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Abstract. We consider a family of random walks killed at the boundary of the Weyl chamber of the dual of Sp(4), which in
addition satisfies the following property: for any n ≥ 3, there is in this family a walk associated with a reflection group of order 2n.
Moreover, the case n = 4 corresponds to a process which appears naturally by studying quantum random walks on the dual of
Sp(4). For all the processes belonging to this family, we find the exact asymptotic of the Green functions along all infinite paths of
states as well as that of the absorption probabilities along the boundaries.

Résumé. Dans cet article, nous considérons une famille de marches aléatoires tuées au bord de la chambre de Weyl du dual
de Sp(4), qui vérifie en outre la propriété suivante : pour tout n ≥ 3, il y a, dans cette famille, une marche ayant un groupe
de réflexions d’ordre 2n. De plus, le cas n = 4 correspond à un processus bien connu apparaissant lors de l’étude des marches
aléatoires quantiques sur le dual de Sp(4). Pour tous les processus de cette famille, nous trouvons l’asymptotique exacte des
fonctions de Green selon toutes les trajectoires, ainsi que l’asymptotique des probabilités d’absorption sur le bord.
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1. Introduction and main results

Appearing in several distinct domains, random walks conditioned on staying in cones of Z
d attract more and more

attention from the mathematical community. Historically, important examples are the so-called non-colliding random
walks. These are the processes (Z1, . . . ,Zd) composed of d independent and identically distributed random walks
conditioned on never leaving the Weyl chamber {z ∈ R

d : z1 < · · · < zd}. They first appeared in the eigenvalues
description of important matrix-valued stochastic processes, see [11], and are recently again very much studied, see
[8,12,21] and the references therein. Another important area where processes conditioned on never leaving cones
of Z

d appear is that of quantum random walks, see e.g. [3,4].
A usual way to condition random processes on staying in cones consists in using Doob h-transforms. These are

functions which are harmonic, positive inside of the cone and equal to zero on its boundary – or equivalently har-
monic and positive for the underlying killed processes. It is therefore natural to be interested in finding all positive
harmonic functions for processes in cones of Z

d killed at the boundary, and more generally to compute the Martin
compactification of such processes, that can e.g. be obtained from the exact asymptotic of the Green functions.

We briefly recall [10] that for a transient Markov chain with state space E, the Martin compactification of E is the
smallest compactification Ê of E for which the Martin kernels y �→ kx

y = Gx
y/G

x0
y extend continuously – by Gx

y we
mean the Green functions and we denote by x0 a reference state. Ê \ E is usually called the full Martin boundary.
For α ∈ Ê, x �→ kx

α is clearly superharmonic; then ∂mE = {α ∈ Ê \ E: x �→ kx
α is minimal harmonic} is called the
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minimal Martin boundary – a harmonic function h is said minimal if 0 ≤ h̃ ≤ h with h̃ harmonic implies h̃ = ch for
some constant c. Then, every superharmonic (resp. harmonic) function h can be written as h(x) = ∫

Ê
kx
yμ(dy) (resp.

h(x) = ∫
∂mE

kx
yμ(dy)), where μ is some finite measure, uniquely characterized in the second case above.

In this context, the case of walks in cones of Z
d spatially homogeneous in the interior, with non-zero drift and

killed at the boundary has held a great and fruitful deal of attention.
For random walks on weight lattices in Weyl chambers of Lie groups, Biane [4] finds the minimal Martin boundary

thanks to Choquet–Deny theory. Collins [7] obtains their Martin compactification.
In [23] we give a more detailed analysis for a certain class of walks in dimension d = 2. These are the random

walks killed at the boundary of Z
2+, with non-zero jump probabilities to the eight nearest neighbors and having in

addition a positive mean drift. The asymptotic of the Green functions along all infinite paths of states as well as that
of the probabilities of absorption along the axes are computed for the walks in this class. However, the methods of
complex analysis used in [23] apply in dimension d = 2 only.

Ignatiouk-Robert [14,15], then Ignatiouk-Robert and Loree [16] find the Martin compactification of the random
walks in Z+ × Z

d−1 and Z
d+ (d ≥ 2), with non-zero drift and killed at the boundary. They make very general assump-

tions on the jump probabilities. The approach used there, based on large deviation techniques and Harnack inequalities,
seems not to be powerful for studying the asymptotic of the Green functions. Furthermore, having a non-zero drift is
an essential hypothesis in [14–16]. Last but not least, the results of [14] in the case d ≥ 3 are conditioned by the fact
of been able: “to identify the positive harmonic functions of a random walk on Z

d which has zero mean and is killed
at the first exit from Z

d+; unfortunately, for d ≥ 2, there are no general results in this domain” (see p. 5 of [14]).
As may this open problem suggest, the results and methods dealing with the asymptotic of Green functions or even

with the Martin compactifiction for random walks in domains of Z
d with drift zero and killed at the boundary are

actually scarce, even for d = 2.
In [25] (resp. [22]), approximations of the Green functions for simple random walks killed at the boundary of balls

of Z
d (resp. of certain more general sets of Z

2) are computed by comparison with Brownian motion. Namely, the
Green functions G(B)xy of Brownian motion (resp. random walk) killed at the boundary B are related to the potential
kernels (or the Green functions if d ≥ 3) ax

y of the non-killed Brownian motion (resp. random walk), e.g. via the
“balayage formula,” see Chapter 4 of [25]. These identities have the same form for Brownian motion and random
walk [25]:

G(B)xy = −ax
y + Ex

[
a

SτB
y

] + F(B)x,

where S is the process, τB is the hitting time of the boundary B and where the rest F(B)x can be expressed in terms
of τB and x, indeed see Chapter 4 of [25]. They are then compared term by term. For the comparison of potential
kernels ax

y of the non-killed processes, classical formulas may be used, like that stated in Chapter 4 of [25]; for the
comparison of positions of these processes at time of absorption, strong approximations of random walks by Brownian
motion [19,20] as well as Beurling estimates [18,24] are usually exploited.

This approach in particular requires rather precise estimates of the hitting time τB . It seems therefore difficult to
use for models of walks in cones where τB is painful to analyze. This is for example the case of the random walks
in the half-plane considered in [29,30] and of the random walks in the quarter-plane we shall study in this paper (for
which Chapter F of [27] illustrates the complexity of hitting times). Remark 8 in Section 1.3 specifies other reasons
why this method via comparison with Brownian motion seems not to lead to enough satisfactory results in the analysis
of the random walks we shall consider here.

For random walks in the half-plane, Uchiyama [29,30] finds the asymptotic of the Green functions from their
trigonometric representations.

If the domain is a quarter-plane, the simplest case is the Cartesian product of two killed one-dimensional simple
random walks with mean zero. The Martin boundary then happens to be trivial [26]. Moreover, the exact asymptotic
of the Green functions for these processes is computed in Chapter D of [27].

From a Lie group theory point of view, the previous case corresponds to the group product SU(2)×SU(2), which is
associated with a reducible rank-2 root system, see [5]. We are then interested in the classical random walks that can
be obtained from the construction made by Biane in [4] – namely, by restriction of the quantum walks, initially defined
on non-commutative von Neumann algebras, to commutative subalgebras – starting from Lie groups associated with
irreducible rank-2 roots systems, namely SU(3) and Sp(4). These are random walks on the lattices of Fig. 1, spatially
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Fig. 1. Random walks in the Weyl chamber of the duals of SU(3) and Sp(4).

Fig. 2. Random walks of Fig. 1 can be viewed as random walks in Z
2+ .

homogeneous in the interior and absorbed at the boundary. The one on the left, associated with SU(3), has three jump
probabilities equal to 1/3; that on the right, related to Sp(4), has the same four jump probabilities 1/4.

