞

�(n) · ∥∥Y − Zn
∥∥

γ,∞,T
< ∞

)
= 0,

if

lim inf
n→∞ �(n) ·√log(n) · n−(H−γ ) = ∞. (11)

For further details see Section 4.3.

Remark 1.7. The Wong–Zakai approximation of Eq. (1) has been studied in several works so far. In [24] estimate (9)
has been derived for the case H = 1/2. Moreover, using results from chapter 15 in [17] together with the Lipschitz
continuity of the Itô map gives the error bound∥∥Y − Z

n∥∥
γ,∞,T

≤ ηH,γ,ε,σ,T · n−(H−γ−ε),

where 1/3 < γ < H and ε > 0. Thus estimate (9) provides the optimal logarithmic sharpening of this error bound,
compare Remark 1.6, and extends the result given in [24] to 1/3 < H < 1.

Note also that we work in a different framework than [17], since we use the version of the rough path theory
developed in [20] and the analytic construction of the Lévy area given in [44].

Remark 1.8. At the price of further computations, which are simpler than the ones in this article, our convergence
result can be extended to an equation with drift, i.e. to

Yt = a +
∫ t

0
b(Yu)du +

m∑
i=1

∫ t

0
σ (i)(Yu)dB(i)

u , t ∈ [0, T ], a ∈ R
d ,
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where b : Rd → Rd is a C3
b function and where the other coefficients satisfy the assumptions of Theorem 1.1. Indeed,

the equation above can be treated like our original system (1) by adding a component B
(0)
t = t to the fractional

Brownian motion. The additional iterated integrals of B(0) with respect to B(j) for j = 1, . . . ,m are easier to handle
than B2(i, j) for i, j ∈ {1, . . . ,m}, since they are classical Riemann–Stieltjes integrals. For sake of conciseness we do
not include the corresponding details.

Our strategy, i.e. discretizing the Wong–Zakai approximation, can also be used for 1/4 < H ≤ 1/3, since the
Wong–Zakai approximation converges also in this case to the exact solution, see Chapter 15 in [17]. Applying the
third-order ODE Taylor method leads then to an implementable and convergent method with an additional third-
order term containing triple products of increments. See Remarks 2.8 and 2.9 for further details on this point, and
also for a comment about the case H ≤ 1/4.

The use of the rough paths theory, in particular of the Lipschitz continuity of the Itô map, leads to two features,
which are (more or less) uncommon in the numerical analysis of stochastic differential equations:

(i) pathwise, i.e. almost sure, error estimates, instead of average, i.e. L1- resp. L2-, error bounds,
(ii) the use of a γ -Hölder norm with the constraint γ > 1/3.

Average error bounds for the approximation of SDE (1) are known so far only in particular cases as additive noise,
see [18,27], or for one-dimensional SDEs with a one-dimensional driving fractional Brownian motion with H >

1/2, see [33]. The rough paths method, or more precisely Theorem 2.6, typically exhibits non-integrable (random)
constants, as a careful examination of its proof would show. See also [17] for further details. So the almost sure
estimate (6) cannot be turned directly into an L1-estimate for ‖Y − Zn‖γ,∞,T and such average estimates remain an
open problem.

The use of a γ -Hölder norm (with the constraint γ > 1/3) in the convergence result (6) is directly linked to the
classical continuity statement for the Itô map associated to Eq. (1) (see Theorem 2.6) and is thus natural in a rough
path setting. However, the Hölder topology is not typical for measuring the error of approximations to stochastic
differential equations. A more standard criterion would be the error with respect to the supremum norm, i.e.∥∥Y − Zn

∥∥∞,T
= sup

t∈[0,T ]

∣∣Yt − Zn
t

∣∣.
The error (in the supremum norm) of the piecewise linear interpolation of fractional Brownian motion is of order√

log(n)n−H , see [25]. Moreover, for the iterated integral
∫ T

0

∫ u

0 dB
(1)
v dB

(2)
u the proposed Milstein-type scheme leads

to the trapezoidal type approximation

1

2

n−1∑
k=0

(
B

(1)

tnk
+ B

(1)

tnk+1

)(
B

(2)

tnk+1
− B

(2)

tnk

)
.

The Lp-error for this approximation is of order n−2H+1/2, see [37]. Based on these two findings, our guess for the
rate of convergence in supremum norm is that∥∥Y − Zn

∥∥∞,T
≤ ηH,σ,T ·√log(n) · (n−H + n−2H+1/2)

holds under the assumptions of Theorem 1.1.
The used γ -Hölder norm also does not allow a precise comparison of the convergence rates of the Euler- and the

modified Milstein scheme, when both methods converge, i.e. for H > 1/2. However, we can observe the following:
from [31] we have the sharp estimate∥∥Y − ZEul,n

∥∥∞,T
≤ θH,ε,σ,T · n−2H+1+ε

for any 0 < ε < 2H − 1, where ZEul,n stands for the Euler approximation of Y and θH,ε,σ,T is an almost surely finite
random variable. On the other hand, it follows from (6) that∥∥Y − Zn

∥∥∞,T
≤ ηH,ε,σ,T · n−H+1/3+ε
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for any 0 < ε < H − 1/3. Thus we can conclude that our modified Milstein scheme is at least more efficient than the
Euler method when 1/2 < H < 2/3. However, our conjecture indicates that the modified Milstein scheme is always
superior to the Euler method.

The remainder of this article is structured as follows: In Section 2 we recall some basic facts on algebraic integration
and rough differential equations. The proofs of Theorem 1.1 and Remark 1.6 are given in Sections 3 and 4. Finally,
the Appendix contains the proof of Theorem 2.6, on which our strategy relies.

2. Algebraic integration and differential equations

In this section, we recall the main concepts of algebraic integration, which will be essential to define the generalized
integrals in our setting. Namely, we state the definition of the spaces of increments, of the operator δ, and its inverse
called Λ (or sewing map according to the terminology of [16]). We also recall some elementary but useful algebraic
relations on the spaces of increments. The interested reader is sent to [20] for a complete account on the topic, or to
[13,22] for a more detailed summary.

2.1. Increments

The extended integral we deal with is based on the notion of increments, together with an elementary operator δ acting
on them.

The notion of increment can be introduced in the following way: for two arbitrary real numbers �2 > �1 ≥ 0, a
vector space V , and an integer k ≥ 1, we denote by Ck([�1, �2];V ) the set of continuous functions g : [�1, �2]k → V

such that gt1···tk = 0 whenever ti = ti+1 for some i ∈ {0, . . . , k −1}. Such a function will be called a (k −1)-increment,
and we will set C∗([�1, �2];V ) =⋃

k≥1 Ck([�1, �2];V ). To simplify the notation, we will write Ck(V ), if there is no
ambiguity about [�1, �2].

The operator δ is an operator acting on k-increments, and is defined as follows on Ck(V ):

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1 =
k+1∑
i=1

(−1)igt1···t̂i ···tk+1
, (12)

where t̂i means that this particular argument is omitted. Then a fundamental property of δ, which is easily verified, is
that δδ = 0, where δδ is considered as an operator from Ck(V ) to Ck+2(V ). We will denote Z Ck(V ) = Ck(V ) ∩ Ker δ
and B Ck(V ) = Ck(V ) ∩ Im δ.

Some simple examples of actions of δ, which will be the ones we will really use throughout the article, are obtained
by letting g ∈ C1(V ) and h ∈ C2(V ). Then, for any t, u, s ∈ [�1, �2], we have

(δg)st = gt − gs and (δh)sut = hst − hsu − hut . (13)

Our future discussions will mainly rely on k-increments with k = 2 or k = 3, for which we will use some analytical
assumptions. Namely, we measure the size of these increments by Hölder norms defined in the following way: for
f ∈ C2(V ) let

‖f ‖μ = sup
s,t∈[�1,�2]

|fst |
|t − s|μ and Cμ

2 (V ) = {
f ∈ C2(V ); ‖f ‖μ < ∞}

.

Using this notation, we define in a natural way

Cμ
1 (V ) = {

f ∈ C1(V ); ‖δf ‖μ < ∞}
,

and recall that we have also defined a norm ‖ · ‖κ,∞,T at Eq. (7). In the same way, for h ∈ C3(V ), we set

‖h‖γ,ρ = sup
s,u,t∈[�1,�2]

|hsut |
|u − s|γ |t − u|ρ ,

(14)

‖h‖μ = inf

{∑
i

‖hi‖ρi ,μ−ρi
;h =

∑
i

hi,0 < ρi < μ

}
,
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where the last infimum is taken over all sequences {hi, i ∈ N} ⊂ C3(V ) such that h =∑
i hi and over all choices of

the numbers ρi ∈ (0,μ). Then ‖ · ‖μ is easily seen to be a norm on C3(V ), and we define

Cμ
3 (V ) := {

h ∈ C3(V ); ‖h‖μ < ∞}
.

Eventually, let C 1+
3 (V ) = ⋃

μ>1 Cμ
3 (V ), and note that the same kind of norms can be considered on the spaces

Z C3(V ), leading to the definition of the spaces Z Cμ
3 (V ) and Z C 1+

3 (V ). In order to avoid ambiguities, we de-
note in the following by N [·; Cκ

j ] the κ-Hölder norm on the space Cj , for j = 1,2,3. For ζ ∈ Cj (V ), we also set

N [ζ ; C 0
j (V )] = sups∈[�1;�2]j ‖ζs‖V .

The operator δ can be inverted under some Hölder regularity conditions, which is essential for the construction of
our generalized integrals.

Theorem 2.1 (The sewing map). Let μ > 1. For any h ∈ Z Cμ
3 (V ), there exists a unique Λh ∈ Cμ

2 (V ) such that
δ(Λh) = h. Furthermore,

‖Λh‖μ ≤ 1

2μ − 2
N
[
h; Cμ

3 (V )
]
. (15)

This gives rise to a continuous linear map Λ : Z Cμ
3 (V ) → Cμ

2 (V ) such that δΛ = idZ Cμ
3 (V ).

Proof. The original proof of this result can be found in [20]. We refer to [13,22] for two simplified versions. �

The sewing map creates a first link between the structures we just introduced and the problem of integration of
irregular functions:

Corollary 2.2 (Integration of small increments). For any 1-increment g ∈ C2(V ) such that δg ∈ C 1+
3 , set h = (id −

Λδ)g. Then, there exists f ∈ C1(V ) such that h = δf and

(δf )st = lim|Πst |→0

n∑
i=0

gti ti+1 ,

where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t] whose mesh tends to zero. The 1-increment δf

is the indefinite integral of the 1-increment g.

