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Abstract. We consider a variation of the standard Hastings–Levitov model HL(0), in which growth is anisotropic. Two natural
scaling limits are established and we give precise descriptions of the effects of the anisotropy. We show that the limit shapes can
be realised as Loewner hulls and that the evolution of harmonic measure on the cluster boundary can be described by the solution
to a deterministic ordinary differential equation related to the Loewner equation. We also characterise the stochastic fluctuations
around the deterministic limit flow.

Résumé. Dans cet article, on presente une étude d’une version du modèle de Hastings–Levitov HL(0) où la croissance est aniso-
trope. Deux limites d’échelle naturelles sont établies, et nous décrivons précisément les effets de l’anisotropie. Nous montrons que
les formes limites du modèle peuvent être réalisées comme remplissages associés à l’équation de Loewner et que l’évolution de
la mesure harmonique sur la frontière des agrégats tend vers un certain flot deterministe. Nous caractérisons enfin les fluctuations
stochastiques autour de ce flot.
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1. Introduction

1.1. Generalized HL(0) clusters

In this paper we consider growing sequences of compact sets in the complex plane C obtained by composing random
conformal mappings. Let D0 denote the exterior unit disk

D0 = {
z ∈ C∞: |z| > 1

}
,

and let K0 = C \D0 be the closed unit disk. We write T for its boundary, the unit circle; we frequently identify T with
the interval [0,1). Let D1 ⊂ D0 be simply connected, that is, a set whose complement in D0 is connected. We assume
that P = Dc

1 \ K0 has diameter d ∈ (0,1] and 1 ∈ P . The set P models an incoming particle, which is attached to the
unit disk at 1. There exists a unique conformal mapping

fP :D0 → D1 (1)

1Part of this work was completed while Fredrik Johansson Viklund and Alan Sola were supported by Grant KAW 2005.0098 from the Knut and
Alice Wallenberg Foundation.
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with expansion at infinity of the form fP (z) = C(P )z + c0 + c−1/z + · · · for some C(P ) > 0. The value C(P ) =
cap(K0 ∪ P) is called the logarithmic capacity.

Suppose P1,P2, . . . is a sequence of particles (or, equivalently, let fP1, fP2 , . . . be the sequence of associated
conformal mappings) with diam(Pj ) = dj . Let θ1, θ2, . . . be a sequence of angles. Define rotated copies of the maps
{fPj

} by setting

f
θj

Pj
(z) = eiθj fPj

(
e−iθj z

)
, j = 1,2, . . . .

Take Φ0(z) = z, and recursively define

Φn(z) = Φn−1 ◦ f
θn

Pn
(z), n = 1,2, . . . . (2)

This generates a sequence of conformal maps Φn :D0 → Dn = C \ Kn, where Kn−1 ⊂ Kn are growing compact sets,
which we usually call clusters. Loosely speaking we add, at the nth step, a particle of diameter dn|Φ ′

n−1(e
iθn)| to the

previous cluster Kn−1 at the point Φn−1(eiθn).
By constructing the sequences {θj } and {dj } in different ways, it is possible to describe a wide class of growth

models. The most well-known are the Hastings–Levitov family of models HL(α), indexed by a parameter α ∈ [0,2].
Here the θj are chosen to be independent random variables distributed uniformly on the unit circle which, by confor-
mal invariance, corresponds to the attachment point being distributed according to harmonic measure at infinity. The
particle diameters are taken as dj = d/|Φ ′

j−1(e
iθj )|α/2.

In this paper, we study a variant of the HL(0) model in which θ1, θ2, . . . are independent identically distributed ran-
dom variables on the unit circle T with common law ν and dj = d . We shall refer to this growth model as anisotropic
Hastings–Levitov, AHL(ν). Our limit results are not sensitive to the shapes of particles Pj and, in fact, we are even
able to relax the restraint dj = d , to allow for P1,P2, . . . to be chosen so that d1, d2, . . . are independent identically
distributed random variables (independent of {θj }) with law σ , satisfying certain conditions to be stated later.2

1.2. Background and motivation

The motivation behind studying these clusters comes from growth processes that arise in physics, such as diffusion-
limited aggregation (DLA) [27], anisotropic diffusion-limited aggregation [14] and the Eden model [8]. In 1998,
Hastings and Levitov [12] formulated a conformal mapping approach to modelling Laplacian growth of which DLA
and the Eden model are special cases. They defined the family of growth models, HL(α), whose construction is
described in the previous section. The α = 2 version is a candidate for off-lattice DLA. In this case, the diameters of
the mapped particles are (more or less) the same.

The Hastings–Levitov model has been widely discussed in the physics literature. In the original paper [12], Hastings
and Levitov studied the model numerically and found evidence for a phase transition in the growth behaviour at α = 1.
Further numerical investigations can be seen in, for example, the papers [7] and [19].

Unfortunately, the Hastings–Levitov model has proved difficult to analyse rigourously, particularly in the α > 0
case. We give a brief review of the known results. In 2005, Rohde and Zinsmeister [24] established the existence of
limit clusters for α = 0 when the aggregate is scaled by capacity, and showed that the Hausdorff dimension of the
limit clusters is 1, almost surely. They also considered a regularised version of HL(α) for α > 0 and estimated the
growth rate of the capacity and length of the clusters. In 2009, Johansson Viklund and Sola [13] studied Loewner
chains driven by compound Poisson processes. Certain cases of these were found to correspond to HL(0) clusters
with random particle sizes, and the existence of (one-dimensional) limit clusters was established. The 2009 paper of
Norris and Turner explored the evolution of harmonic measure on the boundary of HL(0) clusters and showed that this
converges to the coalescing Brownian flow. We would finally like to mention the 2001 and 2002 papers of Carleson
and Makarov ([5,6]), where the Loewner–Kufarev equation is used to describe deterministic versions of Laplacian
growth.

2One way of constructing such a sequence is by fixing a deterministic measurable mapping d 	→ fP(d) , such that diam(P (d)) = d , and then
choosing an independent identically distributed sequence d1, d2, . . . with law σ .
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In this paper we have modified the setup of the Hastings–Levitov model in the α = 0 case. The use of more general
distributions for the angles is a way of introducing anisotropy or localization in the growth. This is similar in spirit
to the work of Popescu, Hentschel and Family [22], who study numerically a variant of HL(2), where the angles
are distributed according to a certain density with m-fold symmetry. They suggest that such anisotropic Hastings–
Levitov models may provide a description for the growth of bacterial colonies where the concentration of nutrients is
directional. We discuss their work further in the next section.

Allowing for non-uniform angular distributions results in scaling limits in which the anisotropy is reflected. We
consider two different natural scaling limits where we scale the particle sizes. We prove a shape theorem that describes
the global macroscopic behaviour of the cluster: in the case of uniformly distributed angles, the shape is a disk (as
was previously known [23]); but in the anisotropic case the limit shapes can be realised as non-trivial Loewner hulls.
For the anisotropic case we also show that the evolution of harmonic measure on the cluster boundary is deterministic
with small random fluctuations, unlike in the uniform case where the behaviour is purely stochastic.

1.3. Outline of the paper

Our paper is organised as follows. In Section 2, we review some background material concerning the Loewner equation
and the coalescing Brownian flow and describe the general framework of our paper. We also discuss some examples of
angular distributions that lead to interesting anisotropic behaviour in the growth. In Section 3, we establish continuity
properties of the Loewner–Kufarev equation with respect to measures, and use this to prove a shape theorem for the
limit clusters. In Section 4, we consider the evolution of harmonic measure on the cluster boundary. For general mea-
sures, we first prove that the flow on the boundary is described by a deterministic ordinary differential equation, and
then obtain a description of the stochastic fluctuations around this deterministic flow. Finally, we show that uniformly
chosen angles lead to purely stochastic behaviour, even if the particle sizes are chosen randomly.

2. Preliminaries

In this section we review some background material that is needed for our proofs.

