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Abstract. Fix a polynomial Φ of the form Φ(α) = α +∑2≤j≤m ajαj with Φ ′(1) > 0. We prove that the evolution, on the

diffusive scale, of the empirical density of exclusion processes on Td , with conductances given by special class of functions W , is
described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ =∑d

k=1 ∂xk ∂Wk
Φ(ρ). We also

derive some properties of the operator
∑d

k=1 ∂xk ∂Wk
.

Résumé. Étant donné un polynôme Φ de la forme Φ(α) = α +∑2≤j≤m ajαj respectant Φ ′(1) > 0, nous démontrons que

l’évolution, sur une échelle diffusive, de la densité empirique des processus d’exclusion sur Td , dont les conductances sont données
par une classe spéciale de fonctions W , est décrite par l’unique solution faible de l’équation aux dérivées partielles parabolique :
∂tρ =∑d

k=1 ∂xk ∂Wk
Φ(ρ). Nous dérivons également certaines propriétés de l’opérateur

∑d
k=1 ∂xk ∂Wk

.
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1. Introduction

The evolution of one-dimensional exclusion processes with random conductances has attracted some attention recently
[2,3,6,7]. The purpose of this paper is to extend this analysis to higher dimension.

Let W : Rd → R be a function such that W(x1, . . . , xd) =∑d
k=1 Wk(xk), where d ≥ 1 and each function Wk : R →

R is strictly increasing, right continuous with left limits (càdlàg), and periodic in the sense that Wk(u + 1) − Wk(u) =
Wk(1) − Wk(0) for all u ∈ R. Informally, the exclusion process with conductances associated to W is an interacting
particle systems on the d-dimensional discrete torus N−1Td

N , in which at most one particle per site is allowed, and
only nearest-neighbor jumps are permitted. Moreover, the jump rate in the direction ej is given by the reciprocal of
the increments of W with respect to the j th coordinate.

We show that, on the diffusive scale, the macroscopic evolution of the empirical density of exclusion processes
with conductances W is described by the nonlinear differential equation

∂tρ =
d∑

k=1

∂xk
∂Wk

Φ(ρ), (1.1)
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where Φ is a polynomial of the form Φ(α) = α +∑2≤j≤m ajα
j with Φ ′(1) > 0. Furthermore, we denote by ∂Wk

the
generalized derivative with respect to Wk , see [1,6] and a revision in Section 3. The partial differential equation (1.1)
appears naturally as, for instance, scaling limits of interacting particle systems in inhomogeneous media. It may model
diffusions in which permeable membranes, at the points of discontinuities of W , tend to reflect particles, creating space
discontinuities in the density profiles.

The proof of hydrodynamic limit relies strongly on some properties of the differential operator
∑d

k=1 ∂xk
∂Wk

pre-
sented in Theorem 2.1. We prove, among other properties: that the operator

∑d
k=1 ∂xk

∂Wk
, defined on an appropriate

domain, is non-positive, self-adjoint and dissipative; that its eigenvalues are countable and have finite multiplicity;
and that the associated eigenvectors form a complete orthonormal system.

There is a wide literature on the so-called Feller’s generalized diffusion operator (d/du)(d/dv). Where, typically,
u and v are strictly increasing functions with v (but not necessarily u) being continuous. It provides general diffusions
operators and an appreciable simplification of the theory of second-order differential operators (see, for instance,
[4,5,9]). The operator (d/dx)(d/du), considered in [6], is the formal adjoint of (d/du)(d/dv) in the particular case
v(x) = x (as in [5]). The goal of this work is to extend this adjoint operator to higher dimensions and provide some
results regarding this extension. The assumption that the function W is a direct sum of one-dimensional functions is
technically essential, so that the limit equation (1.1) has a special form. More details, see Sections 4 and 5.

The article is organized as follows: in Section 2 we state the main results of the article; in Section 3 we prove the
main properties of the operator LW =∑d

k=1 ∂xk
∂Wk

; in Section 4 we prove the convergence of random walks with
random conductances to Markov processes with generator given by LW ; in Section 5 we prove the scaling limit of the
exclusion process with conductances given by W ; and, finally, in Section 6 we show that the unique solution of (1.1)
has finite energy.

2. Notation and results

We examine the hydrodynamic behavior of a d-dimensional exclusion process, with d ≥ 1, with conductances given
by a special class of functions W : Rd → R such that:

W(x1, . . . , xd) =
d∑

k=1

Wk(xk), (2.1)

where Wk : R → R are strictly increasing right continuous functions with left limits (càdlàg), and periodic in the sense
that

Wk(u + 1) − Wk(u) = Wk(1) − Wk(0)

for all u ∈ R and k = 1, . . . , d . To keep notation simple, we assume that Wk vanishes at the origin, that is, Wk(0) = 0.
Denote by Td = [0,1)d the d-dimensional torus and by e1, . . . , ed the canonical basis of Rd . For this class of

functions we have:

• W(0) = 0;
• W is strictly increasing on each coordinate:

W(x + aej ) > W(x)

for all 1 ≤ j ≤ d , a > 0, x ∈ Rd ;
• W is continuous from above:

W(x) = lim
y→x,y≥x

W(y),

where we say that y ≥ x if yj ≥ xj for all 1 ≤ j ≤ d ;
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• W is defined on the torus Td :

W(x1, . . . , xj−1,0, xj+1, . . . , xd) = W(x1, . . . , xj−1,1, xj+1, . . . , xd) − W(ej )

for all 1 ≤ j ≤ d , (x1, . . . , xj−1, xj+1, . . . , xd) ∈ Td−1.

Unless explicitly stated W belongs to this class. Let Td
N be the d-dimensional discrete torus with Nd points.

Distribute particles throughout Td
N in such a way that each site of Td

N is occupied at most by one particle. Denote by η

the configurations of the state space {0,1}Td
N , so that η(x) = 0 if site x is vacant and η(x) = 1 if site x is occupied.

Fix a > −1/2 and W . For x = (x1, . . . , xd) ∈ Td
N let

cx,x+ej
(η) = 1 + a

{
η(x − ej ) + η(x + 2ej )

}
,

where all sums are modulo N , and let

ξx,x+ej
= 1

N [W((x + ej )/N) − W(x/N)] = 1

N [Wj((xj + 1)/N) − Wj(xj /N)] .

We now describe the stochastic evolution of the process. Let x = (x1, . . . , xd) ∈ Td
N . At rate ξx,x+ej

cx,x+ej
(η)

the occupation variables η(x), η(x + ej ) are exchanged. If W is differentiable at x/N ∈ [0,1)d , the rate at which
particles are exchanged is of order 1 for each direction, but if some Wj is discontinuous at xj /N , it no longer holds.
In fact, assume, to fix ideas, that Wj is discontinuous at xj/N , and smooth on the segments (xj /N,xj /N + εej ) and
(xj /N − εej , xj /N). Assume, also, that Wk is differentiable in a neighborhood of xk/N for k �= j . In this case, the
rate at which particles jump over the bonds {y − ej , y}, with yj = xj , is of order 1/N , whereas in a neighborhood
of size N of these bonds, particles jump at rate 1. Thus, note that a particle at site y − ej jumps to y at rate 1/N

and jumps at rate 1 to each one of the 2d − 1 other options. Particles, therefore, tend to avoid the bonds {y − ej , y}.
However, since time will be scaled diffusively, and since on a time interval of length N2 a particle spends a time of
order N at each site y, particles will be able to cross the slower bond {y − ej , y}.

Then, this process models membranes that obstruct passages of particles. Note that these membranes are (d − 1)-
dimensional hyperplanes embedded in a d-dimensional environment. Moreover, if we consider Wj having more than
one discontinuity point for more than one j , these membranes will be more sophisticated manifolds, for instance,
unions of (d − 1)-dimensional boxes.

The effect of the factor cx,x+ej
(η) is analogous to the one-dimensional case. If the parameter a is positive, the

presence of particles in the neighboring sites of the bond {x, x + ej } speeds up the exchange rate by a factor of order
one.

The dynamics informally presented describes a Markov evolution. The generator LN of this Markov process acts
on functions f : {0,1}Td

N → R as

LNf (η) =
d∑

j=1

∑
x∈Td

N

ξx,x+ej
cx,x+ej

(η)
{
f
(
σx,x+ej η

)− f (η)
}
, (2.2)

where σx,x+ej η is the configuration obtained from η by exchanging the variables η(x) and η(x + ej ):

(
σx,x+ej η

)
(y) =

{
η(x + ej ) if y = x,
η(x) if y = x + ej ,
η(y) otherwise.