We also need some product rules for the operator δ. For this recall the following convention: for g ∈ Cn([�1, �2]Rl,d )

and h ∈ Cm([�1, �2];R
d,p) let gh be the element of Cn+m−1([�1, �2];R

l,p) defined by

(gh)t1,...,tm+n−1 = gt1,...,tnhtn,...,tm+n−1 (16)

for t1, . . . , tm+n−1 ∈ [�1, �2]. With this notation, the following elementary rule holds true:

Proposition 2.3. It holds:

(i) Let g ∈ C1([a, b];R
l,d ) and h ∈ C2([a, b];R

d). Then gh ∈ C2([a, b];R
l) and

δ(gh) = −δg h + g δh.

(ii) Let g ∈ C2([a, b];R
l,d ) and h ∈ C1([a, b];R

d). Then gh ∈ C2([a, b];R
l) and

δ(gh) = δg h + g δh.
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2.2. Random differential equations

One of the main appeals of the algebraic integration theory is that differential equations driven by a γ -Hölder signal
x can be defined and solved rather quickly in this setting. In the case of an Hölder exponent γ > 1/3, the required
structures are just the notion of controlled processes and the Lévy area based on x.

Indeed, let us consider an equation of the form

dyt = σ(yt )dxt =
m∑

i=1

σ (i)(yt )dxi
t , t ∈ [0, T ], y0 = a, (17)

where a is a given initial condition in R
d , x is an element of Cγ

1 ([0, T ];R
m), and σ is a smooth enough function from

R
d to R

d,m. Then it is natural (see [43] for further explanations) that the increments of a candidate for a solution to
(17) should be controlled by the increments of x in the following way:

Definition 2.4. Let z be a path in Cκ
1 (Rd) with 1/3 < κ ≤ γ . We say that z is a weakly controlled path based on x if

z0 = a, with a ∈ R
d , and δz ∈ Cκ

2 (Rd) has a decomposition δz = ζ δx + r , that is, for any s, t ∈ [0, T ],
(δz)st = ζs(δx)st + rst , (18)

with ζ ∈ Cκ
1 (Rd,m) and r ∈ C 2κ

2 (Rd).

The space of weakly controlled paths will be denoted by Qx
κ,a(R

d), and a process z ∈ Qx
κ,a(R

d) can be considered
in fact as a couple (z, ζ ). The space Qx

κ,a(R
d) is endowed with a natural semi-norm given by

N
[
z; Qx

κ,a

(
R

d
)]= N

[
z; Cκ

1

(
R

d
)]+ N

[
ζ ; C 0

1

(
R

d,m
)]+ N

[
ζ ; Cκ

1

(
R

d,m
)]+ N

[
r; C 2κ

2

(
R

d
)]

, (19)

where the quantities N [g; Cκ
j ] have been defined in Section 2.1. For the Lévy area associated to x we assume the

following structure:

Hypothesis 1. The path x : [0, T ] → R
m is γ -Hölder continuous with 1

3 < γ ≤ 1 and admits a so-called Lévy area,

that is, a process x2 ∈ C 2γ

2 (Rm,m), which satisfies δx2 = δx ⊗ δx, namely[(
δx2)

sut

]
(i, j) = [

δxi
]
su

[
δxj

]
ut

for any s, u, t ∈ [0, T ] and i, j ∈ {1, . . . ,m}.

To illustrate the idea behind the construction of the generalized integral assume that the paths x and z are smooth
and also for simplicity that d = m = 1. Then the Riemann–Stieltjes integral of z with respect to x is well defined and
we have∫ t

s

zu dxu = zs(xt − xs) +
∫ t

s

(zu − zs)dxu = zs(δx)st +
∫ t

s

(δz)su dxu

for �1 ≤ s ≤ t ≤ �2. If z admits the decomposition (18) we obtain∫ t

s

(δz)su dxu =
∫ t

s

(
ζs(δx)su + ρsu

)
dxu = ζs

∫ t

s

(δx)su dxu +
∫ t

s

ρsu dxu. (20)

Moreover, if we set

(
x2)

st
:=
∫ t

s

(δx)su dxu, �1 ≤ s ≤ t ≤ �2,
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then it is quickly verified that x2 is the associated Lévy area to x. Hence we can write∫ t

s

zu dxu = zs(δx)st + ζs

(
x2)

st
+
∫ t

s

ρsu dxu.

Now rewrite this equation as∫ t

s

ρsu dxu =
∫ t

s

zu dxu − zs(δx)st − ζs

(
x2)

st
(21)

and apply the increment operator δ to both sides of this equation. For smooth paths z and x we have

δ

(∫
z dx

)
= 0, δ(z δx) = −δz δx,

by Proposition 2.3. Hence, applying these relations to the right-hand side of (21), using the decomposition (18), the
properties of the Lévy area and again Proposition 2.3, we obtain[

δ

(∫
ρ dx

)]
sut

= (δz)su(δx)ut + (δζ )su
(
x2)

ut
− ζs

(
δx2)

sut

= ζs(δx)su(δx)ut + ρsu(δx)ut + (δζ )su
(
x2)

ut
− ζs(δx)su(δx)ut

= ρsu(δx)ut + (δζ )su
(
x2)

ut
.

So in summary, we have derived the representation[
δ

(∫
ρ dx

)]
sut

= ρsu(δx)ut + (δζ )su
(
x2)

ut
.

As we are dealing with smooth paths we have δ(
∫

ρ dx) ∈ Z C 1+
3 and thus belongs to the domain of Λ due to Propo-

sition 2.1. (Recall that δδ = 0.) Hence, it follows∫ t

s

ρsu dxu = Λst

(
ρ δx + δζx2),

and inserting this identity into (20) we end up with∫ t

s

zu dxu = zs(δx)st + ζs

(
x2)

st
+ Λst

(
ρ δx + δζx2).

Since in addition

ρ δx + δζx2 = −δ
(
z δx + ζx2),

we can also write this as∫
zu dxu = (id − Λδ)

(
z δx + ζx2).

Thus we have expressed the Riemann–Stieltjes integral of z with respect to x in terms of the sewing map Λ, of
the Lévy area x2 and of increments of z resp. x. This can now be generalized to the non-smooth case. Note that
Corollary 2.2 justifies the use of the notion integral.

In the following, we denote by A∗ the transposition of a vector resp. matrix, and by A1 · A2 = Tr(A1A
∗
2) the inner

product of two vectors or two matrices A1 and A2.
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Proposition 2.5. For fixed 1
3 < κ ≤ γ , let x be a path satisfying Hypothesis 1. Furthermore, let z ∈ Qx

κ,α([�1, �2];Rm)

such that the increments of z are given by (18). Define ẑ by ẑ�1 = α̂ with α̂ ∈ R and

(δẑ)st = [
(id−Λδ)

(
z∗δx + ζ · x2)]

st
(22)

for �1 ≤ s ≤ t ≤ �2. Then J (z∗ dx) := ẑ is a well-defined element of Qx
κ,α̂

([�1, �2];R) and coincides with the usual
Riemann integral, whenever z and x are smooth functions.

Moreover, the Hölder norm of J (z∗ dx) can be estimated in terms of the Hölder norm of the integrand z. (For this
and also for a proof of the above Proposition see e.g. [20].) This allows to use a fixed point argument to obtain the
existence of a unique solution for rough differential equations.

Theorem 2.6. For fixed 1
3 < κ < γ , let x be a path satisfying Hypothesis 1, and let σ ∈ C3(Rd ;R

d,m) be bounded
with bounded derivatives. Then we have:

(1) Equation (17) admits a unique solution y in Qx
κ,a([0, T ];R

d) for any T > 0, and there exists a polynomial
PT : R2 → R

+ such that

N
[
y; Qx

κ,a

([0, T ];R
d
)]≤ PT

(‖x‖γ,∞,T ,
∥∥x2∥∥

2γ

)
(23)

holds.
(2) Let F : R

d × Cγ

1 ([0, T ];R
m) × C 2γ

2 ([0, T ];R
m,m) → Cγ

1 ([0, T ];R
d) be the mapping defined by

F
(
a, x,x2)= y,

where y is the unique solution of Eq. (17). This mapping is locally Lipschitz continuous in the following sense:
Let x̃ be another driving rough path with corresponding Lévy area x̃2 and ã be another initial condition. More-
over, denote by ỹ the unique solution of the corresponding differential equation. Then, there exists an increasing
function KT : R4 → R

+ such that

‖y − ỹ‖γ,∞,T ≤ KT

(‖x‖γ,∞,T ,‖x̃‖γ,∞,T ,
∥∥x2∥∥

2γ
,
∥∥x̃2∥∥

2γ

)
× (|a − ã| + ‖x − x̃‖γ,∞,T + ∥∥x2 − x̃2∥∥

2γ

)
(24)

holds, where we recall that ‖f ‖μ,∞,T = ‖f ‖∞ + ‖δf ‖μ denotes the usual Hölder norm of a path f ∈
C1([0, T ];R

l).

Remark 2.7. Inequality (23) implies in particular∣∣(δy)st − σ(ys)(δx)st
∣∣≤ |t − s|2κPT

(‖x‖γ,∞,T ,
∥∥x2∥∥

2γ

)
. (25)

This estimate will be required in the proof of Lemma 4.3.

The above theorem improves (slightly) the original formulation of the Lipschitz continuity of the Itô map F , which
can be found in [20], concerning the control of the solution in terms of the driving signal. Therefore (and also for
completeness) we provide some details of its proof in the Appendix. A similar continuity result can be found in [17],
where the classical approach of Lyons and Qian to rough differential equations is used.

Remark 2.8. The theory introduced in this subsection can actually be generalized to any γ -Hölder driving process
with γ ∈ (0,1), if iterated integrals

x2 =
∫ ∫

dx ⊗ dx, x3 =
∫ ∫ ∫

dx ⊗ dx ⊗ dx, . . .

up to order n = �1/γ � can be defined, see [21]. In particular, if the coefficients of (17) are smooth enough, the
fundamental continuity result (24) holds with a similar right-hand side involving additional terms as ‖xk − x̃k‖kγ ,
k = 3, . . . , �1/γ �.
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2.3. Application to fBm

The application of the rough path theory to an equation with a particular driving signal relies on the existence of the
Lévy area fulfilling Hypothesis 1. In our setting, the driving process is given by an m-dimensional fractional Brownian
motion (B(1), . . . ,B(m)) with Hurst parameter H > 1/3. There are several known possibilities to show the existence
of the associated Lévy area B2 = (B2(i, j))i,j=1,...,m, e.g.:

(i) By a piecewise dyadic linear interpolation of the paths of B , as done in the pioneering work [9].
(ii) Using Malliavin calculus tools in order to define B2 as a Russo–Vallois iterated integral, similarly to what is done

in [36] to construct a delayed fractional Lévy area.
(iii) By means of the analytic approximation of B introduced by Unterberger in [44].