2.1. Loewner chains driven by measures

A decreasing Loewner chain is a family of conformal mappings

ft :D0 → C \ Kt, ∞ 	→ ∞, f ′
t (∞) > 0,

onto the complements of a growing family of compact sets, called hulls, with

Kt1 ⊂ Kt2 for t1 < t2.

We always take K0 to be the closed unit disk. The capacity of each Kt is given by

cap(Kt ) = lim
z→∞

ft (z)

z
.

Let P = P (T) denote the class of probability measures on T. Under some natural assumptions on the function t 	→
cap(Kt ), such a chain can be parametrized in terms of families {μt }t≥0, μt ∈ P (T). More precisely, the conformal
mappings ft satisfy the Loewner–Kufarev equation

∂tft (z) = zf ′
t (z)

∫
T

z + ζ

z − ζ
dμt(ζ ) (3)

with initial condition f0(z) = z. Conversely, if t 	→ ‖μt‖ is locally integrable (which is immediate for probability
measures) then the solution to (3) exists and is a Loewner chain. See [5] for a general discussion.
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The classical example is the case of pure point masses

μt = δξ(t),

where ξ = ξ(t) is a unimodular function, that is, a complex-valued function with modulus equal to 1. The Loewner–
Kufarev equation then reduces to the equation

∂tft (z) = zf ′
t (z)

z + ξ(t)

z − ξ(t)
, (4)

originally introduced by Loewner in 1923. The function ξ(t) is usually called the driving function. The particular
choice ξ(t) = 1 produces as solutions the basic slit mappings fd(t) :D0 → D0 \ (1,1 + d(t)], with slit lengths d(t)

given by the explicit formula

d(t) = 2et
(
1 −

√
1 − e−t

) − 2. (5)

We can recover (the slit version of) the HL(0) mappings Φn by driving the Loewner equation with a non-constant
point mass at

ξ(t) = exp

(
i

n∑
j=1

θjχ[Tj−1,Tj ](t)
)

, (6)

where the times Tj relate to the slit lengths d via the formula (5).
Choosing absolutely continuous driving measures

dμt = ht (ζ )|dζ |
results in the growth of the clusters no longer being concentrated at a single point. In the simplest case dμt(ζ ) =
|dζ |/2π, the Loewner–Kufarev equation reduces to

∂tft (z) = zf ′
t (z),

and we see that ft (z) = et z, so that Kt = etK0. We shall see that absolutely continuous driving measures arise natu-
rally in connection with the anisotropic HL(0) clusters.

We can realize more general particles than slits using a driving function in the following way. Consider a particle
P such that ∂P ∩ D0 can be described by a crosscut β of D0 (see [21] for the definition of crosscut). We parametrize
the crosscut β(t) according to capacity, that is, cap(K0 ∪ β[0, t)) = et , t ∈ [0, lcap(P )), where

lcap(P ) := log
(
cap(K0 ∪ P)

)
.

Under rather mild conditions on the crosscut β , we can then find a driving function for the Loewner equation that
produces a family ft :D0 → D0 \ β[0, t). A sufficient but not necessary condition for this to hold is that the function
β = β(t) is smooth. As t → lcap(P ), the conformal maps ft converge uniformly on compact subsets of D0 to the
mapping fP :D0 → D0 \ P . If ξ : [0, lcap(P )) → T denotes the driving function for a single particle, we obtain a
driving function for the cluster similarly to (6).

There is a useful relation between the diameter of the particle, its capacity, and the driving function. Set

R(P ) := √
lcap(P ) + sup

0≤t≤lcap(P )

∣∣ξ(t)
∣∣.

Then, as is proved in [18], Lemma 2.1, we have

d(P ) = diam(P ) � R(P ). (7)
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Moreover, one can prove that there exists a constant c < ∞ such that

c−1h2 ≤ lcap(P ) ≤ chd

for small d,h, where h = sup{|z|: z ∈ P } − 1. Indeed, the first inequality follows by comparing with the slit map
solution to the Loewner equation. The second follows from a harmonic measure estimate and the identity lcap(P ) =
E[log |Bτ |], where Bt is a planar Brownian motion started from ∞ and τ is the hitting time of K0 ∪ P . In particular
we see that there are natural sequences of particles such that lcap(P ) � d2 as d → 0. We shall make this assumption
in certain sections of this paper.

We will sometimes need to consider the radial Loewner equation lifted to the real line. Let ft be a solution to (3)
and suppose that the boundary of the hull Kt contains an arc {e2πix : x ∈ [a, b]} of the unit circle. We set gt (e2πix) =
f −1

t (e2πix) and define γt (x) = −i loggt (e2πix)/2π for x ∈ [a, b]. The function γt then satisfies the differential equation

∂tγt (x) = 1

2π

∫ 1

0
cot

(
π
(
γt (x) − y

))
dμt

(
e2πiy) (8)

with γ0(x) = x (see [17], Chapter 4). This is well-defined as long as γt (x) is outside the support of μt . However, we
may interpret the integral in the sense of principal values, that is, as a multiple of the Hilbert transform of the measure
μt (see [10], Chapter 3),

H [μt ](x) = p.v.
1

2π

∫ 1

0
cot

(
π(x − y)

)
dμt

(
e2πiy).

In this way, for nice enough measures, we obtain a differential equation defining a flow on all of T.

2.2. Coalescing Brownian flow and harmonic measure on the cluster boundary

The coalescing Brownian flow (also known as the Arratia flow and the Brownian web) can loosely be defined as
a family of coalescing Brownian motions, starting at all possible points in continuous space–time. Arratia [1] first
considered this object in 1979 as a limit for discrete coalescing random walks. Since then it has been studied by,
amongst others, Tóth and Werner [26], Fontes, Isopi, Newman and Ravishankar [9] and recently Norris and Turner
[20]. One of the difficulties in studying the coalescing Brownian flow is constructing a suitable topological space on
which a unique measure with the necessary properties exists. In this section we outline the construction of Norris and
Turner [20] and show how the coalescing Brownian flow relates to the evolution of harmonic measure on the boundary
of the AHL(ν) clusters.

The coalescing Brownian flow is constructed as a measure on the space of flow maps described briefly below; full
details and proof are provided in [20]. Let R be the set of non-decreasing, right-continuous functions f + : R → R

that satisfy the property

f +(x + n) = f +(x) + n, x ∈ R, n ∈ Z.

Write L for the analogous set of left-continuous functions and let D be the set of all pairs f = {f −, f +}, where f −
is the left-continuous modification of f +. Let D0 denote the set of all circle maps that have a lifting in D. In what
follows, we usually think of the maps f + and f − as the result of extending the inverse conformal maps gt to the unit
circle as a map from the circle to itself, and then lifting to the real line. The reason for working with right and left
continuous modifications is that our conformal maps sometimes send two distinct points on the unit circle to the same
point on the circle, so that the inverse cannot directly be defined as a continuous map of the circle into itself. Using
the space D allows us to handle this difficulty by considering instead pairs of mappings – right or left continuous
depending on which point in the pre-image we choose.

Write I = I1 ⊕ I2 if I1, I2 are disjoint intervals with sup I1 = inf I2 and I = I1 ∪ I2. The set of cadlag weak flows
D◦ consists of flows φ = (φI : I ⊆ [0,∞)), where φI ∈ D0 and I ranges over all non-empty finite intervals that satisfy

φ−
I2

◦ φ−
I1

≤ φ−
I ≤ φ+

I ≤ φ+
I2

◦ φ+
I1

, I = I1 ⊕ I2,
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and, for all t ∈ (0,∞),

φ(s,t) → id as s ↑ t, φ(t,u) → id as u ↓ t.

Note that at continuity points, the above conditions translate into the standard definition of a flow map, i.e. setting
φts = φ+

(s,t], for s ≤ t ≤ u, φus(x) = φut (φts(x)) and φss(x) = x. In [20] a metric dD is defined on D◦ under which
D◦ is complete and separable.