(2.3)

A straightforward computation shows that the Bernoulli product measures {νN
α : 0 ≤ α ≤ 1} are invariant, and in

fact reversible, for the dynamics. The measure νN
α is obtained by placing a particle at each site, independently from

the other sites, with probability α. Thus, νN
α is a product measure over {0,1}Td

N with marginals given by

νN
α

{
η: η(x) = 1

}= α

for x in Td
N . For more details see [8], Chapter 2. We will often omit the index N on νN

α .
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Denote by {ηt : t ≥ 0} the Markov process on {0,1}Td
N associated to the generator LN speeded up by N2. Let

D(R+, {0,1}Td
N ) be the path space of càdlàg trajectories with values in {0,1}Td

N . For a measure μN on {0,1}Td
N ,

denote by PμN
the probability measure on D(R+, {0,1}Td

N ) induced by the initial state μN , and the Markov process
{ηt : t ≥ 0}. Expectation with respect to PμN

is denoted by EμN
.

2.1. The operator LW

Fix W =∑d
k=1 Wk as in (2.1). In [6] it was shown that there exist self-adjoint operators LWk

: DWk
⊂ L2(T) → L2(T).

Further, the set AWk
of the eigenvectors of LWk

forms a complete orthonormal system in L2(T). Let

AW =
{

f : Td → R;f (x1, . . . , xd) =
d∏

k=1

fk(xk), fk ∈ AWk
, k = 1, . . . , d

}
, (2.4)

and denote by span(A) the space of finite linear combinations of the set A, and let DW := span(AW). Define the
operator LW : DW → L2(Td) as follows: for f =∏d

k=1 fk ∈ AW , we have

LW(f )(x1, . . . , xd) =
d∑

k=1

d∏
j=1,j �=k

fj (xj )LWk
fk(xk), (2.5)

and then extend to DW by linearity.
Lemma 3.2, in Section 3, shows that: LW is symmetric and non-positive; DW is dense in L2(Td); and the set AW

forms a complete, orthonormal, countable system of eigenvectors for the operator LW . Let AW = {hk}k≥0, {αk}k≥0
be the corresponding eigenvalues of −LW , and consider

DW =
{

v =
∞∑

k=1

vkhk ∈ L2(Td
); ∞∑

k=1

v2
kα

2
k < +∞

}
. (2.6)

Define the operator LW : DW → L2(Td) by

−LWv =
+∞∑
k=1

αkvkhk. (2.7)

The operator LW is clearly an extension of the operator LW , and we present in Theorem 2.1 some properties of
this operator.

Theorem 2.1. The operator LW : DW → L2(Td) enjoys the following properties:

(a) the domain DW is dense in L2(Td). In particular, the set of eigenvectors AW = {hk}k≥0 forms a complete
orthonormal system;

(b) the eigenvalues of the operator −LW form a countable set {αk}k≥0. All eigenvalues have finite multiplicity, and
it is possible to obtain a re-enumeration {αk}k≥0 such that

0 = α0 ≤ α1 ≤ · · · and lim
n→∞αn = ∞;

(c) the operator I − LW : DW → L2(Td) is bijective;
(d) LW : DW → L2(Td) is self-adjoint and non-positive:

〈−LWf,f 〉 ≥ 0;
(e) LW is dissipative.
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In view of (a), (b) and (d), we may use Hille–Yosida theorem to conclude that LW is the generator of a strongly
continuous contraction semigroup {Pt :L2(Td) → L2(Td)}t≥0.

Denote by {Gλ : L2(Td) → L2(Td)}λ>0 the semigroup of resolvents associated to the operator LW : Gλ = (λ −
LW)−1. Gλ can also be written in terms of the semigroup {Pt ; t ≥ 0}:

Gλ =
∫ ∞

0
e−λtPt dt.

In Section 4 we derive some properties and obtain some results for these operators.

2.2. The hydrodynamic equation

A sequence of probability measures {μN : N ≥ 1} on {0,1}Td
N is said to be associated to a profile ρ0 : Td → [0,1] if

lim
N→∞μN

{∣∣∣∣ 1

Nd

∑
x∈Td

N

H(x/N)η(x) −
∫

H(u)ρ0(u)du

∣∣∣∣> δ

}
= 0 (2.8)

for every δ > 0 and every continuous function H : Td → R. For details, see [8], Chapter 3.
Fix a polynomial Φ of the form

Φ(α) = α +
m∑

j=2

ajα
j

with Φ ′(1) > 0 and m a positive integer. Let γ : Td → [0,1] be a bounded density profile, and consider the parabolic
differential equation{

∂tρ = LWΦ(ρ),

ρ(0, ·) = γ (·). (2.9)

A bounded function ρ : R+ ×Td → [0,1] is said to be a weak solution of the parabolic differential equation (2.9) if

〈ρt ,GλH 〉 − 〈γ,GλH 〉 =
∫ t

0

〈
Φ(ρs), LWGλH

〉
ds

for every continuous function H : Td → R, all t > 0 and all λ > 0.
Existence of these weak solutions follows from tightness of the sequence of probability measures QW,N

μN
introduced

in Section 5. The proof of uniquenesses of weak solutions is analogous to [6].

Theorem 2.2. Fix a continuous initial profile ρ0 : Td → [0,1], and consider a sequence of probability measures μN

on {0,1}Td
N associated to ρ0, in the sense of (2.8). Then, for any t ≥ 0,

lim
N→∞ PμN

{∣∣∣∣ 1

Nd

∑
x∈Td

N

H(x/N)ηt (x) −
∫

H(u)ρ(t, u)du

∣∣∣∣> δ

}
= 0

for every δ > 0 and every continuous function H . Here, ρ is the unique weak solution of the non-linear equation (2.9)
with γ = ρ0, and Φ(α) = α + aα2.

Remark 2.3. As noted in [6], Remark 2.3, the specific form of the rates cx,x+ei
is not important, but two conditions

must be fulfilled: the rates must be strictly positive, although they may not depend on the occupation variables η(x),
η(x + ei); but they have to be chosen in such a way that the resulting process is gradient (cf. Chapter 7 in [8] for the
definition of gradient processes).
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We may define rates cx,x+ei
to obtain any polynomial Φ of the form Φ(α) = α +∑2≤j≤m ajα

j , m ≥ 1, with
1 +∑2≤j≤m jaj > 0. Let, for instance, m = 3. Then the rates

ĉx,x+ei
(η) = cx,x+ei

(η) + b
{
η(x − 2ei)η(x − ei) + η(x − ei)η(x + 2ei) + η(x + 2ei)η(x + 3ei)

}
,

satisfy the above three conditions, where cx,x+ei
is the rate defined at the beginning of Section 2 and a, b are such

that 1 + 2a + 3b > 0. An elementary computation shows that Φ(α) = α + aα2 + bα3.

In Section 6 we prove that any limit point Q∗
W of the sequence QW,N

μN
is concentrated on trajectories ρ(t, u)du,

with finite energy in the following sense: for each 1 ≤ j ≤ d , there is a Hilbert space L2
xj ⊗Wj

, associated to Wj , such
that ∫ t

0
ds
∥∥∂Wj

Φ
(
ρ(s, ·))∥∥2

xj ⊗Wj
< ∞,

where ‖ · ‖xj ⊗Wj
is the norm in L2

xj ⊗Wj
, and ∂Wj

is the derivative, which must be understood in the generalized sense.

3. The operator LW

The operator LW : DW ⊂ L2(Td) → L2(Td) is a natural extension, for the d-dimensional case, of the self-adjoint
operator obtained for the one-dimensional case in [6]. We begin by presenting one of the main results obtained in [6],
and we then present the necessary modifications to conclude similar results for the d-dimensional case.

3.1. Some remarks on the one-dimensional case

Let T ⊂ R be the one-dimensional torus. Denote by 〈·, ·〉 the inner product of L2(T):

〈f,g〉 =
∫

T

f (u)g(u)du.

Let W1 : R → R be a strictly increasing right continuous function with left limits (càdlàg), and periodic in the sense
that W1(u + 1) − W1(u) = W1(1) − W1(0) for all u in R.

Let DW1 be the set of functions f in L2(T) such that

f (x) = a + bW1(x) +
∫

(0,x]
W1(dy)

∫ y

0
f(z)dz

for some function f in L2(T) that satisfies:

∫ 1

0
f(z)dz = 0,

∫
(0,1]

W1(dy)

(
b +
∫ y

0
f(z)dz

)
= 0.