Actually, these three methods lead to the same Lévy area. The equivalence between the first two constructions has
been established by Coutin and Qian through a representation formula (see Theorem 4 in [9]). The convergence
results we are going to establish show that the Lévy area recently obtained by Unterberger in [44] coincides with the
previous ones. Note that this question had been left open by the author in the latter reference, so that the following
Proposition 3.7 has an interest in itself (see also [37] for a partial result in this direction). Other constructions of the
Lévy area are based on mollifier or Karhunen–Loéve approximations of fractional Brownian motion, see chapter 15
in [17]. Given the Lévy area, Theorem 2.6 asserts that there exists a unique solution Y to Eq. (1), understood in the
rough path sense.

Remark 2.9. It follows from decomposition (22) and Corollary 2.2 that the integral
∫ t

s
σ (i)(Yu)dB

(i)
u , understood in

the rough paths sense via Proposition 2.5, satisfies∫ t

s

σ (i)(Yu)dB(i)
u = lim|Πst |→0

∑
tk∈Πst

(
σ (i)(Yu) δB

(i)
tk tk+1

+
m∑

j=1

D(j)σ (i)(Ytk )B
2
tk tk+1

(j, i)

)

almost surely.

(i) When H > 1/2, the second term of the above summand vanishes due to the smoothness of the Lévy area. Thus,
we have∫ t

s

σ (i)(Yu)dB(i)
u = lim|Πst |→0

∑
tk∈Πst

σ (i)(Yu) δB
(i)
tk tk+1

a.s.,

i.e. the rough paths integral coincides with the classical Young (or Riemann–Stieltjes) integral. Consequently, the
solution of (1) given by Theorem 2.6 coincides in this case with the solution given in [41].

(ii) In the standard Brownian motion case (H = 1/2), the Lévy area constructed by the above methods corresponds
to the Stratonovich interpretation of the iterated integral: as shown in [17], the solution given by Theorem 2.6
then coincides with the solution of the Stratonovich SDE.

(iii) In the case 1/3 < H < 1/2 other approaches to stochastic integration with respect to fBm, namely the symmetric
[38] and the Skorohod [1] integrals, fail to provide a complete treatment of (1) as soon as m ≥ 2. See [39] for an
identification with the symmetric integral when m = 1.

Note that a Lévy volume B3 can be constructed above B (using for instance dyadic approximations) when H > 1/4
(see [9,44]), which, according to Remark 2.8, leads to the existence and uniqueness of a solution to (1) for H > 1/4.
The situation for H ≤ 1/4 is much more intricate (see [9,44]), since standard approximations of B do not lead to a
proper Lévy area in this case.

We will resort here to the analytic definition of the fractional Lévy area: in order to obtain a sharp control for the
difference between B2 and its approximation B2,n,T (see (31)), we will use the pointwise estimates of [37], which
were derived in this setting. Let us recall the main features of the analytic approach.
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2.3.1. Definition of the analytic fBm
The article [44] introduces the fractional Brownian motion as the real part of the trace on R of an analytic process Γ

(called: analytic fractional Brownian motion [43]) defined on the complex upper-half plane Π+ = {z ∈ C;�(z) > 0}.
This is achieved by an explicit series construction: for k ≥ 0 and z ∈ Π+, set

fk(z) = 2H−1

√
H(1 − 2H)

2 cosπH

√
�(2 − 2H + k)

�(2 − 2H)k!
(

z + i

2i

)2H−2(
z − i

z + i

)k

, (26)

where � stands for the usual Gamma function. These functions are well defined on Π+, and it can be checked that

∑
k≥0

fk

(
x + i

η1

2

)
fk

(
y + i

η2

2

)
= K ′,−

(
1

2
(η1 + η2);x, y

)
,

where K ′,− is a positive kernel defined on R
∗+ × R × R given by

K ′,−(η;x, y) = H(1 − 2H)

2 cosπH

(−i(x − y) + η
)2H−2

.

We also set

K ′,+(η;x, y) = H(1 − 2H)

2 cosπH

(+i(x − y) + η
)2H−2

.

Now define the Gaussian process Γ ′ with “time parameter” z ∈ Π+ by

Γ ′(z) =
∑
k≥0

fk(z)ξk, (27)

where (ξk)k≥0 are independent standard complex Gaussian variables, i.e. E[ξj ξk] = 0, E[ξj ξ̄k] = δj,k . The Cayley
transform z �→ z−i

z+i maps Π+ to D, where D stands for the unit disk of the complex plane. This allows to prove that
the series defining Γ ′ is a random entire series which is analytic on the unit disk and hence the process Γ ′ is analytic
on Π+. Furthermore, restricting to the horizontal line R + i η

2 , the following identity holds:

E
[
Γ ′(x + iη/2)Γ ′(y + iη/2)

]= K ′,−(η;x, y).

One may now integrate the process Γ ′ over any path γ : (0,1) → Π+ with endpoints γ (0) = 0 and γ (1) = z ∈
Π+ ∪ R (the result does not depend on the particular path but only on the endpoint z). The resulting process, which
is denoted by Γ , is still analytic on Π+. Furthermore, the real part of the boundary value of Γ on R is a fractional
Brownian motion. Another way to look at this is to define Γ (η) := {Γ (t + iη); t ∈ R} as a regular process living on
R, and to observe that the real part of Γ (η) converges for η → 0 to a fractional Brownian motion. The following
proposition summarizes what has been said so far:

Proposition 2.10 (See [43,44]). Let Γ ′ be the process defined on Π+ by relation (27).

(1) Let γ : (0,1) → Π+ be a continuous path with endpoints γ (0) = 0 and γ (1) = z, and set Γz = ∫
γ

Γ ′
u du. Then Γ

is an analytic process on Π+. Furthermore, as z runs along any path in Π+ going to t ∈ R, the random variables
Γz converge almost surely to a random variable called again Γt .

(2) The family {Γt ; t ∈ R} defines a centered Gaussian complex-valued process whose paths are almost surely κ-
Hölder continuous for any κ < H . Its real part B := {2�Γt ; t ∈ R} has the same law as fBm.

(3) The family of centered Gaussian real-valued processes B(η) := {2�Γt+iη; t ∈ R} converges a.s. to B in α-Hölder
norm for any α < H , on any interval [0, T ] with T > 0. Its infinitesimal covariance kernel E[B ′

x(η)B ′
y(η)] is

K ′(η;x, y) := K ′,+(η;x, y) + K ′,−(η;x, y).



A Milstein-type scheme for SDEs driven by fBm 531

2.3.2. Definition of the Lévy area
Consider now an m-dimensional analytic fBm Γ = (Γ (1), . . . , Γ (m)). Since the process B(η) is smooth, one can
define the following integrals in the Riemann sense for all 0 ≤ s < t ≤ T , 1 ≤ j1, j2 ≤ m and η > 0:

B2,η
st (j1, j2) =

∫ t

s

dB
(j2)
u1 (η)

∫ u1

s

dB
(j1)
u2 (η). (28)

It turns out that B2,η converges in the Hölder spaces C 2κ
2 from Section 2.1 (see [43,44]), which allows to define the

Lévy area in the following way:

Proposition 2.11. Let T > 0 and define B2,η by Eq. (28). Let also 0 < γ < H . Then B satisfies Hypothesis 1 in the
following sense:

(1) The couple (B(η),B2,η) converges in Lp(Ω; Cγ

1 ([0, T ];R) × C 2γ

2 ([0, T ]2;R
m,m)) for all p ≥ 1 to a couple

(B,B2), where B is a fractional Brownian motion.
(2) The increment B2 satisfies the algebraic relation δB2 = δB ⊗ δB .

One of the advantages of the analytic approach is that an expression for the covariances of the Lévy area can be
easily derived by dominated convergence. We have

E
[
B2

s1t1
(i, j)B2

s2t2
(i, j)

]= H 2(2H − 1)2
∫ t1

s1

∫ t2

s2

∫ u1

s1

∫ u2

s2

|u1 − u2|2H−2|v1 − v2|2H−2 dv2 dv1 du2 du1 (29)

for 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ T and i, j = 1, . . . ,m.
Moreover, B(η) satisfies similar stationarity and scaling properties as the fBm itself.

Lemma 2.12. We have

(1) (stationarity){(
δB(η)

)
s,u+s

,0 ≤ u ≤ T − s
} L= {

B(η)u,0 ≤ u ≤ T − s
}
,

(2) (scaling)

{
B(η)c·u, 0 ≤ u ≤ T/c

} L=
{
cH B

(
η

c

)
u

, 0 ≤ u ≤ T/c

}
.

The above lemma can be shown by straightforward calculations exploiting that B(η) is a Gaussian process with
covariance kernel K ′ and will be useful to derive the scaling property of the fractional Lévy area. See Lemma 3.1
below.

3. Approximation of the Lévy area

Let Pn,T be the uniform partition {tnk = kT
n

, k = 0, . . . , n} of [0, T ], and let Bn,T be the linear interpolation of B based
on the points of Pn,T . More precisely, Bn,T is defined as follows: for t ∈ [0, T ], let k ∈ {0,1, . . . , n − 1} be such that
tnk ≤ t < tnk+1. Then we have

B
n,T
t = Btnk

+
(

t − tnk

T /n

)
(δB)tnk tnk+1

. (30)

Let also B2,n,T be the Lévy area of Bn,T , which is simply defined in the Riemann sense by

B2,n,T
st (i, j) =

∫ t

s

∫ u1

s

dBn,T ,(i)
u2

dB
n,T ,(j)
u1 . (31)
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The first step in the convergence analysis of our Milstein type scheme is to determine the rate of convergence of the
couple (Bn,T ,B2,n,T ) towards (B,B2). The current section is devoted to this step, which can be seen as an extension
of [37] to Hölder norms. Throughout the remainder of this article we will denote unspecified non-negative and finite
random variables by θ , indicating by indices on which quantities they depend. Similarly, we will denote unspecified
constants, whose specific value is not relevant, by C or K .

3.1. Preliminary tools

As a first step, let us state the following elementary lemma about the stationarity and scaling properties of the fBm B

and its piecewise linear interpolation Bn,T resp. about the scaling property of the Lévy areas B2 and B2,n,T .

Lemma 3.1. Consider a point s ∈ Pn,T . Then{(
(δB)s,u+s ,

(
δBn,T

)
s,u+s

)
, 0 ≤ u ≤ T − s

} L= {(
Bu,B

n,T
u

)
,0 ≤ u ≤ T − s

}
. (32)

Furthermore, if c > 0, then{(
Bcu,B

n,T
cu

)
,0 ≤ u ≤ T/c

} L= {
cH
(
Bu,B

n,T /c
u

)
,0 ≤ u ≤ T/c

}
. (33)

Finally, let s, t ∈ Pn,T with s ≤ t . Then we have(
B2

st (i, j),B2,n,T
st (i, j)

) L= (t − s)2H
(
B2

01(i, j),B2,n,T /(t−s)

01 (i, j)
)

(34)

for all i, j = 1, . . . ,m.