The coalescing Brownian flow is constructed as a measure on the space D◦, having the properties described below.
For e = (s, x) ∈ [0,∞) × R, let De = Dx([s,∞),R) denote the Skorokhod space of cadlag paths starting from x at
time s. Write μe for the distribution on De of a standard Brownian motion starting from e.

For any countable sequence E = (ek: k ∈ N) in [0,∞) × R, where ek = (sk, xk) say, let DE = ∏∞
k=1 Dek

be the
complete separable product metric space with metric

dE

(
ξ, ξ ′) =

∞∑
k=1

2−k
{
d
(
ξek , ξ ′ek

) ∧ 1
}
,

where d denotes appropriate instances of the Skorokhod metric.
There exists a unique probability measure μE on DE under which the coordinate processes on DE are coalescing

Brownian motions. Define a measurable map Ze,+ :D◦ → De by setting

Ze,+(φ) = (
φ+

(s,t](x): t ≥ s
)
,

and a measurable map ZE,+ :D◦ → DE by

ZE,+(φ)ek = Zek,+(φ).

There exists a unique Borel probability measure μA on D◦ such that, for any finite set F ⊂ [0,∞) × R, we have

μA ◦ (
ZF,+)−1 = μF .

We call any D◦-valued random variable with law μA a coalescing Brownian flow on the circle (see Fig. 1).
We now show how the evolution of harmonic measure on the boundary of AHL(ν) clusters can be described using

the space D◦. Recall the construction of the Hastings–Levitov clusters from the Introduction. Let P be a closed,
connected, simply connected subset of D0 of diameter d ∈ (0,1] such that P ∩ K0 = {1}. Write gP for the inverse

Fig. 1. A realisation of the coalescing Brownian flow, with only paths starting at time 0 shown.
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mapping from D1 → D0. This map extends locally in a continuous way to the boundary of ∂D1. There exists a unique
pair of mappings γP = {γ −

P , γ +
P } ∈ D such that γP restricts to a continuous map from the open interval (0,1) to itself,

and such that

gP

(
e2πix) = e2πiγP (x), x ∈ (0,1),

where we suppress the superscripts ± to lighten the notation. Set Γn = gPn ◦ · · · ◦ gP1 , where gPn = (f
θn

Pn
)−1, so that

Γn :Dn → D0.
The reason for using the flow space D◦ in the context of the Hastings–Levitov model will shortly become apparent.

It provides us with a technical framework for handling both the discontinuities that arise if we wish to embed our
process of compositions of conformal maps as a jump process in continuous time, as well as the spatial discontinuities
that arise from the fact that the conformal maps gP and Γn cannot be extended continuously to the whole circle. In
the latter case, the “attachment points” of the particles correspond to discontinuities.

The extension of Γn to the boundary ∂Kn = ∂Dn now gives a natural parametrization of the boundary of the nth
cluster by the unit circle. It has the property that, for ξ, η ∈ ∂Kn, the normalized harmonic measure ω (from ∞) of
the positively oriented boundary segment from ξ to η is given by Γn(η)/Γn(ξ) = e2πiω . For m,n ∈ N with m < n, set

Γnm = gPn ◦ · · · ◦ gPm+1 |∂K0 .

Set Γnn = id. The circle maps Γnm have the flow property

Γnm ◦ Γmk = Γnk, k ≤ m ≤ n.

The map Γnm expresses how the harmonic measure on ∂Km is transformed by the arrival of new particles up to time n.
Suppose 0 < T1 < T2 < · · · are times of a Poisson process, independent of {θj } and {dj }, with rate to be specified later.
Embed Γ in continuous time by defining, for an interval I ⊆ [0,∞), ΓI = Γnm where m and n are the smallest and
largest integers i, respectively, for which Ti ∈ I . Then (ΓI : I ⊆ [0,∞)) is a random variable in D◦. We denote its
law by μP

A .
In the paper [20], Norris and Turner showed that for HL(0) clusters (i.e. clusters where the particles Pj have

constant diameters dj = d , and θj is uniformly distributed on the circle), in the case of symmetric particles, μP
A → μA

weakly on D◦ as d → 0, where the Poisson process {Ti} has rate ρ(P ) � d−3, defined by

ρ(P )

∫ 1

0

(
γP (x) − x

)2 dx = 1.

If P is not symmetric, the same result holds once the definition of ΓI is modified to

ΓI

(
e2πix) = e−2πiβtΓnm

(
e2πi(x+βs)

)
,

where s = inf I and t = sup I and β = β(P ) is defined by

β(P ) = ρ(P )

∫ 1

0

(
γP (x) − x

)
dx = O

(
d−1).

In other words the following result about the evolution of harmonic measure on the cluster boundary holds.
Let x1, . . . , xn be a positively oriented set of points in R/Z and set x0 = xn. Set Kt = K�ρ(P )t�. For k = 1, . . . , n,

write ωk
t for the harmonic measure in Kt of the boundary segment of all fingers in Kt attached between xk−1 and xk .

Let (B1
t , . . . ,Bn

t )t≥0 be a family of coalescing Brownian motions in R/Z starting from (x1, . . . , xn). Then, in the limit
d → 0, (ω1

t , . . . ,ω
n
t )t≥0 converges weakly in D([0,∞), [0,1]n) to (B1

t − B0
t , . . . ,Bn

t − Bn−1
t )t≥0.

In this paper, we extend the study of Norris and Turner to cover random arrival points θj with non-uniform law ν.
In this case, the evolution of harmonic measure on the boundary is dominated by a non-trivial deterministic drift of
order d2, and the stochastic behaviour is seen only as fluctuations about this of order d3.
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2.3. Some examples

We give two examples of anisotropic growth to illustrate our results. We consider the case of slit mappings with
deterministic length d for convenience.

2.3.1. Angles chosen in an interval
For η ∈ (0,1], let θj be chosen uniformly in [0, η]. We build clusters Kn as before, at each step setting dj = d for
j = 1, . . . , n. For fixed t ∈ (0,∞), if n = �lcap(P )−1t�, the hull Kn produced by the discrete iteration model then
converges (in a sense to be made precise) as d → 0, to the hulls obtained by solving the Loewner equation at time t

driven by the measure

dν
(
e2πix) = χ[0,η](x)dx

η
.

A computation involving the power series expansion of the Schwarz–Herglotz kernel,

z + e2πix

z − e2πix
= 1 + 2

∞∑
j=1

e2πijxz−j ,

shows that

∫ 1

0

z + e2πix

z − e2πix
dν = 1 + 2

∞∑
j=1

sin(πηj)

πηj

(
e−πiηz

)−j
.

A closed expression for this series is given in [11], Formula l.448; we now find that the explicit form of the Loewner
equation for this choice of measure is

∂tft (z) = zf ′
t (z)

(
1 + 2

η
arctan

[
eiπη sin(πη)

z − eiπη cos(πη)

])
. (9)

Construct the flow Γ ∈ D◦ that describes the evolution of harmonic measure on the cluster boundary, with rate
lcap(P )−1 � d−2. Then, as d → 0, Γ → φ in (D◦, dD), where φ(s,t](x) is the solution to the ordinary differential
equation

φ̇(s,t](x) = 1

2π2η
log

∣∣∣∣ sin(πφ(s,t)(x))

sin(π(φ(s,t](x) − η))

∣∣∣∣
with φ(s,s](x) = x; a derivation will be provided in Section 4. In the special case η = 1/2, we obtain the equation

φ̇(s,t] = 1

π2
log

∣∣tan
(
πφ(s,t](x)

)∣∣.
These results are illustrated in Fig. 2.

The spaces between the flow lines represent the proportion of harmonic measure carried by the fingers of the
clusters attached between the corresponding points on the circle. Note the absence of random fluctuations in the
region (1/2,1) in the simulation in the figure; this phenomenon will be discussed in Section 4.