By obvious transformations of these lattices it is immediate that both are killed nearest neighbors random walks in
the quarter-plane Z

2+ as below.
For the random walk associated with SU(3) (and besides also for its multi-dimensional analogues SU(d)), Biane

[3] computes the asymptotic of the Green functions along all paths of states except for the ones approaching the axes.
To complete the latter results for these particular paths, the complex analysis methods of [28] recently turned out to
be fruitful. Furthermore, in [28] we compute the exact asymptotic of the Green functions along all paths and also the
asymptotic of the absorption probabilities for a whole class of nearest neighbors random walks killed at the boundary
of Z

2+. This class, including the walk associated with SU(3), is characterized by the fact that each of its elements has
a harmonic function of order three, i.e. (i0, j0) �→ i0j0(i0 + αj0 + β) for some arbitrary α and β . Similar results for
the simpler class of walks admitting the harmonic function of order two (i0, j0) �→ i0j0 are derived in [27].

The methods of [27,28] heavily rely on the analytic approach for the random walks in the quarter-plane developed
by Fayolle, Iasnogorodski and Malyshev [13]. An important notion involved there is that of the group of the random
walk, which is a group of automorphisms of an algebraic curve; it is here properly defined in Section 1.1. In this
context our previous works [27,28] treat the classes of walks with groups of the smallest orders four and six.

The main subject of this paper is to obtain, by this approach, the exact asymptotic of the Green functions along all
paths as well as that of the absorption probabilities along the axes for a certain class of random walks in Z

2+ absorbed
at the axes, with zero drift and containing the walk associated with Sp(4) – drawn on the right of Fig. 2. This class
will include walks with groups of all finite orders 2n for n ≥ 3. We now define this class and specify the notion of
group of the random walk.

1.1. Random walks under consideration and group of the walk

Consider the random walk (X(k),Y (k))k≥0 spatially homogeneous inside of the quarter-plane Z
2+ and such that if

pi,j = P[(X(k + 1), Y (k + 1)) = (i0 + i, j0 + j) | (X(k),Y (k)) = (i0, j0)], then:

(H1) p1,0 + p1,−1 + p−1,0 + p−1,1 = 1, p1,0 = p−1,0, p1,−1 = p−1,1;

(H2) {(i,0): i ≥ 1} ∪ {(0, j): j ≥ 1} is absorbing.

Let us also define the polynomial Q (which is just a simple transformation of the transition probabilities generating
function) by:

Q(x,y) = xy[p1,0x + p−1,0/x + p1,−1x/y + p−1,1y/x − 1]. (1)
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If Q(x,y) = 0, then with (1) it is immediate that Q(̂ξ(x, y)) = 0 and Q(̂η(x, y)) = 0, where

ξ̂ (x, y) =
(

x,
x2

y

)
, η̂(x, y) =

(
p−1,1y + p−1,0

p1,0y + p1,−1

y

x
, y

)
.

The group of the walk is then W = 〈̂ξ, η̂〉, the group of automorphisms of the algebraic curve {(x, y) ∈ (C ∪
{∞})2: Q(x,y) = 0} generated by ξ̂ and η̂. Its order is always even and larger than or equal to four. It is already
known [6] that if p1,0 = p−1,0 = 1/4 and p1,−1 = p−1,1 = 1/4 then W has order eight.

More generally, we prove in Remark 11 that the group W is finite if and only if there exists some rational number r

such that p1,0 = p−1,0 = sin(rπ)2/2 and p1,−1 = p−1,1 = cos(rπ)2/2.
As illustrated by the works already mentioned [6,13,27,28] the notion of finite group is nowadays extensively

studied, notably because it often leads to worthwhile results. Let P2n be the class of random walks satisfying (H1),
(H2) and with a group of order 2n. We show in Section 2.2 that the random walk under hypotheses (H1), (H2) and
(H3), where

(H3) p1,0 = p−1,0 = sin(π/n)2/2 and p1,−1 = p−1,1 = cos(π/n)2/2,

belongs to P2n.
In this article we study the class being made up of the union for n ≥ 3 of the random walks satisfying (H1), (H2)

and (H3). This class contains one – and only one – representative of P2n for any n ≥ 3. Precisely, for all walks in this
class we compute the exact asymptotic of the Green functions along all paths and that of the absorption probabilities
along the axes. This is the first result of that kind for random walks with zero drift and groups of all finite orders, up
to our knowledge.

In the particular case n = 3, the process coincides with that represented on the left of Fig. 2 in [28] for α = 2. In
the case n = 4, this is the walk in the Weyl chamber of Sp(4) with jump probabilities 1/4 studied by Biane [4], see
Figs 1 and 2.

The hypothesis that n is integer is technical. Indeed, independently of this assumption, the approach [13] – we
shall use here – always yields explicit expressions for the Green functions, notably in terms of solutions to boundary
value problems of Riemann–Hilbert type. In the general case, these formulations are so complex that we are not able
to obtain their asymptotic. However, they may admit a nice simplification as a closed expression (and then in terms
of the orbit under the group of a simple function); this actually happens if the walk admits a finite group, and if in
addition some technical assumption holds – related to fundamental domains, see Section 2.2. As it will be properly
showed in Remark 11, in the case of the walks satisfying to (H1) this exactly implies (H3).

1.2. Main results

Here and throughout, (X,Y ) = (X(k),Y (k))k≥0 denotes the process defined by (H1), (H2) and (H3). Our first result
deals with the asymptotic of the Green functions, properly defined by

G
i0,j0
i,j = E(i0,j0)

[∑
k≥0

1{(X(k),Y (k))=(i,j)}
]
. (2)

Let fn be the function defined in (23); in Section 3 we shall write it explicitly and we shall prove that it is harmonic
for (X,Y ), positive inside of Z

2+ and equal to zero on the boundary.

Theorem 1. The Green functions (2) admit the following asymptotic as i + j → ∞ and j/i → tan(γ ), γ ∈ [0,π/2]:

G
i0,j0
i,j ∼ 2

π

(n − 1)!
4n sin(2π/n)

fn(i0, j0)
sin(n arctan[(j/i)/(1 + j/i) tan(π/n)])

[cos(π/n)2(i2 + 2ij) + j2]n/2
. (3)

Remark 2. Let Nn(j/i) = sin(n arctan[ j/i
1+j/i

tan(π/n)]) be the quantity appearing in the asymptotic (3). Let also γ

be in [0,π/2] and suppose that j/i goes to tan(γ ).
If γ ∈ ]0,π/2[, then Nn(j/i) goes to Nn(tan(γ )), which belongs to ]0,∞[.
If γ = 0 or γ = π/2, then Nn(j/i) goes to 0. More precisely, Nn(j/i) = n tan(π/n)[j/i + O(j/i)2] if γ = 0 and

Nn(j/i) = (n sin(2π/n)/2)[i/j + O(i/j)2] if γ = π/2.
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Theorem 1 has the following immediate [10] consequence.

Corollary 3. The Martin compactification is the one-point compactification.

This paper therefore gives a partial answer, for d = 2, to the open problem highlighted by Ignatiouk-Robert in [14],
since Corollary 3 implies that up to the positive multiplicative constants, there is only one positive harmonic function
for (X,Y ).

Theorem 1 also has a consequence on the absorption probabilities P(i0,j0)[(X,Y ) is killed at (i,0)] and
P(i0,j0)[(X,Y ) is killed at (0, j)]. Indeed, by using the obvious equalities

P(i0,j0)

[
(X,Y ) is killed at (i,0)

] = p1,−1G
i0,j0
i−1,1,

P(i0,j0)

[
(X,Y ) is killed at (0, j)

] = p−1,1G
i0,j0
1,j−1 + p−1,0G

i0,j0
1,j

as well as Theorem 1 and Remark 2, we come to the following result.

Corollary 4. The absorption probabilities admit the following asymptotic as i, j → ∞:

P(i0,j0)

[
(X,Y ) is killed at (i,0)

] ∼ 1

2π

n!
[4 cos(π/n)]n fn(i0, j0)

1

in+1
,

P(i0,j0)

[
(X,Y ) is killed at (0, j)

] ∼ 1

2π

n!
4n

fn(i0, j0)
1

jn+1
.

1.3. Harmonic functions and link with Brownian motion

Let us now have a closer look at the harmonic function fn that governs the asymptotic (3) of the Green functions (1).
All the results of Section 1.3 are proven in Section 3.

Proposition 5.

(i) fn is a real polynomial in the variables i0, j0 of degree exactly n;
(ii) fn is a harmonic function for the process (X,Y );

(iii) fn(i0,0) = fn(0, j0) = 0 for all integers i0 and j0;
(iv) if i0, j0 > 0 then fn(i0, j0) > 0.

