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Abstract. We consider n×n random k-circulant matrices with n → ∞ and k = k(n) whose input sequence {al}l≥0 is independent
and identically distributed (i.i.d.) random variables with finite (2 + δ) moment. We study the asymptotic distribution of the spectral
radius, when n = kg + 1. For this, we first derive the tail behaviour of the g fold product of i.i.d. exponential random variables.
Then using this tail behaviour result and appropriate normal approximation techniques, we show that with appropriate scaling
and centering, the asymptotic distribution of the spectral radius is Gumbel. We also identify the centering and scaling constants
explicitly.

Résumé. Nous considérons des matrices aléatoires k-circulantes de taille n × n avec n → ∞ et k = k(n), dont les entrées {al}l≥0
sont des variables aléatoires, de moment (2 + δ) fini, indépendantes et identiquement distribuées. Nous étudions la distribution
asymptotique du rayon spectral, lorsque n = kg + 1. Pour établir cette distribution asymptotique, nous calculons d’abord le com-
portement de la queue du produit de g variables aléatoires exponentielles i.i.d. Ensuite, en utilisant un résultat sur le comportement
des queues et les techniques appropriées d’approximation normale, nous montrons que, après renormalisation et recentrage, la dis-
tribution limite est une distribution de Gumbel. Nous identifions explicitement les constantes de recentrage et de remise à l’échelle.
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1. Introduction

Random matrices are matrices whose elements are random variables. In random matrix theory, one of the most im-
portant areas of research is the behaviour of the eigenvalues. In particular the spectral radius and spectral norm have
been important objects of study.

The spectral radius sp(A) of any matrix A is defined as

sp(A) := max
{|μ|: μ is an eigenvalue of A

}
,

where |z| denotes the modulus of z ∈ C.
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The spectral norm ‖A‖ of any matrix A with complex entries is the square root of the largest eigenvalue of the
positive semidefinite matrix A∗A:

‖A‖ =
√

λmax
(
A∗A

)
,

where A∗ denotes the conjugate transpose of A. Therefore if A is an n × n normal matrix (e.g. if A is symmetric),
with eigenvalues λ1, λ2, . . . , λn, then

‖A‖ = sp(A) = max
1≤i≤n

|λi |.

Here is a brief description of the existing results on these and related quantities for random matrices. Geman [20]
considered an n×n random matrix Mn = ((mij )) where {mij } are i.i.d. random variables with mean zero and showed
that lim supn

1√
n

sp(Mn) is bounded almost surely under suitable assumptions. Later the same conclusion was obtained
by Bai and Yin [4] under weaker assumptions. Silverstein [31] considered the case where the mean is nonzero and the
fourth moment is finite, and showed that the spectral radius converges almost surely and also converges weakly to a
normal distribution after proper scaling and centering.

Kostlan [22] gave a simple characterization of the moduli of the eigenvalues of Mn with complex Gaussian entries:
the squared moduli of its eigenvalues are distributed as independent χ2

2i , 1 ≤ i ≤ n. Rider [27], using joint probability
distribution of eigenvalues, showed that the spectral radius of Mn when the entries are i.i.d. complex Gausian with
mean zero and variance 1/n, converges to a Gumbel distribution with appropriate scaling and centering.

For work on spectral norm of (symmetric) Toeplitz matrices, see Bose and Sen [11], Meckes [25] and Adamczak
[1]. Bryc, Dembo and Jiang [12] studied the almost sure convergence rate of spectral norm of Markov matrices.

Another related aspect to study is the behaviour of maximum and minimum eigenvalues. The literature in this area
is extensive. Geman [19] proved that the largest eigenvalue of a sample covariance matrix converges almost surely
under growth conditions on the moments of the underlying distribution. Yin, Bai and Krishnaiah [41] proved the
same result under the finiteness of the fourth moment, and Bai, Silverstein and Yin [3] proved that the finitness of
the fourth moment is also necessary for the existence of the limit. Bai and Yin [5] found necessary and sufficient
conditions for almost sure convergence of the largest eigenvalue of the Wigner matrix. Yin, Bai and Krishnaiah [40],
Silverstein [29] and Bai and Yin [6] considered the almost sure limit of the smallest eigenvalue of a sample covariance
matrix. Silverstein [30] found a necessary and sufficient condition for weak convergence of the largest eigenvalue of a
sample covariance matrix to a nonrandom limit. The distributional convergence of the largest eigenvalue of Gaussian
orthogonal, unitary and symplectic ensembles were studied by Tracy and Widom in a series of articles. See Tracy and
Widom [37] for a brief survey of such results.

There are a few results in the literature for limiting behaviour of maximum eigenvalues of matrices with heavy
tailed entries. See Soshnikov [32,33]; Auffinger, Ben Arous and Peche [2]. For results on spectral norm of circulant
matrices and Toeplitz matrices with heavy tailed entries, see Bose, Hazra and Saha [8].

In general the eigenvalues of a random matrix are dependent and hence the behaviour of the spectral norm or the
maximum eigenvalue is not apriori comparable to the behaviour of the maximum of i.i.d. random variables. However,
for one class of patterned matrices the classical theory of extreme values of i.i.d. random variables can be applied after
approximating the eigenvalues with i.i.d. random variables or their suitable functions. This is the class of k-circulant
matrices for suitable values of k. In this article we study the limiting behaviour of spectral radius of a specific type of
k-circulant matrices.

Suppose a = {al}l≥0 is a sequence of real numbers or random variables. For positive integers k and n, the k-
circulant matrix with input sequence {al} is defined as

Ak,n(a) =

⎡⎢⎢⎣
a0 a1 · · · an−1

an−k an−k+1 · · · an−k−1
an−2k an−2k+1 · · · an−2k−1

...

⎤⎥⎥⎦
n×n

.

We write Ak,n(a) = Ak,n. The subscripts appearing in the matrix entries above are calculated modulo n. The (j +1)th
row of Ak,n is a right-circular shift of the j th row by k positions (equivalently, k mod n positions). The value of k



426 A. Bose, R. S. Hazra and K. Saha

may change with the increasing dimension of the matrix. Note that A1,n is the well-known circulant matrix (Cn) and
An−1,n is the reverse circulant matrix (RCn). Without loss of generality, k may always be reduced modulo n.

These matrices and their block versions arise in many different areas of Mathematics and Statistics such as, multi-
level supersaturated design of experiment (Georgiou and Koukouvinos [21], Chen and Liu [14]), spectra of De Bruijn
graphs (Strok [35]) and, (0,1)-matrix solutions to Am = Jn (Wu, Jia and Li [39]).

The initial advantage in dealing with this matrix is that a formula solution is known for its eigenvalues (see Zhou
[42]). However, this formula depends heavily on the number theoretic relation between k and n. This makes it hard to
study any type of spectral properties for arbitrary choice of these values.

