
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2012, Vol. 48, No. 3, 609–630
DOI: 10.1214/11-AIHP428
© Association des Publications de l’Institut Henri Poincaré, 2012

Stationary distributions for jump processes with memory

K. Burdzya,1, T. Kulczyckib,c,2 and R. L. Schillingd,3

aDepartment of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA. E-mail: burdzy@math.washington.edu
bInstitute of Mathematics, Polish Academy of Sciences, ul. Kopernika 18, 51-617 Wrocław, Poland. E-mail: t.kulczycki@impan.pl

cInstitute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
dInstitut für Mathematische Stochastik, TU Dresden, D-01062 Dresden, Germany. E-mail: rene.schilling@tu-dresden.de

Received 13 September 2010; revised 1 April 2011; accepted 7 April 2011

Abstract. We analyze a jump processes Z with a jump measure determined by a “memory” process S. The state space of (Z,S)

is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of (Z,S) is the product of the
uniform probability measure and a Gaussian distribution.

Résumé. Nous proposons d’étudier un processus à sauts Z avec une mesure de sauts déterminée par un processus S représentant
une “mémoire”. L’espace d’états de (Z,S) est le produit Cartesien du cercle trigonométrique et de l’axe réel. Nous démontrons
que la distribution stationnaire de (Z,S) est la mesure produit d’une loi uniforme et d’une loi Gaussienne.
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1. Introduction

We are going to find stationary distributions for processes with jumps influenced by “memory.” This paper is a com-
panion to [3]. The introduction to that paper contains a review of various sources of inspiration for this project, related
models and results.

We will analyze a pair of real-valued processes (Y,S) such that S is a “memory” in the sense that dSt = W(Yt )dt

where W is a C3 function. The process Y is a jump process “mostly” driven by a stable process but the process S

affects the rate of jumps of Y . We refer the reader to Section 2 for a formal presentation of this model as it is too long
for the introduction. The present article illustrates advantages of semi-discrete models introduced in [5] since the form
of the stationary distribution for (Y,S) was conjectured in [5], Example 3.8. We would not find it easy to conjecture
the stationary distribution for this process in a direct way.

The main result of this paper, i.e. Theorem 3.7, is concerned with the stationary distribution of a transformation of
(Y,S). In order to obtain non-trivial results, we “wrap” Y on the unit circle, so that the state space for the transformed
process is compact. In other words, we consider (Zt , St ) = (eiYt , St ). The stationary distribution for (Zt , St ) is the
product of the uniform distribution on the circle and the normal distribution.

The Gaussian distribution of the “memory” process appeared in models discussed in [2,3]. In each of those papers,
memory processes similar to S effectively represented “inert drift.” A heuristic argument given in the introduction

1Supported in part by NSF Grant DMS-09-06743 and by grant N N201 397137, MNiSW, Poland.
2Supported in part by grant N N201 373136, MNiSW, Poland.
3Supported in part by DFG grant Schi 419/5-1.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/11-AIHP428
mailto:burdzy@math.washington.edu
mailto:t.kulczycki@impan.pl
mailto:rene.schilling@tu-dresden.de


610 K. Burdzy, T. Kulczycki and R. L. Schilling

Table 1
Frequently used symbols

a ∨ b, a ∧ b max(a, b), min(a, b)

a+, a− max(a,0), −min(a,0)

|x|
�1

∑m
j=1 |xj | where x = (x1, . . . , xm) ∈ R

m

ek the kth unit base vector in the usual orthonormal basis for R
n

Aα α�( 1+α
2 ) 2α−1√

π�(1−α/2)
, α ∈ (0,2)

Dα ∂ |α|
∂x

α1
1 ···∂x

αd
d

, α = (α1, . . . , αd ) ∈ N
d
0

Ck k-times continuously differentiable functions
Ck

b
, Ck

c , Ck
0 functions in Ck which, together with all their derivatives up to order k, are “bounded,” are “compactly supported,” and “vanish

at infinity,” respectively
C∗(R2) all bounded and uniformly continuous functions f : R2 → R such that supp(f ) ⊂ R × [−N,N] for some N > 0
C∗(R2) C∗(R2) ∩ C2

b
(R2)

S {z ∈ C: |z| = 1} unit circle in C

to [3] provides a justification for the Gaussian distribution, using the concepts of kinetic energy associated to drift and
Gibbs measure. The conceptual novelty of the present paper is that the Gaussian distribution of S in the stationary
regime cannot be explained by kinetic energy because S affects the jump distribution and not the drift of Z.

The product form of the stationary distribution for a two-component Markov process is obvious if the two compo-
nents are independent Markov processes. The product form is far from obvious if the components are not independent
but it does appear in a number of contexts, from queuing theory to mathematical physics. The paper [5] was an attempt
to understand this phenomenon for a class of models. The unexpected appearance of the Gaussian distribution in some
stationary measures was noticed in [4] before it was explored more deeply in [2,5].