The explicit formulation of fn for general values of n – that we shall obtain in Section 3 – being quite complex,
here we just give the following three examples:

f3(i0, j0) = 24 · 31/2 · i0j0(i0 + 2j0),

f4(i0, j0) = (256/3) · i0j0(i0 + 2j0)(i0 + j0),

f6(i0, j0) = (288/5)31/2 · i0j0(i0 + 2j0)(i0 + j0)
(
(i0 + 2j0/3)(i0 + 4j0/3) + 10/9

)
.

Note that for n = 3 and n = 4, fn is a homogeneous function of degree n (i.e. fn(λx,λy) = λnfn(x, y)), while f6 is
not. In fact the next result holds.

Proposition 6. For any n ≥ 5, fn is not homogeneous.

Let us conclude the introduction by outlining the link of fn with the harmonic functions of Brownian motion. Let

φ(x, y) = (
(x + y)/ sin(π/n), y/ cos(π/n)

)
. (4)

Then the random walk φ(X,Y ) has an identity covariance and takes its values in the cone Λ(0,π/n) = {t exp(ıθ): 0 ≤
t ≤ ∞,0 ≤ θ ≤ π/n} (see Fig. 3).
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Fig. 3. On the left, the walk (X,Y ); on the right, the walk φ(X,Y ), with φ defined in (4).

φ(X,Y ) therefore lies in the domain of attraction of the standard Brownian motion killed at the boundary of
Λ(0,π/n).

For the Brownian motion, it is well-known that there is only one harmonic function h positive inside of a given
cone and vanishing on the boundary: it is called the réduite [1] of the cone. It happens to be homogeneous [1]. When
the cone is Λ(0,π/n), the réduite is equal to h(ρ exp(ıθ)) = ρn sin(nθ).

Moreover, the asymptotic of the Green functions of the Brownian motion killed at the boundary of Λ(0,π/n) can
be obtained from [2] and is equal to:

G
ρ exp(ıθ)

r exp(ıη) ∼ 2

π1/2
h
(
ρ exp(ıθ)

) sin(nη)

rn
, r → ∞.

Proposition 7. Let φ be defined in (4). Up to a multiplicative constant, the homogeneous function h(φ(i0, j0)) equals
the dominant term of the non-homogeneous harmonic function of the random walk, i.e.

fn(i0, j0) = h
(
φ(i0, j0)

)[
1 + o(1)

]
, i0, j0 → ∞.

Proposition 7 will follow from our results by a direct computation, see Section 3. Let us also note, as in [29], that
this proposition is in accordance with Donsker’s invariant principle.

Remark 8. Proposition 7 also entails that the comparison approach of random walks by Brownian motion sketched
in the first part of the introduction can neither give the approximation of the Green functions with the precision of
Theorem 1 nor even to specify the unique harmonic function for our class of random walks (H1), (H2) and (H3).

Furthermore, from the asymptotic results (3) we notice that the Green functions can tend to zero arbitrarily fast
whenever the order of the group is taken high enough, while the Beurling estimates [18,24] relating the random walk
to the Brownian motion typically have a polynomial precision – which in addition depends only on the dimension.

The rest of the paper is organized as follows. In Section 2 we find explicitly the absorption probabilities and the
Green functions (2). In Section 3, we then study precisely the harmonic function fn. Finally in Section 4 we prove
Theorem 1.

2. Expression of the absorption probabilities and of the Green functions

2.1. A functional equation between the generating functions

Section 2.1 consists in preparatory results and is inspired by the book [13]. Define

Gi0,j0(x, y) =
∑
i,j≥1

G
i0,j0
i,j xi−1yj−1,

hi0,j0(x) =
∑
i≥1

P(i0,j0)

[
(X,Y ) is killed at (i,0)

]
xi, (5)

h̃i0,j0(y) =
∑
j≥1

P(i0,j0)

[
(X,Y ) is killed at (0, j)

]
yj
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the generating functions of the Green functions (2) and of the absorption probabilities. With these notations, we can
state the following functional equation:

Q(x,y)Gi0,j0(x, y) = hi0,j0(x) + h̃i0,j0(y) − xi0yj0, (6)

Q being defined in (1). A priori, Eq. (6) has a meaning in {(x, y) ∈ C
2: |x| < 1, |y| < 1}. The proof of (6) is obtained

exactly as in Section 2.1 of [23].
When no ambiguity on the initial state can arise, we will drop the index i0, j0 and we will write Gi,j ,G(x, y),h(x),

h̃(y) for G
i0,j0
i,j ,Gi0,j0(x, y), hi0,j0(x), h̃i0,j0(y).

Let us now have a look to the algebraic curve {(x, y) ∈ (C ∪ {∞})2: Q(x,y) = 0}, that we note Q for the sake of
briefness. Start by writing the polynomial (1) alternatively

Q(x,y) = a(x)y2 + b(x)y + c(x) = ã(y)x2 + b̃(y)x + c̃(y), (7)

where a(x) = p1,−1, b(x) = p1,0x
2 − x + p1,0, c(x) = p1,−1x

2 and ã(y) = p1,0y + p1,−1, b̃(y) = −y, c̃(y) =
p1,−1y

2 + p1,0y. Set also d(x) = b(x)2 − 4a(x)c(x) and d̃(y) = b̃(y)2 − 4̃a(y)̃c(y). We have

d(x) = p2
1,0(x − 1)2(x2 + 2x(1 − 1/p1,0) + 1

)
, d̃(y) = −4p1,0p1,−1y(y − 1)2. (8)

The polynomial d has manifestly a double root at 1 and two simple roots at positive points, that we denote by
x1 < 1 < x4. As for d̃ , it has a double root at 1 and a simple root at 0. We also note y1 = 0 and y4 = ∞.

Then with (7) we notice that Q(x,y) = 0 is equivalent to [b(x) + 2a(x)y]2 = d(x) or to [̃b(y) + 2̃a(y)x]2 = d̃(y).
It follows from the particular form of d or d̃ , see (8), that the surface Q has genus zero and is thus homeomorphic to
a sphere [17]. As a consequence this Riemann surface can be rationally uniformized, in the sense that it is possible
to find two rational functions, say π and π̃ , such that Q = {(π(s), π̃(s)): s ∈ C ∪ {∞}}. Furthermore, as shown in
Chapter 6 of [13], we can take π(s) = [x4 + x1]/2 + ([x4 − x1]/4)(s + 1/s), x1 and x4 being defined below (8); it is
then possible to deduce a correct expression for π̃ , since by construction the equality Q(π, π̃) = 0 has to hold. For
more details about the construction of Riemann surfaces, see for instance [17].

2.2. Uniformization and meromorphic continuation

But rather than the uniformization (π, π̃) proposed in [13] and recalled at the end of the previous section, we prefer
using another, that will turn out to be quite more convenient. This new uniformization, that we call (x, y), is just equal
to (π ◦ L, π̃ ◦ L), where

L(z) = z0z − 1

z − z0
, z0 = − exp(−ıπ/n).

We notice that z0 is such that π(z0) = π(z0) = π̃ (z0) = π̃(z0) = 1 and that its explicit expression above is due to
(H3), for more details see Remark 11. Then, starting from the formulations of (π, π̃) and of L, we easily show that
the expression of the new uniformization can be

x(z) = (z + z0)(z + z0)

(z − z0)(z − z0)
, y(z) = (z + z0)

2

(z − z0)2
. (9)

Compared to (π, π̃), this uniformization (x, y) has the significant advantage of transforming the important cycles
(i.e. the branch cuts [x1, x4] and [y1, y4], the unit circles {|x| = 1} and {|y| = 1}) into very simple cycles, since the
following equalities hold, see also Fig. 4:

x−1([x1, x4]
) = R ∪ {∞}, x−1({|x| = 1

}) = ıR ∪ {∞},
(10)

y−1([y1, y4]
) = z0R ∪ {∞}, y−1({|y| = 1

}) = z0ıR ∪ {∞}.
To obtain (10), it is sufficient to use the explicit expressions of the branch points x1, x4, y1, y4, see below (8), as

well as the explicit formulation of the uniformization, see (9).
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Fig. 4. The uniformization space C ∪ {∞}, with on the left some important elements of it and on the right the corresponding elements through the
coordinates x and y.