The spectral norm and spectral radius of reverse circulant random matrices were considered in Bose, Hazra and
Saha [7] and results on symmetric circulant (the usual circulant with symmetry imposed) matrices are available in
Bose, Hazra and Saha [7] and Bryc and Sethuraman [13]. Bose, Mitra and Sen [9] considered the k-circulants with
n = k2 + 1 with i.i.d. entries having mean zero variance one and E[|a1|2+δ] < ∞ for some δ > 0 and showed that the
spectral radius, appropriately scaled and centered, converges to the (standard) Gumbel distribution

Λ(x) = exp
{− exp(−x)

}
, x ∈ R.

When the entries are i.i.d. Gaussian, this result is relatively easy to establish using some properties of the eigenvalues
and the tail behaviour of H2(x) = P(E1E2 > x) where E1 and E2 are i.i.d. standard exponential variables. When the
entries are not necessarily Gaussian, appropriate normal approximation arguments were used.

We provide a significant extension of this result to the case n = kg + 1 where g is any positive integer. In particular
we show that as n → ∞,

sp(n−1/2Ak,n) − dq

cq

D→ Λ, (1.1)

where {q = q(n), cn, dn} are constants defined later in Theorem 4.
To prove (1.1), first assume that the entries are Gaussian. Once the result is established for Gaussian entries, the

case of general entries is tackled by using appropriate normal approximation results. When the entries are Gaussian,
we show that the result is easy to establish once we can derive the tail behaviour of

Hg(x) = P[E1E2 · · ·Eg > x], (1.2)

where {Ei} are i.i.d. standard exponentials. The tail behaviour of H2(·) is available in the literature. This has been
obtained through different approaches. Springer and Thompson [34] and Lomnicki [24] used Mellin transform, Tang
[36] used a clever substitution and Bose, Mitra and Sen [9] set up a second order differential equation for H2(·) and
observed that the solution is a modified Bessel function.

For n > 2, it is not hard to set up a higher order differential equation for Hn(·). However, this does not seem to
provide the precise information that we need on the tail. We show in Theorem 1 that for any n ≥ 1,

Hn(x) = Cnx
αne−nx1/n

gn(x), n ≥ 1, (1.3)

for some suitable sequence {αn,Cn} and a sequence of functions {gn(x) → 1} for every x. The proof is based on the
so called Laplace asymptotics (see Erdélyi [17]) after an appropriate substitution similar to that used in Tang [36],
in conjunction with induction on n. This result may be of independent interest. The tail behaviour of Hn when {Ei}
are not necessarily exponential is an open question. For information on the properties of product of general random
variables, see Galambos and Simonelli [18].

The outline of the rest of the paper is as follows. In Theorem 1 of Section 2 we establish (1.3). This immediately
implies that (E1 · · ·Eg)

1/2g belongs to the max domain of attraction of the Gumbel distribution. In Section 3 we give a
brief description of the known results on spectral radius of circulant matrices and state our main theorem (Theorem 4)
on the k-circulant.

In Sections 4.1–4.5 we develop the proof of the main result. In particular, we present the known formula for the
eigenvalues of the k-circulant in Section 4.1 and more detailed properties for n = kg + 1 in Section 4.2. Section 4.3
contains the properties of the eigenvalues when the input sequence is i.i.d. Gaussian. Section 4.4 has two preparatory
lemmas on truncation and normal approximation. Section 4.5 has the final steps of the proof.
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In Section 5.1, we remark about the case sn = kg + 1. In Section 5.2, we deal with the case where the input
sequence is an infinite order linear process and derive the limit for the maxima of the eigenvalues when scaled by the
spectral density.

2. Tail of product and extreme values

It does not seem to be known when the product of i.i.d. random variables belongs to the max domain of attraction of
the Gumbel distribution. However, for our purposes, we need only the exponential case that is given in the following
theorem.

Theorem 1. There exists constants {Cn,αn} such that

Hn(x) = Cnx
αne−nx1/n

gn(x), n ≥ 1, (2.1)

where for n ≥ 1,

Cn = 1√
n
(2π)(n−1)/2, αn = n − 1

2n
and gn(x) → 1 as x → ∞.

Proof. Since H1(x) = P[E1 > x] = e−x , we have C1 = 1, α1 = 0 and g1(x) = 1 for all x. Now

H2(x) =
∫ ∞

0
e−ye−x/y dy

= x1/2
∫ ∞

0
e−x1/2(t+1/t) dt (substituting y = tx1/2)

= x1/2
∫ ∞

0
f (t)e−x1/2g(t) dt,

where f (t) = 1 and g(t) = t + 1
t
. Note that g assumes a strict minimum at t = 1 and f (1) = 1 
= 0. So applying

Laplace asymptotics (see Section 2.4 of Erdélyi [17]) we have

H2(x) = x1/2e−x1/2g(1)f (1)

√
2π

x1/2g′′(1)
g2(x) = √

πx1/4e−2x1/2
g2(x),

where g2(x) → 1 as x → ∞. Hence C2 = √
π = 1√

2
(2π)1/2, αk = 1 and the result is true for n = 2. Now suppose (2.1)

is true for n = k. We shall prove it for n = k + 1.

Hk+1(x) =
∫ ∞

0
e−yHk

(
x

y

)
dy

= Ck

∫ ∞

0
e−y

(
x

y

)αk

e−k(x/y)1/k

gk

(
x

y

)
dy

= xkCk

∫ ∞

0
e−(ks+x/sk)skαk−k−1gk

(
sk
)

ds (substituting x/y = sk)

= x(kαk+1)/(k+1)kCk

∫ ∞

0
e−(kt+1/tk)x1/(k+1)

t kαk−k−1gk

(
tkxk/(k+1)

)
dt (substituting s = x1/(k+1)t)

= x(kαk+1)/(k+1)kCk

∫ ∞

0
f (t)e−x1/(k+1)g(t) dt,
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where

f (t) = tkαk−k−1gk

(
tkxk/(k+1)

)
and g(t) = kt + 1

tk
.

Note that g assumes a strict minimum at t = 1 and f (1) = gk(x
k/(k+1)) 
= 0, g′′(1) = k(k + 1). Again applying

Laplace asymptotics we have

Hk+1(x) = x(kαk+1)/(k+1)kCke−x1/(k+1)g(1)f (1)

√
2π

x1/(k+1)g′′(1)
h(x)

= x(kαk+1)(k+1)kCke−(k+1)x1/(k+1)

gk

(
xk/(k+1)

)√ 2π
x1/(k+1)k(k + 1)

h(x),

where h(x) → 1 as x → ∞. Substituting the values of αk and Ck we get

Hk+1(x) = xk/(2(k+1)) 1√
k + 1

(2π)k/2e−(k+1)x1/(k+1)

gk

(
xk/(k+1)

)
h(x)

= Ck+1x
αk+1 e−(k+1)x1/(k+1)

gk+1(x),

where

αk+1 = k

2(k + 1)
, Ck+1 = 1√

k + 1
(2π)k/2, gk+1 = gk

(
xk/(k+1)

)
h(x)

and gk+1(x) → 1 as x → ∞. Hence the result is true for n = k + 1 and this completes the proof. �

The next two results shall be needed in the study of the spectral radius. The first is an easy consequence of The-
orem 1 and standard calculations in extreme value theory as found in Rootzèn [28], Embrechts et al. [16] and Exer-
cise 1.1.4 of Resnick [26]. We omit the details.