Define the operator LW1 : DW1 → L2(T) by LW1f = f. Formally

LW1f = d

dx

d

dW1
f, (3.1)

where the generalized derivative d/dW1 is defined as

df

dW1
(x) = lim

ε→0

f (x + ε) − f (x)

W1(x + ε) − W1(x)
(3.2)

if the above limit exists and is finite.
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Theorem 3.1. Denote by I the identity operator in L2(T). The operator LW1 : DW1 → L2(T) enjoys the following
properties:

(a) DW1 is dense in L2(T);
(b) the operator I − LW1 : DW1 → L2(T) is bijective;
(c) LW1 : DW1 → L2(T) is self-adjoint and non-positive:

〈−LW1f,f 〉 ≥ 0;
(d) LW1 is dissipative i.e., for all g ∈ DW and λ > 0, we have

‖λg‖ ≤ ∥∥(λI − LW1)g
∥∥;

(e) the eigenvalues of the operator −LW form a countable set {λn: n ≥ 0}. All eigenvalues have finite multiplicity,
0 = λ0 ≤ λ1 ≤ · · ·, and limn→∞ λn = ∞;

(f) the eigenvectors {fn}n≥0 of the operator LW form a complete orthonormal system.

The proof can be found in [6].

3.2. The d-dimensional case

Consider W as in (2.1). Let AWk
be the countable complete orthonormal system of eigenvectors of the operator

LWk
: DWk

⊂ L2(T) → R given in Theorem 3.1.
Let AW be as in (2.4), and let the operator LW : DW := span(AW) → L2(Td) be as in (2.5). By Fubini’s theorem,

the set AW is orthonormal in L2(Td), and the constant functions are eigenvectors of the operator LWk
. Moreover,

AWk
⊂ AW , in the sense that fk(x1, . . . , xd) = fk(xk), fk ∈ AWk

.
By (3.1), the operators LWk

can be formally extended to functions defined on Td as follows: given a function
f : Td → R, we define LWk

f as

LWk
f = ∂xk

∂Wk
f, (3.3)

where the generalized derivative ∂Wk
is defined by

∂Wk
f (x1, . . . , xk, . . . , xd) = lim

ε→0

f (x1, . . . , xk + ε, . . . , xd) − f (x1, . . . , xk, . . . , xd)

Wk(xk + ε) − Wk(xk)
, (3.4)

if the above limit exists and is finite. Hence, by (2.5), if f ∈ DW

LWf =
d∑

k=1

LWk
f. (3.5)

Note that if f =∏d
k=1 fk , where fk ∈ AWk

is an eigenvector of LWk
associated to the eigenvalue λk , then f is an

eigenvector of LW , with eigenvalue
∑d

k=1 λk .

Lemma 3.2. The following statements hold:

(a) the set DW is dense in L2(Td);
(b) the operator LW : DW → L2(Td) is symmetric and non-positive:

〈−LWf,f 〉 ≥ 0.

Proof. The strategy to prove the above lemma is the following. We begin by showing that the set

S = span

({
f ∈ L2(Td

);f (x1, . . . , xd) =
d∏

k=1

fk(xk), fk ∈ DWk

})
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is dense in

S = span

({
f ∈ L2(Td

);f (x1, . . . , xd) =
d∏

k=1

fk(xk), fk ∈ L2(T)

})
.

We then show that DW is dense in S . Since S is dense in L2(Td), item (a) follows.
We now prove item (a) rigorously. Since S is a vector space, we only have to show that we can approximate the

functions
∏d

k=1 fk ∈ L2(Td), where fk ∈ DWk
, by functions of DW . By Theorem 3.1, the set DWk

is dense in L2(T),
thus, there exists a sequence (f k

n )n∈N converging to fk in L2(T). Thus, let

fn(x1, . . . , xd) =
d∏

k=1

f k
n (xk).

By the triangle inequality and Fubini’s theorem, the sequence (fn) converges to
∏d

k=1 fk . Fix ε > 0, and let

h(x1, . . . , xd) =
d∏

k=1

hk(xk), hk ∈ DWk
.

Since, for each k = 1, . . . , d , AWk
⊂ DWk

is a complete orthonormal set, there exist sequences gk
j ∈ AWk

, and

αk
j ∈ R, such that

∥∥∥∥∥hk −
n(k)∑
j=1

αk
j g

k
j

∥∥∥∥∥
L2(T)

< δ,

where δ = ε/dMd−1 and M := 1 + supk=1:n ‖hk‖. Let

g(x1, . . . , xd) =
d∏

k=1

n(k)∑
j=1

αk
j g

k
j (xk) ∈ DW .

An application of the triangle inequality, and Fubini’s theorem, yields ‖h − g‖ < ε. This proves (a).
To prove (b), let

f (x1, . . . , xd) =
d∏

k=1

fk(xk) and g(x1, . . . , xd) =
d∏

k=1

gk(xk)

be functions belonging to AW . We have that

〈f,LWg〉 =
〈

d∏
k=1

fk,

d∑
k=1

d∏
j=1,j �=k

gj LWk
gk

〉
=

d∑
k=1

〈
d∏

j=1,j �=k

fjgj , fk LWk
gk

〉
,

where 〈·, ·〉 denotes the inner product in L2(Td). Since, by Theorem 3.1, LWk
is self-adjoint, we have

d∑
k=1

〈
d∏

j=1,j �=k

fjgj , gk LWk
fk

〉
= 〈LWf,g〉.

In particular, the operator LWk
is non-positive, and, therefore,

〈f,LWf 〉 =
d∑

k=1

〈
d∏

j=1,j �=k

f 2
j , fk LWk

fk

〉
≤ 0.
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Item (b) follows by linearity. �

Lemma 3.2 implies that the set AW forms a complete, orthonormal, countable, system of eigenvectors for the
operator LW .

Let LW : DW → L2(Td) be the operator defined in (2.7). The operator LW is clearly an extension of the opera-
tor LW . Formally, by (3.5),

LWf =
d∑

k=1

LWk
f, (3.6)

where

LWk
f = d

dxk

d

dWk

f.

We are now in conditions to prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 3.2, DW is dense in L2(Td). Since DW ⊂ DW , we conclude that DW is dense in
L2(Td).

If αk are eigenvalues of −LW , we may find eigenvalues λj , associated to some fj ∈ AWj
, such that αk =∑d

j=1 λj .
By item (e) of Theorem 3.1, (b) follows.

Let {αk}k≥0 be the set of eigenvalues of −LW . Then, the set of eigenvalues of I− LW is {γk}k≥0, where γk = αk +1,
and the eigenvectors are the same as the ones of LW . By item (b), we have

1 = γ0 ≤ γ1 ≤ · · · and lim
n→∞γn = ∞.

Thus, I − LW is injective. For

v =
+∞∑
k=1

vkhk ∈ L2(Td
)
, such that

∞∑
k=1

v2
k < +∞,

let

u =
+∞∑
k=1

vk

γk

hk.

Then u ∈ DW and (I − LW)u = v. Hence, item (c) follows.
Let L∗

W : DW ∗ ⊂ L2(Td) → L2(Td) be the adjoint of LW . Since LW is symmetric, we have DW ⊂ DW ∗ . So, to
show the equality of the operators it suffices to show that DW ∗ ⊂ DW . Given

ϕ =
+∞∑
k=1

ϕkhk ∈ DW ∗ ,

let LW∗ϕ = ψ ∈ L2(Td). Therefore, for all v =∑+∞
k=1 vkhk ∈ DW ,

〈v,ψ〉 = 〈v, LW∗ϕ〉 = 〈LWv,ϕ〉 =
+∞∑
k=1

−αkvkϕk.

Hence

ψ =
+∞∑
k=1

−αkϕkhk.



Exclusion process with conductances 197

In particular,

+∞∑
k=1

α2
kϕ

2
k < +∞ and ϕ ∈ DW .

Thus, LW is self-adjoint. Let v =∑+∞
k=1 vkhk ∈ DW . From item (b), αk ≥ 0, and

〈−LWv,v〉 =
+∞∑
k=1

αkv
2
k ≥ 0.

Therefore LW is non-positive, and item (d) follows.
Fix a function g in DW , λ > 0, and let f = (λI − LW)g. Taking inner product, with respect to g, on both sides of

this equation, we obtain

λ〈g,g〉 + 〈−LWg,g〉 = 〈g,f 〉 ≤ 〈g,g〉1/2〈f,f 〉1/2.

Since g belongs to DW , by (d), the second term on the left-hand side is non-negative. Thus, ‖λg‖ ≤ ‖f ‖ = ‖(λI −
LW)g‖. �

4. Random walk with conductances

Recall the decomposition obtained in (3.6) for the operator LW . In next subsection, we present the discrete version LN

of LW and we describe, informally, the Markovian dynamics generated by LN .