We turn to the technical aspects of the paper. The main effort is directed at determining the domain and a core of
the generator of the process. A part of the argument is based on an estimate of the smoothness of the stochastic flow
of solutions to (2.3).

1.1. Notation

Since the paper uses a large amount of notation, we collect some of the most frequently used symbols in Table 1, for
easy reference. Constants c without sub- or superscript are generic and may change their value from line to line.

2. The construction of the process and its generator

Let S = {z ∈ C: |z| = 1} be the unit circle in C. Consider a C3 function V : S → R such that
∫

S
V (z)dz = 0 and set

W(x) = V (eix), x ∈ R. Assume that V is not identically constant. In this paper we will be interested in the Markov
process (Yt , St ) with state space R

2 and generator G(Y,S) of the following form

G(Y,S)f (y, s) = −(−Δy)
α/2f (y, s) + Rf (y, s) + W(y)fs(y, s), (2.1)

with a domain that will be specified later. Here, (y, s) ∈ R
2, α ∈ (0,2) and

−(−Δy)
α/2f (y, s) = Aα lim

ε→0+

∫
|y−x|>ε

f (x, s) − f (y, s)

|y − x|1+α
dx,

Rf (y, s) =
∫ π+y

−π+y

(
f (x, s) − f (y, s)

)((
W(y) − W(x)

)
s
)
+ dx. (2.2)

Since −(−Δ)α/2, α ∈ (0,2), is the generator of the symmetric α-stable process on R, we may think of the process Yt as
the perturbed symmetric α-stable process and St as the memory which changes the jumping measure of the process Yt .
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The definition of (Y,S) is informal. Below we will construct this process in a direct way and we will show that this
process has the generator (2.1); see Proposition 2.4. Our construction is based on the so-called construction of Meyer;
see, e.g., [7,8] or [1], Section 3.1.

For any (y, s) ∈ R
2 let

g(y, s, x) = ((
W(y) − W(y + x)

)
s
)
+1(−π,π)(x), x ∈ R,

and ∥∥g(y, s, ·)∥∥1 =
∫ π

−π

((
W(y) − W(y + x)

)
s
)
+ dx.

Let g(y, s, x) := g(y, s, x)/‖g(y, s, ·)‖1 if ‖g(y, s, ·)‖1 �= 0. We let g(y, s, ·) be the delta function at 0 when
‖g(y, s, ·)‖1 = 0. If ‖g(y, s, ·)‖1 �= 0, we let Fy,s(·) denote the cumulative distribution function of a random vari-
able with density g(y, s, ·). If ‖g(y, s, ·)‖1 = 0, we let Fy,s(·) denote the cumulative distribution function of a random
variable that is identically equal to 0. We have

F−1
y,s (v) = inf

{
x ∈ R :

∫ x

−∞
g(y, s, z)

‖g(y, s, ·, )‖1
dz ≥ v

}
so for any v, the function (y, s) → F−1

y,s (v) is measurable. If U is a uniformly distributed random variable on (0,1),

then F−1
y,s (U ) has the density g(y, s, ·). Let (Un)n∈N be countably many independent copies of U and set ηn(y, s) =

F−1
y,s (Un).

Let X(t) be a symmetric α-stable process on R, α ∈ (0,2), starting from 0 and N(t) a Poisson process with
intensity 1. We assume that (Un)n∈N, X(·) and N(·) are independent.

Let 0 < σ1 < σ2 < · · · be the times of jumps of N(t). Consider any y, s ∈ R and for t ≥ 0 let

Y 1
t = y + Xt,

S1
t = s +

∫ t

0
W

(
Y 1

r

)
dr,

σ̂1(t) =
∫ t

0

∥∥g
(
Y 1

r , S1
r , ·)∥∥1 dr,

τ1 = inf
t≥0

{
σ̂1(t) = σ1

}
(inf ∅ = ∞).

Now we proceed recursively. If Y
j
t , S

j
t , σ̂j (t) are well defined on [0, τj ) and τj < ∞ then we define for t ≥ τj ,

Y
j+1
t = y + Xt +

j∑
n=1

ηn

(
Yn(τn−), Sn(τn−)

)
,

S
j+1
t = s + Sj (τj−) +

∫ t

τj −
W

(
Y

j+1
r

)
dr,

σ̂j+1(t) = τj +
∫ t

τj

∥∥g
(
Y

j+1
r , S

j+1
r , ·)∥∥1 dr,

τj+1 = inf
t≥τj

{
σ̂j+1(t) = σj+1

}
.