Lemma 1. Let {Xn} be a sequence of i.i.d. random variables where Xi
D= (E1E2 · · ·Ek)

1/2k and {Ei}1≤i≤k are i.i.d.
Exp(1) random variables. Then

max1≤i≤n Xi − dn

cn

D→ Λ,

where

cn = 1

2k1/2(logn)1/2
, dn = logCk − ((k − 1)/2) logk

2k1/2(logn)1/2
+
(

logn

k

)1/2[
1 + (k − 1) log logn

4 logn

]
,

Ck = 1√
k
(2π)(k−1)/2.

The next result is immediate from Lemma 1 and will be useful in the proof of Lemma 7.

Lemma 2. Let {Ei}, cn and dn be as in Lemma 1. Let σ 2
n = n−c, c > 0. Then there exists some positive constant

K = K(x), such that for all large n we have

P
(
(E1E2 · · ·Ek)

1/2k >
(
1 + σ 2

n

)−1/2
(cnx + dn)

)≤ K

n
, x ∈ R.
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3. Spectral radius of random k-circulant matrices

To put our main result (Theorem 4) in perspective, we now briefly describe the known results on various circulant
type matrices when the entries do not have heavy tails. The following result can be derived following the argument
given for symmetric Toeplitz matrix in Bose and Sen [11].

Theorem 2. Consider the reverse circulant matrix RCn with the input sequence {ai} which is i.i.d. with E(a0) = μ

and Var(a0) = 1. Let RC0
n = RCn − μnunu

T
n with un = (1, . . . ,1)T . If μ > 0, then

‖RCn‖
n

→ μ almost surely and

∥∥∥∥ RC0
n

‖RCn‖
∥∥∥∥→ 0 almost surely.

Similar results hold for circulant matrix (Cn) also.

Theorem 3 (Bose, Hazra and Saha [7]). Consider the reverse circulant matrix RCn and the circulant matrix Cn

both with the input sequence {ai} which is i.i.d. with mean μ and E[|ai |2+δ] < ∞ for some δ > 0.

(a) If μ 
= 0 then,

‖RCn‖ − |μ|n√
n

D→ N(0,1).

(b) If μ = 0 then,

‖(1/
√

n)RCn‖ − dq

cq

D→ Λ,

where

q = q(n) =
⌊

n − 1

2

⌋
, dq =√

lnq and cq = 1

2
√

lnq
.

The above conclusions continue to hold for Cn also.

We now state the following significant generalisation of a result of Bose, Mitra and Sen [9] who proved the result
for the case g = 2. See Sections 5.1 and 5.2 for extensions to the case sn = kg +1 and to the case of dependent entries.

Theorem 4. Suppose {al}l≥0 is an i.i.d. sequence of random variables with mean zero and variance 1 and E[|al |γ ] <

∞ for some γ > 2. If n = kg + 1 for some fixed positive integer g, then as n → ∞,

sp(n−1/2Ak,n) − dq

cq

D→ Λ,

where q = q(n) = n
2g

and the normalizing constants cn and dn can be taken as follows

cn = 1

2g1/2(logn)1/2
, dn = logCg − ((g − 1)/2) logg

2g1/2(logn)1/2
+
(

logn

g

)1/2[
1 + (g − 1) log logn

4 logn

]
,

Cg = 1√
g

(2π)(g−1)/2.

Remark. Bose and Sen [11] showed that the limiting spectral distribution (LSD) of the symmetric circulant and the
reverse circulant exist if E(a2

1) < ∞. Bose, Mitra and Sen [10] showed that the LSD of the k-circulant exists for
suitable values of k under the slightly stronger assumption E[|a1|2+δ] < ∞. This assumption helps to use normal
approximation for non-Gaussian entries.
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For i.i.d. variables, it is well known that the finiteness of any moment is not necessary for its maximum to have a
limit distribution. However, in our case, due to the approximation of the non-Gaussian case by the Gaussian case, we
are compelled to use a moment condition. It is an open question if Theorem 4 remains true under weaker conditions
and in particular if convergence to some extreme value distribution holds solely under appropriate tail behaviour
of a1.

4. Proof of Theorem 4

The proof is long and is developed in the following sections. In Section 4.1 we describe the eigenvalues of a general
k-circulant matrix and in Section 4.2 we provide more detailed description of the eigenvalues of the k-circulant matrix
for n = kg + 1. In Section 4.3 we discuss some distributional properties of the eigenvalues of k-circulant matrix when
the input sequence is i.i.d. Gaussian. Section 4.4 has two preparatory lemmas on truncation and normal approximation.
Drawing on the developments of Sections 2, 4.2 and 4.4, we finish the proof in Section 4.5.

4.1. Description of eigenvalues of a k-circulant

The formula solution by Zhou [42], given below in Theorem 5, for the eigenvalues of a k-circulant is our starting
point. A proof is also provided in Bose, Mitra and Sen [10]. Let

ω = ωn := cos(2π/n) + i sin(2π/n), i2 = −1 and λt =
n−1∑
l=0

alω
tl, 0 ≤ t < n. (4.1)

Note that {λt ,0 ≤ t < n} are eigenvalues of the usual circulant matrix A1,n. Let p1 < p2 < · · · < pc be all the common
prime factors of n and k. Then we may write,

n = n′
c∏

q=1

p
βq
q and k = k′

c∏
q=1

p
αq
q . (4.2)

Here αq,βq ≥ 1 and n′, k′, pq are pairwise relatively prime. For any positive integer m, let

Zm = {0,1,2, . . . ,m − 1}.
We introduce the following family of sets

S(x) := {
xkb mod n′: b ≥ 0

}
, x ∈ Zn′ . (4.3)

Note that x ∈ S(x) for every x. Suppose S(x) ∩ S(y) 
= ∅. Then, xkb1 = ykb2 mod n′ for some integers b1, b2 ≥ 1.
Multiplying both sides by kgx−b1 we see that, x ∈ S(y) so that, S(x) ⊆ S(y). Hence, reversing the roles, S(x) = S(y).
Thus, the distinct sets in {S(x)}x∈Zn′ forms a partition, called the eigenvalue partition, of Zn′ . Denote the partitioning
sets and their sizes by

P0 = {0}, P1, . . . , P�−1 and kj = #Pj , 0 ≤ j < �. (4.4)

Define

Πj :=
∏
t∈Pj

λtn/n′ , j = 0,1, . . . , � − 1. (4.5)

Theorem 5 (Zhou [42]). The characteristic polynomial of Ak,n is given by

χ(Ak,n)(λ) = λn−n′
�−1∏
j=0

(
λkj − Πj

)
. (4.6)
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4.2. Additional description of eigenvalues when n = kg + 1

Let gx = #S(x). We call gx the order of x. Note that g0 = 1. It is easy to see that

gx = min
{
b > 0: b is an integer and xkb = x mod n′} (4.7)

and

S(x) = {
xkb mod n′: 0 ≤ b < gx

}
.