Proof. These assertions are of course consequences of the stationarity and scaling properties of fBm, i.e. for any
c > 0 the process

B̃(i)· = cH B
(i)
·/c (35)

is again a fBm, and for any h ∈ R the process

B̃(i)· = (
δB(i)

)
h,·+h

(36)

is a fBm.
Recall that the points of Pn,T are given by tni = iT

n
for all i ∈ N, and introduce the two mappings F

n,T
− and F

n,T
+

defined on R+ by F
n,T
− (u) = tni and F

n,T
+ (u) = tni+1 if tni ≤ u < tni+1. With these notations, one has B

n,T
u = Gn,T (B)u,

where the measurable mapping Gn,T : C(R+;R
m) → C(R+;R

m) is defined by

Gn,T (y)u = y
F

n,T
− (u)

+ u − F
n,T
− (u)

T /n
(y

F
n,T
+ (u)

− y
F

n,T
− (u)

), u ∈ R
+.

Now, in order to establish (32), note that F
n,T
± (u + s) = F

n,T
± (u) + s if s ∈ Pn,T . It is then easily seen that(

(δB)s,·+s ,
(
δBn,T

)
s,·+s

)= (
(δB)s,·+s ,G

n,T
(
(δB)s,·+s

))
,

so that, due to the stationarity property of fBm, the following identity in law for processes holds true:(
(δB)s,·+s ,

(
δBn,T

)
s,·+s

) L= (
B,Gn,T (B)

)= (
B,Bn,T

)
.

The proof of (33) is quite similar. In fact, one has F
n,T
± (c · u) = c · Fn,T/c

± (u) and so B
n,T
cu = Gn,T/c(Bc·)u. Thus it

holds, thanks to the scaling property of fBm,(
Bc·,Bn,T

c·
)= (

Bc·,Gn,T /c(Bc·)
) L= (

cH B,Gn,T/c
(
cH B

))
.
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Identity (33) is then a consequence of the linearity of Gn,T/c .
Now it remains to establish (34). Note first that Proposition 2.11 implies that(

B2
st ,B2,n,T

st

)= lim
η→0

(
B(η)2

st ,B(η)
2,n,T
st

)
(37)

in probability. Here B(η)
2,n,T
st is the Lévy area associated to the piecewise linear interpolation of B(η) with stepsize

T/n.
Since B(η) is analytic, the above Lévy areas can be approximated by a standard Euler quadrature rule, i.e. we have

B(η)2
st = lim

k→∞ Ik

(
B(η)2

st

)
, B(η)

2,n,T
st = lim

k→∞ Ik

(
B(η)

2,n,T
st

)
(38)

almost surely, where

Ik

(
B(η)2

st

)=
k∑

i=0

{(
δB(η)

)
s,(i/k)(t−s)+s

}⊗ {(
δB(η)

)
(i/k)(t−s)+s,((i+1)/k)(t−s)+s

}
,

Ik

(
B(η)

2,n,T
st

)=
k∑

i=0

{(
δB(η)n,T

)
s,(i/k)(t−s)+s

}⊗ {(
δB(η)n,T

)
(i/k)(t−s)+s,((i+1)/k)(t−s)+s

}
.

Using again the Gn,T notation we have(
Ik

(
B(η)2

st

)
, Ik

(
B(η)

2,n,T
st

))
=
(

k∑
i=0

{(
δB(η)

)
s,(i/k)(t−s)+s

}⊗ {(
δB(η)

)
s,((i+1)/k)(t−s)+s

− (
δB(η)

)
s,(i/k)(t−s)+s

}
,

k∑
i=0

Gn,T
((

δB(η)
)
s,·+s

)
(i/k)(t−s)

⊗ {
Gn,T

((
δB(η)

)
s,·+s

)
((i+1)/k)(t−s)

− Gn,T
((

δB(η)
)
s,·+s

)
(i/k)(t−s)

})
.

Thus, invoking Lemma 2.12 and setting ηst = η
t−s

, we end up with(
Ik

(
B(η)2

st

)
, Ik

(
B(η)

2,n,T
st

))
L=
(

k∑
i=0

B(η)(i/k)(t−s) ⊗ (
δB(η)

)
(i/k)(t−s),((i+1)/k)(t−s)

,

k∑
i=0

Gn,T
(
B(η)

)
(i/k)(t−s)

⊗ (
δGn,T

(
B(η)

))
(i/k)(t−s),((i+1)/k)(t−s)

)

=
(

k∑
i=0

B(η)(i/k)(t−s) ⊗ (
δB(η)

)
(i/k)(t−s),((i+1)/k)(t−s)

,

k∑
i=0

Gn,T/(t−s)
(
B(η)·(t−s)

)
(i/k)

⊗ (
δGn,T /(t−s)

(
B(η)·(t−s)

))
(i/k),((i+1)/k)

)

L=
(

(t − s)2H
k∑

i=0

B
(
ηst
)
(i/k)

⊗ (
δB
(
ηst
))

(i/k),((i+1)/k)
,

(t − s)2H

k∑
i=0

Gn,T/(t−s)
(
B
(
ηst
))

(i/k)
⊗ (

δGn,T /(t−s)
(
B
(
ηst
)))

(i/k),((i+1)/k)

)
,



534 A. Deya, A. Neuenkirch and S. Tindel

that is

(
Ik

(
B(η)2

st

)
, Ik

(
B(η)

2,n,T
st

)) L= (t − s)2H

(
Ik

(
B
(

η

t − s

)2

01

)
, Ik

(
B
(

η

t − s

)2,n,T /(t−s)

01

))
. (39)

Clearly, we also have

B
(

η

t − s

)2

01
= lim

k→∞ Ik

(
B
(

η

t − s

)2

01

)
,

(40)

B
(

η

t − s

)2,n,T /(t−s)

01
= lim

k→∞ Ik

(
B
(

η

t − s

)2,n,T /(t−s)

01

)
almost surely and

(
B2

01,B2,n,T /(t−s)

01

)= lim
η→0

(
B
(

η

t − s

)2

01
,B
(

η

t − s

)2,n,T /(t−s)

01

)
(41)

in probability. So, combining (37)–(41), we obtain

E
[
ϕ
(
B2

st ,B2,n,T
st

)]
= lim

k→∞,η→0
E
[
ϕ
(

Ik

(
B(η)2

st

)
, Ik

(
B(η)

2,n,T
st

))]
= lim

k→∞,η→0
E
[
ϕ
(
(t − s)2H Ik

(
B
(
ηst
)2

01

)
, (t − s)2H Ik

(
B
(
ηst
)2,n,T /(t−s)

01

))]
= E

[
ϕ
(
(t − s)2H B2

01, (t − s)2H B2,n,T /(t−s)

01

)]
for any function ϕ ∈ Cb((R

m ⊗ R
m)2), which concludes the proof of (34). �

The next auxiliary result is an upper bound of the modulus of continuity of fBm and is a consequence of Theo-
rem 3.1 in [45].

Lemma 3.2. Let T > 0. There exists h∗ > 0 and a finite and non-negative random variable θH,h∗,T such that

sup
t∈[0,T −h]

∣∣(δB)t,t+h

∣∣≤ θH,h∗,T · hH ·
√∣∣log(1/h)

∣∣
for all h ∈ (0, h∗).

The classical Garsia lemma reads as follows:

Lemma 3.3. For all γ > 0 and p ≥ 1 there exists a constant Cγ,p,l > 0 such that

N
[
f ; Cγ

1

([0, T ];R
l
)]≤ Cγ,p,l

(∫ T

0

∫ T

0

|(δf )uv|2p

|u − v|2γp+2
dudv

)1/(2p)

for all f ∈ C1([0, T ];R
l).

Finally, we also need to control the Hölder smoothness of elements of C2, beyond the case of increments of func-
tions in C1. The following is a generalization of the Garsia–Rodemich–Rumsey lemma above.
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Lemma 3.4. Let κ > 0 and p ≥ 1. Let R ∈ C2([0, T ];Rl,l) with δR ∈ Cκ
3 ([0, T ];Rl,l). If∫ T

0

∫ T

0

|Ruv|2p

|u − v|2κp+2
dudv < ∞,

then R ∈ Cκ
2 ([0, T ];R

l,l). In particular, there exists a constant Cκ,p,l > 0, such that

N
[
R; Cκ

2

([0, T ];R
l,l
)]≤ Cκ,p,l

(∫ T

0

∫ T

0

|Ruv|2p

|u − v|2κp+2
dudv

)1/(2p)

+ Cκ,p,l N
[
δR; Cκ

3

([0, T ];R
l,l
)]

.

3.2. Approximation results

Recall that our aim here is to show the convergence of the couple (Bn,T ,B2,n,T ) towards (B,B2) in some suitable
Hölder spaces. A similar result was obtained in [9], but with the following differences: (i) The authors in [9] studied the
p-variation norm of B2 −B2,2n,T using dyadic discretizations, while we are working in the Hölder setting. (ii) The rate
of convergence for the approximation was not their main concern, and the convergence rate stated in [9], Corollary 20,
is not sharp.

Let us now start with a first moment estimate for the difference B2 − B2,n,T , for which we will use the error bound
for a trapezoidal approximation of B2 derived in [37]. Moreover, recall that we denote by Bn,T the piecewise linear
interpolation of B on [0, T ] with respect to the uniform partition Pn,T = {tnk ; k = 0, . . . , n}, where tnk = kT

n
, and by

B2,n,T the corresponding Lévy area.

Proposition 3.5. Let p ≥ 1 and H > 1/4. Then, we have(
E
∣∣B2

0,T − B2,n,T
0,T

∣∣p)1/p ≤ Kp · T 2H · n−2H+1/2.

Proof. First note that the random variable B2
0,T − B2,n,T

0,T belongs to the sum of the first and the second chaos of B

(we refer to [40] for a specific description of these notions). So all moments of B2
0,T − B2,n,T

0,T are equivalent and it
suffices to show that there exists a constant K > 0 such that, for all i, j = 1, . . . ,m,(

E
∣∣B2

0,T (i, j) − B2,n,T
0,T (i, j)

∣∣2)1/2 ≤ K · T 2H · n−2H+1/2. (42)

Consider first the diagonal elements of B2
0,T − B2,n,T

0,T . In this case, we have B2
0,T (j, j) = (B

(j)
T )2/2 and

B2,n,T
0,T (j, j) =

∫ T

0
B

n,T ,(j)
u dB

n,T ,(j)
u

=
n−1∑
k=0

B
(j)

tnk
δB

(j)

tnk tnk+1
+

n−1∑
k=0

∫ tnk+1

tnk

(
n

T

)2(
u − kT

n

)(
δB

(j)

tnk tnk+1

)2 du

=
n−1∑
k=0

(
B

(j)

tnk
δB

(j)

tnk tnk+1
+ 1

2

(
δB

(j)

tnk tnk+1

)2)= 1

2

(
B

(j)
T

)2
.