Let τ0 = 0 (Yt , St ) = (Y
j
t , S

j
t ) for τj−1 ≤ t < τj , j ≥ 1. It is easy to see that (Yt , St ) is defined for all t ≥ 0, a.s. If we

put σ(t) = ∫ t

0 ‖g(Yr , Sr , ·)‖1 dr then we can represent (Yt , St ) by the following closed-form expression,{
Yt = y + Xt + ∑N(σ(t))

n=1 ηn

(
Y(τn−), S(τn−)

)
,

St = s + ∫ t

0 W(Yr)dr.
(2.3)
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We define the semigroup {Tt }t≥0 of the process (Yt , St ) for f ∈ Cb(R
2) by

Ttf (y, s) = E
(y,s)f (Yt , St ), (y, s) ∈ R

2.

By G(Y,S) we denote the generator of {Tt }t≥0 and its domain by D(G(Y,S)). We will show in Proposition 2.4 that
C2∗(R2) ⊂ D(G(Y,S)) and that G(Y,S)f is given by (2.1) for f ∈ C2∗(R2), see Section 1.1 for the definition of C2∗(R2).

Our construction of (Yt , St ) is a deterministic map{
(Un)n∈N,

(
N(t)

)
t≥0,

(
X(t)

)
t≥0

} → {(
Y(t)

)
t≥0,

(
S(t)

)
t≥0

}
.

This easily implies the strong Markov property for (Y,S). We will verify that (Zt , St ) := (eiYt , St ) is also a strong
Markov process. We first show that the transition function of (Yt , St ) is periodic.

Lemma 2.1. Let (Yt , St ) be the Markov process defined by (2.3). Then

P
(y+2π,s)(Yt ∈ A + 2π, St ∈ B) = P

(y,s)(Yt ∈ A,St ∈ B)

for all (y, s) ∈ R
2 and all Borel sets A,B ⊂ R.

Proof. Let Xt be a symmetric α-stable process, starting from 0, α ∈ (0,2), and let N(t) be a Poisson process
with intensity 1. By (Y

y
t , Ss

t ) we denote the process given by (2.3) with initial value (Y
y

0 , Ss
0) = (y, s). The process

(Ỹt , S̃t ) := (Y
y+2π
t , Ss

t ) has the following representation

Ỹt = y + 2π + Xt +
N(σ̃ (t))∑

n=1

ηn

(
Ỹ (τ̃n−), S̃(τ̃n−)

)
,

S̃t = s +
∫ t

0
W(Ỹr )dr,

where σ̃ (t) = ∫ t

0 ‖g(Ỹr , S̃r , ·)‖1 dr and τ̃k = inft≥0{σ̃ (t) = σk}.
Note that for all x ∈ R,

g(y − 2π, s, x) = g(y, s, x) and, therefore,
∥∥g(y − 2π, s, ·)∥∥1 = ∥∥g(y, s, ·)∥∥1.

It follows that ηn(y − 2π, s) has the same distribution as ηn(y, s). Since the function W is periodic with period 2π,
we have W(Ỹr ) = W(Ỹr − 2π). Moreover, ‖g(Ỹr , S̃r , ·)‖1 = ‖g(Ỹr − 2π, S̃r , ·)‖1 and, ηn(Ỹ (τ̃n−), S̃(τ̃n−)) has the
same distribution as ηn(Ỹ (τ̃n−) − 2π, S̃(τ̃n−)). This means that we can rewrite the representation of (Y

y+2π
t , Ss

t ) in
the following way:

Ỹt = y + 2π + Xt +
N(σ̃ (t))∑

n=1

ηn

(
Ỹ (τ̃n−) − 2π, S̃(τ̃n−)

)
,

S̃t = s +
∫ t

0
W(Ỹr − 2π)dr,

where σ̃ (t) = ∫ t

0 ‖g(Ỹr − 2π, S̃r , ·)‖1 dr and τ̃k = inft≥0{σ̃ (t) = σk}.
By subtracting 2π from both sides of the first equation we get

Ỹt − 2π = y + Xt +
N(σ̃ (t))∑

n=1

ηn

(
Ỹ (τ̃n−) − 2π, S̃(τ̃n−)

)
,

S̃t = s +
∫ t

0
W(Ỹr − 2π)dr,
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Table 2
Notation for processes and their generators

Process Semigroup Generator and domain

(Yt , St ) Tt , t ≥ 0 (G(Y,S), D(G(Y,S)))

(Zt , St ) = (eiYt , St ) T S
t , t ≥ 0 (G, D(G))

(Ŷt , Ŝt ) = (Ŷ0 + Xt , Ŝ0 + ∫ t
0 W(Ŷr )dr) T̂t , t ≥ 0 (G(Ŷ ,Ŝ), D(G(Ŷ ,Ŝ)))