Define

Jk := {Pi : #Pi = k}, nk := #Jk, X(k) := {x: x ∈ Zn and x has order k},
(4.8)

vk,n := 1

n
#{x: x ∈ Zn and gx < g1}.

Lemma 3. The eigenvalues {ηi} of the k-circulant with n = kg + 1, g ≥ 2, satisfy the following:

(a) η0 =∑n−1
t=0 at , is always an eigenvalue and if n is even, then ηn/2 =∑n−1

t=0 (−1)t at , is also an eigenvalue and
both have multiplicity one.

(b) For x ∈ Zn \ {0, n
2 }, gx = g1 or g1

b
for some b ≥ 2 and g1

2b
is an integer.

(c) For all large n, g1 = 2g. Hence from (b), for x ∈ Zn \ {0, n
2 }, gx = 2g or 2g

b
. The total number of eigenvalues

corresponding to J2g is

2g × #J2g = #X(2g) ∼ n.

(d) X(
2g
b

) = ∅ for 2 ≤ b < g, b even. If g is even then X(
2g
g

) = X(2) is either empty or contains exactly two
elements with eigenvalues

ηl = |λl |, ηn−l = −|λl | for some 1 ≤ l ≤ n

2
.

(e) Suppose b is odd, 3 ≤ b ≤ g and g
b

is an integer. For each Pj ∈ J2g/b there are 2g
b

eigenvalues given by the
2g
b

th roots of Πj . Total number of eigenvalues corresponding to the set J2g/b is

2g

b
× #J2g/b = #X

(
2g

b

)
∼ (

kg/b + 1
)(

1 + n−a
)

for some a > 0.

There are no other eigenvalues.

Proof. Since n = kg + 1, n and k are relatively prime and hence n′ = n.

(a) P0 = S(0) = {0} and the corresponding eigenvalue is η0 = ∑n−1
t=0 at with multiplicity one. Similarly if n is

even then k is odd and hence S(n/2) = {n
2 }, and the corresponding eigenvalue is ηn/2 =∑n−1

t=0 (−1)t at of multiplicity
one.

(b) From (4.7) it is easy to see that gx divides g1 and hence gx = g1 or gx = g1
b

for some b ≥ 2. Also for every
integer t ≥ 0, tkg = (−1 + n)t = −t mod n. Hence λt and λn−t belong to same partition block S(t) = S(n − t). Thus
each S(t) contains even number of elements, except for t = 0, n

2 . Hence g1
b

must be even, that is, g1
2b

must be an integer.
(c) From Lemma 5(i) of Bose, Mitra and Sen [10], g1 = 2g for all but finitely many n and vk,n → 0 as n → ∞.

For each Pj ∈ J2g we have 2g many eigenvalues and which are 2gth roots of Πj . Now the result follows from the
fact that

n = 2g#J2g + nυk,n.
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(d) Suppose b = 2 and x ∈ X(
g1
2 ) = X(

2g
2 ). Then xkg1/2 = xkg = x mod n. But kg = −1 mod n and so,

xkg = −x mod n. Therefore 2x = 0 mod n and x can be either 0 or n/2. But we have already seen in part (a) that
g0 = gn/2 = 1. Hence X(

2g
2 ) = ∅.

Now suppose b > 2, even. From Lemma 3(ii) of Bose, Mitra and Sen [10], #X(
2g
b

) ≤ gcd(k2g/b − 1, kg + 1) for
b ≥ 3. Now observe that for b even,

gcd
(
k2g/b − 1, kg + 1

)=
{

1 if k even,
2 if k odd.

So we have #X(
2g
b

) ≤ 2 for b > 2 and b even.
Suppose if possible, there exist x ∈ Zn such that gx = 2g

b
. Then #S(x) = 2g

b
and for all y ∈ S(x), gy = 2g

b
. Hence

#

{
y: gy = 2g

b

}
≥ 2g

b
> 2 for g > b > 2, b even.

This contradicts the fact that #X(
2g
b

) ≤ 2 for g > b > 2, b even. Hence X(
2g
b

) = ∅ for b even and g > b > 2.

If b = g and it is even, then from previous discussion #X(
2g
g

) = 0 or 2. In the later case there are exactly two ele-
ments in Zn whose order is 2 and there will be only one partitioning set containing them. So corresponding eigenvalues
will be

ηl = |λl |, ηn−l = −|λl | for some 1 ≤ l ≤ n

2
.

(e) We first show that for b odd,

(
kg/b + 1

)−
∑

bi>b,bi odd,

g/bi integer

(
kg/bi + 1

)≤ #X

(
2g

b

)
≤ kg/b + 1.

Note that (e) is a simple consequence of this. Let

Zn,b = {
x: x ∈ Zn and xk2g/b = x mod

(
kg + 1

)}
.

Then it is easy to see that

X

(
2g

b

)
⊆ Zn,b. (4.9)

Let x ∈ Zn,b and g
b

= m. Then

kg + 1 | x(k2g/b − 1
)

⇒ kbm + 1 | x(k2m − 1
)

⇒ k(b−1)m − k(b−2)m + k(b−3)m − · · · − k + 1 | x(km − 1
)
.

But gcd(km −1, k(b−1)m −k(b−2)m +k(b−3)m −· · ·−k +1) = 1, and therefore x is a multiple of (k(b−1)m −k(b−2)m +
k(b−3)m − · · · − k + 1). Hence

#Zn,b =
⌊

kbm + 1

(k(b−1)m − k(b−2)m + k(b−3)m − · · · − k + 1)

⌋
= km + 1 = kg/b + 1

and combining with (4.9),

#X

(
2g

b

)
≤ #Zn,b = kg/b + 1.
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On the other hand, if x ∈ Zn,b then either gx = 2g
b

or gx <
2g
b

. For the second case gx = 2g
bi

for some bi > b, bi odd
and therefore x ∈ Zn,bi

. Hence

#X

(
2g

b

)
≥ #Zn,b −

∑
bi>b,bi odd,

g/bi integer

#Zn,bi
≥ (

kg/b + 1
)−

∑
bi>b,bi odd,

g/bi integer

(
kg/bi + 1

)
.