Hence it follows

B2
0,T (j, j) − B2,n,T

0,T (j, j) =
∫ T

0
B

(j)
u dB

(j)
u −

∫ T

0
B

n,T ,(j)
u dB

n,T ,(j)
u = 0. (43)

Now consider the off-diagonal terms of B2
0,T − B2,n,T

0,T . Proceeding as above we have

∫ T

0
Bn,T ,(i)

u dB
n,T ,(j)
u = 1

2

n−1∑
k=0

(
B

(i)

tnk
+ B

(i)

tnk+1

)
δB

(j)

tnk tnk+1
.
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Thus, [37], Theorem 1.2, can be applied and yields(
E
∣∣B2

0,T (i, j) − B2,n,T
0,T (i, j)

∣∣2)1/2 ≤ K · T 2H · n−2H+1/2. (44)

�

The next result gives an error bound for the piecewise linear interpolation of B . Note that similar estimates as in
the next lemma can be found in [12], where the case H > 1/2 is considered.

Lemma 3.6. Let 0 ≤ γ < H. Then, there exists a finite and non-negative random variable θH,γ,T such that

N
[
Bn,T − B; Cγ

1

([0, T ])]≤ θH,γ,T ·√log(n) · n−(H−γ )

for n > 1.

Proof. Clearly, we have to find appropriate bounds for∣∣δ(Bn,T − B
)
st

∣∣, s, t ∈ [0, T ].
First note that there exists a strictly positive xH,γ such that the mapping f : (0, T ] → [0,∞), f (x) = xH−γ ×√| log(1/x)| is increasing on x ∈ (0, xH,γ ). Without loss of generality, we assume that T/n ≤ inf(xH,γ , h∗), where
h∗ is defined by Lemma 3.2.

(i) First, consider the case where |t − s| ≥ T
n

. Let us assume also without loss of generality that tnk ≤ s < tnk+1 ≤
tnl ≤ t < tnl+1 for some k < l and recall that tnk = kT /n. Then

Bn,T
s = Btnk

+
(

s − tnk

T /n

)
δBtnk tnk+1

and B
n,T
t = Btnl

+
(

t − tnl

T /n

)
δBtnl tnl+1

,

so that∣∣δ(Bn,T − B
)
st

∣∣ ≤ |δBtnk s | + |δBtlnt | + |δBtnk tnk+1
| + |δBtnl tnl+1

|

≤ θH,T

√∣∣log
(
1/
(
s − tnk

))∣∣∣∣s − tnk

∣∣H + θH,T

√∣∣log
(
1/
(
t − tnl

))∣∣∣∣t − tnl

∣∣H
+ 2θH,T

√∣∣log(n/T )
∣∣(T

n

)H

≤ 2θH,T |t − s|γ
√∣∣log

(
1/(t − s)

)∣∣n−(H−γ ) + 2θH,T

√∣∣log(n/T )
∣∣(T

n

)H

≤ θH,T |t − s|γ
√∣∣log(n)

∣∣n−(H−γ )

using Lemma 3.2 and the monotonicity of x �→ xH−γ
√| log(1/x)|.

(ii) Now, suppose that |t − s| < T/n with for instance tnk ≤ s < t < tnk+1. In this case,(
δBn,T

)
st

= t − s

T /n
(δB)tnk tnk+1

and thus∣∣δ(Bn,T − B
)
st

∣∣ ≤ |δBst | +
∣∣δBn,T

st

∣∣
≤ θH,T

√∣∣log
(
1/(t − s)

)∣∣|t − s|H + θH,T |t − s|
√∣∣log(n/T )

∣∣(T

n

)H−1

≤ θH,T

√∣∣log
(
1/(t − s)

)∣∣|t − s|H + θH,T |t − s|γ
√∣∣log(n)

∣∣n−(H−γ ).
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Using again the monotonicity of x �→ xH−γ
√| log(1/x)|, it follows∣∣δ(Bn,T − B

)
st

∣∣≤ θH,T |t − s|γ
√∣∣log(n)

∣∣n−(H−γ ).

(iii) The same estimate as above also holds true if |t − s| < T/n and tnk ≤ s < tnk+1 ≤ t < tnk+2.
(iv) Combining (i)–(iii) yields the assertion. �

Now we determine the error for the approximation of the Lévy area.

Lemma 3.7. Let 1/4 < γ < H . Then, there exists a finite and non-negative random variable θH,γ,T such that

N
[
B2,n,T − B2; C 2γ

2

([0, T ])]≤ θH,γ,T ·√log(n) · n−(H−γ )

for n > 1.

Proof. In this proof we will denote constants (which depend only on p, q , ε, γ , H and T ) by K , regardless of their
value.

Step 1. We will first show that(
E
∣∣N
[
B2,n,T − B2; C 2γ

2

([0, T ])]∣∣q)1/q ≤ K · (n−2(H−γ ) + n−H
)
. (45)

For this, we have to consider the family of increments An,T (i, j) ∈ C2, defined by

A
n,T
st (i, j) =

∫ t

s

(
δB(i)

)
su

dB
(j)
u −

∫ t

s

(
δBn,T ,(i)

)
su

dB
n,T ,(j)
u

for i, j = 1, . . . ,m. By symmetry we can assume 1 ≤ j ≤ i ≤ m and we distinguish several cases for s, t ∈ [0, T ].
(i) Assume that |t − s| ≥ T

n
and s, t ∈ Pn,T , i.e. s = kT

n
and t = lT

n
for k < l. Then the scaling properties of fBm,

see Lemma 3.1, yield

A
n,T
st (i, j)

L=
∫ t−s

0
B(i)

u dB
(j)
u −

∫ t−s

0
Bn,T ,(i)

u dB
n,T ,(j)
u

L= (t − s)2H

(∫ 1

0
B(i)

u dB
(j)
u −

∫ 1

0
B

n,T/(t−s),(i)
u dB

n,T/(t−s),(j)
u

)
.

Since T
t−s

= n
l−k

we have{
B

n,T/(t−s),(i)
u , u ∈ [0,1]}= {

Bl−k,1,(i)
u , u ∈ [0,1]}.

Now Proposition 3.5 gives(
E
∣∣An,T

st (i, j)
∣∣p)1/p ≤ K · |t − s|2H · |l − k|−2H+1/2 ≤ K · |t − s|1/2 · n−2H+1/2

≤ K · |t − s|2γ · n−2(H−γ ), (46)

with γ > 1/4.
(ii) Assume now that (t − s) ≥ T

n
with s < tnk+1 ≤ tnl ≤ t < tnl+1. Using the cohomologic relation δ(δAn,T (i,

j))stnk+1t
n
l t = 0, we obtain

A
n,T
st (i, j) = A

n,T

stnk+1
(i, j) + A

n,T

tnk+1t
n
l
(i, j) + A

n,T

tnl t
(i, j)

+ δ
(
An,T (i, j)

)
stnk+1t

+ δ
(
An,T (i, j)

)
tnk+1t

n
l t

. (47)
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For the term A
n,T

tnk+1t
n
l
(i, j), we can use the first step to deduce

(
E
∣∣An,T

tnk+1t
n
l
(i, j)

∣∣p)1/p ≤ K · ∣∣tnl − tnk+1

∣∣2γ · n−2(H−γ ) ≤ K · |t − s|2γ · n−2(H−γ ).

To deal with the last two terms of (47), remember the algebraic relation

δ
(
An,T (i, j)

)= δB(i) · δB(j) − δBn,T ,(i) · δBn,T ,(j), (48)

which entails here∣∣δ(An,T (i, j)
)
stnk+1t

∣∣≤ ∣∣(δB(i)
)
stnk+1

∣∣ · ∣∣(δB(j)
)
tnk+1t

∣∣+ ∣∣(δBn,T ,(i)
)
stnk+1

∣∣ · ∣∣(δBn,T ,(j)
)
tnk+1t

∣∣,
and we easily get(

E
∣∣δ(An,T (i, j)

)
stnk+1t

∣∣p)1/p ≤ K · |t − s|H · (T /n)H ≤ K · |t − s|2γ · (n−2(H−γ ) + n−H
)
.

Similarly we obtain the same estimate for E[|δ(An,T (i, j))tnk+1t
n
l t |p]1/p .

As for the term A
n,T

stnk+1
(i, j) one has, on the one hand,

(
E

∣∣∣∣∫ tnk+1

s

(
δB(i)

)
su

dB
(j)
u

∣∣∣∣p)1/p

= ∣∣tnk+1 − s
∣∣2H

(
E

∣∣∣∣∫ 1

0
B(i)

u dB
(j)
u

∣∣∣∣p)1/p

≤ K · |t − s|2γ · n−2(H−γ ), (49)

where γ < H . On the other hand,∣∣∣∣∫ tnk+1

s

δBn,T ,(i)
su dB

n,T ,(j)
u

∣∣∣∣= ∣∣δBn,T ,(i)

tnk tnk+1
δB

n,T ,(j)

tnk tnk+1

∣∣ ∫ tnk+1

s

(u − tnk )

(T /n)2
du ≤ ∣∣δBn,T ,(i)

tnk tnk+1
δB

n,T ,(j)

tnk tnk+1

∣∣.
So for γ < H , an application of the Cauchy–Schwarz inequality yields(

E

∣∣∣∣∫ tnk+1

s

(
δBn,T ,(i)

)
su

dB
n,T ,(j)
u

∣∣∣∣p)1/p

≤ K · |t − s|2γ · n−2(H−γ ). (50)

Putting together relations (49) and (50), we obtain (E[|An,T

stnk+1
(i, j)|p])1/p ≤ K|t − s|2γ · n−2(H−γ ). Furthermore, the

term A
n,T

tnl t
(i, j) can be handled along the same lines.

(iii) It only remains to analyze the case (t − s) < T
n

. For tnk ≤ s < t < tnk+1 we have(
E

∣∣∣∣∫ t

s

(
δB(i)

)
su

dB
(j)
u

∣∣∣∣p)1/p

≤ K · |t − s|2H ≤ K · |t − s|2γ · n−2(H−γ ),

and ∣∣∣∣∫ t

s

δBn,T ,(i)
su dB

n,T ,(j)
u

∣∣∣∣≤ (t − s)2

2(T /n)2

∣∣δBn,T ,(i)

tnk tnk+1

∣∣∣∣δBn,T ,(j)

tnk tnk+1

∣∣,
and thus(

E

∣∣∣∣∫ t

s

(
δBn,T ,(i)

)
su

dB
n,T ,(j)
u

∣∣∣∣p)1/p

≤ K · |t − s|2γ · n−2(H−γ ).