Let us go back to ξ̂ and η̂, the automorphisms of the algebraic curve Q introduced in Section 1.1. Thanks to the
uniformization (9), they define two automorphisms ξ and η on C ∪ {∞}, which are determined by

ξ2 = 1, x ◦ ξ = x, y ◦ ξ = x2

y
, η2 = 1, y ◦ η = y, x ◦ η = p1,−1y

2 + p1,0y

p1,0y + p1,−1

1

x
. (11)

Using the well-known characterization of the automorphisms of the Riemann sphere C∪{∞}, (9) and (11), we obtain
that ξ and η have the following expressions:

ξ(z) = 1/z, η(z) = exp(−2ıπ/n)/z. (12)

The expression above of η in terms of n is due to the assumption (H3), see Remark 11 for more details. Note
also that leading to these particularly nice analytic expressions of ξ and η is another very pleasant property of the
uniformization (x, y).

As in Section 1.1, we call the group generated by ξ and η

Wn = 〈ξ, η〉

the group of the random walk. In the context of this article, Wn is isomorphic to the dihedral group of order 2n, i.e. to
the group of symmetries of a regular polygon with n sides, ξ and η playing the role of the two reflections.

We are now going to state and prove Proposition 9, which actually is the main result of Section 2.2 and that deals
with the continuation of the generating functions h and h̃ defined in (5). For this, we need to describe the action of the
elements of Wn on some cones of the plane as well as to find some fundamental domains of the plane for the action of
Wn – we say that D is a fundamental domain of the plane for the action of Wn if

⋃
w∈Wn

w(D) = C and if in addition
the latter union is disjoint.

Let us take the following notation: for θ1 ≤ θ2, let

Λ(θ1, θ2) = {
t exp(ıθ): 0 ≤ t ≤ ∞, θ1 ≤ θ ≤ θ2

}
be the cone with vertex at 0 and opening angles θ1, θ2. In particular, Λ(θ, θ) = exp(ıθ)R+ ∪ {∞}. Thanks to (12), we
obtain that the action of ξ and η on these cones is simply given by ξ(Λ(θ1, θ2)) = Λ(−θ2,−θ1) and η(Λ(θ1, θ2)) =
Λ(−θ2 − 2π/n,−θ1 − 2π/n). These facts are illustrated on the left of Fig. 5.

Define now, for k ∈ {0, . . . , n},

D+
k = Λ

(
k − 1

n
π,

k

n
π

)
, D−

k = Λ

(
−k + 1

n
π,− k

n
π

)
.
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Fig. 5. Important cones of the uniformization space.

Sometimes, we will write D0 instead of D+
0 = D−

0 and Dn instead of D+
n = D−

n . Clearly,

D0 ∪ Dn ∪
n−1⋃
k=1

D+
k ∪

n−1⋃
k=1

D−
k = C ∪ {∞}. (13)

The definitions of D+
k and D−

k , as well as (13), are illustrated on the right of Fig. 5.
It is immediate that for any k ∈ {1, . . . , n}, we have D+

k = ξ(D−
k−1) and D−

k = η(D+
k−1). In particular, for any

2k ∈ {1, . . . , n},
D+

2k = (
(ξ ◦ η)k

)
(D0), D−

2k = (
(η ◦ ξ)k

)
(D0).

Likewise, for any 2k + 1 ∈ {1, . . . , n},
D+

2k+1 = (
ξ ◦ (η ◦ ξ)k

)
(D0), D−

2k = (
η ◦ (ξ ◦ η)k

)
(D0).

With (13), these equalities prove that
⋃

w∈Wn
w(D0) = C ∪ {∞}, in such a way that D0 is a fundamental domain

for the action of Wn on C – this is not quite exact, since each half-line Λ(kπ/n, kπ/n), k ∈ {0, . . . ,2n − 1}, appears
twice in the union

⋃
w∈Wn

w(D0).
We are now able to state and prove Proposition 9, after the weak recall on the lifting of functions that follows: any

function f of the variable x (resp. y) defined on some domain D ⊂ C can be lifted on {z ∈ C ∪ {∞}: x(z) ∈ D} (resp.
{z ∈ C ∪ {∞}: y(z) ∈ D}) by setting F(z) = f (x(z)) (resp. F(z) = f (y(z))).

In particular, we can lift the generating functions h and h̃ considered in (5) and we set H(z) = h(x(z)) and H̃ (z) =
h̃(y(z)); they are well defined on {z ∈ C∪{∞}: |x(z)| ≤ 1} and {z ∈ C∪{∞}: |y(z)| ≤ 1} respectively. Consequently,
on {z ∈ C ∪ {∞}: |x(z)| ≤ 1, |y(z)| ≤ 1} (which equals Λ(−π/2,π/2 −π/n), see Fig. 4), the functional equation (6)
yields H(z) + H̃ (z) − xi0yj0(z) = 0 – in the sequel, we will often write xi0yj0(z) instead of x(z)i0y(z)j0 .

Proposition 9. The functions H(z) = h(x(z)) and H̃ (z) = h̃(y(z)) can be meromorphically continued from respec-
tively Λ(−π/2,π/2) and Λ(−π/2−π/n,π/2−π/n) up to respectively C\Λ(π,π) and C\Λ(π−π/n,π−π/n).
Moreover, these continuations satisfy

H(z) = H
(
ξ(z)

)
, H̃ (z) = H̃

(
η(z)

)
, ∀z ∈ C, (14)

and

(15)
H(z) + H̃ (z) − xi0yj0(z) =

{0 if z /∈ Λ(π − π/n,π),

−∑
w∈Wn

(−1)l(w)xi0yj0
(
w(z)

)
if z ∈ Λ(π − π/n,π), (16)

where l(w) is the length of w, i.e. the smallest r for which we can write w = w1 ◦ · · · ◦wr , with w1, . . . ,wr equal to ξ

or η.
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Remark 10. As a consequence of Proposition 9, the generating functions h and h̃ can be continued as meromor-
phic functions from the unit disc up to C \ [1, x4] and C \ [1, y4] respectively. Indeed, the formulas h(x) = H(z)

if x(z) = x and h̃(y) = H̃ (z) if y(z) = y define h and h̃ not ambiguously, thanks to (14). Moreover, since we have
x(Λ(π,π)) = [1, x4] and y(Λ(π − π/n,π − π/n)) = [1, y4], see (10) and Fig. 4, the previous formulas yield mero-
morphic continuations on C \ [1, x4] and C \ [1, y4] respectively.

Proof of Proposition 9. To prove Proposition 9, we shall heavily use the decomposition (13), and precisely, we are
going to define H and H̃ piecewise, by defining them on each of the 2n domains D that appear in the decomposition
(13) to be equal to some functions HD and H̃D ; it will then suffice to show that the functions H and H̃ so-defined
satisfy the conclusions of Proposition 9.

∗ In D0 ⊂ {z ∈ C ∪ {∞}: |x(z)| ≤ 1, |y(z)| ≤ 1}, we are going to use the most natural way to define HD0 and
H̃D0 , i.e. their power series; so for z ∈ D0 we set HD0(z) = h(x(z)) and H̃D0(z) = h̃(y(z)).

∗ Then, for k ∈ {1, . . . , n − 1}, we define HD+
k

, H̃D+
k

on D+
k and HD−

k
, H̃D−

k
on D−

k by

∀z ∈ D+
k = ξ

(
D−

k−1

)
: HD+

k
(z) = HD−

k−1

(
ξ(z)

)
, H̃D+

k
(z) = −HD+

k
(z) + xi0yj0(z),

∀z ∈ D−
k = η

(
D+

k−1

)
: H̃D−

k
(z) = H̃D+

k−1

(
η(z)

)
, HD−

k
(z) = −H̃D−

k
(z) + xi0yj0(z).

∗ At last, for z ∈ Dn, we set HDn(z) = HD−
n−1

(ξ(z)) and H̃Dn(z) = H̃D+
n−1

(η(z)).