�

4.3. Properties of eigenvalues of Gaussian circulant matrices

Suppose {al}l≥0 are independent, mean zero and variance one random variables. Fix n. For 1 ≤ t < n, let us split λt

into real and complex parts as λt = at,n + ibt,n, that is,

at,n =
n−1∑
l=0

al cos

(
2πt l

n

)
, bt,n =

n−1∑
l=0

al sin

(
2πt l

n

)
. (4.10)

For z ∈ C, z̄ denotes its complex conjugate. For all 0 < t, t ′ < n, the following identities can easily be verified using
the orthogonality relations of sine and cosine functions.

E(at,nbt,n) = 0 and E
(
a2
t,n

)= E
(
b2
t,n

)= n/2,

λ̄t = λn−t , E(λtλt ′) = nI
(
t + t ′ = n

)
, E

(|λt |2
)= n.

The following lemma is due to Bose, Mitra and Sen [10].

Lemma 4. Fix k and n. Suppose that {al}0≤l<n are i.i.d. standard normal random variables.

(a) For every n, n−1/2at,n, n
−1/2bt,n, 0 ≤ t ≤ n/2, are i.i.d. normal with mean zero and variance 1/2. Conse-

quently, any subcollection {Πj1,Πj2, . . .} of {Πj }0≤j<�, so that no member of the corresponding partition blocks
{Pj1, Pj2 , . . .} is a conjugate of any other, are mutually independent.

(b) Suppose 1 ≤ j < � and Pj = n − Pj and n/2 /∈ Pj . Then n−nj /2Πj are distributed as (nj /2)-fold product of
i.i.d. exponential random variables with mean one.

4.4. Truncation and normal approximation lemmata

4.4.1. Truncation
From Section 4.2, n = n′ and S(t) = S(n− t) except for t = 0, n/2. So for Pj 
= S(0), S(n/2), we can define Aj such
that

Pj = {x: x ∈ Aj or n − x ∈ Aj } and #Aj = 1

2
#Pj . (4.11)

For any sequence of random variables b = {bl}l≥0, define for Pk ∈ J2j

βb,j (k) =
∏

t∈Aj

∣∣∣∣∣ 1√
n

n−1∑
l=0

blω
tl

∣∣∣∣∣
2

, where ω = exp

(
2πi

n

)
. (4.12)

For each n ≥ 1, define a triangular array of centered random variables {ā(n)
l }0≤l<n by

āl = ā
(n)
l = alI|al |≤n1/γ − EalI|al |≤n1/γ .

Lemma 5. Assume E[|al |γ ] < ∞ for some γ > 2. Then, almost surely,

max
1≤j≤q

(
βa,g(j)

)1/2g − max
1≤j≤q

(
βā,g(j)

)1/2g = o(1).
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Proof. Since
∑n−1

l=0 ωtl = 0 for 0 < t < n, it follows that βā,n(j) = βã,n(j) where

ãl = ã
(n)
l = āl + EalI|al |≤n1/γ = alI|al |≤n1/γ .

By Borel–Cantelli lemma,
∑∞

t=0 |al |I|al |>l1/γ is finite a.s. and has only finitely many nonzero terms. Thus there exists
a positive integer N(ω) such that

n∑
t=0

|at − ãt | =
n∑

t=0

|at |I|at |>n1/γ ≤
∞∑
t=0

|at |I|at |>t1/γ =
N(ω)∑
t=0

|at |I|at |>t1/γ . (4.13)

It follows that for n ≥ {N(ω), |a1|γ , . . . , |aN(ω)|γ } the left-hand side of (4.13) is zero. Consequently, for all n suffi-
ciently large,

βa,g(j) = βā,g(j) a.s. for all j (4.14)

and the assertion follows immediately. �

4.4.2. Normal approximation
For d ≥ 1, and any distinct integers i1, i2, . . . , id , from {1,2, . . . , �n−1

2 �}, define

v2d(l) =
(

cos

(
2πij l

n

)
, sin

(
2πij l

n

)
: 1 ≤ j ≤ d

)T

, l ∈ Zn.

Let ϕΣ(·) denote the density of the 2d-dimensional Gaussian vector having mean zero and covariance matrix Σ and
let I2d be the identity matrix of order 2d .

Lemma 6 (Davis and Mikosch [15]). Fix d ≥ 1, γ > 2 and let p̃n be the density function of

21/2n−1/2
n−1∑
l=0

(āl + σnNl)v2d(l),

where {Nl}l≥0 is a sequence of i.i.d. N(0,1) random variables, independent of {al}l≥0 and σ 2
n = Var(ā0)s

2
n . If

n−2c lnn ≤ s2
n ≤ 1 with c = 1/2 − (1 − δ)/γ for arbitrarily small δ > 0, then

p̃n(x) = ϕ(1+σ 2
n )I2d

(x)(1 + εn) with εn → 0

holds uniformly for ‖x‖3 = od(n1/2−1/γ ), x ∈ R
2d .

Corollary 1. Let γ > 2 and σ 2
n = n−c where c is as in Lemma 6. Then for an measurable B ⊆ R2d ,∣∣∣∣∫

B

p̃n(x)dx −
∫

B

ϕ(1+σ 2
n )I2d

(x)dx

∣∣∣∣≤ εn

∫
B

ϕ(1+σ 2
n )I2d

(x)dx + Od

(
exp

(−nη
))

for some η > 0 and uniformly over all the d-tuples of distinct integers 1 ≤ i1 < i2 < · · · < id ≤ �n−1
2 �.

4.5. Proof of Theorem 4: Concluding arguments

To complete the proof we use the following lemmata whose proofs are given in the next section. Recall that
{βx,g(t)

1/2g} are the eigenvalues corresponding to the set of partitions having cardinality 2g. We derive the behaviour
of their maximum in Lemma 7. Lemma 8 is technical and helps to conclude that the maximum of the remaining
eigenvalues is negligible compared to the above.
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Lemma 7.

max1≤t≤q βa,g(t)
1/2g − dq

cq

D→ Λ, (4.15)

where dq, cq are as in Lemma 1, q = qn = n
2g

− kn and kn

n
→ 0 as n → ∞. As a consequence,

max1≤t≤q βa,g(t)
1/2g − dn/2g

cn/2g

D→ Λ. (4.16)

Let

cn(l) = 1

2l1/2(logn)1/2
, dn(l) = logCl − (l − 1)/2 log l

2l1/2(logn)1/2
+
(

logn

l

)1/2[
1 + (l − 1) log logn

4 logn

]
,

Cl = 1√
l
(2π)(l−1)/2,

cn2j
= cn2j

(j), dn2j
= dn2j

(j), cn/2g = cn/2g(g) and dn/2g = dn/2g(g).

Lemma 8. Let n = kg + 1 If j < g and for some a > 0, 2jn2j = (kj + 1)(1 + n−a) ∼ nj/g or is finite, then there
exists a constant K = K(j,g) ≥ 0 such that,

cn/2g

cn2j

→ K and
dn/2g − dn2j

cn2j

→ ∞ as n → ∞.