The case (t − s) < T
n

and tnk ≤ s < tnk+1 ≤ t < tnk+2 can be treated analogously.
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(iv) Combining steps (i)–(iii) yields that(
E
∣∣An,T

st (i, j)
∣∣p)1/p ≤ K · |t − s|2γ · (n−2(H−γ ) + n−H

)
(51)

for all s, t ∈ [0, T ] and 1/4 < γ < H .

Step 2. Before we can apply Lemma 3.4, we need additional preparations. First, notice that (48) can also be written
as

δ
(
B2 − B2,n,T

)= [
δ
(
B − Bn,T

)]⊗ δB + δBn,T ⊗ [
δ
(
B − Bn,T

)]
,

so that∣∣δ(B2 − B2,n,T
)
sut

∣∣
≤ |t − u|γ |s − u|γ (2N

[
δB; Cγ

2

] · N
[
δ
(
B − Bn,T

); Cγ

2

]+ (
N
[
δ
(
B − Bn,T

); Cγ

2

])2)
and thus

N
[
δ
(
B2 − B2,n,T

); C 2γ

3

]≤ 2N
[
δB; Cγ

2

] · N
[
δ
(
B − Bn,T

); Cγ

2

]+ (
N
[
δ
(
B − Bn,T

); Cγ

2

])2
.

Lemma 3.6 now gives

N
[
δ
(
B2 − B2,n,T

); C 2γ

3

]≤ θH,γ,T ·√log(n) · n−(H−γ ). (52)

Step 3. Using (52), Lemma 3.4 entails

N
[(

B2 − B2,n,T
); C 2γ

2

([0, T ])]
≤ K

(∫ T

0

∫ T

0

|(B2 − B2,n,T )uv|2p

|u − v|4γp+2
dudv

)1/(2p)

+ K · θH,γ,T ·√log(n) · n−(H−γ )

for all p ≥ 1. To finish the proof, it remains to show that

|Rn,p| ≤ θH,γ,T ·√log(n) · n−(H−γ ), (53)

where

Rn,p =
(∫ T

0

∫ T

0

|(B2 − B2,n,T )uv|2p

|u − v|4γp+2
dudv

)1/(2p)

.

However, using (51) with γ + ε/2 instead of γ , we have

E|Rn,p|2p ≤
∫ T

0

∫ T

0

E|(B2 − B2,n,T )uv|2p

|u − v|4γp+2
dudv

≤ K

∫ T

0

∫ T

0

|u − v|4γp+2εp

|u − v|4γp+2
dudv · (n−4(H−γ−ε/2)p + n−2Hp

)
,

i.e.

(
E|Rn,p|2p

)1/(2p) ≤ K

(∫ T

0

∫ T

0
|u − v|2pε−2 dudv

)1/(2p)

· (n−2(H−γ )+ε + n−H
)
.

So for p > 1
ε

, it holds(
E|Rn,p|2p

)1/(2p) ≤ K · (n−2(H−γ )+ε + n−H
)
.
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Now, set α = min{2(H − γ ) − ε,H } and let δ > 0. From the Chebyshev–Markov inequality it follows

P
(
nα−ε|Rn,p| > δ

)≤ E|Rn,p|2p

δ2p
n2p(α−ε) ≤ K

n−2pε

δ2p
.

Since p > 1/ε we have

∞∑
n=1

P
(
nα−ε|Rn,p| > δ

)
< ∞

for all δ > 0. The Borel–Cantelli lemma implies now that nα−ε|Rn,p| → 0 a.s. for n → ∞, which gives (53) by
choosing ε > 0 appropriately, since

α − ε = min
{
2(H − γ − ε),H − ε

}
> H − γ. �

Recall that the Wong–Zakai approximation Z
n

of Y has been defined at Eq. (8) by

Z
n

t = a +
m∑

i=1

∫ t

0
σ (i)

(
Z

n

u

)
dB(i),n,T

u , t ∈ [0, T ], a ∈ R
d . (54)

In particular, Z
n

can be expressed as Z
n = F(a,Bn,T ,B2,n,T ), using Theorem 2.6. Hence, as a direct application

of Lemmata 3.6 and 3.7 and invoking the Lipschitz continuity of F , we obtain the following error bound for the
Wong–Zakai approximation.

Proposition 3.8. Let T > 0 and 1/3 < γ < H . Then, there exists a finite random variable η
(1)
H,γ,σ,T such that∥∥Y − Z

n∥∥
γ,∞,T

≤ η
(1)
H,γ,σ,T ·√log(n) · n−(H−γ )

for n > 1.

4. Discretizing the Wong–Zakai approximation

In the last section we have established an error bound for the Wong–Zakai approximation Z
n

of the real solution Y . As
mentioned in the Introduction, the Milstein scheme corresponding to Z

n
is exactly our simplified Milstein scheme (5).

Thus, it remains to determine the discretization error for Z
n

itself. To this aim, we first give a general error bound for
the Milstein scheme for ordinary differential equations (ODEs) driven by a smooth path x. Since Theorem 2.6 allows
to derive a non-classical stability result (in γ -Hölder norm) for the flow of an ODE driven by a smooth path, we can
follow here the techniques of the numerical analysis for classical ODEs. In a second step, we will apply these bounds
to our particular fBm approximation.

4.1. The Milstein scheme for ODEs driven by smooth paths

In this section, consider a piecewise differentiable path x ∈ C([0, T ];R
l) and a function g ∈ C3(Rd ;R

d,l) which is
bounded with bounded derivatives. For the ordinary differential equation

dyt =
l∑

i=1

g(i)(yt )dx
(i)
t , t ∈ [0, T ], a ∈ R

d, (55)

the classical second-order Taylor scheme with stepsize T/n reads as: zn
0 = a and

zn
k+1 = zn

k +
l∑

i=1

g(i)
(
zn
k

)
δx

(i)
tk tk+1

+
l∑

i,j=1

D(i)g(j)
(
zn
k

)∫ tk+1

tk

δx
(i)
tks

dx
(j)
s , (56)
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where D(i) =∑d
p=1 g

(i)
p ∂p , and where we have set zn

k = zn
tnk

with tnk = kT /n. For notational simplicity we will write

in the following tk instead of tnk . Introducing the numerical flow

Ψ (z; tk, tk+1) := z +
l∑

i=1

g(i)(z) δx
(i)
tk tk+1

+
l∑

i,j=1

D(i)g(j)(z)

∫ tk+1

tk

δx
(i)
tks

dx
(j)
s (57)

we can write this scheme as

zn
0 = a, zn

k+1 = Ψ
(
zn
k ; tk, tk+1

)
, k = 0, . . . , n − 1.

For q > k we also define

Ψ (z; tk, tq) := Ψ (·; tq−1, tq) ◦ Ψ (·; tq−2, tq−1) ◦ · · · ◦ Ψ (z; tk, tk+1).

Moreover, the flow Φ(z; s, t) of the ODE (55) is given by Φ(z; s, t) := yt , where y is the unique solution of

dyt =
l∑

i=1

g(i)(yt )dx
(i)
t , t ∈ [s, T ], ys = z. (58)

A straightforward Taylor expansion of the flow of the ODE gives that the one-step error

rk = Φ(z; tk, tk+1) − Ψ (z; tk, tk+1)

satisfies

|rk| ≤ C · supi,j,p=1,...,l

∥∥D(i)D(j)g(p)
∥∥∞ · Mx

tktk+1
(59)

with

Mx
st :=

∣∣∣∣∫ t

s

|ẋw|dw

∣∣∣∣3.
Furthermore, considering the smooth path x as a rough path, Theorem 2.6 directly yields the following stability

result for the flow:

Proposition 4.1. Let 1/3 < γ ≤ 1 and set ‖x‖γ = ‖x‖γ +‖x2‖2γ . Then, there exists an increasing function CT : R →
R+ such that

|(Φ(z; s, t) − Φ(z̃; s, t)) − (z − z̃)|
|t − s|γ ≤ CT

(‖x‖γ

) · |z − z̃| (60)

and ∣∣Φ(z; s, t) − Φ(z̃; s, t)∣∣≤ CT

(‖x‖γ

) · |z − z̃| (61)

for all s, t ∈ [0, T ] and z, z̃ ∈ R
d .

The following stability result is crucial to derive the announced error bound for the Milstein scheme.

Proposition 4.2. Let x ∈ C([0, T ];R
l) be a piecewise differentiable path, and g ∈ C3

b(Rd ;R
d,l). Consider the flow Φ

given by Eq. (58) and the numerical flow Ψ defined by relation (57). For k = 0, . . . , n, let tk = kT /n, ytk = Φ(a;0, tk)

and ztk = Ψ (a;0, tk). Moreover, recall that we have set

Mx
st =

∣∣∣∣∫ t

s

|ẋu|du

∣∣∣∣3, 0 ≤ s < t ≤ T .
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Then, there exists an increasing function C̃T : R → R+ such that we have

∣∣ytq − zn
q

∣∣≤ C̃T

(‖x‖γ

) ·
q−1∑
k=0

Mx
tktk+1

, (62)

∣∣δ(y − zn
)
tptq

∣∣≤ C̃T

(‖x‖γ

) ·
{

q−1∑
k=p

Mx
tktk+1

+ |tq − tp|γ ·
p−1∑
k=0

Mx
tktk+1

}
(63)

for 0 ≤ p < q ≤ n.

Proof. We will use the classical decomposition of the error in terms of the exact and the numerical flow: Since
zn
k = Φ(zn

k ; tk, tk) and ytk = Φ(zn
0; t0, tk), one has

ytq − zn
q = Φ

(
zn

0; t0, tq
)− Φ

(
zn
q; tq , tq

)=
q−1∑
k=0

(
Φ
(
zn
k ; tk, tq

)− Φ
(
zn
k+1; tk+1, tq

))
.

Furthermore, thanks to the relation

Φ
(
zn
k ; tk, tq

)= Φ
(
Φ
(
zn
k ; tk, tk+1

); tk+1, tq
)
,

the stability result (61) implies∣∣Φ(zn
k ; tk, tq

)− Φ
(
zn
k+1; tk+1, tq

)∣∣≤ CT

(‖x‖γ

) · ∣∣Φ(zn
k ; tk, tk+1

)− zn
k+1

∣∣.
However, (59) gives∣∣Φ(zn

k ; tk, tk+1
)− zn

k+1

∣∣= ∣∣Φ(zn
k ; tk, tk+1

)− Ψ
(
zn
k ; tk, tk+1

)∣∣≤ C · Mx
tktk+1

,

from which (62) is easily deduced.
Moreover, for q ≥ p we also have

δ
(
y − zn

)
tptq

= (
Φ(ytp ; tp, tq) − ytp

)− (
Ψ
(
zn
p; tp, tq

)− zn
p

)
= (

Φ(ytp ; tp, tq) − ytp

)− (
Φ
(
zn
p; tp, tq

)− zn
p

)− (
Ψ
(
zn
p; tp, tq

)− Φ
(
zn
p; tp, tq

))
.