2.3.2. Angles chosen from a density with m-fold symmetry
For fixed m ∈ N, choose θj distributed according to the density

dν
(
e2πix) = 2 sin2(mπx)dx.
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(a) AHL(ν) cluster (left) and the corresponding Loewner hull (right).

(b) Evolution of harmonic measure on the boundary of AHL(ν) (left) and the solution to the
corresponding deterministic ODE (right).

Fig. 2. Simulations of AHL(ν) and associated limits, for d = 0.02 after 25,000 repetitions, corresponding to dν(x) = 2χ[0,1/2] dx.

This type of density with m-fold symmetry is considered in [22] as an example of a choice of angular distribution that
introduces certain preferred directions in the cluster growth. The clusters converge, under the same scaling limits as
above, to the hulls of the Loewner chain described by the equation

∂tft (z) = zf ′
t (z)

(
1 − 1

zm

)
.

In the limit in this case, the evolution of harmonic measure on the cluster boundary is determined by the solutions to
the ODE

φ̇(s,t](x) = − 1

2π
sin

(
2πmφ(s,t](x)

)
, φ(s,s](x) = x.

These results are illustrated in Fig. 3.

3. A shape theorem

In this section, we consider a scaling limit where the particle sizes converge to zero. The goal is to describe the
macroscopic shape of the limiting cluster, that is, to prove a shape theorem. This generalizes a result we first learned
about from Rohde [23], see also [19]: simulations of standard HL(0) clusters show that if the basic slit length d is
chosen to be small, and the number of compositions is large, then the clusters Kn look rounded. In fact, if we let
d → 0 and n � d−2, then the laws of resulting HL(0) clusters do indeed converge to that of a closed disk cK0.
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(a) AHL(ν) cluster (left) and the corresponding Loewner hull (right).

(b) Evolution of harmonic measure on the boundary of AHL(ν) (left) and the solution to the
corresponding deterministic ODE (right).

Fig. 3. Simulations of AHL(ν) and associated limits, for d = 0.02 after 25,000 repetitions, corresponding to dν(x) = 2 sin2(3πx)dx.

Similarly, comparing the AHL(ν) clusters with the hulls generated by the Loewner equation driven by the time-
independent measure ν, we see that, as the particle diameters d tend to zero and the number of compositions increases
at a rate proportional to d−2, the shapes converge (even for random particle sizes). Indeed, in Theorem 2 we prove that
the discrete clusters converge to the Loewner hulls. We begin with a technical result about solutions to the Loewner–
Kufarev equation.

3.1. Continuity properties of the Loewner equation

In this section, we show that solutions to the Loewner–Kufarev equation (3) are “close” at time T if the driving
measures are “close” in some suitable sense. For conformal mappings, the notion of closeness is to be understood in
the sense of uniform convergence on compact subsets of D0.

Let Σ denote the space of conformal mappings f :D0 → C with expansions at infinity of the form

f (z) = c1z + c0 + c−1/z + · · · , c1 > 0,

equipped with the topology induced by uniform convergence on compact subsets of D0. Denote by Π(Σ) the space
of probability measures on Σ .
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In [2], it is shown that if the Loewner equation is driven by continuous functions that are close in the uniform
metric, then the corresponding solutions are close as conformal mappings. This was extended to cover Skorokhod
space functions in [13].

The following proposition deals with the case of general driving measures.

Proposition 1. Let 0 < T < ∞. Let μn = {μn
t }t≥0, n = 1,2, . . . , and μ = {μt }t≥0 be families of measures in P . Let

m denote Lebesgue measure on [0,∞), and suppose that the measures μn
t × m converge weakly on S = T × [0, T ] to

the measure μt × m as n → ∞.
Then the solutions {f n

T } to (3) corresponding to the sequence {μn} converge to fT , the solution corresponding
to μ, uniformly on compact subsets of D0.

Proof. The proof is similar to the continuity lemmas of [2] and [13].
Fix a compact set K ⊂ D0, and let ε > 0 be given. For t ∈ [0, T ], consider the backward Loewner flow given by

ḣt (z) = −ht (z)

∫
T

ζ + ht (z)

ζ − ht (z)
dμT −t (ζ ), h0(z) = z. (10)

It is a well-known result in the Loewner theory that this backward flow, when evaluated at time t = T , coincides with
the mapping fT arising from (3); that is, hT (z) = fT (z), z ∈ K (see [17], Chapter 4.2). An analogous statement holds
for the solutions corresponding to the measures μn.

We shall use the convenient shorthand notations

v(s, ν, z) = −z

∫
T

ζ + z

ζ − z
dνT −s(ζ ) (11)

and

w(x, z) = z
z + x

z − x
. (12)

For z ∈ K fixed, set u(t) = ht (z) and un(t) = hn
t (z). Integrating (10) with respect to t and using u(0) = un(0), we

obtain, for t ∈ [0, T ],
∣∣u(t) − un(t)

∣∣ ≤
∣∣∣∣u(t) − u(0) −

∫ t

0
v
(
s,μn,u(s)

)
ds

∣∣∣∣
+

∣∣∣∣
∫ t

0
v
(
s,μn,u(s)

)
ds − un(t) + un(0)

∣∣∣∣
=

∣∣∣∣
∫ t

0
v
(
s,μ,u(s)

)
ds −

∫ t

0
v
(
s,μn,u(s)

)
ds

∣∣∣∣
+

∣∣∣∣
∫ t

0
v
(
s,μn,u(s)

)
ds −

∫ t

0
v
(
s,μn,un(s)

)
ds

∣∣∣∣.
The first term may be written out as∣∣∣∣

∫ t

0
v
(
s,μ,u(s)

)
ds −

∫ t

0
v
(
s,μn,u(s)

)
ds

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫
T

u(s)
u(s) + x

u(s) − x
dμT −s(x)ds −

∫ t

0

∫
T

u(s)
u(s) + x

u(s) − x
dμn

T −s(x)ds

∣∣∣∣,
and since the integrand is a continuous function on T × [0, T ], our assumption of weak convergence implies, in
particular, that the right-hand side is smaller than ε for all n ≥ N for some N (which depends on the point z).
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We estimate the second term by∣∣∣∣
∫ t

0
v
(
s,μn,u(s)

)
ds −

∫ t

0
v
(
s,μn,un(s)

)
ds

∣∣∣∣
≤

∫ t

0

∫
T

∣∣w(
x,u(s)

) − w
(
x,un(s)

)∣∣dμn
T −s(x)ds.

We now use the inequality∣∣w(x, z) − w
(
x, z′)∣∣ ≤ (

sup
∣∣∂zw(x, z)

∣∣)∣∣z − z′∣∣
together with standard growth estimates on conformal mappings of D0 to obtain that∣∣w(

x,u(s)
) − w

(
x,un(s)

)∣∣ ≤ C(T ,K)
∣∣u(s) − un(s)

∣∣
for some constant C(T ,K) that does not depend on n (the lack of normalization of the mappings accounts for the
dependence on T ). This in turn leads to the estimate∫ t

0

∫
T

∣∣w(
x,u(s)

) − w
(
x,un(s)

)∣∣dμn
T −s(x)ds

≤ C(T ,K)

∫ t

0

∥∥μn
T −s

∥∥∣∣u(s) − un(s)
∣∣ds

= C(T ,K)

∫ t

0

∣∣u(s) − un(s)
∣∣ds.

Putting everything together, we find that

∣∣u(t) − un(t)
∣∣ ≤ ε + C(T ,K)

∫ t

0

∣∣u(s) − un(s)
∣∣ds.

We are now in a position to apply Grönwall’s Lemma, and we obtain∣∣u(t) − un(t)
∣∣ ≤ C′(T ,K)ε, t ∈ [0, T ].

Thus |u(T ) − un(T )| < C′(T ,K)ε for n ≥ N , and this means that f n
T (z) converges to fT (z).