4.1. Discrete approximation of the operator LW

Consider the random walk {XN
t }t≥0 in 1

N
Td

N , which jumps from x/N (resp. (x + ej )/N ) to (x + ej )/N (resp. x/N )
with rate

N2ξx,x+ej
= N/

{
Wj

(
(xj + 1)/N

)− Wj(xj /N)
}
.

The generator LN of this Markov process acts on local functions f : 1
N

Td
N → R as

LNf (x/N) =
d∑

j=1

L
j
Nf (x/N), (4.1)

where

L
j
Nf (x/N) = N2{ξx,x+ej

[
f
(
(x + ej )/N

)− f (x/N)
]+ ξx−ej ,x

[
f
(
(x − ej )/N

)− f (x/N)
]}

.

Note that L
j
Nf (x/N) is, in fact, a discrete version of the operator LWj

. The counting measure mN on Td
N is

reversible for this process. The following estimate is a key ingredient for proving the results in Section 5:

Lemma 4.1. Let f be a function on 1
N

Td
N . Then, for each j = 1, . . . , d :

1

Nd

∑
x∈Td

N

(
L

j
Nf (x/N)

)2 ≤ 1

Nd

∑
x∈Td

N

(
LNf (x/N)

)2
.
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Proof. Let XNd be the linear space of functions f on 1
Nd Td

N over the field R. Note that the dimension of XNd is Nd .
Denote by 〈·, ·〉Nd the following inner product in XNd :

〈f,g〉Nd = 1

Nd

∑
x∈Td

N

f (x/N)g(x/N).

For each j = 1, . . . , d , consider the linear operators Lj
N on XN (i.e., d = 1) given by

Lj
Nf = ∂N

x ∂N
Wj

f,

where ∂N
x and ∂N

Wj
are the difference operators:

∂N
x f (x/N) = N

[
f
(
(x + 1)/N

)− f (x/N)
]

and

∂N
Wj

f (x/N) = f ((x + 1)/N) − f (x/N)

Wj ((x + 1)/N) − Wj(x/N)
.

The operators Lj
N are symmetric and non-positive. In fact, a simple computation shows that

〈
Lj

Nf,g
〉
N

= −
∑

x∈TN

(
Wj

(
(x + 1)/N

)− Wj(x/N)
)
∂N
Wj

f (x/N)∂N
Wj

g(x/N).

Using the spectral theorem, we obtain an orthonormal basis Aj
N = {hj

1, . . . , h
j
N } of XN formed by the eigenvectors

of Lj
N , i.e.,

Lj
Nh

j
i = α

j
i h

j
i and

〈
h

j
i , h

j
k

〉
N

= δi,k,

where δi,k is the Kronecker’s delta, which equals 0 if i �= k, and equals 1 if i = k. Since Lj
N is non-positive, we have

that the eigenvalues α
j
i are non-positive: α

j
i ≤ 0, j = 1, . . . , d and i = 1, . . . ,N .

Let AN = {φ1, . . . , φNd } ⊂ XNd be set of functions of the form φi(x1, . . . , xd) =∏d
j=1 hj (xj ), with hj ∈ Aj

N .

Let αj be the eigenvalue of hj , i.e., Lj
Nhj = αjhj . The linear operator LN on XNd , defined in (4.1), is such

that L
j
Nφi = αjφi and LNφi =∑d

j=1 αjφi . Furthermore, if φi(x1, . . . , xd) = ∏d
j=1 hj (xj ) and φk(x1, . . . , xd) =∏d

j=1 gj (xj ), φi, φk ∈ AN , we have that

〈φi,φk〉Nd =
d∏

j=1

〈
hj , gj

〉
N

= δi,k

for i, k = 1, . . . ,Nd . So, the set AN is an orthonormal basis of XNd formed by the eigenvectors of LN and L
j
N . In

particular, for each f ∈ XNd , there exist βi ∈ R such that f =∑Nd

i=1 βiφi . Thus,

1

Nd

∑
x∈Td

N

(
L

j
Nf (x/N)

)2 = ∥∥Lj
Nf
∥∥2

Nd =
∥∥∥∥∥Lj

N

Nd∑
i=1

βiφi

∥∥∥∥∥
2

Nd

=
Nd∑
i=1

(
α

j
i βi

)2

≤
Nd∑
i=1

(
d∑

j=1

α
j
i

)2

(βi)
2 = ‖LNf ‖2

Nd = 1

Nd

∑
x∈Td

N

(
LNf (x/N)

)2
,

where α
j
i ≤ 0 is the eigenvalue of the operator L

j
N associated to the eigenvector φi . This concludes the proof of the

lemma. �
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4.2. Semigroups and resolvents

In this subsection we introduce families of semigroups and resolvents associated to the generators LN and LW . We
present some properties and results regarding the convergence of these operators.

Denote by {P N
t : t ≥ 0} (resp. {GN

λ : λ > 0}) the semigroup (resp. the resolvent) associated to the generator LN , by

{P N,j
t : t ≥ 0} the semigroup associated to the generator L

j
N , by {P j

t : t ≥ 0} the semigroup associated to the generator
LWj

and by {Pt : t ≥ 0} (resp. {Gλ: λ > 0}) the semigroup (resp. the resolvent) associated to the generator LW .
Since the jump rates from x/N (resp. (x + ej )/N ) to (x + ej )/N (resp. x/N ) are equal, P N

t is symmetric:
P N

t (x, y) = P N
t (y, x).

Using the decompositions (3.6) and (4.1), we obtain

P N
t (x, y) =

d∏
j=1

P
N,j
t (xj , yj ) and Pt (x, y) =

d∏
j=1

P
j
t (xj , yj ).

By definition, for every H :N−1Td
N → R,

GλH =
∫ ∞

0
dt e−λtPtH = (λI − LW)−1H,

where I is the identity operator.

Lemma 4.2. Let H : Td → R be a continuous function. Then

lim
N→+∞

1

Nd

∑
x∈Td

N

∣∣P N
t H(x/N) − PtH(x/N)

∣∣= 0. (4.2)

Proof. If H : Td → R has the form H(x1, . . . , xd) =∏d
j=1 Hj(xj ), we have

P N
t H(x) =

d∏
j=1

P
N,j
t Hj (xj ) and PtH(x) =

d∏
j=1

P
j
t Hj (xj ). (4.3)

Now, for any continuous function H : Td → R, and any ε > 0, we can find continuous functions Hj,k : T → R,
such that H ′ : Td → R, which is given by

H ′(x) =
m∑

j=1

d∏
k=1

Hj,k(xk),

satisfies ‖H ′ − H‖∞ ≤ ε. Thus,

1

Nd

∑
x∈Td

N

∣∣P N
t H(x/N) − PtH(x/N)

∣∣≤ 2ε + 1

Nd

∑
x∈Td

N

∣∣P N
t H ′(x/N) − PtH

′(x/N)
∣∣.

By (4.3) and similar identities for PtH
′ and P

N,j
t H ′, the sum on the right-hand side in the previous inequality is

less than or equal to

1

Nd

∑
x∈Td

N

m∑
j=1

∣∣∣∣∣
d∏

k=1

P
N,k
t Hj,k(xk/N) −

d∏
k=1

P k
t Hj,k(xk/N)

∣∣∣∣∣
≤ 1

Nd

∑
x∈Td

N

m∑
j=1

Cj

d∑
k=1

∣∣P N,k
t Hj,k(xk/N) − P k

t Hj,k(xk/N)
∣∣,
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where Cj is a constant that depends on the product
∏d

k=1 Hj,k . The previous expressions can be rewritten as

m∑
j=1

Cj

d∑
k=1

1

Nd

∑
x∈Td−1

N

N∑
i=1

∣∣P N,k
t Hj,k(i/N) − P k

t Hj,k(i/N)
∣∣

=
m∑

j=1

Cj

d∑
k=1

1

N

N∑
i=1

∣∣P N,k
t Hj,k(i/N) − P k

t Hj,k(i/N)
∣∣.

Moreover, by [3], Lemma 4.5, item iii, when N → ∞, the last expression converges to 0. �

Corollary 4.3. Let H : Td → R be a continuous function. Then

lim
N→+∞

1

Nd

∑
x∈Td

N

∣∣GN
λ H(x/N) − GλH(x/N)

∣∣= 0. (4.4)

Proof. By the definition of resolvent, for each N , the previous expression is less than or equal to∫ ∞

0
dt e−λt 1

Nd

∑
x∈Td

N

∣∣P N
t H(x/N) − PtH(x/N)

∣∣.
Corollary now follows from the previous lemma. �

Let fN : 1
N

Td
N → R be any function. Then, whenever needed, we consider f : Td → R as the extension of fN to

Td given by:

f (y) = fN(x), if x ∈ Td
N , y ≥ x and ‖y − x‖∞ <

1

N
.