Therefore we have, for each of the 2n domains D of the decomposition (13), defined two functions HD and H̃D .
Then, as said at the beginning of the proof, we set H(z) = HD(z) and H̃ (z) = H̃D(z) for all z ∈ D and for all
domains D that appear in (13).

With this construction, (14) and (15) are immediately obtained. In order to prove (16), we can use the fact that it is
possible to express all the functions HD , H̃D in terms of HD0 , H̃D0 and xi0yj0 only; we give, e.g., the expression of
HD+

2k
, for any 2k ∈ {1, . . . , n}:

HD+
2k

(z) = −H̃D0

(
(η ◦ ξ)k(z)

) +
k−1∑
p=0

xi0yi0
(
ξ ◦ (η ◦ ξ)p(z)

) −
k−1∑
p=1

xi0yi0
(
(η ◦ ξ)p(z)

)
, (17)

as well as that of H̃D−
2k

, for any 2k ∈ {1, . . . , n}:

H̃D−
2k

(z) = −HD0

(
(ξ ◦ η)k(z)

) +
k−1∑
p=0

xi0yi0
(
η ◦ (ξ ◦ η)p(z)

) −
k−1∑
p=1

xi0yi0
(
(ξ ◦ η)p(z)

)
. (18)

As a consequence, we get Eq. (16) for even values of n. Indeed, for this it is actually sufficient first to add HDn(z)

and H̃Dn(z), in other words the equalities (17) and (18) above for k = n/2, then to notice that if n is even, (ξ ◦η)n/2 =
(η ◦ ξ)n/2, next to use that for z ∈ Dn, HD0((ξ ◦ η)n/2(z)) + H̃D0((ξ ◦ η)n/2(z)) = xi0yj0((ξ ◦ η)n/2(z)), see (15), and
finally to notice that Wn equals{

1, ηξ, . . . , (ηξ)n/2−1, ξη, . . . , (ξη)n/2−1, ξ, . . . , ξ(ηξ)n/2−1, η, . . . , η(ξη)n/2−1, (ξη)n/2}.
Likewise, we could write the expressions of

HD−
2k

, H̃D+
2k

, HD+
2k+1

, H̃D+
2k+1

, HD−
2k+1

, H̃D−
2k+1

,

in terms of HD0 , H̃D0 and xi0yj0 and we would verify that Eq. (16) is still true for odd n. Proposition 9 is proven. �

Remark 11. We can now explain precisely why the assumption (H3) dealing with the values of the transition proba-
bilities is both natural and necessary for our study.
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If we suppose (H1) but no more (H3), then the uniformization (9) is the same, with z0 = −[2p1,−1]1/2 + ı[2p1,0]1/2.
The transformations (10) of the important cycles through the uniformization are also still valid and the automor-
phism ξ is yet again equal to ξ(z) = 1/z. As for η, it equals η(z) = z2

0/z; in particular, the group of the random walk

W = 〈ξ, η〉 is finite if and only if there exists an integer p such that z
2p

0 = 1. In this case, if n denotes the smallest of
these positive integers p, the group W is then of order 2n.

If a such n does not exist, then there is no hope to find a fundamental domain for the action of the group W , neither
to obtain any equality like (16).

If a such n exists, then by using the fact that z2n
0 = 1, in other words the fact that (−[2p1,−1]1/2 +ı[2p1,0]1/2)2n = 1,

we immediately obtain that p1,0 = sin(qπ/n)2/2, for some integer q having a greatest common divisor with n equal
to 1.

In this last case, we have z0 = − exp(−ıqπ/n); it is then easily proven that the domain bounded by the cycles
x−1([1, x4]) and y−1([1, y4]), namely Λ(arg(z0),π) = Λ(π − qπ/n,π), is a fundamental domain for the action of
W if and only if q = 1. In particular, having an equality like (16) is possible if and only if q = 1, see the proof of
Proposition 9.

But it turns out that having an equality like (16) is essential in what follows, particularly in Section 4, where
we have to know very precisely the behavior of H(z) + H̃ (z) − xi0yj0(z) near 0 and ∞. In the general case, the
formulations of H and H̃ – as solutions of boundary value problems – are so complex that we are not able to pursue
the analysis.

For all these reasons, we assume here that p1,0 = sin(π/n)2/2 for some integer n, in other words nothing else but
(H3).

3. Harmonic functions

Section 3 aims at introducing and studying a certain harmonic function associated with the process, which will be of
the highest importance in the forthcoming Section 4.

It turns out that this harmonic function will be obtained from the expansion near 0 of
∑

w∈Wn
(−1)l(w)xi0yj0(w(z)),

quantity which is appeared in (16); this is why we begin here by studying closely the behavior of the latter sum in the
neighborhood of 0.

Note first that thanks to the expression (12) of the automorphisms ξ and η, we have

∑
w∈Wn

(−1)l(w)xi0yj0
(
w(z)

) =
n−1∑
k=0

[
xi0yi0

(
exp(−2ıkπ/n)z

) − xi0yi0
(
exp(−2ıkπ/n)/z

)]
. (19)

Let us now take the following notations for the expansion at 0 of the function xi0yj0 :

xi0yi0(z) =
∑
p≥0

κp(i0, j0)z
p, (20)

and notice that with (9), we obtain that for z close to 0,

xi0yi0(1/z) =
∑
p≥0

κp(i0, j0)z
p. (21)

In a general setting, if f is holomorphic in a neighborhood of 0 with expansion f (z) = ∑
p≥0 fpzp , then∑n−1

k=0 f (exp(−2ıkπ/n)z) = ∑n−1
k=0 f (exp(2ıkπ/n)z) = ∑

p≥0 nfnpznp .
This is why, by using (20) and (21), we obtain that the sum (19) is equal to

∑
w∈Wn

(−1)l(w)xi0yj0
(
w(z)

) =
∑
p≥1

n
[
κnp(i0, j0) − κnp(i0, j0)

]
znp. (22)
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We are now going to be interested in the term corresponding to p = 1 in the sum (22), and we set

fn(i0, j0) = n
κn(i0, j0) − κn(i0, j0)

(−1)nı
. (23)

We are now going to prove Proposition 5, but before we study some of its consequences.

Corollary 12. The Doob fn-transform process of (X,Y ) never hits the boundary.

Remark 13. The function fn defined in (23) is quite explicit. Indeed, by using the Cauchy product, κn (and therefore
also fn via (23)) can be written in terms of the coefficients of the expansions of x and y at 0, and these coefficients
are easily calculated, see Eq. (25). We don’t know the factorized expression of fn for general values of n. However,
we have given in Section 1.3, as examples, the factorized forms of f3, f4 and f6.

Remark 14. The explicit expression and the harmonicity of the function f4 have already been obtained by Biane in
[4].

The quantity f4(i0, j0) also appears as a multiplicative factor in the asymptotic tail distribution of the hitting time
of the boundary of Z

2+ for the process (X,Y ) associated with n = 4 and starting from the initial state (i0, j0). Indeed,
in [9,27], denoting by τ = inf{k ≥ 0: X(k) = 0 or Y(k) = 0}, it is proven that P(i0,j0)[τ > k] ∼ Cf4(i0, j0)/k2, where
C > 0.

In particular, we can specify Corollary 12 in the case n = 4. Indeed, using the following equality for l < k (obtained
from the strong Markov property of the process (X,Y )):

P(i0,j0)

[(
X(l), Y (l)

) = (i, j)|τ > k
] = P(i0,j0)

[(
X(l), Y (l)

) = (i, j)
]P(i,j)[τ > k − l]

P(i0,j0)[τ > k] ,

the asymptotic of [9,27] yields that the Doob f4-transform process is equal in distribution to the limit as k → ∞ of
the process conditioned on the event [τ > k].

Remark 15. Let n ≥ 3. Proposition 5 gives that there exists at least one positive harmonic function for the process
(X,Y ). Corollary 3 entails that fn is in fact the unique – up to the positive multiplicative constants – positive harmonic
function for (X,Y ).

Proof of Proposition 5. The fact that fn takes real values is immediate from its definition. For the rest of the proof
of (i), we are going to use the following straightforward fact: for any f (z) = 1 +∑

p≥1 fp,1z
p , note 1 +∑

p≥1 fp,iz
p

the expansion at 0 of f (z)i ; then fp,i is a polynomial of degree equal or less than p in i, with dominant term equal to
f

p

1,1i
p/p!. In particular, fp,i is of degree exactly p if and only if f1,1 �= 0.