We have thus established the pointwise convergence of {fn} to f on the compact set K . We now observe that the
mappings fn are in Σ , with uniformly bounded coefficients c1. Since the sequence {fn} is then locally bounded by
growth-type estimates (see [13], Section 3), it follows from Vitali’s theorem that the convergence is in fact uniform
on each K , and the proof is complete. �

Now set S = T × [0,∞) and let M = M(S) be the set of locally bounded Borel measures on S. A sequence
μ,μn ∈ M is said to converge vaguely if∫

ϕ dμn →
∫

ϕ dμ, ∀ϕ ∈ Cc(S),

where Cc(S) is the set of continuous functions in S with compact support. Weak convergence is defined the same way
with compactly supported continuous ϕ replaced by bounded continuous ϕ. A random measure on S is a measurable
mapping from some probability space into M. In the next section we shall need the following lemma contained in
[15], Theorem 15.7.6.

Lemma 1. Let μ,μn, n = 1,2, . . . , be bounded measures on S. The sequence μn → μ with respect to the weak
topology as n → ∞ if and only if μn → μ in the vague topology and μn(S) → μ(S).
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3.2. Statement and proof of the shape theorem

In this section, we prove the convergence of the random measures generating AHL(ν) to the desired deterministic
measure when the particle diameter d tends to zero and the number of compositions tends to infinity at a rate propor-
tional to d−2. In view of the continuity result of the previous section, the weak convergence of the AHL(ν) mappings
then follows.

Let P1,P2, . . . be chosen to be identical with diam(P ) = d . Assume additionally that the particle shape is chosen
with capacity lcap(P ) of order d2 (see (7)). Note that our results can be shown to hold when the Pj are random, under
additional conditions that are given in the remark at the end of this subsection. Let θ1, θ2, . . . be T-valued independent
random variables with law ν.

Theorem 2. Let Φ denote the solution to the Loewner–Kufarev equation driven by the measures {νt }t≥0 = {ν}t≥0 and
evaluated at time T , for some fixed T ∈ (0,∞).

Set n = �lcap(P )−1T �, and define the conformal map

Φn = f
θ1
P1

◦ · · · ◦ f
θn

Pn
.

Then Φn converges to Φ uniformly on compacts almost surely as d → 0.

Proof. Let ε > 0 be given. For k = 1, . . . , n, set

Tk = k lcap(P )

and

Ξn(t) =
n∑

k=1

χ[Tk−1,Tk)(t)ξk(t),

where ξk(t), t ∈ [Tk−1, Tk), is the (rotated) driving function for the particle Pk . We set ξn(t) = exp(iΞn(t)). Then
δξn(t) is the measure that drives the evolution of the AHL clusters. That is, the mapping Φn is the solution to the
Loewner–Kufarev equation

∂tft (z) = zf ′
t (z)

∫
T

z + ζ

z − ζ
dδξn(t)(ζ ) (13)

with f0(z) = z, evaluated at time t = Tn. Integrating with respect to Lebesgue measure in time, m, we see that we
need to show that the random measures

μP = δξn(t) × m[0,Tn] ∈ M(S)

converge almost surely to μ = ν × m[0,T ] as d → 0 with respect to the weak topology. Note that μP (S) = Tn →
T = μ(S). By Lemma 1 it remains to prove convergence of the random variables 〈μP ,ϕ〉 to 〈μ,ϕ〉, as d → 0, for
ϕ ∈ Cc(S).

As before, we identify the circle with the interval [0,1), that is, S = [0,1) × [0,∞). For ϕ ∈ Cc(S),

∣∣〈μ,ϕ〉 − 〈
μP ,ϕ

〉∣∣ =
∣∣∣∣∣
∫ T

0

∫
T

ϕ(θ, t)dμ −
n∑

k=1

∫ Tk

Tk−1

ϕ
(
ξk(t), t

)
dm(t)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
T

ϕ(θ, t)dμ − lcap(P )

n∑
k=1

ϕ(θk, Tk)

∣∣∣∣∣
+

∣∣∣∣∣lcap(P )

n∑
k=1

ϕ(θk, Tk) −
n∑

k=1

∫ Tk

Tk−1

ϕ
(
ξk(t), t

)
dm(t)

∣∣∣∣∣. (14)
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The second term on the right-hand side can be bounded by

n∑
k=1

∫ Tk

Tk−1

∣∣ϕ(θk, Tk) − ϕ
(
ξk(t), t

)∣∣dm(t).

Note that Tk − Tk−1 = lcap(P ) and by (7),

sup
Tk−1≤t<Tk

∣∣ξk(t) − e2πiθk
∣∣ ≤ C diam(P ).

Hence

max
1≤k≤n

sup
Tk−1≤t≤Tk

∣∣ξk(t) − e2πiθk
∣∣ → 0

almost surely as d → 0. Since ϕ is compactly supported, and hence uniformly continuous on S, we have

max
1≤k≤n

sup
Tk−1≤t≤Tk

∣∣ϕ(θk, Tk) − ϕ
(
ξk(t), t

)∣∣ < ε

for d sufficiently small. It follows that, almost surely,

n∑
k=1

∫ Tk

Tk−1

∣∣ϕ(
ξk(t), t

)−ϕ(θk, Tk)
∣∣dm(t) < ε

n∑
k=1

∫ Tk

Tk−1

dm(t) ≤ cε

as soon as d is sufficiently small.
We turn to the first term on the right-hand side in (14). We apply the strong law of large numbers for independent

random variables (see for instance [16], Corollary 4.22) to Xk = ϕ(θk, Tk) − ∫ 1
0 ϕ(θ,Tk)dν to obtain

lcap(P )

n∑
k=1

Xk → 0

almost surely. As lcap(P ) = Tk − Tk−1, it follows that

lcap(P )

n∑
k=1

(∫ 1

0
ϕ(θ,Tk)dν

)
→

∫ T

0

∫ 1

0
ϕ(θ, t)dμ

almost surely, by continuity of ϕ.
Hence the sequence of random variables 〈μP ,ϕ〉 converges almost surely to 〈μ,ϕ〉 for each fixed ϕ ∈ Cc(S). Note

that Cc(S) is separable when equipped with the supremum norm. Consequently, there exists a countable dense subset
K ⊂ Cc(S) and for each test function ϕj ∈ K , an event of probability one on which 〈μP ,ϕj 〉 converges to 〈μ,ϕj 〉.
Let V be the countable intersection of these events and the event that μP (S) → T . Then P(V ) = 1 and the random
variables 〈μP ,ϕj 〉, ϕj ∈ K , all converge on V . Moreover, by the density of K in the uniform norm we have that for
each ε > 0 and ϕ ∈ Cc(S), there exists ϕ̃ ∈ K such that∣∣〈μP ,ϕ

〉 − 〈μ,ϕ〉∣∣ ≤ ∣∣〈μP ,ϕ
〉 − 〈

μP , ϕ̃
〉∣∣

+ ∣∣〈μP , ϕ̃
〉 − 〈μ, ϕ̃〉∣∣ + ∣∣〈μ, ϕ̃〉 − 〈μ,ϕ〉∣∣

≤ ∣∣〈μP , ϕ̃
〉 − 〈μ, ϕ̃〉∣∣ + (

μP (S) + μ(S)
)‖ϕ − ϕ̃‖∞,S

≤ ∣∣〈μP , ϕ̃
〉 − 〈μ, ϕ̃〉∣∣ + (

μP (S) + μ(S)
)
ε,

and on the event V this last expression converges to 2T ε, as d → 0. Hence, we have almost sure convergence of μP

to μ with respect to the vague topology. Consequently, by Lemma 1 the random measures μP converge almost surely
to μ with respect to the weak topology.
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In view of Proposition 1, the corresponding conformal mappings converge uniformly on compact sets, and the
proof is complete. �

Remark 1. The setup in the theorem can easily be adapted to allow for random particle sizes tending to zero in
probability. For example, we could take lcap(P n

k ) = λk/n for bounded i.i.d. random variables λk and obtain almost
sure convergence of the corresponding conformal mappings. The proof is essentially the same, except that we apply an
ergodic theorem [4], Theorem 1, instead of the law of large numbers. We can also relax the condition on the sequence
λk to square-integrability, and then obtain convergence in law of the conformal mappings, by adapting the proof in
[4] appropriately.