Let H : Td → R be a continuous function. Then the extension of P N
t H : Td

N → R to Td belongs to L1(Td), and by
symmetry of the transition probability P N

t (x, y) we have∫
Td

duP N
t H(u) = 1

Nd

∑
x∈Td

H(x/N). (4.5)

The next lemma shows that H can be approximated by P N
t H . As an immediate consequence, we obtain an ap-

proximation result involving the resolvent.

Lemma 4.4. Let H : Td → R be a continuous function. Then,

lim
t→0

lim sup
N→+∞

1

Nd

∑
x∈Td

N

∣∣P N
t H(x/N) − H(x/N)

∣∣= 0 (4.6)

and

lim
λ→+∞ lim sup

N→+∞
1

Nd

∑
x∈Td

N

∣∣λGN
λ H(x/N) − H(x/N)

∣∣= 0. (4.7)

Proof. Fix ε > 0, and consider H ′ as in the proof of Lemma 4.2. Thus,

1

Nd

∑
x∈Td

N

∣∣P N
t H(x/N) − H(x/N)

∣∣≤ 2ε + 1

Nd

∑
x∈Td

N

∣∣P N
t H ′(x/N) − H ′(x/N)

∣∣,
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where the second term on the right-hand side is less than or equal to

C0 sup
j,k

1

Nd

∑
x∈Td

N

∣∣P N,k
t Hj,k(xk/N) − Hj,k(xk/N)

∣∣
with C0 being a constant that depends on H ′. By [3], Lemma 4.6, the last expression converges to 0, when N → ∞,
and then t → 0. This proves the first equality.

To obtain the second limit, note that, by definition of the resolvent, the second expression is less than or equal to∫ ∞

0
dt λe−λt 1

Nd

∑
x∈Td

N

∣∣P N
t H(x/N) − H(x/N)

∣∣.
By (4.5) the sum is uniformly bounded in t and N . Furthermore, it vanishes as N → ∞ and t → 0. This proves the

second part. �

Fix a function H : Td
N → R. For λ > 0, let HN

λ = GN
λ H be the solution of the resolvent equation

λHN
λ − LNHN

λ = H. (4.8)

Taking inner product on both sides of this equation with respect to HN
λ , we obtain

λ
1

Nd

∑
x∈Td

N

(
HN

λ (x/N)
)2 − 1

Nd

∑
x∈Td

N

HN
λ (x/N)LNHN

λ

= 1

Nd

∑
x∈Td

N

HN
λ (x/N)H(x/N).

A simple computation shows that the second term on the left-hand side is equal to

1

Nd

d∑
j=1

∑
x∈Td

N

ξx,x+ej

[∇N,jH
N
λ (x/N)

]2
,

where ∇N,jH(x/N) = N [H((x + ej )/N) − H(x/N)] is the discrete derivative of the function H in the direction of
the vector ej . In particular, by Schwarz inequality,

1

Nd

∑
x∈Td

N

HN
λ (x/N)2 ≤ 1

λ2

1

Nd

∑
x∈Td

N

H(x/N)2 and

(4.9)
1

Nd

d∑
j=1

∑
x∈Td

N

ξx,x+ej

[∇N,jH
N
λ (x/N)

]2 ≤ 1

λ

1

Nd

∑
x∈Td

N

H(x/N)2.

5. Scaling limit

Let M be the space of positive measures on Td with total mass bounded by one, and endowed with the weak topology.
Recall that πN

t ∈ M stands for the empirical measure at time t . This is the measure on Td obtained by rescaling space
by N , and by assigning mass 1/Nd to each particle:

πN
t = 1

Nd

∑
x∈Td

N

ηt (x)δx/N , (5.1)

where δu is the Dirac measure concentrated in u.
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For a continuous function H : Td → R, 〈πN
t ,H 〉 stands for the integral of H with respect to πN

t :

〈
πN

t ,H
〉= 1

Nd

∑
x∈Td

N

H(x/N)ηt (x).

This notation is not to be mistaken with the inner product in L2(Td) introduced earlier. Also, when πt has a density ρ,
π(t,du) = ρ(t, u)du, we sometimes write 〈ρt ,H 〉 for 〈πt ,H 〉.

For a local function g : {0,1}Zd → R, let g̃ : [0,1] → R be the expected value of g under the stationary states:

g̃(α) = Eνα

[
g(η)
]
.

For � ≥ 1 and d-dimensional integer x = (x1, . . . , xd), denote by η�(x) the empirical density of particles in the box
B�+(x) = {(y1, . . . , yd) ∈ Zd ; 0 ≤ yi − xi < �}:

η�(x) = 1

�d

∑
y∈B�+(x)

η(y).

Fix T > 0, and let D([0, T ], M) be the space of M-valued càdlàg trajectories π : [0, T ] → M endowed with
the uniform topology. For each probability measure μN on {0,1}Td

N , denote by QW,N
μN

the measure on the path space
D([0, T ], M) induced by the measure μN and the process πN

t introduced in (5.1).

Fix a continuous profile ρ0 : Td → [0,1], and consider a sequence {μN : N ≥ 1} of measures on {0,1}Td
N associated

to ρ0 in the sense (2.8). Further, we denote by QW be the probability measure on D([0, T ], M) concentrated on the
deterministic path π(t,du) = ρ(t, u)du, where ρ is the unique weak solution of (2.9) with γ = ρ0, lk = 0, rk = 1,
k = 1, . . . , d , and Φ(α) = α + aα2.

In Section 5.1 we show that the sequence {QW,N
μN

: N ≥ 1} is tight, and in Section 5.2 we characterize the limit
points of this sequence.

5.1. Tightness

The proof of tightness of sequence {QW,N
μN

: N ≥ 1} is motivated by [6,7]. We consider, initially, the auxiliary M-

valued Markov process {Πλ,N
t : t ≥ 0}, λ > 0, defined by

Π
λ,N
t (H) = 〈πN

t ,GN
λ H
〉= 1

Nd

∑
x∈Zd

(
GN

λ H
)
(x/N)ηt (x)

for H in C(Td), where {GN
λ : λ > 0} is the resolvent associated to the random walk {XN

t : t ≥ 0} introduced in
Section 4.

We first prove tightness of the process {Πλ,N
t : 0 ≤ t ≤ T } for every λ > 0, and we then show that {λΠ

λ,N
t : 0 ≤

t ≤ T } and {πN
t : 0 ≤ t ≤ T } are not far apart if λ is large.

It is well-known [8], Proposition 4.1.7, that to prove tightness of {Πλ,N
t : 0 ≤ t ≤ T } it is enough to show tightness

of the real-valued processes {Πλ,N
t (H): 0 ≤ t ≤ T } for a set of smooth functions H : Td → R dense in C(Td) for the

uniform topology.
Fix a smooth function H : Td → R. Denote by the same symbol the restriction of H to N−1Td

N . Let HN
λ = GN

λ H ,

and keep in mind that Π
λ,N
t (H) = 〈πN

t ,HN
λ 〉. Denote by M

N,λ
t the martingale defined by

M
N,λ
t = Π

λ,N
t (H) − Π

λ,N
0 (H) −

∫ t

0
ds N2LN

〈
πN

s ,HN
λ

〉
. (5.2)

Clearly, tightness of Π
λ,N
t (H) follows from tightness of the martingale M

N,λ
t and tightness of the additive functional∫ t

0 ds N2LN 〈πN
s ,HN

λ 〉.
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A simple computation shows that the quadratic variation 〈MN,λ〉t of the martingale M
N,λ
t is given by:

1

N2d

d∑
j=1

∑
x∈Td

ξx,x+ej

[∇N,jH
N
λ (x/N)

]2 ∫ t

0
cx,x+ej

(ηs)
[
ηs(x + ej ) − ηs(x)

]2 ds.

In particular, by (4.9),

〈
MN,λ

〉
t
≤ C0t

N2d

d∑
j=1

∑
x∈Td

N

ξx,x+ej

[(∇N,jH
N
λ

)
(x/N)

]2 ≤ C(H)t

λNd

for some finite constant C(H) which depends only on H . Thus, by Doob inequality, for every λ > 0, δ > 0,

lim
N→∞ PμN

[
sup

0≤t≤T

∣∣MN,λ
t

∣∣> δ
]

= 0. (5.3)

In particular, the sequence of martingales {MN,λ
t : N ≥ 1} is tight for the uniform topology.