In our case, it is immediate from (9) that κ1(1,0) = −4 cos(π/n) �= 0 and κ1(0,1) = −4 exp(ıπ/n) �= 0. This is
why, for any non-negative integer p, κp(i,0) is a polynomial of degree p in i; likewise, κp(0, j) is a polynomial of
degree p in j . In particular, κn(i, j) = ∑n

p=0 κp(0, j)κn−p(i,0) is a polynomial in i, j of degree n, with dominant
term equal to

n∑
p=0

κ1(0,1)p

p! jp κ1(1,0)n−p

(n − p)! in−p.

In this way, we obtain that fn is a polynomial in i, j of degree n, with dominant term equal to (after simplification)

22n+1

(n − 1)!
n−1∑
p=1

C
p
n sin(pπ/n) cos(π/n)n−pjpin−p. (24)

Assertion (i) follows then immediately.
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To prove (ii), it is enough to show that κn is harmonic. To show that, start by using the obvious equal-
ity xi−1yj−1(z)Q(x(z), y(z)) = 0, which reads xiyj (z) = p1,0x

i+1yj (z) + p1,0x
i−1yj (z) + p1,−1x

i+1yj−1(z) +
p1,−1x

i−1yj+1(z). Then, (20) yields that

∑
p≥0

[
κp(i, j) − p1,0κp(i + 1, j) − p1,0κp(i − 1, j) − p1,−1κp(i + 1, j − 1) − p1,−1κp(i − 1, j + 1)

]
zp

is identically zero; this means that all the κp , p ≥ 0, are harmonic, hence in particular κn.
In order to prove (iii), we need to know explicitly the expansions of x and y at 0. From (9), we immediately obtain

these expansions:

x(z) = 1 + 4

tan(π/n)

∑
p≥1

(−1)p sin(pπ/n)zp, y(z) = 1 + 4
∑
p≥1

(−1)pp exp(ıpπ/n)zp. (25)

We show now the first part of (iii), namely the fact that fn(i,0) = 0 for all non-negative integer i. As it can be
noticed from (25), the coefficients of x are real. For this reason, for all integers i and p, κp(i,0) is also real and thus
fp(i,0) = 0; in particular, fn(i,0) = 0.

As for the second part of (iii), namely the fact that for all j ≥ 0, fn(0, j) = 0, we prove that κn(0, j) is real –
however, it isn’t true that for all j and p, κp(0, j) is real.

In order to obtain κp(0, j) – that is, the pth coefficient of the Taylor series of y(z)j – we add all the terms of the
form κp1(0,1)κp2(0,1)×· · ·×κpj

(0,1) with p1 +· · ·+pj = p, this is nothing else but the Cauchy’s product of the j

series y(z). In other words, using (25), we add terms of the form p1 ×· · ·×pj (−1)p1+···+pj exp(ı[p1 +· · ·+pj ]π/n).
As a consequence, κp(0, j) can be written as ϕp(j)(−1)p exp(ıpπ/n), with ϕp(j) > 0 if j > 0.

In the particular case p = n, we obtain κn(0, j) = −ϕn(j)(−1)n; κn(0, j) is therefore real and, immediately,
fn(0, j) = 0.

We prove now (iv). With (25), it is clear that the sequence κ0(1,0), . . . , κn−1(1,0) is alternating, in the sense that
for all p ∈ {0, . . . , n − 1}, (−1)pκp(1,0) > 0. In particular, it follows from general results on power series that the
sequence κ0(i,0), . . . , κn−1(i,0) is still alternating, for any i > 0.

In addition, by using the Cauchy’s product of x(z)i and y(z)j , we obtain that κn(i, j) = κn(i,0) + κn(0, j) +∑n−1
p=1(−1)p exp(ıpπ/n)ϕp(j)κn−p(i,0). Then, by definition of fn(i, j) and by using the fact that κn(i,0) and

κn(0, j) are real, we get

fn(i, j) = 2n(−1)n
n−1∑
p=1

(−1)p sin(pπ/n)ϕp(j)κn−p(i,0).

But we have already proven that ϕp(j) > 0 if j > 0 and that (−1)n−pκn−p(i,0) > 0 if i > 0; above, fn is thus written
as the sum of n − 1 positive terms, and is, therefore, positive. �

Proof of Proposition 7. Recall that h(ρ exp(ıθ)) = ρn sin(nθ), see Section 1.3. Setting u = ρ cos(θ) and v = ρ sin(θ)

then yields:

h(u, v) =
(n−1)/2∑

p=0

C
2p+1
n (−1)pun−(2p+1)v2p+1.

Next we easily check that up to a multiplicative constant, h(φ(i0, j0)) equals the dominant term of fn(i0, j0), namely
(22n+1/(n − 1)!)∑n−1

p=1 C
p
n sin(pπ/n) cos(π/n)n−pi

p

0 j
n−p

0 , see (24). �

Proof of Proposition 6. Since fn is a polynomial of degree exactly n, see (i) of Proposition 5, it is clearly enough
to prove that for n ≥ 5, fn(2,2)/fn(1,1) �= 2n. For this we shall find both fn(1,1) and fn(2,2) in terms of n, it will
then be manifest that fn(2,2)/fn(1,1) �= 2n.
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Let us first prove that fn(1,1) = 8n3/ tan(π/n). The Cauchy product of x(z) by y(z) and the use of (25) yields

κn(1,1) = 4(−1)n+1n + [
16(−1)n/ tan(π/n)

] n−1∑
p=1

p exp(ıpπ/n) sin
(
(n − p)π/n

)
.

Using then the exponential expression of sin((n − p)π/n) as well as the identity
∑n−1

p=1 pxp = [nxn(x − 1) − x(xn −
1)]/[(x − 1)2] applied to x = exp(2ıπ/n) entails:

κn(1,1) = 4(−1)n+1n + [
8(−1)n/

(
ı tan(π/n)

)][−n(n − 1)/2 + n exp(−ıπ/n)/
(
2ı sin(π/n)

)]
.

Using (23) finally gives the announced value of fn(1,1).
Thanks to calculations of the same kind than for fn(1,1), we reach the conclusion that fn(2,2) = (16/3)n3[n2 +

2−6/ tan(π/n)2]/[sin(π/n)2 tan(π/n)]. Then it becomes obvious that for n ≥ 5, fn(2,2)/fn(1,1) �= 2n, which com-
pletes the proof of Proposition 6. �

4. Asymptotic of the Green functions

Sketch of the proof of Theorem 1

We shall begin by expressing Gi,j as a double integral, using for this Cauchy’s formulas and (6), see Eq. (26). Then
we will make the change of variable given by the uniformization (9) and we will apply the residue theorem; in this
way, we will write Gi,j as the sum Gi,j,1 + Gi,j,2 of two single integrals w.r.t. the uniformization variable but on two
contours a priori different, see (27) and (28). Then we will show, using Cauchy’s theorem and Proposition 9, that it
is possible to move these contours of integration until having the same contours for both integrals Gi,j,1 and Gi,j,2.
Finally, by using (16) we will obtain (29), which is the most important explicit formulation of the Gi,j , starting from
which we will get their asymptotic. In (29), Gi,j will be written as an integral on the contour exp(ıθ)R+ ∪ {∞}, for
some θ ∈ [π − π/n,π].

After having chosen an appropriate value of θ ∈ [π − π/n,π], see (31), we will see that this is quite normal to
decompose the contour into three parts, namely a neighborhood of 0, one of ∞ and an intermediate part. Indeed, the
function x(z)iy(z)j that appears in the integrand of (29) is, on the contour exp(ıθ)R+ ∪ {∞}, close to 1 near 0,∞
and strictly larger than 1 elsewhere. Next, we will study successively these contributions in three paragraphs, using
for this essentially the Laplace’s method, what will conclude the proof of Theorem 1.