Proof of Theorem 4. If #Pi = j , then the eigenvalues corresponding to Pi ’s are the j th roots of Πi and hence
these eigenvalues have the same modulus. From Lemma 3, the possible values of #Pi are {1,2,2g and 2g/b,3 ≤ b <

g,b odd,
g
b

∈ Z}. Recall from (4.12) that βa,j (k) is the modulus of the eigenvalue associated with the partition set Pk ,
where #Pk = 2j .

In case of Gaussian entries it easily follows that βa,j (k) is the product of j exponential random variables and they
are independent as k takes n2j many distinct values. So from Lemma 1, if n2j → ∞ then the maximum of βa,j (k)1/2j

has a Gumbel limit. For more general entries the method as in the proof of Lemma 7 can be adopted to get the
following limit:

max
1≤k≤n2j

βa,j (k)1/2j − dn2j

cn2j

D→ Λ as n2j → ∞, (4.17)

where cn2j
and dn2j

are as above.
Let xn = cnx + dn, q = qn = n

2g
and B = {b: b odd, 3 ≤ b < g,

g
b

∈ Z}. Then

P
(
sp
(
n−1/2Ak,n

)
> xq

)≥ P
(

max
j :Pj ∈J2g

βa,g(j)1/2g > xq

)
and

P
(
sp
(
n−1/2Ak,n

)
> xq

) ≤ P
(

max
j :Pj ∈J2g

βa,g(j)1/2g > xq

)
+
∑
b∈B

P
(

max
j :Pj ∈J2g/b

βa,g/b(j)b/2g > xq

)

+ P

(∣∣∣∣∣n−1/2
n−1∑
l=0

al

∣∣∣∣∣> xq

)
+ P

(∣∣∣∣∣n−1/2
n−1∑
l=0

(−1)lal

∣∣∣∣∣> xq

)

+ P
(

max
j :Pj ∈J2

βa,2(j)1/2 > xq

)
=: A + B + C + D + E.
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From Lemma 3, the term D appears only when n
2 ∈ Z and the term E appears only if g is even and in that case J2

contains only one element. It is easy to see that C,D and E tend to zero since we are taking maximum of single
element.

Note that B is the sum of finitely many terms. Now suppose for b ∈ B, we have some finite Kb such that

cn/2g

cn2g/b

→ Kb and
dn/2g − dn2g/b

cn2g/b

→ ∞ as n → ∞. (4.18)

Then from observations (4.17) and (4.18) we get that the probability in B goes to zero. So it remains to check that
whether (4.18) holds for b ∈ B. But (4.18) holds from Lemmas 3(e) and 8.

Now the limit in A follows from Lemma 7, proving the result. �

4.6. Proofs of Lemmas 7 and 8

Proof of Lemma 7. First assume that {al}l≥0 are i.i.d. standard normal. Let {Ej }j≥1 be i.i.d. standard exponentials.
By Lemma 4, it easily follows that

P
(

max
1≤t≤q

(
βa,g(t)

)1/2g
> cqx + dq

)
= P

(
(Eg(j−1)+1Eg(j−1)+2 · · ·Egj )

1/2g > cqx + dq for some 1 ≤ j ≤ q
)
.

The lemma then follows in this special case from Corollary 1.
For the general case we break the proof into the following three steps and make use of the two results from

Section 4.4. We shall prove the three steps later. Fix x ∈ R.

Step 1. limn→∞[Q(n)
1 − Q

(n)
2 ] = 0, where

Q
(n)
1 := P

(
max

1≤j≤q

(
βā+σnN,g(j)

)1/2g
> cqx + dq

)
,

Q
(n)
2 := P

(
max

1≤j≤q

(
1 + σ 2

n

)
(Eg(j−1)+1Eg(j−1)+2 · · ·Egj )

1/2g > cqx + dq

)
and {Nl}l≥0 is a sequence of i.i.d. standard normal random variables.

Step 2.

max1≤j≤q(βā+σnN,g(j))1/2g − dq

cq

D→ Λ.

Step 3.

max1≤t≤q βā,g(t)
1/2g − dq

cq

D→ Λ.

Now combining Lemma 5 and Step 3, we can conclude

max1≤t≤q βā,g(t)
1/2g − dq

cq

D→ Λ.

This completes the proof of first part, (4.15) of the lemma. By convergence of type theorem, the second part, (4.16)
follows since the following hold. We omit the tedious algebraic details.

cq

cn/2g

→ 1 and
dq − dn/2g

cq

→ 0 as n → ∞. (4.19)
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Proof of Step 1. We approximate Q
(n)
1 by the simpler quantity Q

(n)
2 using Bonferroni’s inequality. By Bonferroni’s

inequality, for all m ≥ 1,

2m∑
j=1

(−1)j−1Sj,n ≤ Q
(n)
1 ≤

2m−1∑
j=1

(−1)j−1Sj,n, (4.20)

where

Sj,n =
∑

1≤t1<t2<···<tj ≤q

P
((

βā+σnN,g(ti)
)1/2g

> cqx + dq, i = 1, . . . , j
)
.

Similarly, we have

2m∑
j=1

(−1)j−1Tj,n ≤ Q
(n)
2 ≤

2m−1∑
j=1

(−1)j−1Tj,n, (4.21)

where

Tj,n =
∑

1≤t1<t2<···<tj ≤q

P
((

1 + σ 2
n

)
(Eg(ti−1)+1Eg(ti−1)+2 · · ·Egti )

1/2g > cqx + dq, i = 1, . . . , j
)
.

Therefore, the difference between Q
(n)
1 and Q

(n)
2 can be bounded as follows:

2m∑
j=1

(−1)j−1(Sj,n − Tj,n) − T2m+1,n ≤ Q
(n)
1 − Q

(n)
2 ≤

2m−1∑
j=1

(−1)j−1(Sj,n − Tj,n) + T2m,n (4.22)

for each m ≥ 1. By independence and Lemma 2, there exists K = K(x) such that

Tj,n ≤
(

n

j

)
Kj

nj
≤ Kj

j ! for all n, j ≥ 1. (4.23)

Consequently, limj→∞ lim supn Tj,n = 0.
Now fix j ≥ 1. Let us bound the difference between Sj,n and Tj,n. Let At defined in (4.11) be represented as

At = {e1
t , e

2
t , . . . , e

g
t }. Also note e1

t , e
2
t , . . . , e

g
t ∈ {1,2, . . . , �n

2 �}. For 1 ≤ t1 < t2 < · · · < tj ≤ q , define

v2gj (l) =
(

cos

(
2πle1

tk

n

)
, sin

(
2πle1

tk

n

)
, cos

(
2πle2

tk

n

)
, . . . , sin

(
2πle

g
tk

n

)
;1 ≤ k ≤ j

)
.