It remains to be examined the additive functional of the decomposition (5.2). The generator of the exclusion pro-
cess LN can be decomposed in terms of generators of the random walks L

j
N . By (4.1) and a long but simple compu-

tation, we obtain that N2LN 〈πN,HN
λ 〉 is equal to

d∑
j=1

{
1

Nd

∑
x∈Td

N

(
L

j
NHN

λ

)
(x/N)η(x)

+ a

Nd

∑
x∈Td

N

[(
L

j
NHN

λ

)(
(x + ej )/N

)+ (Lj
NHN

λ

)
(x/N)

]
(τxh1,j )(η)

− a

Nd

∑
x∈Td

N

(
L

j
NHN

λ

)
(x/N)(τxh2,j )(η)

}
,

where {τx : x ∈ Zd} is the group of translations, so that (τxη)(y) = η(x + y) for x, y in Zd , and the sum is understood
modulo N . Also, h1,j , h2,j are the cylinder functions

h1,j (η) = η(0)η(ej ), h2,j (η) = η(−ej )η(ej ).

For all 0 ≤ s < t ≤ T , we have

∣∣∣∣
∫ t

s

dr N2LN

〈
πN

r ,HN
λ

〉∣∣∣∣≤ (1 + 3|a|)(t − s)

Nd

d∑
j=1

∑
x∈Td

N

∣∣Lj
NHN

λ (x/N)
∣∣,

from Schwarz inequality and Lemma 4.1, the right-hand side of the previous expression is bounded above by

(
1 + 3|a|)(t − s)d

√√√√ 1

Nd

∑
x∈Td

N

(
LNHN

λ (x/N)
)2

.

Since HN
λ is the solution of the resolvent equation (4.8), we may replace LNHN

λ by UN
λ = λHN

λ − H in the
previous formula. In particular, It follows from the first estimate in (4.9), that the right-hand side of the previous
expression is bounded above by dC(H,a)(t − s) uniformly in N , where C(H,a) is a finite constant depending only
on a and H . This proves that the additive part of the decomposition (5.2) is tight for the uniform topology and therefore
that the sequence of processes {Πλ,N

t : N ≥ 1} is tight.
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Lemma 5.1. The sequence of measures {QW,N

μN : N ≥ 1} is tight for the uniform topology.

Proof. It is enough to show that for every smooth function H : T → R, and every ε > 0, there exists λ > 0 such that

lim
N→∞ PμN

[
sup

0≤t≤T

∣∣Πλ,N
t (λH) − 〈πN

t ,H
〉∣∣> ε

]
= 0,

since, in this case, tightness of πN
t follows from tightness of Π

λ,N
t . Since there is at most one particle per site, the

expression inside the absolute value is less than or equal to

1

Nd

∑
x∈Td

N

∣∣λHN
λ (x/N) − H(x/N)

∣∣.
By Lemma 4.4, this expression vanishes as N ↑ ∞ and then λ ↑ ∞. �

5.2. Uniqueness of limit points

We prove in this subsection that all limit points Q∗ of the sequence QW,N
μN

are concentrated on absolutely continuous
trajectories π(t,du) = ρ(t, u)du, whose density ρ(t, u) is a weak solution of the hydrodynamic equation (2.9) with
l = 0 < r = 1 and Φ(α) = α + aα2.

Let Q∗ be a limit point of the sequence QW,N
μN

and assume, without loss of generality, that QW,N
μN

converges to Q∗.
Since there is at most one particle per site, it is clear that Q∗ is concentrated on trajectories πt (du) which are

absolutely continuous with respect to the Lebesgue measure, πt (du) = ρ(t, u)du, and whose density ρ is non-negative
and bounded by 1.

Fix a continuously differentiable function H : Td → R, and λ > 0. Recall the definition of the martingale M
N,λ
t

introduced in the previous section. By (5.2) and (5.3), for fixed 0 < t ≤ T and δ > 0,

lim
N→∞ QW,N

μN

[∣∣∣∣〈πN
t ,GN

λ H
〉− 〈πN

0 ,GN
λ H
〉− ∫ t

0
ds N2LN

〈
πN

s ,GN
λ H
〉∣∣∣∣> δ

]
= 0.

Since there is at most one particle per site, we may use Corollary 4.3 to replace GN
λ H by GλH in the expressions

〈πN
t ,GN

λ H 〉, 〈πN
0 ,GN

λ H 〉 above. On the other hand, the expression N2LN 〈πN
s ,GN

λ H 〉 has been computed in the
previous subsection. Since Eνα [hi,j ] = α2, i = 1, 2 and j = 1, . . . , d , Lemma 4.1 and the estimate (4.9), permit us use
Corollary 5.4 to obtain, for every t > 0, λ > 0, δ > 0, i = 1, 2,

lim
ε→0

lim sup
N→∞

PμN

[∣∣∣∣
∫ t

0
ds

1

Nd

∑
x∈Td

N

L
j
NHN

λ (x/N)
{
τxhi,j (ηs) − [ηεN

s (x)
]2}∣∣∣∣> δ

]
= 0.

Recall that LNGN
λ H = λGN

λ H − H . As before, we may replace GN
λ H by GλH . Let Uλ = λGλH − H . Since

ηεN
s (x) = ε−dπN

s (
∏d

j=1[xj /N,xj /N + εej ]), we obtain, from the previous considerations, that

lim
ε→0

lim sup
N→∞

QW,N
μN

[∣∣∣∣∣〈πN
t ,GλH

〉− 〈πN
0 ,GλH

〉− ∫ t

0
ds

〈
Φ

(
ε−dπN

s

(
d∏

j=1

[·, · + εej ]
))

,Uλ

〉∣∣∣∣∣> δ

]
= 0.

Since H is a smooth function, GλH and Uλ can be approximated, in L1(Td), by continuous functions. Since we
assumed that QW,N

μN
converges in the uniform topology to Q∗, we have that

lim
ε→0

Q∗
[∣∣∣∣∣〈πt ,GλH 〉 − 〈π0,GλH 〉 −

∫ t

0
ds

〈
Φ

(
ε−dπs

(
d∏

j=1

[·, · + εej ]
))

,Uλ

〉∣∣∣∣∣> δ

]
= 0.
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Using the fact that Q∗ is concentrated on absolutely continuous paths πt (du) = ρ(t, u)du, with positive density
bounded by 1, ε−dπs(

∏d
j=1[·, · + εej ]) converges in L1(Td) to ρ(s, ·) as ε ↓ 0. Thus,

Q∗
[∣∣∣∣〈πt ,GλH 〉 − 〈π0,GλH 〉 −

∫ t

0
ds
〈
Φ(ρs), LWGλH

〉∣∣∣∣> δ

]
= 0,

because Uλ = LWGλH . Letting δ ↓ 0, we see that, Q∗ a.s.,

〈πt ,GλH 〉 − 〈π0,GλH 〉 =
∫ t

0
ds
〈
Φ(ρs), LWGλH

〉
.

This identity can be extended to a countable set of times t . Taking this set to be dense, by continuity of the trajec-
tories πt , we obtain that it holds for all 0 ≤ t ≤ T . In the same way, it holds for any countable family of continuous
functions H . Taking a countable set of continuous functions, dense for the uniform topology, we extend this identity
to all continuous functions H , because GλHn converges to GλH in L1(Td), if Hn converges to H in the uniform
topology. Similarly, we can show that it holds for all λ > 0, since, for any continuous function H , GλnH converges to
GλH in L1(Td), as λn → λ.

Proposition 5.2. As N ↑ ∞, the sequence of probability measures QW,N
μN

converges in the uniform topology to QW .

Proof. In the previous subsection we showed that the sequence of probability measures QW,N
μN

is tight for the uniform
topology. Moreover, we just proved that all limit points of this sequence are concentrated on weak solutions of the
parabolic equation (2.9). The proposition now follows from a straightforward adaptation of the uniquenesses of weak
solutions proved in [6] for the d-dimensional case. �

Proof of Theorem 2.2. Since QW,N
μN

converges in the uniform topology to QW , a measure which is concentrated
on a deterministic path. For each 0 ≤ t ≤ T and each continuous function H : Td → R, 〈πN

t ,H 〉 converges in
probability to

∫
T

duρ(t, u)H(u), where ρ is the unique weak solution of (2.9) with γ = ρ0 and Φ(α) = α + aα2.
�

5.3. Replacement lemma

We will use some results from [8], Appendix A1. Denote by HN(μN |να) the relative entropy of a probability mea-
sure μN with respect to a stationary state να , see [8], Section A1.8, for a precise definition. By the explicit formula
given in [8], Theorem A1.8.3, we see that there exists a finite constant K0, depending only on α, such that

HN(μN |να) ≤ K0N
d (5.4)

for all measures μN .
Denote by 〈·, ·〉να the inner product of L2(να) and denote by I