Beginning of the proof of Theorem 1

Eq. (6) yields immediately that the generating function G of the Green functions is holomorphic in {(x, y) ∈
C

2: |x| < 1, |y| < 1}. As a consequence and using again Eq. (6), the Cauchy’s formulas allow us to write its co-
efficients Gi,j as the following double integrals:

Gi,j = 1

[2πı]2

∫ ∫
|x|=1
|y|=1

G(x,y)

xiyj
dx dy = 1

[2πı]2

∫ ∫
|x|=1
|y|=1

h(x) + h̃(y) − xi0yj0

xiyjQ(x, y)
dx dy, (26)

where the circles {|x| = 1} = {|y| = 1} = {exp(ıθ): θ ∈ [0,2π[} are orientated according to the increasing values of θ .
With (26), we can thus write Gi,j as the sum Gi,j = Gi,j,1 + Gi,j,2, where

Gi,j,1 = 1

[2πı]2

∫
|x|=1

h(x)

xi

∫
|y|=1

dy

yjQ(x, y)
dx,

Gi,j,2 = 1

[2πı]2

∫
|y|=1

h̃(y)

yj

∫
|x|=1

dx

xiQ(x, y)
dy + 1

[2πı]2

∫
|y|=1

1

yj−j0

∫
|x|=1

dx

xi−i0Q(x,y)
dy.
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Fig. 6. Change of the contours of integration in the integrals (27) and (28).

We are now going to make in Gi,j,1 the change of variable x = x(z). For this, we notice that if Λ(π/2,π/2) =
{ıt : t ∈ [0,∞]} is orientated according to increasing values of t , then the equality x(Λ(π/2,π/2)) = −{|x| = 1}
holds – in the sense of the orientated contours – see (10) and Fig. 4. In this way and using in addition the identity
q(x(z)) = H(z), we get

Gi,j,1 = − 1

[2πı]2

∫
Λ(π/2,π/2)

H(z)

x(z)i

∫
|y|=1

dy

yjQ(x(z), y)
x′(z)dz.

But Q(x(z), y) = 0 if and only if y ∈ {y(z), x(z)2/y(z)}, see (11). Moreover, if z belongs to Λ(π/2,π/2) \ {0,∞},
then |y(z)| > 1, see Fig. 4. The residue theorem at infinity therefore entails that for such z,

∫
|y|=1 dy/[yjQ(x(z),

y)] = −2πı[y(z)j ∂yQ(x(z), y(z))]. Finally, we have proven that

Gi,j,1 = 1

2πı

∫
Λ(π/2,π/2)

H(z)

x(z)iy(z)j

x′(z)
∂yQ(x(z), y(z))

dz. (27)

A similar reasoning yields

Gi,j,2 = − 1

2πı

∫
Λ(−π/2−π/n,−π/2−π/n)

H̃ (z) − x(z)i0y(z)j0

x(z)iy(z)j

y′(z)
∂xQ(x(z), y(z))

dz. (28)

We are now going to explain why it is possible to move the contours of integration of both integrals (27) and (28)
up to Λ(θ, θ), for any θ ∈ [π − π/n,π] – see Fig. 6 below.

Start by considering Gi,j,1 in (27). Thanks to Cauchy’s theorem, it is sufficient to show that the integrand of Gi,j,1
is holomorphic inside of Λ(π/2,π), domain which is horizontally hatched on Fig. 6; let us thus prove this fact.

On one hand, with (1) and (9), on the domain Λ(π/2,π) we get x′(z)/∂yQ(x(z), y(z)) = −ı/(2[p1,0p1,−1]1/2z),
and the latter function has manifestly no pole. On the other hand, it is possible to deduce from the proof of Propo-
sition 9 that the only poles of H are at z0 and z0. In particular, using (9), we obtain that for i or j large enough,
H(z)/[x(z)iy(z)j ] has no pole in Λ(π/2,π). Therefore, for i or j large enough, the integrand of Gi,j,1 has no pole
in Λ(π/2,π) and we can thus move the contour from Λ(π/2,π/2) to Λ(θ, θ), for any θ ∈ [π/2,π]. Note that it
isn’t possible to move the contour beyond Λ(π,π), since Λ(π,π) is a singular curve for H – indeed, remember that
Λ(π,π) = x−1([1, x4]) and see Proposition 9.

By similar considerations, we obtain that it is possible to move the initial contour of integration of Gi,j,2 up to
Λ(θ, θ), for any θ ∈ [π − π/n,3π/2 − π/n].

In particular, if we wish to have the same contour of integration for Gi,j,1 and Gi,j,2, we can choose Λ(θ, θ), for
any θ ∈ [π − π/n,π] = [π/2,π] ∩ [π − π/n,3π/2 − π/n].

Using then the equality x′(z)/∂yQ(x(z), y(z)) = −y′(z)/∂xQ(x(z), y(z)), that comes from differentiating
Q(x(z), y(z)) = 0, as well as (27), (28) and (16) – we can use (16) since θ ∈ [π − π/n,π] and thus Λ(θ, θ) ⊂
Λ(π − π/n,π) – we obtain the following final explicit formulation for Gi,j , θ being any angle in [π − π/n,π]:

Gi,j = 1

4π[p1,0p1,−1]1/2

∫
Λ(θ,θ)

[
1

z

∑
w∈Wn

(−1)l(w)xi0yj0
(
w(z)

)] 1

x(z)iy(z)j
dz. (29)
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On the contour Λ(θ, θ) ⊂ Λ(π − π/n,π), the modulus of the function x(z)iy(z)j is larger than 1, see Fig. 4.
Moreover, it goes to 1 when and only when z goes to 0 or to ∞. This is why it seems normal to decompose the
contour Λ(θ, θ) into a part near 0, another near ∞ and the residual part, and to think that the parts near 0 and ∞
will lead to the asymptotic of Gi,j , while the residual part will lead to a negligible contribution. But how to find the
best contour in order to achieve this idea? In other words, how to find the value of θ ∈ [π − π/n,π] for which the
calculation of the asymptotic of (29) will be the easiest?

For this, we are going to consider with details the function x(z)iy(z)j , or equivalently

χj/i(z) = ln
(
x(z)

) + (j/i) ln
(
y(z)

)
.

Incidentally this is why, from now on, we suppose that j/i ∈ [0,M], for some M < ∞. Indeed, the function
χj/i is manifestly not adapted to the values j/i going to ∞; for such j/i, we will consider, later, the function
(i/j)χj/i(z) = (i/j) ln(x(z)) + ln(y(z)). Nevertheless, M can be so large as wished and in what follows, we assume
that some M > 0 is fixed.

With (9), we easily obtain the explicit expansion of χj/i at 0:

χj/i(z) =
∑
p≥0

ν2p+1(j/i)z2p+1, ν2p+1(j/i) = 2

2p + 1

[
z

2p+1
0 + z0

2p+1 + 2(j/i)z0
2p+1]. (30)

Likewise, again with (9), we get that for z near ∞, χj/i(z) = ∑∞
p=0 ν2p+1(j/i)1/z2p+1.

Consider now the steepest descent path associated with χj/i , in other words the function zj/i(t) defined by
χj/i(zj/i(t)) = t . By inverting the latter equality, we easily obtain that the half-line (1/ν1(j/i))R+ ∪ {∞} is tan-
gent at 0 and at ∞ to this steepest descent path.

Let us now set

ρj/i = 1/ν1(j/i) = 1/
[
2
(
z0 + z0 + 2(j/i)z0

)]
. (31)

With this notation, we now answer the question asked above, that dealt with the fact of finding the value of θ for
which the asymptotic of the Green functions (29) will be the most easily calculated: we choose θ = arg(ρj/i) – note
that, from the definition of z0 and (31), we immediately obtain that arg(ρj/i) ∈ [π−π/n,π] – and the decomposition
of the contour Λ(θ, θ) is

Λ
(
arg(ρj/i), arg(ρj/i)

) = (
ρj/i/|ρj/i |

)[0, ε] ∪ (
ρj/i/|ρj/i |

)]ε,1/ε[∪ (
ρj/i/|ρj/i |

)[1/ε,∞].
According to this decomposition and to (29), we consider now Gi,j as the sum of three terms and we are going to
study successively the contribution of each of these terms.