Analogously to the derivation of (62), one can show that

∣∣Ψ (zn
p; tp, tq

)− Φ
(
zn
p; tp, tq

)∣∣≤ C · CT

(‖x‖γ

) ·
q−1∑
k=p

Mx
tktk+1

. (64)

Using (60) and (62) we trivially end up with (63). �

4.2. Application to fBm

In order to apply Proposition 4.2 to the Wong–Zakai approximation Z
n

given by (54) note once again that our Milstein-
type scheme Zn

t0
= a and

Zn
tk+1

= Zn
tk

+
m∑

i=1

σ (i)
(
Zn

tk

)
δB

(i)
tk tk+1

+ 1

2

m∑
i,j=1

D(i)σ (j)
(
Zn

tk

)
δB

(i)
tk tk+1

δB
(j)
tk tk+1
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is obtained by discretizing the Wong–Zakai approximation with the standard second-order Taylor scheme with stepsize
T/n given by (56). In fact, doing so we obtain the numerical flow

Ψ (z; tk, tk+1) := z +
m∑

i=1

σ (i)(z) δB
(i),n,T
tk tk+1

+
m∑

i,j=1

D(i)σ (j)(z)

∫ tk+1

tk

δB
(i),n,T
tks

dB
(j),n,T
s .

Since Bn,T is the piecewise linear interpolation of B on [0, T ] with stepsize T/n, the above iterated integrals can be
now expressed as products of increments of B . Indeed, according to the fact that

δB
(i),n,T
tku

= δB
(i)
tk tk+1

u − tk

T /n
, Ḃn,T

u = n

T
(δB)tktk+1 for u ∈ (tk, tk+1), (65)

it is readily checked that

δB
(i),n,T
tk tk+1

= δB
(i)
tk tk+1

and
∫ tk+1

tk

δB
(i),n,T
tks

dB
(j),n,T
s = 1

2
δB

(i)
tk tk+1

δB
(j)
tk tk+1

.

Moreover, invoking relation (65) and Lemma 3.2, we get∣∣∣∣∫ tk+1

tk

∣∣Ḃn,T
u

∣∣du

∣∣∣∣≤ θH,T n−H
[
log(n)

]1/2

for n large enough. Consequently, relation (63) yields

sup
p,q=0,1,...,n−1,p �=q

|δ(Zn − Z
n
)tptq |

|tp − tq |γ ≤ θH,σ,T n−3H+1[log(n)
]3/2 (66)

for all γ < H and all n large enough. This gives in particular

sup
p,q=0,1,...,n−1,p �=q

|δ(Zn − Z
n
)tptq |

|tp − tq |γ ≤ θH,γ,σ,T n−(H−γ )
[
log(n)

]1/2 (67)

for 1/3 < γ < H .
Now it remains to “lift” this error estimate to [0, T ]. For this we need the following smoothness result for the

Wong–Zakai approximation.

Lemma 4.3. Let T > 0 and recall that Z
n

is defined by Eq. (54). Then there exists h∗∗ > 0 and a finite and non-
negative random variable θH,h∗∗,σ,T such that for all h ∈ (0, h∗∗) and all n ≥ T

h∗∗ we have

sup
t∈[0,T −h]

∣∣(δZn)
t,t+h

∣∣≤ θH,h∗∗,σ,T · hH ·
√∣∣log(1/h)

∣∣.
Proof. As already mentioned in the proof of Lemma 3.6, note that there exists xH > 0 such that the map x �→
xH
√| log(1/x)| is increasing on (0, xH ]. Set h∗∗ = min(xH ,h∗), where h∗ is defined by Lemma 3.2, and let s, t ∈

[0, T ] such that |t − s| ≤ h∗∗.

(i) From (54) and (25), we deduce∣∣(δZn)
st

− σ
(
Z

n

s

)(
δBn,T

)
st

∣∣≤ |t − s|2κG
(∥∥Bn,T

∥∥
γ

)
for 1/3 < κ < γ < H and an increasing function G : R → R

+. Choosing κ, γ sufficiently large, we obtain

∣∣(δZn)
st

− σ
(
Z

n

s

)(
δBn,T

)
st

∣∣ ≤ θH,h∗,σ,T |t − s|H
√

log

(
1

|t − s|
)

.
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(ii) Assume that tl ≤ s ≤ t ≤ tl+1. One has∣∣σ (Zn

s

)(
δBn,T

)
st

∣∣≤ θH,h∗,σ,T · |t − s| · (n/T )1−H ·
√∣∣log(n/T )

∣∣.
Since |t − s| ≤ T/n, i.e. n/T ≤ 1/(t − s), it follows∣∣σ (Zn

s

)(
δBn,T

)
st

∣∣≤ θH,h∗,σ,T · (t − s)H ·
√∣∣log

(
1/(t − s)

)∣∣.
(iii) Now let tl−1 ≤ s ≤ tl ≤ tp ≤ t ≤ tp+1 with l ≤ p. Then(

δBn,T
)
st

= (
B

n,T
t − Btp

)+ (δB)tl tp + (
Btl − Bn,T

s

)
. (68)

As in the proof of Lemma 3.6, this easily yields∣∣σ (Zn

s

)(
δBn,T

)
st

∣∣≤ θH,h∗,σ,T · (t − s)H ·
√∣∣log

(
1/(t − s)

)∣∣ (69)

for |t − s| ≤ T/n. Whenever |t − s| > T/n, decomposition (68) gives∣∣σ (Zn

s

)(
δBn,T

)
st

∣∣≤ 2θH,h∗,σ,T · (T /n)H ·
√∣∣log(n/T )

∣∣+ θH,h∗,σ,T · (tp − tl)
H ·

√∣∣log
(
1/(tp − tl)

)∣∣.
Using that x �→ xH

√| log(1/x)| is increasing, relation (69) is easily recovered.
(iv) Combining the steps (i)–(iii) yields the assertion. �

Proposition 4.4. Let T > 0 and 1/3 < γ < H . Then, there exists a finite and non-negative random variable η
(2)
H,γ,σ,T

such that∥∥Zn − Z
n∥∥

γ,∞,T
≤ η

(2)
H,γ,σ,T ·√log(n) · n−(H−γ )

for n > 1.

Proof. Denote by Un the piecewise linear interpolation with stepsize T/n of the Wong–Zakai approximation Z
n
.

Proceeding as in the proof of Lemma 3.6 and using Lemma 4.3 we have∥∥Un − Z
n∥∥

γ,∞,T
≤ θH,γ,σ,T ·√log(n) · n−(H−γ ).

Thus, it remains to consider the difference between Un and Zn. For t ∈ [tk, tk+1] for some k we have

Un
t − Zn

t = Z
n

tk
− Zn

tk
+ t − tk

T /n
δ
(
Z

n − Zn
)
tk tk+1

.

Assuming additionally that s ∈ [tl , tl+1] for some l ≤ k, we have

δ
(
Un − Zn

)
st

= δ
(
Z

n − Zn
)
tl tk

+ t − tk

T /n
δ
(
Z

n − Zn
)
tk tk+1

− s − tl

T /n
δ
(
Z

n − Zn
)
tl tl+1

. (70)

(i) Assume that l + 1 < k. Applying (67) to relation (70) and according to the fact that (s − tl) ≤ T/n, (t − tk) ≤
T/n, we obtain∣∣δ(Un − Zn

)
st

∣∣≤ θH,γ,σ,T |t − s|γ · n−(H−γ )
√

log(n). (71)

(ii) Assume that l = k. Here (70) simplifies to

δ
(
Un − Zn

)
st

= t − s

T /n
δ
(
Z

n − Zn
)
tk tk+1

and thus (67) combined with the fact that |t − s| ≤ T/n gives again an estimate of the form (71).
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Finally, the case k = l + 1 can be treated in a similar manner, and this completes the proof. �

Putting together Propositions 3.8 and 4.4, our Main Theorem 1.1 now follows.

4.3. Optimality of the error bound

Reviewing the steps of the derivation of our main result, one realizes that the final convergence rate n−(H−γ )
√

log(n)

is directly linked to the error (measured in the γ -Hölder norm) of the piecewise linear interpolation of fractional
Brownian motion. All other estimates lead to higher rates of convergence. As a result, in order to prove the optimality
of our result, it is natural to consider the simplest equation

dY
(1)
t = dB

(1)
t , t ∈ [0, T ], Y0 = a ∈ R

for which our Milstein-type approximation is given by Zn = Bn,T .
First, observe that

∥∥Y − Zn
∥∥

γ,∞,T
= ∥∥B(1) − B(1),n,T

∥∥
γ,∞,T

≥ sup
s,t∈[0,T ]

|δ(B(1) − B(1),n,T )st |
|t − s|γ .

Choosing s = tk and t = tk+1/2 := tk + T/(2n), we obtain

sup
s,t∈[0,T ]

|δ(B(1) − B(1),n,T )st |
|t − s|γ ≥ (2n)γ T −γ ·

∣∣∣∣B(1)
tk+1/2

− 1

2

(
B

(1)
tk

+ B
(1)
tk+1

)∣∣∣∣
≥ (2n)γ T −γ ·

(
B

(1)
tk+1/2

− 1

2

(
B

(1)
tk

+ B
(1)
tk+1

))
for all k = 0, . . . , n − 1 and hence∥∥Y − Zn

∥∥
γ,∞,T

≥ (2n)γ T −γ · max
k=0,...,n−1

(
B

(1)
tk+1/2

− 1

2

(
B

(1)
tk

+ B
(1)
tk+1

))
. (72)

The scaling property of fBm gives

max
k=0,...,n−1

(
B

(1)
tk+1/2

− 1

2

(
B

(1)
tk

+ B
(1)
tk+1

)) L= n−HT H max
k=0,...,n−1

(
B

(1)
k+1/2 − 1

2

(
B

(1)
k + B

(1)
k+1

))
.

Now note that

ξk = B
(1)
k+1/2 − 1

2

(
B

(1)
k + B

(1)
k+1

)
, k = 0,1, . . . ,

is a stationary sequence of Gaussian random variables with

Eξk = 0

and

rk−l := Eξkξl = −3

4
|k − l|2H + 1

2
|k − l + 1/2|2H + 1

2
|k − l − 1/2|2H

− 1

8
|k − l + 1|2H − 1

8
|k − l − 1|2H

for k, l = 0,1, . . . . A Taylor expansion yields

rk−l = cH |k − l|2H−4 + O
(|k − l|2H−6)
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with

cH = − 1

64
H(2H − 1)(2H − 2)(2H − 3).

Since

lim
n→∞n · rn = 0

it follows from the main theorem in [4] that

1

σ0
max

k=0,...,n−1
ξk −√

2 log(n)
Prob.−→ 0 (73)

for n → ∞, where

σ 2
0 = Eξ2

1 .