ξ
N the convex and lower semicontinuous [8], Corol-

lary A1.10.3, functional defined by

I
ξ
N(f ) = 〈−LN

√
f ,
√

f
〉
να

for all probability densities f with respect to να (i.e., f ≥ 0 and
∫

f dνα = 1). By [8], Proposition A1.10.1, an
elementary computation shows that

I
ξ
N(f ) =

d∑
j=1

∑
x∈Td

N

I
ξ
x,x+ej

(f ),

where

I
ξ
x,x+ej

(f ) = (1/2)ξx,x+ej

∫
cx,x+ej

(η)
{√

f
(
σx,x+ej η

)−√f (η)
}2 dνα.
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By [8], Theorem A1.9.2, if {SN
t : t ≥ 0} stands for the semigroup associated to the generator N2LN ,

HN

(
μNSN

t |να

)+ 2N2
∫ t

0
I

ξ
N

(
f N

s

)
ds ≤ HN(μN |να),

where f N
s stands for the Radon–Nikodym derivative of μNSN

s with respect to να .
Recall the definition of B�+(x) in begin of this section. For each y ∈ B�+(x), such that y1 > x1, let

Λ�
x+e1,y

= (zy
k

)
0≤k≤M(y)

(5.5)

be a path from x + e1 to y such that:

(1) Λ�
x+e1,y

begins at x + e1 and ends at y, i.e.:

z
y

0 = x + e1 and z
y

M(y)
= y;

(2) the distance between two consecutive sites of the Λ�
x+e1,y

= (z
y
k )0≤k≤M(y) is equal to 1, i.e.:

z
y

k+1 = z
y
k + ej for some j = 1, . . . , d and for all k = 0, . . . ,M(y) − 1;

(3) Λ�
x+e1,y

is injective:

z
y
i �= z

y
j for all 0 ≤ i < j ≤ M(y);

(4) the path begins by jumping in the direction of e1. Furthermore, the jump in the direction of ej+1 is only allowed
when it is not possible to jump in the direction of ej , for j = 1, . . . , d − 1.

Lemma 5.3. Fix a function F :N−1Td
N → R. There exists a finite constant C0 = C0(a, g,W), depending only on a,

g and W , such that

1

Nd

∑
x∈Td

N

F (x/N)

∫ {
τxg(η) − g̃

(
ηεN(x)

)}
f (η)να(dη)

≤ C0

εNd+1

∑
x∈Td

N

∣∣F(x/N)
∣∣+ C0ε

δNd

∑
x∈Td

N

F (x/N)2 + δ

Nd−2
I

ξ
N(f )

for all δ > 0, ε > 0 and all probability densities f with respect to να .

Proof. Any local function can be written as a linear combination of functions in the form
∏

x∈A η(x), where A is
a finite set. It is therefore enough to prove the lemma for such functions. We will only prove the result for g(η) =
η(0)η(e1). The general case can be handled in a similar way.

We begin by estimating

1

Nd

∑
x∈Td

N

F (x/N)

∫
η(x)

{
η(x + e1) − 1

(εN)d

∑
y∈BNε+ (x)

η(y)

}
f (η)να(dη) (5.6)

in terms of the functional I
ξ
N(f ). The integral in (5.6) can be rewritten as:

1

(Nε)d

∑
y∈BNε+ (x)

∫
η(x)
[
η(x + e1) − η(y)

]
f (η)να(dη).
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For each y ∈ BNε+ (x), such that y1 > x1, let Λ�
x+e1,y

= (z
y
k )0≤k≤M(y) be a path like the one in (5.5). Then, by

property (1) of Λ�
x+e1,y

and using telescopic sum we have the following:

η(x + e1) − η(y) =
M(y)−1∑

k=0

[
η
(
z
y
k

)− η
(
z
y

k+1

)]
.

We can, therefore, bound (5.6) above by

1

Nd

1

(Nε)d

∑
x∈Td

N

∑
y∈BNε+ (x)

M(y)−1∑
k=0

∫
F(x/N)η(x)

[
η
(
z
y
k

)− η
(
z
y

k+1

)]
f (η)να(dη) + 1

εNd+1

∑
x∈Td

N

∣∣F(x/N)
∣∣,

where the last term in the previous expression comes from the contribution of the points y ∈ BNε+ (x), such that y1 = x1.
Recall that, by property (2) of Λ�

x+e1,y
, we have that z

y

k+1 = z
y
k + ej , for some j = 1, . . . , d .

For each term of the form∫
F(x/N)η(x)

{
η(z) − η(z + ej )

}
f (η)να(dη)

we can use the change of variables η′ = σ z,z+ej η to write the previous integral as

(1/2)

∫
F(x/N)η(x)

{
η(z) − η(z + ej )

}{
f (η) − f

(
σ z,z+ej η

)}
να(dη).

Since a − b = (
√

a − √
b)(

√
a + √

b) and
√

ab ≤ a + b, by Schwarz inequality the previous expression is less than
or equal to

A

4(1 − 2a−)ξz,z+ej

∫
F(x/N)2η(x)

{
η(z) − η(z + ej )

}2{√
f (η) +

√
f
(
σ z,z+ej η

)}2
να(dη)

+ ξz,z+ej

A

∫
cz,z+ej

(η)
{√

f (η) −
√

f
(
σ z,z+ej η

)}2
να(dη)

for every A > 0. In this formula we used the fact that cz,z+ej
(η) is bounded below by 1 − 2a−, where a− =

max{−a,0}. Since f is a density with respect to να , the first expression is bounded above by A/(1 − 2a−)ξz,z+ej
,

whereas the second one is equal to 2A−1I
ξ
z,z+ej

(f ).

So, using all the previous calculations together with properties (3) and (4) of the path Λ�
x+e1,y

, we obtain that (5.6)
is less than or equal to

1

εNd+1

∑
x∈Td

N

∣∣F(x/N)
∣∣+ A

(1 − 2a−)Nd

∑
x∈Td

N

F (x/N)2
d∑

j=1

εN∑
k=1

ξ−1
x+(k−1)ej ,x+kej

2ε

ANd−1

d∑
j=1

∑
x∈Td

N

I
ξ
x,x+ej

(f ).

By definition of the sequence {ξx,x+ej
}, ∑εN

k=1 ξ−1
x+kej ,ej

≤ N [Wj(1) − Wj(0)]. Thus, choosing A = 2εN−1δ−1, for

some δ > 0, we obtain that the previous sum is bounded above by

C0

εNd+1

∑
x∈Td

N

∣∣F(x/N)
∣∣+ C0ε

δNd

∑
x∈Td

N

F (x/N)2 + δ

Nd−2
I

ξ
N(f ).

Up to this point we have succeeded to replace η(x)η(x +e1) by η(x)ηεN(x). The same arguments permit to replace
this latter expression by [ηεN(x)]2, which concludes the proof of the lemma. �
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Corollary 5.4. Fix a cylinder function g, and a sequence of functions {FN : N ≥ 1}, FN :N−1Td
N → R such that

lim sup
N→∞

1

Nd

∑
x∈Td

N

FN(x/N)2 < ∞.

Then, for any t > 0 and any sequence of probability measures {μN : N ≥ 1} on {0,1}Td
N ,

lim sup
ε→0

lim sup
N→∞

EμN

[∣∣∣∣
∫ t

0

1

Nd

∑
x∈Td

N

FN(x/N)
{
τxg(ηs) − g̃

(
ηεN

s (x)
)}

ds

∣∣∣∣
]

= 0.

Proof. Fix 0 < α < 1. By the entropy and Jensen inequalities, the expectation appearing in the statement of the
Lemma is bounded above by

1

γNd
logEνα

[
exp

{
γ

∣∣∣∣
∫ t

0
ds
∑

x∈Td
N

FN(x/N)
{
τxg(ηs) − g̃

(
ηεN

s (x)
)}∣∣∣∣
}]

+ HN(μN |να)

γNd

for all γ > 0. In view of (5.4), in order to prove the corollary it is enough to show that the first term vanishes as N ↑
∞, and then ε ↓ 0, for every γ > 0. We may remove the absolute value inside the exponential by using the
elementary inequalities e|x| ≤ ex + e−x and lim supN→∞ N−1 log{aN + bN } ≤ max{lim supN→∞ N−1 logaN,

lim supN→∞ N−1 logbN }. Thus, to prove the corollary, it is enough to show that

lim sup
ε→0

lim sup
N→∞

1

Nd
log Eνα

[
exp

{
γ

∫ t

0
ds
∑

x∈Td
N

FN(x/N)
{
τxg(ηs) − g̃

(
ηεN

s (x)
)}}]= 0

for every γ > 0.
By Feynman–Kac formula, for each fixed N the previous expression is bounded above by

tγ sup
f

{∫
1

Nd

∑
x∈Td

N

FN(x/N)
{
τxg(η) − g̃

(
ηεN(x)