Remark 2. Instead of choosing θj as i.i.d. random variables, one could also take {θj }j to be a Markov chain satisfying
some natural conditions. By examining our proof, and applying a stronger version of [4], Theorem 1, we obtain a result
similar to Theorem 2, with the limiting ν uniform on T. This is a consequence of the fact that the invariant measure
on T under rotation is Lebesgue measure.

4. The evolution of harmonic measure on the cluster boundary

In this section we establish a scaling limit for the evolution of harmonic measure on the cluster boundary. We show
that it can be approximated by the solution to a deterministic ordinary differential equation related to the Loewner
equation and we also characterise the stochastic fluctuations around the deterministic limit flow.

For notational simplicity, we assume that the diameters {dj } of the particles are constant and equal to some d > 0
which tends to zero to obtain limit results. All the proofs can be directly adapted for {dj } with laws σ with finite third
moment σ3 → 0. We also assume that ν has density hν on R, periodic with period 1, which is twice differentiable. This
restriction is purely for technical reasons and, through smoothing, any non-atomic Borel measure can be sufficiently
well approximated by a measure with a twice differentiable density.

Recall the construction of the map γP and the flow (ΓI : I ⊆ [0,∞)) from Section 2.2. Define the function βν and
the constant ρ(P ) by

βν(x) =
∫ 1

0
γ̃P (x − z)hν(z)dz,

1 = ρ(P )

∫ 1

0
γ̃P (z)2 dz,

where γ̃ ±
P (x) = γ ±

P (x) − x. It is shown in [20] that ρ(P ) � d−3.
Suppose that the Poisson process {Ti}, used in the construction of ΓI , has rate lcap(P )−1 and let X ∈ D◦ be a

lifting of Γ onto the real line. Then for fixed e = (s, x) ∈ [0,∞) × R, X
e,±
t = X±

(s,t](x) satisfies the integral equation

X
e,±
t = x +

∫
(s,t]×[0,1)

γ̃ ±
P

(
Xe,±

r − z
)
μ(dr,dz)

= x + M±
ts + lcap(P )−1

∫
(s,t]

βν

(
Xe,±

r

)
dr, t ≥ s,

where μ is a Poisson random measure on [0,∞) × [0,1), equipped with the Borel σ -algebra, with intensity
lcap(P )−1hν(z)dz dr , and where M±

ts is a martingale (see, for example, [25], Proposition 19.5) satisfying

M±
ts =

∫
(s,t]×[0,1)

γ̃ ±
P

(
Xe,±

r − z
)(

μ(dr,dz) − lcap(P )−1hν(z)dr dz
)
.

In what follows, we suppress the superscripts e,±.
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Recall (see Section 2.1) that there are natural sequences of particles P for which lcap(P ) � d2. We assume that
this holds in what follows. It is also shown in [20] that there exists some universal constant 0 < C3 < ∞ such that∣∣∣∣

∫ 1

0
γ̃P (z)dz

∣∣∣∣ ≤ C3d
2,

and so, by restricting to a subsequence if necessary, we assume that

lcap(P )−1
∫ 1

0
γ̃P (z)dz → c0

for some c0 ∈ R. Note that for symmetric particles,
∫ 1

0 γ̃P (z)dz = 0 in which case c0 = 0.

Proposition 2. As d → 0, | lcap(P )−1βν(x) − b(x)| → 0, uniformly in x, where

b(x) = c0hν(x) + 1

2π

∫ 1

0
cot(πz)

(
hν(x − z) − hν(x)

)
dz.

Furthermore, if P is chosen so that

d−1/2
∣∣∣∣lcap(P )−1

∫ 1

0
γ̃P (z)dz − c0

∣∣∣∣ → 0

as d → 0, then d−1/2| lcap(P )−1βν(x) − b(x)| → 0, uniformly in x, as d → 0.

Proof. It is shown in [17], Section 3.5, that there exists some universal constant c < ∞ such that if cd ≤ z ≤ 1 − cd ,
then ∣∣∣∣γ̃P (z) − lcap(P )

2π
cot(πz)

∣∣∣∣ ≤ cd lcap(P )

2π sin2(πz)
. (15)

If z ∈ (−cd, cd), then γP (−cd) ≤ γP (z) ≤ γP (cd) and hence∣∣γ̃P (z)
∣∣ ≤ ∣∣γ̃P (cd)

∣∣ ∨ ∣∣γ̃P (−cd)
∣∣ + 2cd.

From this it can be deduced that there exists some c′ > 0, such that ‖γ̃P ‖∞ < c′d . Now,

βν(x) = hν(x)

∫ 1

0
γ̃P (z)dz +

∫ 1

0
γ̃P (z)

(
hν(x − z) − hν(x)

)
dz,

and so, if d is sufficiently small that cd < 1/2 then it follows that∣∣∣∣ βν(x)

lcap(P )
− b(x)

∣∣∣∣
≤

∣∣∣∣lcap(P )−1
∫ 1

0
γ̃P (z)dz − c0

∣∣∣∣∣∣hν(x)
∣∣

+ lcap(P )−1
∫ cd

−cd

∣∣γ̃P (z)
∣∣∣∣hν(x − z) − hν(x)

∣∣dz

+ lcap(P )−1
∫ 1/2

cd

∣∣∣∣γ̃P (z) − lcap(P )

2π
cot(πz)

∣∣∣∣∣∣hν(x − z) − hν(x)
∣∣dz

+ lcap(P )−1
∫ −cd

−1/2

∣∣∣∣γ̃P (z) − lcap(P )

2π
cot(πz)

∣∣∣∣∣∣hν(x − z) − hν(x)
∣∣dz
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+ lcap(P )−1
∫ cd

−cd

lcap(P )

2π
∣∣cot(πz)

∣∣∣∣hν(x − z) − hν(x)
∣∣dz

≤ ‖hν‖∞
∣∣∣∣lcap(P )−1

∫ 1

0
γ̃P (z)dz − c0

∣∣∣∣ + ∥∥h′
ν

∥∥∞c′d lcap(P )−1(cd)2

+ ‖h′
ν‖∞cd

π3

(∣∣log sin(πcd)
∣∣ + πcd cot(πcd)

)
+ cd‖h′

ν‖∞
π

sup
z∈(−cd,cd)

∣∣z cot(πz)
∣∣

→ 0

as d → 0. To obtain the above inequalities we have used (15), the inequality |hν(x − z) − hν(x)| ≤ ‖h′
ν‖∞|z|, the

periodicity of γ̃P and hν , and the integral identity∫ 1/2

x

z

sin2(πz)
dz = | log sin(πx)|

π2
+ x cot(πx)

π

for 0 < x ≤ 1/2. �

Note that
∫ 1

0 cot(πz)(hν(x − z) − hν(x))dz is the Hilbert transform of hν , as defined in Section 2.1. In particular,
this implies that b(x) is constant only when hν is the uniform density on the circle. It is for this reason that the
behaviour in the uniform case is very different to the non-uniform case.

Define φ ∈ D◦ to be the solution to the ordinary differential equation

φ̇(s,t](x) = b
(
φ(s,t](x)

)
for t ≥ s, φ(s,s](x) = x. (16)

We shall prove that the boundary flow converges to the flow determined by (16). Note that away from the support of
hν , this equation coincides with the lifted Loewner ODE

∂tγt (x) = 1

2π

∫ 1

0
cot

(
π
(
γt (x) − z

))
hν(z)dz.