Going back to (72), we have

P
(
�(n) · ∥∥Y − Zn

∥∥
γ,∞,T

≤ K
)≤ P

(
�(n) · n−(H−γ ) max

k=0,...,n−1
ξk ≤ K2−γ T γ−H

)
for all K > 0, and consequently

lim sup
n→∞

P
(
�(n) · ∥∥Y − Zn

∥∥
γ,∞,T

≤ K
)= 0

by (73), if

lim inf
n→∞ �(n) ·√log(n) · n−(H−γ ) = ∞.

So we obtain

P
(

lim inf
n→∞

{
�(n) · ∥∥Y − Zn

∥∥
γ,∞,T

≤ K
})≤ lim inf

n→∞ P
(
�(n) · ∥∥Y − Zn

∥∥
γ,∞,T

≤ K
)= 0

and consequently

P
(

lim sup
n→∞

�(n) · ∥∥Y − Zn
∥∥

γ,∞,T
≤ K

)
= 0

for all K > 0, which implies our claim at Remark 1.6.

Appendix: Proof of Theorem 2.6

A.1. Existence and uniqueness of the solution

This section gives some details of the proof of point (1) of Theorem 2.6 in the case γ ≤ 1/2. The case γ > 1/2 is
simpler and thus omitted.

The solution to Eq. (17) is obtained via a fixed-point argument, which is first applied locally and then extended to
the whole interval [0, T ].

Notations. For Qx
κ,a([�1, �2];R

d) we will write in the following only Qx
κ([�1, �2]) to simplify the notation. In

particular, note that the norm N [·; Qx
κ,a([�1, �2])] does not depend on a ∈ R

d . Moreover, for y ∈ Qx
κ([�1, �2]), which

admits the decomposition

(δy)st = ζs(δx)st + rst ,
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we set

yx := ζ, y� := r.

Local considerations. Consider a time 0 < T0 ≤ T and for any y ∈ Qx
κ([0, T0]), define z = ΓT0(y) as the unique

process in Qx
κ([0, T0]) such that z0 = y0 and (δz)st = Jst (σ (y)dx). If y, ỹ ∈ Qx

κ([0, T0]) with (y0, y
x
0 ) = (ỹ0, ỹ

x
0 ) =

(a, σ (a)), and if z = ΓT0(y), z̃ = ΓT0(ỹ), then some standard differential calculus easily leads to

N
[
z; Qx

κ

([0, T0]
)]≤ cx

{
1 + T

γ−κ

0 N
[
y; Qx

κ

([0, T0]
)]2} (74)

and

N
[
z − z̃; Qx

κ

([0, T0]
)]

≤ cxT
κ
0 N

[
y − ỹ; Qx

κ

([0, T0]
)]{

1 + N
[
y; Qx

κ

([0, T0]
)]2 + N

[
ỹ; Qx

κ

([
0, T0

])]2}
, (75)

with cx = c · (1 + ‖x‖γ + ‖x2‖2γ ) for some constant c > 1. Now set T0 = (4c2
x)

−1/(γ−κ) and RT0 = 2cx , so that, if in
addition N [y; Qx

κ([0, T0])] ≤ RT0 , then by (74), N [z; Qx
κ([0, T0])] ≤ RT0 . Moreover, if also N [ỹ; Qx

κ([0, T0])] ≤ RT0 ,
then we have by (75) that

N
[
z − z̃; Qx

κ

([0, T0]
)]≤ cx N

[
y − ỹ; Qx

κ

([0, T0]
)] · (4c2

x

)−κ/(γ−κ){1 + 8c2
x

}
.

Observe that 3 − 2κ/(γ − κ) < 0 for 1/3 < κ < γ ≤ 1/2 and so

cx

(
4c2

x

)−κ/(γ−κ){1 + 8c2
x

}=
(

1

4

)κ/(γ−κ){
c

1−2κ/(γ−κ)
x + 8c

3−2κ/(γ−κ)
x

}≤ 9

(
1

4

)2

< 1.

As a result, ΓT0 is a strict contraction of the following closed subset of Qx
κ([0, T0]):

BT0
(a,σ (a)),RT0

= {
y ∈ Qx

κ

([0, T0]
); (y0, y

x
0

)= (
a,σ (a)

)
, N

[
y; Qx

κ

([0, T0]
)]≤ RT0

}
.

Let us denote by yT0 the fixed point of the restriction of ΓT0 to BT0
(a,σ (a)),RT0

.

Extending the solution. One can use the same arguments as in the previous step for the set

B2T0

(y
T0
T0

,σ (y
T0
T0

)),RT0

= {
y ∈ Qx

κ

([T0,2T0]
); (yT0, y

x
T0

)= (
y

T0
T0

, σ
(
y

T0
T0

))
, N

[
y; Qx

κ

([T0,2T0]
)]≤ RT0

}
, (76)

and this provides us with an extension of the solution on [T0,2T0], denoted by y2T0 . Repeat the procedure until [0, T ]
is covered, and then define

y =
NT0∑
i=1

yiT0 · 1[(i−1)T0,iT0], yx =
NT0∑
i=1

yx,iT0 · 1[(i−1)T0,iT0],

where NT0 is the smallest integer such that NT0 · T0 ≥ T .
Then y is a solution to the system (17). Moreover,

N
[
y; Qx

κ

([0, T ])]
≤ sup

k=1,...,NT0

N
[
ykT0; Qx

κ

([
(k − 1)T0, kT0

])]+ {
1 + ‖x‖γ

} NT0∑
k=1

N
[
ykT0; Qx

κ

([
(k − 1)T0, kT0

])]
≤ RT0 + RT0 · NT0 · {1 + ‖x‖γ

}≤ 2cx

(
1 + (T /T0 + 1)

(
1 + ‖x‖γ

))
≤ 2cx

(
1 + (

1 + 4 · T · c2/(γ−κ)
x

)(
1 + ‖x‖γ

))
,

which gives the estimate (23). The uniqueness of this solution follows from (75). The details are left to the reader.
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A.2. Continuity of the Itô map

We shall now prove point (2) in Theorem 2.6. For this, let us again introduce some notation:
Notation: If y ∈ Qx

κ and ỹ ∈ Qx̃
κ for two different driving signals x, x̃, define

N
[
y − ỹ; Qx,x̃

κ

]= N
[(

y, yx
)− (

ỹ, ỹx
); Qx,x̃

κ

] := N
[
y − ỹ; Cγ

1

]+ N
[
yx − ỹx; Cκ

1

]+ N
[
y� − ỹ�; C 2κ

2

]
.

To simplify the notation we have written here ỹx instead of ỹx̃ and also ỹ� instead of ỹ�̃.
Local considerations. Consider a time T0 > 0. From the decomposition

δ(y − ỹ)st = [
σ(ys) − σ(ỹs)

] · (δx)st + σ(ỹs) · δ(x − x̃)st + [
yx
s σ ′(ys) − ỹx

s σ ′(ỹs)
] · x2

st

+ ỹx
s σ ′(ỹs) · [x2

st − x̃2
st

]+ Λst

([
σ(y)� − σ(ỹ)�

] · δx + σ(ỹ)� · δ(x − x̃)

+ δ
[
yxσ ′(y) − ỹxσ ′(ỹ)

] · x2
st + δ

(
ỹxσ ′(ỹ)

) · [x2 − x̃2]),
where we have used

(δy)st = [
(id−Λδ)

(
σ(y) · δx + (

σ(y)
)x · x2)]

st
,

some standard computations yield

N
[
y − ỹ; Qx,x̃

κ

([0, T0]
)]≤ cx,x̃,y,ỹ

{
T κ

0 N
[
y − ỹ; Qx,x̃

κ

([0, T0]
)]+ ‖x − x̃‖γ + ∥∥x2 − x̃2∥∥

2γ
+ |a − ã|}

with

cx,x̃,y,ỹ = c
{
1 + ‖x‖γ + ∥∥x2∥∥

2γ
+ ‖x̃‖γ + ∥∥x̃2∥∥

2γ
+ N

[
y; Qx

κ

([0, T ])]2 + N
[
ỹ; Qx̃

κ

([0, T ])]2}
for some constant c > 0. Now remember that N [y; Qx

κ([0, T ])] ≤ PT (‖x‖γ ,‖x2‖2γ ), as well as N [ỹ; Qx̃
κ ([0, T ])] ≤

PT (‖x̃‖γ ,‖x̃2‖2γ ), for a certain polynomial function PT , so that cx,x̃,y,ỹ ≤ cx,x̃ , where cx,x̃ > 0 stands for a polyno-
mial expression of ‖x‖γ ,‖x2‖2γ and ‖x̃‖γ ,‖x̃2‖2γ . Set T0 = (2cx,x̃ )

−1/κ and in this way

N
[
y − ỹ; Qx,x̃

κ

([0, T0]
)]≤ 2cx,x̃

{‖x − x̃‖γ + ∥∥x2 − x̃2∥∥
2γ

+ |a − ã|}.
Extending the inequality. With the same arguments as in the above step, we get, for any k ≥ 1,

N
[
y − ỹ; Qx,x̃

κ

([
kT0, (k + 1)T0

])]
≤ 2cx,x̃

{‖x − x̃‖γ + ∥∥x2 − x̃2∥∥
2γ

+ |ykT0 − ỹkT0 |
}

≤ 2cx,x̃

{
‖x − x̃‖γ + ∥∥x2 − x̃2∥∥

2γ
+ |a − ã| + T κ

0

k−1∑
l=0

N
[
y − ỹ; Qx,x̃

κ

([
lT0, (l + 1)T0

])]}

and as a result

N
[
y − ỹ; Qx,x̃

κ

([
kT0, (k + 1)T0

])]≤ 2cx,x̃ · ek
{‖x − x̃‖γ + ∥∥x2 − x̃2∥∥

2γ
+ |a − ã|}

using the discrete version of Gronwall’s lemma.
Inequality (24) is then a direct consequence of

N
[
y − ỹ; Cγ

1

([0, T ])]≤
NT0 −1∑
k=0

N
[
y − ỹ; Qx,x̃

κ

([
kT0, (k + 1)T0

])]
,

where NT0 is the smallest integer such that NT0 · T0 ≥ T , and hence NT0 ≤ 1 + T/T0 ≤ 1 + T · (2cx,x̃ )
κ .
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