)}
f (η)dνα − 1

Nd−2
I

ξ
N(f )

}
,

where the supremum is carried over all density functions f with respect to να . Letting δ = 1 in Lemma 5.3, we obtain
that the previous expression is less than or equal to

C0γ t

εNd+1

∑
x∈Td

N

∣∣FN(x/N)
∣∣+ C0γ εt

Nd

∑
x∈Td

N

FN(x/N)2

for some finite constant C0 which depends on a, g and W . By assumption on the sequence {FN }, for every γ > 0, this
expression vanishes as N ↑ ∞ and then ε ↓ 0. This concludes the proof of the lemma. �

6. Energy estimate

We prove in this section that any limit point Q∗
W of the sequence QW,N

μN
is concentrated on trajectories ρ(t, u)du

having finite energy. A more comprehensive treatment of energies can be found in [10].
Denote by ∂xj

the partial derivative of a function with respect to the j th coordinate, and by C0,1j ([0, T ] × Td) the
set of continuous functions with continuous partial derivative in the j th coordinate. Let L2

xj ⊗Wj
([0, T ] × Td) be the

Hilbert space of measurable functions H : [0, T ] × Td → R such that

∫ T

0
ds

∫
Td

d(xj ⊗ Wj)H(s,u)2 < ∞,
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where d(xj ⊗ Wj) represents the product measure in Td obtained from Lesbegue’s measure in Td−1 and the measure
induced by Wj :

d(xj ⊗ Wj) = dx1 · · · dxj−1 dWj dxj+1 . . . dxd,

endowed with the inner product 〈〈H,G〉〉xj ⊗Wj
defined by

〈〈H,G〉〉xj ⊗Wj
=
∫ T

0
ds

∫
Td

d(xj ⊗ Wj)H(s,u)G(s,u).

Let Q∗
W be a limit point of the sequence QW,N

μN
, and assume, without loss of generality, that the sequence QW,N

μN

converges to Q∗
W .

Proposition 6.1. The measure Q∗
W is concentrated on paths ρ(t, x)dx with the property that for all j = 1, . . . , d

there exists a function in L2
xj ⊗Wj

([0, T ] × Td), denoted by dΦ/dWj , such that

∫ T

0
ds

∫
Td

dx (∂xj
H)(s, x)Φ

(
ρ(s, x)

)= −
∫ T

0
ds

∫
T

d
(
xj ⊗ Wj(x)

)
(dΦ/dWj)(s, x)H(s, x)

for all functions H in C0,1j ([0, T ] × Td).

The previous proposition follows from the next lemma. Recall the definition of the constant K0 given in (5.4).

Lemma 6.2. There exists a finite constant K1, depending only on a, such that

EQ∗
W

[
sup
H

{∫ T

0
ds

∫
Td

dx (∂xj
H)(s, x)Φ

(
ρ(s, x)

)− K1

∫ T

0
ds

∫
Td

H(s, x)2 d
(
xj ⊗ Wj(x)

)}]≤ K0,

where the supremum is carried over all functions H ∈ C0,1j ([0, T ] × Td).

Proof of Proposition 6.1. Denote by � :C0,1j ([0, T ] × Td) → R the linear functional defined by

�(H) =
∫ T

0
ds

∫
Td

dx (∂xj
H)(s, x)Φ

(
ρ(s, x)

)
.

Since C0,1([0, T ] × Td) is dense in L2
xj ⊗Wj

([0, T ] × Td), by Lemma 6.2, � is Q∗
W -almost surely finite in

L2
xj ⊗Wj

([0, T ]×Td). In particular, by Riesz representation theorem, there exists a function G in L2
xj ⊗Wj

([0, T ]×Td)

such that

�(H) = −
∫ T

0
ds

∫
Td

d
(
xj ⊗ Wj(x)

)
H(s, x)G(s, x).

This concludes the proof of the proposition. �

For a smooth function H : Td → R, δ > 0, ε > 0 and a positive integer N , define W
j
N(ε, δ,H,η) by

W
j
N(ε, δ,H,η) =

∑
x∈Td

N

H(x/N)
1

εN

{
Φ
(
ηδN(x)

)− Φ
(
ηδN(x + εNej )

)}

− K1

εN

∑
x∈Td

N

H(x/N)2{Wj

([xj + εN + 1]/N)− Wj(xj /N)
}
.

The proof of Lemma 6.2 relies on the following result:
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Lemma 6.3. Consider a sequence {H�, � ≥ 1} dense in C0,1([0, T ] × Td). For every k ≥ 1, and every ε > 0,

lim sup
δ→0

lim sup
N→∞

EμN

[
max

1≤i≤k

{∫ T

0
W

j
N

(
ε, δ,Hi(s, ·), ηs

)
ds

}]
≤ K0.

Proof. It follows from the replacement lemma that in order to prove the lemma we just need to show that

lim sup
N→∞

EμN

[
max

1≤i≤k

{∫ T

0
W

j
N

(
ε,Hi(s, ·), ηs

)
ds

}]
≤ K0,

where

W
j
N(ε,H,η) = 1

εN

∑
x∈Td

N

H(x/N)
{
τxg(η) − τx+εNej

g(η)
}

− K1

εN

∑
x∈Td

N

H(x/N)2{Wj

([xj + εN + 1]/N)− Wj(xj /N)
}
,

and g(η) = η(0) + aη(0)η(ej ).
By the entropy and Jensen’s inequalities, for each fixed N , the previous expectation is bounded above by

H(μN |να)

Nd
+ 1

Nd
logEνα

[
exp

{
max

1≤i≤k

{
Nd

∫ T

0
ds W

j
N

(
ε,Hi(s, ·), ηs

)}}]
.

By (5.4), the first term is bounded by K0. Since exp{max1≤j≤k aj } is bounded above by
∑

1≤j≤k exp{aj }, and since

lim supN N−d log{aN + bN } is less than or equal to the maximum of lim supN N−d logaN and lim supN N−d logbN ,
the limit, as N ↑ ∞, of the second term in the previous expression is less than or equal to

max
1≤i≤k

lim sup
N→∞

1

Nd
logEνα

[
exp

{
Nd

∫ T

0
ds W

j
N

(
ε,Hi(s, ·), ηs

)}]
.

We now prove that, for each fixed i, the above limit is non-positive for a convenient choice of the constant K1.
Fix 1 ≤ i ≤ k. By Feynman–Kac formula and the variational formula for the largest eigenvalue of a symmetric

operator, the previous expression is bounded above by∫ T

0
ds sup

f

{∫
W

j
N

(
ε,Hi(s, ·), η

)
f (η)να(dη) − 1

Nd−2
I

ξ
N(f )

}

for each fixed N . In this formula the supremum is taken over all probability densities f with respect to να .
To conclude the proof, rewrite

η(x)η(x + ej ) − η(x + εNej )η
(
x + (εN + 1)ej

)
as

η(x)
{
η(x + ej ) − η

(
x + (εN + 1)ej

)}+ η
(
x + (εN + 1)ej

){
η(x) − η(x + εNej )

}
,

and repeat the arguments presented in the proof of Lemma 5.3. �

Proof of Lemma 6.2. Assume without loss of generality that QW,N
μN

converges to Q∗
W . Consider a sequence {H�, � ≥

1} dense in C0,1j ([0, T ] × Td). By Lemma 6.3, for every k ≥ 1

lim sup
δ→0

EQ∗
W

[
max

1≤i≤k

{
1

ε

∫ T

0
ds

∫
Td

dx Hi(s, x)
{
Φ
(
ρδ

s (x)
)− Φ

(
ρδ

s (x + εej )
)}

− K1

ε

∫ T

0
ds

∫
Td

dx Hi(s, x)2[Wj(xj + ε) − Wj(xj )
]}]≤ K0,
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where ρδ
s (x) = (ρs ∗ ιδ)(x) and ιδ is the approximation of the identity ιδ(·) = (δ)−d1{[0, δ]d}(·).

Letting δ ↓ 0, changing variables, and then letting ε ↓ 0, we obtain that

EQ∗
W

[
max

1≤i≤k

{∫ T

0
ds

∫
Td

(∂xj
Hi)(s, x)Φ

(
ρ(s, x)

)
dx − K1

∫ T

0
ds

∫
Td

Hi(s, x)2 d
(
xj ⊗ Wj(x)

)}]≤ K0.

To conclude the proof, we apply the monotone convergence theorem, and recall that {H�, � ≥ 1} is a dense sequence
in C0,1j ([0, T ] × Td) for the norm ‖H‖∞ + ‖(∂xj

H)‖∞. �
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