However, on the support of ν, where we have to interpret the integral as a principal value, we get an additional drift
term c0hν(γt ) in the right-hand side. In the case of symmetric particles, the drift vanishes everywhere, and the resulting
flow is governed by the extended Loewner flow given by

∂tγt (x) = H [ν](γt (x)
)
.

Proposition 3. For all T > s,

E

((
sup

s<t<T

|Mts |
)2) ≤ 4‖hν‖∞ lcap(P )−1ρ(P )−1(T − s).

Hence, for all ε > 0,

P

(
sup

s<t<T

|Mts | > ε
)

→ 0

as d → 0.

Proof. Since, for any fixed (s, x) ∈ [0,∞) × R, the processes Mts are martingales, by Doob’s L2 inequality, for all
T > s,

E

((
sup

s<t<T

|Mts |
)2) ≤ 4E

(|MT s |2
)
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= 4
∫ T

s

∫ 1

0
E

(
γ̃P (Xr − z)2) lcap(P )−1hν(z)dz dr

≤ 4 lcap(P )−1‖hν‖∞(T − s)

∫ 1

0
γ̃P (z)2 dz

= 4‖hν‖∞ lcap(P )−1ρ(P )−1(T − s).

The first equality is from, for example, [25], Proposition 19.5, and the second inequality follows from Markov’s
inequality and the assymptotic behaviour of ρ(P ) and lcap(P ). �

Recall the definition of φ as the solution of (16).

Theorem 3. As d → 0,

dD(X,φ) → 0

in probability.

Proof. Given ε > 0, for fixed e = (s, x) ∈ [0,∞) × R and T > s, choose d0 > 0 sufficiently small that
‖ lcap(P )−1βν − b‖∞ < εe−‖b′‖∞T /2(T − s) for all d ≤ d0, and set

ΩT,d =
{

sup
s<t≤T

|Mts | ≤ εe−‖b′‖∞T /2
}
.

Then if d ≤ d0, on the set ΩT,d ,

sup
s<t≤T

∣∣Xt − φ(s,t](x)
∣∣

≤ sup
s<t≤T

|Mts | + sup
s<t≤T

∫ t

s

∣∣lcap(P )−1βν(Xr) − b(Xr)
∣∣dr

+ sup
s<t≤T

∫ t

s

∣∣b(Xr) − b
(
φ(s,r](x)

)∣∣dr

≤ εe−‖b′‖∞T + ∥∥b′∥∥∞
∫ T

s

sup
s<t≤r

∣∣Xt − φ(s,t](x)
∣∣dr.

Hence, by Grönwall’s Lemma,

sup
s<t≤T

∣∣Xt − φ(s,t](x)
∣∣ ≤ ε.

Therefore, by Proposition 3,

lim sup
d→0

P

(
sup

s<t≤T

∣∣Xt − φ(s,t](x)
∣∣ > ε

)
≤ lim sup

d→0
P
(
Ωc

T,d

) = 0.

For any countable dense set E ⊂ [0,∞) × R, (Xt )(s,x)∈E → (φ(s,t](x))(s,x)∈E in DE , in probability as d → 0. There-
fore, by Proposition 10.11 in [20], dD(X,φ) → 0 in probability as d → 0. �

Corollary 4. Let x1, . . . , xn be a positively oriented set of points in R/Z and set x0 = xn. Set Kt = K�lcap(P )−1t�.

For k = 1, . . . , n, write ωk
t for the harmonic measure in Kt of the boundary segment of all fingers in Kt at-

tached between xk−1 and xk . Then, in the limit d → 0, (ω1
t , . . . ,ω

n
t )t≥0 converges weakly in D([0,∞), [0,1]n) to

(φ(0,t](x1) − φ(0,t](x0), . . . , φ(0,t](xn) − φ(0,t](xn−1))t≥0.
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A geometric consequence of this result is that the number of infinite fingers of the cluster converges to the number
of stable equilibria of the ordinary differential equation ẋt = b(xt ), and the positions at which these fingers are rooted
to the unit disk converge to the unstable equilibria of the ODE.

4.1. Fluctuations

In this section, suppose that P is chosen so that

d−1/2
∣∣∣∣lcap(P )−1

∫ 1

0
γ̃P (z)dz − c0

∣∣∣∣ → 0

as d → 0. For fixed (s, x) ∈ [0,∞) × R, define

ZP
t = (

lcap(P )ρ(P )
)1/2(

X(s,t](x) − φ(s,t](x)
)

and let Zt be the solution to the linear stochastic differential equation

dZt =
√

hν

(
φ(s,t](x)

)
dBt + b′(φ(s,t](x)

)
Zt dt, t ≥ s,

starting from Zs = 0, where Bt is a standard Brownian motion.
Note that if φ(s,t](x) stays off the support of hν , then Zt = 0 for all t ≥ s. Also observe that in the case where

ν is the uniform measure on the unit circle, (lcap(P )ρ(P ))1/2(X(s,t](x) − x − c0(t − s))t≥s converges to standard
Brownian motion, starting from 0 at time s.

Lemma 5. For fixed x and s < T < ∞ there exists some constant C, dependent only on T , hν and b such that

E

(
sup

s≤t≤T

∣∣ZP
t

∣∣2
)

≤ C

and, for all s ≤ t1 < t2 ≤ T ,

E

(
sup

t1≤t≤t2

∣∣ZP
t − ZP

t1

∣∣2
)

≤ C(t2 − t1).

Therefore (see, for example [3], p. 143) the family of processes (ZP
t )t≥s is tight with respect to parameter d .

Proof. Since lcap(P )ρ(P ) � d−1 there exists C′ > 0 such that

(
lcap(P )ρ(P )

)1/2∣∣lcap(P )−1βν(x) − b(x)
∣∣ < C′.

Then,

E

(
sup

s≤t≤T

∣∣ZP
t

∣∣2
)

≤ 3 lcap(P )ρ(P )E
(

sup
s≤t≤T

|Mts |2
)

+ 3 lcap(P )ρ(P )

∫ T

s

E
(∣∣lcap(P )−1βν(Xr) − b(Xr)

∣∣2)dr

+ 3 lcap(P )ρ(P )

∫ T

s

E

(
sup

s≤t≤r

∣∣b(Xt ) − b
(
φ(s,t](x)

)∣∣2
)

dr

≤ (
12‖hν‖∞ + 3

(
C′)2)

(T − s) + 3
∥∥b′∥∥2

∞
∫ T

s

E

(
sup

s≤t≤r

∣∣ZP
t

∣∣2
)

dr.
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The result follows by Grönwall’s Lemma. Similarly

E

(
sup

t1≤t≤t2

∣∣ZP
t − ZP

t1

∣∣2
)

≤ (
12‖hν‖∞ + 3

(
C′)2)

(t2 − t1)

+ 3
∥∥b′∥∥2

∞
∫ t2

t1

E
(∣∣ZP

t1

∣∣2)dr

+ 3
∥∥b′∥∥2

∞
∫ t2

t1

E

(
sup

t1≤t≤r

∣∣ZP
t − ZP

t1

∣∣2
)

dr

≤ (
12‖hν‖∞ + 3

(
C′)2 + 3

∥∥b′∥∥2
∞E

(∣∣ZP
t1

∣∣2))
(t2 − t1)

+ 3
∥∥b′∥∥2

∞
∫ t2

t1

E

(
sup

t1≤t≤r

∣∣ZP
t − ZP

t1

∣∣2
)

dr.

Again, the result follows by Grönwall’s Lemma. �

Theorem 6. As d → 0, the processes ZP
t → Zt in distribution.

Proof. For simplicity, let s = 0, and xt = φ(0,t](x).
Define ψt to be the solution to the linear ordinary differential equation

ψ̇t = −b′(xt )ψt , ψ0 = 1.