Note that {e1
tk
, . . . , e

g
tk

: 1 ≤ k ≤ j} is a set of distinct integers in {1,2, . . . , �n
2 �}. Then,

P
((

βā+σnN,g(ti)
)1/2g

> cqx + dq, i = 1, . . . , j
)= P

(
21/2n−1/2

n−1∑
l=0

(āl + σnNl)v2gj (l) ∈ B
(j)
n

)
,

where

B
(j)
n :=

{
y ∈ R

2gj :
g∏

l=1

(
y2

2gt+2l−1 + y2
2gt+2l

)1/2g
> 21/2(cqx + dq);0 ≤ t < j

}
.

By Corollary 1 and the fact N2
1 +N2

2
D= 2E1, we deduce that uniformly over all the d-tuples 1 ≤ t1 < t2 < · · · < tj ≤ q ,∣∣∣∣∣P

(
21/2n−1/2

n−1∑
l=0

(āl + σnNl)v2gj (l) ∈ B
(j)
n

)
− P

((
1 + σ 2

n

)1/2

(
g∏

i=1

Eg(tm−1)+i

)1/2g

> cqx + dq,1 ≤ m ≤ j

)∣∣∣∣∣
≤ εnP

((
1 + σ 2

n

)1/2
(Eg(tm−1)+1Eg(tm−1)+2 · · ·Egtm)1/2g > cqx + dq,1 ≤ m ≤ j

)+ O
(
exp

(−nη
))

.
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Therefore, as n → ∞,

|Sj,n − Tj,n| ≤ εnTj,n +
(

n

j

)
O
(
exp

(−nη
))≤ εn

Kj

j ! + o(1) → 0, (4.24)

where O(·) and o(·) are uniform over j . Hence using (4.20), (4.21), (4.23) and (4.24), we have

lim sup
n

∣∣Q(n)
1 − Q

(n)
2

∣∣≤ lim sup
n

T2m+1,n + lim sup
n

T2m,n for each m ≥ 1.

Letting m → ∞, we conclude limn→∞[Q(n)
1 − Q

(n)
2 ] = 0. This completes the proof of Step 1. �

Proof of Step 2. Since by Corollary 1,

max
1≤j≤q

(Eg(j−1)+1Eg(j−1)+2 · · ·Egj )
1/2g = Op

(
(lnn)1/2) and σ 2

n = n−c,

it follows that

(1 + σ 2
n )1/2 max1≤j≤q(Eg(j−1)+1Eg(j−1)+2 · · ·Egj )

1/2g − dq

cq

D→ Λ

and consequently,

max1≤j≤q(βā+σnN,g(j))1/2g − dq

cq

D→ Λ.

This completes the proof of Step 2. �

Proof of Step 3. In view of Step 2, it suffices to show that

max
1≤j≤q

(
βā+σnN,g(j)

)1/2g − max
1≤j≤q

(
βā,g(j)

)1/2g = op(cq).

Note that

βā+σnN,g(j) =
g∏

k=1

∣∣∣∣∣ 1√
n

n−1∑
l=0

(āl + σnNl)ω
lek

j

∣∣∣∣∣
2

=
g∏

k=1

|αj,k|2, say,

and

βā,g(j) =
g∏

k=1

∣∣∣∣∣ 1√
n

n−1∑
l=0

ālω
lek

j

∣∣∣∣∣
2

=
g∏

k=1

|γj,k|2, say.

Now by the inequality∣∣∣∣∣
g∏

i=1

ai −
g∏

i=1

bi

∣∣∣∣∣≤
g∑

j=1

(
j−1∏
i=1

bi

)
|aj − bj |

(
g∏

i=j+1

ai

)
(4.25)

for nonnegative numbers {ai} and {bi}, we have

∣∣βā+σnN,g(j) − βā,g(j)
∣∣≤ g∑

k=1

|γj,1|2 · · · |γj,k−1|2
∣∣|αj,k|2 − |γj,k|2

∣∣|αj,k+1|2 · · · |αj,g|2.
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For any sequence of random variables {Xn}n≥0, define

Mn(X) := max
1≤t≤n

∣∣∣∣∣n−1/2
n−1∑
l=0

Xlω
tl

∣∣∣∣∣.
As a trivial consequence of Theorem 2.1 of Davis and Mikosch [15], we have

M2
n(σnN) = Op(σn lnn) and M2

n(ā + σnN) = Op(lnn).

Therefore |αj,k| = Op(
√

lnn). Now,

|γj,k| ≤ |αj,k| + σn

∣∣∣∣∣ 1√
n

n−1∑
l=0

Nlω
lek

j

∣∣∣∣∣
and therefore |γj,k| = (1 + σn)Op(

√
lnn) = Op(

√
lnn). So we have∣∣∣ max

1≤j≤q
βā+σnN,g(j) − max

1≤j≤q
βā,g(j)

∣∣∣ ≤ max
1≤j≤q

∣∣βā+σnN,g(j) − βā,g(j)
∣∣

≤ max
1≤j≤q

g∑
k=1

(
Op(lnn)

)g−1|αj,k − γj,k|
(|αj,k| + |γj,k|

)

≤ Op(lnn)g−1Op

(√
lnn

)
max

1≤j≤q

g∑
k=1

|αj,k − γj,k|

≤ Op(lnn)g−1/2gσnMn(N) = op

(
n−c/4(lnn)g

)
.

Hence∣∣∣ max
1≤j≤q

(
βā+σnN,g(j)

)1/2g − max
1≤j≤q

(
βā,g(j)

)1/2g
∣∣∣≤ ∣∣∣ max

1≤j≤q
βā+σnN,g(j) − max

1≤j≤q
βā,g(j)

∣∣∣ 1

ξ1/2g
,

where ξ lies between max1≤j≤q βā+σnN,g(j) and max1≤j≤q βā,g(j). We know that

max1≤j≤q βā+σnN,g(j)

(lnn)g
P→ 1

and

|max1≤j≤q βā+σnN,g(j) − max1≤j≤q βā,g(j)|
(lnn)g

P→ 0.

Therefore

max1≤j≤q βā,g

(lnn)g
P→ 1.

Hence

ξ

(lnn)g
P→ 1 ⇒ ξ1−1/2g

(lnn)g(1−1/2g)

P→ 1 ⇒ 1

ξ1−1/2g
= Op

(
(lnn)1/2−g

)
.

Combining all these we have∣∣∣ max
1≤j≤q

βā+σnN,g(j)1/2g − max
1≤j≤q

βā,g(j)1/2g
∣∣∣≤ op

(
n−c/4(lnn)g

)+ Op

(
(lnn)1/2−g

)≤ op(cq).
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This completes the proof of Step 3 and hence completes the proof of Lemma 7. �

Proof of Lemma 8. First observe that if nj is finite then the result holds trivially. If n2j = (kj +1)(1+n−a)
2j

then

logn2j = j logk +
(

1

na
+ 1

nj/g

)(
1 + o(1)

)− log 2j

for some a > 0 and since k = (n − 1)1/g we have

cn/2g

cn2j

→ j

g
as n → ∞.