Contribution of the neighborhood of 0

In order to evaluate the asymptotic of the integral (29) on the contour (ρj/i/|ρj/i |)[0, ε], we are going to use the
expansion at 0 of the function

1

z

∑
w∈Wn

(−1)l(w)xi0yj0
(
w(z)

)
.

This is why we begin here by studying the asymptotic of the following integral:∫
(ρj/i/|ρj/i |)[0,ε]

zk

x(z)iy(z)j
dz, (32)

k being some non-negative integer. Using the equality 1/[x(z)iy(z)j ] = exp(−iχj/i(z)) as well as the expansion (30)
of χj/i at 0 and then making the change of variable z = ρj/i t , we obtain that (32) is equal to

ρk+1
j/i

∫ ε/|ρj/i |

0
tk exp(−it) exp

(
−i

∑
p≥1

ν2p+1(j/i)(ρj/i t)
2p+1

)
dt. (33)
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But thanks to (30), |ν2p+1(j/i)| ≤ 4(M+1) and therefore for all t ∈ [0, ε/|ρj/i |], we have |−i
∑∞

p=1 ν2p+1(j/i)×
(ρj/i t)

2p+1| ≤ iε34(M + 1)/(1 − ε2). This is why

exp

(
−i

∑
p≥1

ν2p+1(j/i)(ρj/i t)
2p+1

)
= 1 + O

(
iε3),

the O above being independent of j/i ∈ [0,M] and of t ∈ [0, ε/|ρj/i |]. The integral (33) can thus be calculated as

ρk+1
j/i

[
1 + O

(
iε3)] ∫ ε/|ρj/i |

0
tk exp(−it)dt = (ρj/i/i)k+1[1 + O

(
iε3)] ∫ iε/|ρj/i |

0
tk exp(−t)dt.

In the sequel, we choose ε = 1/i3/4, so that iε/|ρj/i | → ∞ and O(iε3) = O(1/i5/4).
One could be surprised by this choice of ε; in fact, in the upcoming paragraph “Conclusion,” we will see that in

order to obtain the asymptotic of the Green functions along the paths of states (i, j) ∈ Z
2+ such that j/i → tan(γ ) ∈

]0,∞[, it would have been sufficient to have O(iε3) = o(1), but for the paths (i, j) ∈ Z
2+ such that j/i → 0, it is

necessary to have O(iε3) = o(1/i), what affords the choice ε = 1/i3/4.
Finally, we obtain that for this choice of ε, the integral (32) is equal to

∫
(ρj/i/|ρj/i |)[0,ε]

zk

x(z)iy(z)j
dz = (ρj/i/i)k+1k![1 + O

(
1/i5/4)], (34)

where the O is independent of j/i ∈ [0,M].
We are presently ready to obtain the asymptotic of the integral (29) on the contour (ρj/i/|ρj/i |)[0, ε]. First, in

accordance with (22), we have that this integral equals

1

4π[p1,0p1,−1]1/2

∑
p≥1

n
[
κnp(i0, j0) − κnp(i0, j0)

] ∫
(ρj/i/|ρj/i |)[0,ε]

znp−1

x(z)iy(z)j
dz.

Thus clearly, with (34), we obtain that all the terms corresponding in the sum above to p ≥ 2 will be negligible
w.r.t. the one associated with p = 1. In addition, by using the definition (23) of the harmonic function fn as well as
(34) for k = pn − 1 and p ≥ 1, we get that the integral (29) on the contour (ρj/i/|ρj/i |)[0, ε] is equal to

1

4π[p1,0p1,−1]1/2
(−1)n(n − 1)!fn(i0, j0)ı(ρj/i/i)n

[
1 + O

(
1/i5/4)]. (35)

Contribution of the neighborhood of ∞

The part of the contour close to ∞, namely (ρj/i/|ρj/i |)[1/ε,∞], is related to the part (ρj/i/|ρj/i |)[0, ε] via the
transformation z �→ 1/z. Moreover, it is clear from (9) that for f = x, f = y or f = ∑

w∈Wn
(−1)l(w)xi0yj0(w),

f (1/z) = f (z).

Therefore, the change of variable z �→ 1/z immediately gives us that the contribution of the integral (29) near ∞ is
the complex conjugate of its contribution near 0.

Contribution of the intermediate part

Let Aε be the annular domain {z ∈ C: ε ≤ |z| ≤ 1/ε}. According to Fig. 4, for all z ∈ Λ(π − π/n,π) ∩ Aε we have
|x(z)| > 1 + ηx,ε and |y(z)| > 1 + ηy,ε , where ηx,ε > 0 and ηy,ε > 0. In fact, since x′(0) �= 0 and y′(0) �= 0, we can
take ηx,ε > ηε and ηy,ε > ηε for some η > 0 independent of ε small enough.
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Let us now consider

L = sup
z∈Λ(π−π/n,π)

∣∣∣∣
[ ∑

w∈Wn

(−1)l(w)xi0yj0
(
w(z)

)]/[
xi0yj0(z)

]∣∣∣∣,
and let us show that L is finite. For this, it is enough to prove that the function s, defined by s(z) =
[∑w∈Wn

(−1)l(w)xi0yj0(w(z))]/[xi0yj0(z)], has no pole in Λ(π − π/n,π) – including ∞. But by using (9) and
(12), we see that the only poles of the numerator of s are the z0 exp(2ıpπ/n) for p ∈ {0, . . . , n − 1}. Among these
n points, only z0 is in Λ(π − π/n,π). But in s, we have taken care of dividing by xi0yj0(z), so that s is in fact
holomorphic near z0. Moreover, it is easily shown that s is holomorphic at ∞. Finally, we have proven that s has no
pole in Λ(π − π/n,π), hence s is bounded in Λ(π − π/n,π); in other words, L is finite.

The modulus of the contribution of (29) on the intermediate part (ρj/i/|ρj/i |)]ε,1/ε[⊂ Λ(π − π/n,π) ∩ Aε can
therefore be bounded from above by

1

4π[p1,0p1,−1]1/2

1

ε2

L

(1 + ηε)i−i0(1 + ηε)j−j0
. (36)

Note that the presence of the term 1/ε2 in (36) is due to the following: one 1/ε appears as an upper bound of the
length of the contour, while the other 1/ε comes from an upper bound of the modulus of the term 1/z present in the
integrand of (29).

Then as before we take ε = 1/i3/4, and then we use the following straightforward upper bound, valid for i

large enough: 1/[1 + η/i3/4]i ≤ exp(−[η/2]i1/4). We finally obtain that for i large enough, (36) is equal to
O(i3/2 exp(−[η/2]i1/4)).

Conclusion

We have seen that the contribution of the integral (29) in the neighborhood of 0 is given by (35), that the contribution
of (29) in the neighborhood of ∞ is equal to the complex conjugate of (35) and that the contribution of the residual
part can be written as O(i3/2 exp(−[η/2]i1/4). Therefore, with (29) and (35), we obtain that

Gi,j = 1

4π[p1,0p1,−1]1/2
(−1)n(n − 1)!fn(i0, j0)ı

[
(ρj/i/i)n − (ρj/i/i)n

] + O
(
1/in+5/4). (37)

Moreover, starting from (31), we easily derive

(ρj/i/i)n − (ρj/i/i)n = 2ı(−1)n+1

4n

sin(n arctan((j/i)/(1 + j/i) tan(π/n)))

[cos(π/n)2(i2 + 2ij) + j2]n/2
.

The latter equality, (37) and Remark 2 conclude the proof of Theorem 1 in the case of γ ∈ [0,π/2[.
∗ Note that having o(1/in) instead of O(1/in+5/4) would have been sufficient for γ ∈ ]0,π/2[, since in this

case, Remark 2 implies that (ρj/i/i)n − (ρj/i/i)n ∼ Kγ /in with Kγ �= 0.
∗ On the other hand, if γ = 0 then (ρj/i/i)n − (ρj/i/i)n ∼ K0j/in+1 with K0 �= 0 and it is necessary to have

something like o(1/in+1) in (37), as it is actually the case with O(1/in+5/4).

To prove Theorem 1 in the case γ = π/2, we would consider (i/j)κj/i rather than κj/i and we would then use
exactly the same analysis; we omit the details.
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