We shall show that (ψtZ
P
t )t≥s → (ψtZt )t≥s in distribution as d → 0. Since the processes (ZP

t )t≥s are tight, and
(ψt )t≥s is bounded away from 0 on compact intervals, the result will follow.

By Itô’s formula,

ψtZt =
∫ t

0
ψs

√
hν(xs)dBs ∼ N

(
0,

∫ t

0
ψ2

s hν(xs)ds

)
.

Hence Zt is a Gaussian process. Similarly

ψtZ
P
t = (

lcap(P )ρ(P )
)1/2

∫ t

0
ψs dMs +

∫ t

0
RP

s ds,

where

RP
t = (

lcap(P )ρ(P )
)1/2

ψt

(
lcap(P )−1βν(Xt ) − b(xt ) − b′(xt )(Xt − xt )

)
.

Using the bounds on ZP
t established above, it is straightforward to show that∫ t

0
RP

s ds → 0

in probability. Therefore it suffices to show that

(
lcap(P )ρ(P )

)1/2
∫ t

0
ψs dMs → N

(
0,

∫ t

0
ψ2

s hν(xs)ds

)

in distribution.
In order to show that the characteristic function

χ(η) = E

(
exp

(
iη

(
lcap(P )ρ(P )

)1/2
∫ t

0
ψs dMs

))
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converges to

exp

(
−1

2
η2

∫ t

0
ψ2

s hν(xs)ds

)
,

it is helpful to define

ζ(θ, x) =
∫ 1

0

(
eiθγ̃P (x−z) − 1 − iθγ̃P (x − z)

)
hν(z) lcap(P )−1 dz

= − θ2

lcap(P )

∫ 1

0

∫ 1

0
γ̃P (x − z)2(1 − r)eirθγ̃P (x−z)hν(z)dr dz

= − θ2

2 lcap(P )ρ(P )
ρ(P )

∫ 1

0
γ̃P (x − z)2hν(z)dz

− θ2

lcap(P )

∫ 1

0
(1 − r)

∫ 1

0
γ̃P (x − z)2(eirθγ̃P (x−z) − 1

)
hν(z)dz dr.

By an extension of Itô’s formula (see, for example, [16], p. 521), the process

Nt(θ) = exp

(
iθ

∫ t

0
ψs dMs −

∫ t

0
ζ(θψs,Xs)ds

)
, t ≥ 0,

is a martingale. Furthermore, again using (15) and the same kind of arguments as in the proof of Proposition 2, we
find that∣∣∣∣ρ(P )

∫ 1

0
γ̃P (x − z)2hν(z)dz − hν(x)

∣∣∣∣
≤ ρ(P )

∫ 1/2

−1/2
γ̃P (x − z)2

∣∣hν(z) − hν(x)
∣∣dz

≤ ∥∥h′
ν

∥∥∞ρ(P )

∫ 1/2

−1/2
γ̃P (x − z)2|x − z|dz

= ∥∥h′
ν

∥∥∞ρ(P )

(∫ cd

−cd

γ̃P (z)2|z|dz +
∫ 1/2

cd

γ̃P (z)2z dz +
∫ −cd

−1/2
γ̃P (z)2z dz

)

≤ ∥∥h′
ν

∥∥∞ρ(P )

(
2(cd)4 + 2 lcap(P )2

π4

(
πcd cot(πcd) + ∣∣log sin(πcd)

∣∣))
→ 0

as d → 0, and∣∣∣∣
∫ 1

0
γ̃P (x − z)2(eirθγ̃P (x−z) − 1

)
hν(z)dz

∣∣∣∣ ≤ ‖hν‖∞|θ |‖γ̃P ‖∞ρ(P )−1 ≤ ‖hν‖∞|θ |c′dρ(P )−1.

Hence

ζ
(
η
(
lcap(P )ρ(P )

)1/2
ψs,Xs

) → −1

2
η2ψ2

s hν(xs)

in probability as d → 0. Therefore, Nt((lcap(P )ρ(P ))1/2η) is bounded as d → 0 and integrates to 1. Hence

χ(η) − exp

(
−1

2
η2

∫ t

0
ψ2

s hν(xs)ds

)
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= E

(
Nt

((
lcap(P )ρ(P )

)1/2
η
)(

exp
∫ t

0
ζ
(
η
(
lcap(P )ρ(P )

)1/2
ψs,Xs

)
ds − exp

(
−1

2
η2

∫ t

0
ψ2

s hν(xs)ds

)))
→ 0,

and so

(
lcap(P )ρ(P )

)1/2
∫ t

0
ψs dMs → N

(
0,

∫ t

0
ψ2

s hν(xs)ds

)

in distribution, as required.
Since the processes ((lcap(P )ρ(P ))1/2

∫ t

0 ψs dMs)t≥0 and (ψtZt )t≥0 have independent increments, the finite di-
mensional distributions of (ψtZ

P
t )t≥0 converge to those of (ψtZt )t≥0. The result follows by the tightness of the

processes (ψtZ
P
t )t≥0, which is a consequence of the tightness of (ZP

t )t≥0. �

4.2. The uniform case

In the case of non-uniform ν, the behaviour of the boundary flow (Xt )t≥s is dominated by non-trivial deterministic
drift behaviour, and the random fluctuations only contribute as lower order perturbations. In the case when ν is the
uniform measure on [0,1), however, the drift vanishes and the random fluctations describe the highest order behaviour.
This case is explored in detail in [20], where it is shown that under suitable scaling, the boundary flow converges to
the coalescing Brownian flow described in Section 2.2.

A similar result holds for HL(0) clusters constructed with random diameters. The proofs are straightforward adap-
tations of those in [20] and are therefore omitted. We summarize the main theorems below.

For law σ with finite third moment σ3, define ρ(σ ) by

ρ(σ )

∫ ∞

0

∫ 1

0
γ̃P (d)(x)2 dx dσ(d) = 1.

Note that ρ(σ ) is well defined and ρ(σ ) � σ−1
3 .

Recall the construction of the flow (ΓI : I ⊆ [0,∞)) from Section 2.2 (with the drift compensated for), but con-
structed from particles with random diameters with law σ , and with rate ρ(P ) replaced by ρ(σ ). Let X ∈ D◦ be a
lifting of Γ onto the real line. Then for fixed e = (s, x) ∈ [0,∞) × R, Xt = X(s,t](x) satisfies the integral equation

Xt = x +
∫

(s,t]×(0,∞)×[0,1)

γ̃P (d)(Xr− − z)μ(dr,dd,dz), t ≥ s,

where μ is a Poisson random measure of intensity ρ(σ )hν(z)dz dσ(d)dr .
Write μσ

e for the distribution of (Xt )t≥s on the Skorokhod space De = Dx([s,∞),R) of cadlag paths starting from
x at time s. Write μe for the distribution on De of a standard Brownian motion starting from e.

By a straightforward adaptation of Theorem 6, μσ
e → μe weakly on De as σ3 → 0.

Recall the definitions of E, DE , μE from Section 2.2.

Proposition 4. We have μσ
E → μE weakly on DE as σ3 → 0.

As observed above, X is a D◦-valued random variable. Let μσ
A denote the law of X on the Borel σ -algebra of D◦.

Then, as in [20], the following results hold.

Theorem 7. We have μσ
A → μA weakly on D◦ as σ3 → 0.

Corollary 8. Let x1, . . . , xn be a positively oriented set of points in R/Z and set x0 = xn. Set Kt = K�ρ(σ )t�. For
k = 1, . . . , n, write ωk

t for the harmonic measure in Kt of the boundary segment of all fingers in Kt attached between
xk−1 and xk . Let (B1

t , . . . ,Bn
t )t≥0 be a family of coalescing Brownian motions in R/Z starting from (x1, . . . , xn).

Then, in the limit σ3 → 0, (ω1
t , . . . ,ω

n
t )t≥0 converges weakly in D([0,∞), [0,1]n) to (B1

t − B0
t , . . . ,Bn

t − Bn−1
t )t≥0.
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