Similarly we get for some a0 > 0,

log logn2j = log lognj/g +
(

1

na0 logn

)(
1 + o(1)

)− log 2j .

Now observe that
dn/2g−dn2j

cn2j
can be broken into the following three parts say Ji, i = 1,2 or 3.

J1 = 2j1/2(logn2j )
1/2
[

logCg − (g − 1)/2 logg

2g1/2(logn/2g)1/2
− logCj − (j − 1)/2 log j

2j1/2(logn2j )1/2

]
→ m1 (some finite constant),

J2 = 2j1/2(logn2j )
1/2
[(

logn/2g

g

)1/2

−
(

logn2j

j

)1/2]
→ m2 (some finite constant),

J3 = 2j1/2(logn2j )
1/2
[
(g − 1) log logn/2g

4(g logn/2g)1/2
− (j − 1) log logn2j

4(j logn2j )1/2

]
= 2j1/2(logn2j )

1/2
[
(g − 1) log logn/2g

4(g logn/2g)1/2
− (j − 1)

√
g log logn2j

4j (logn/2g)1/2
+ o(1)

]

= j1/2(logn2j )
1/2

2(g logn/2g)1/2

[
(g − 1) log logn/2g − (j − 1)g

j
log logn2j + o(1)

]

= j1/2(logn2j )
1/2

2(g logn/2g)1/2

[(
(g − 1) − g(j − 1)

j

)
log logn/2g + o(1)

]
→ ∞ (since g > j ).

This completes the proof of Lemma 8. �

5. Extensions of Theorem 4

5.1. k-circulants with sn = kg + 1

Bose, Mitra and Sen [10] showed the existence of the limiting spectral distribution of the k-circulant matrix with
kg = sn − 1 assuming that s = o(np1−1) where p1 is the smallest prime factor of g. To derive the limit of the spectral
radius, we need a slightly stronger assumption that s = o(np1−1−ε) for some 0 < ε < p1 and s > 1. This is essential
since s = o(np1−1) implies vk,n → 0 which is not enough to deal with the maximum. We need the stronger result
vk,n = o(n−a1) for some a1 > 0, so that these terms are negligible in the log scale that we have. Note that with the
above conditions s = o(np1−1) and υk,n = O(n−ε/p1).

Since s > 1 it easy to see from Lemma 3 in Bose, Mitra and Sen [10] that

#X

(
2g

b

)
≤ gcd

(
k2g/b − 1,

kg + 1

s

)
≤ gcd

(
k2g/b − 1, kg + 1

)
. (5.1)
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Also observe that,

#

{
x: x ∈ Zn and xk2g/b = x mod

(
kg + 1

s

)}
≥ #Zn,b. (5.2)

From observations (5.1) and (5.2) it easily follows that Lemma 3(d) remains valid in this case. Further, for some α > 0
we get that

1 ≥ #X(2g/b)

kg/b + 1
≥ 1 − k−gα

(
1 + o(1)

)= 1 − (sn)−α
(
1 + o(1)

)≥ 1 − n−α
(
1 + o(1)

)
.

Hence from the above discussions we have the following theorem.

Theorem 6. Suppose {al}l≥0 is an i.i.d. sequence of random variables with mean zero and variance 1 and E|al |γ < ∞
for some γ > 2. If s ≥ 1 and sn = kg + 1 where s = o(np1−1−ε), 0 < ε < p1, and p1 is the smallest prime factor of
g, then as n → ∞,

sp(n−1/2Ak,n) − dq

cq

D→ Λ,

where q = q(n) = n
2g

and cn and dn are as defined in Theorem 4.

5.2. k-circulant with dependent input

Now let {an;n ≥ 0} be a two sided moving average process,

an =
∞∑

i=−∞
xiεn−i , (5.3)

where {xn,n ∈ Z} ∈ l1, that is
∑

n |xn| < ∞, are nonrandom and {εi; i ∈ Z} are i.i.d. with E(εi) = 0 and E(ε2
i ) = 1.

Let f (ω),ω ∈ [0,2π] be the spectral density of {an}. Note that if {an} is i.i.d. with mean 0 and variance σ 2, then

f ≡ σ 2

2π .
In this case, the variance of each eigenvalue is actually of the order of the spectral density at the corresponding

ordinate. Thus it is meaningful to rescale by the spectral density. This is, for example, the approach taken by Walker
[38], Davis and Mikosch [15], Lin and Liu [23] while studying the periodogram. This rescaling by the spectral density
makes them approximately same variance and that makes it relatively easy to handle their maxima. Define,

β̃a,j (t) := βa,j (t)∏
l∈At

2πf (ωl)
and M

(
n−1/2Ak,n, f

)= max
l

max
j :Pj ∈Jl

(
β̃a,l(j)

)1/2l
.

Theorem 7. Let {an} be the two sided moving average process (5.3) where E(εi) = 0, E(ε2
i ) = 1, E|εi |2+δ < ∞ for

some δ > 0 and

∞∑
j=−∞

|xj ||j |1/2 < ∞ and f (ω) > α > 0 for all ω ∈ [0,2π]. (5.4)

Then as n → ∞, with q = q(n) = n
2g

and cq, dq as defined in Theorem 4,

M(n−1/2Ak,n, f ) − dq

cq

D→ Λ.
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Proof. Since we shall be using the bounds given in Walker [38] we define a few relevant notation for convenience.
Define

Ia,n(ωj ) = 1

n

∣∣∣∣∣
n∑

l=1

ale
iωj l

∣∣∣∣∣
2

, Iε,n(ωj ) = 1

n

∣∣∣∣∣
n∑

l=1

εle
iωj l

∣∣∣∣∣
2

,

X(ωj ) =
∞∑

t=−∞
xte

iωj t , Tn(ωj ) = Ia,n(ωj ) − ∣∣X(ωj )
∣∣2Iε,n(ωj ).

To prove the result we use following facts:

(i) From Walker [38], p. 112,

max
1≤t≤n

∣∣Tn(ωt )
∣∣= Op

(
n−δ(logn)1/2).

(ii) From Davis and Mikosch [15],

max
1≤t≤n

∣∣Iε,n(ωt )
∣∣= Op(logn) and max

1≤t≤n

∣∣Ia,n(ωt )
∣∣= Op(logn).

Using these and inequality (4.25), it is easy to see that, for some δ0 > 0

max
l

max
j :Pj ∈Jl

∣∣β̃a,l(t) − βε,l(t)
∣∣= op

(
n−δ0

)
. (5.5)

Now the results follows from Theorem 4 and (5.5). �
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