(Ẑt , Ŝt ) = (eiŶt , Ŝt ) T̂ S
t , t ≥ 0 (Ĝ, D(Ĝ))

with σ̃ (t) and τ̃k as before. Substituting Ŷt := Ỹt − 2π we see that this is the defining system of equations for the
process (Y

y
t , Ss

t ). Therefore, the processes (Y
y
t , Ss

t ) and (Y
y+2π
t , Ss

t ) have the same law. �

We can now argue exactly as in [3], Corollary 2.3, to see that (Zt , St ) = (eiYt , St ) is indeed a strong Markov
process. We define the transition semigroup of (Zt , St ) for f ∈ C0(S × R) by

T S
t f (z, s) = E

(z,s)f (Zt , St ), (z, s) ∈ S × R. (2.4)

The generator of {T S
t }t≥0 and its domain will be denoted G and D(G).

In the sequel we will need the following auxiliary processes

Ŷt = Ŷ0 + Xt,

Ŝt = Ŝ0 +
∫ t

0
W(Ŷr)dr,

Ẑt = eiŶt ,

where Xt is a symmetric α-stable Lévy process on R, α ∈ (0,2), starting from 0. We will use notation from Table 2.
We will now identify the generators of the processes (Yt , St ) and (Zt , St ) and link them with the generators of the

processes (Ŷt , Ŝt ) and (Ẑt , Ŝt ).

Proposition 2.2. Let (Yt , St ) be the process defined by (2.3) and let f ∈ C∗(R2). Then

lim
t→0+

Ttf − f

t
exists ⇐⇒ lim

t→0+
T̂t f − f

t
exists,

in the norm ‖ · ‖∞. If one, hence both, limits exist, then

lim
t→0+

Ttf − f

t
= lim

t→0+
T̂t f − f

t
+ Rf, (2.5)

where Rf is given by (2.2).

Corollary 2.3. We have

f ∈ D(G) ∩ Cc(S × R) ⇐⇒ f ∈ D(Ĝ) ∩ Cc(S × R).

If f ∈ D(G) ∩ Cc(S × R) then

Gf = Ĝf + RSf,

where

RSf (z, s) =
∫

S

(
f (w, s) − f (z, s)

)((
V (z) − V (w)

)
s
)
+ dw.



614 K. Burdzy, T. Kulczycki and R. L. Schilling

Proposition 2.4. Let (Yt , St ) be the process defined by (2.3). Then C2∗(R2) ⊂ D(G(Y,S)) and for f ∈ C2∗(R2) we have

G(Y,S)f (y, s) = −(−Δy)
α/2f (y, s) + Rf (y, s) + W(y)fs(y, s) (2.6)

for all (y, s) ∈ R
2 with Rf given by (2.2).

Moreover, C2∗(R2) ⊂ D(G(Ŷ ,Ŝ)) and for f ∈ C2∗(R2) we have

G(Ŷ ,Ŝ)f (y, s) = −(−Δy)
α/2f (y, s) + W(y)fs(y, s) (2.7)

for all (y, s) ∈ R2.

By Arg(z) we denote the argument of z ∈ C contained in (−π,π]. For g ∈ C2(S) let us put

Lg(z) = Aα lim
ε→0+

∫
S∩{|Arg(w/z)|>ε}

g(w) − g(z)

|Arg(w/z)|1+α
dw

+ Aα

∑
n∈Z\{0}

∫
S

g(w) − g(z)

|Arg(w/z) + 2nπ|1+α
dw, (2.8)

where dw denotes the arc length measure on S; note that
∫

S
dw = 2π. It is clear that for f ∈ C2

c (S × R), z = eiy ,
y, s ∈ R we have

−(−Δy)
α/2f̃ (y, s) = Lzf (z, s). (2.9)

Corollary 2.5. We have C2
c (S × R) ⊂ D(G) and for f ∈ C2

c (S × R) we have

Gf (z, s) = Lzf (z, s) + RSf (z, s) + V (z)fs(z, s)

for all (z, s) ∈ S × R, where L is given by (2.8).
We also have C2

c (S × R) ⊂ D(Ĝ) and for f ∈ C2
c (S × R) we have

Ĝf (z, s) = Lzf (z, s) + V (z)fs(z, s)

for all (z, s) ∈ S × R.

Remark 2.6. Proposition 2.4 shows that for f ∈ C2∗(R2) the generator of the process (Yt , St ) defined by (2.3) is of
the form (2.1). This is a standard result, the so-called “construction of Meyer,” but we include our own proof of this
result so that the paper is self-contained. Moreover, Proposition 2.2, Corollaries 2.3 and 2.5 are needed to identify a
core for G . Corollary 2.5 is also needed to find the stationary measure for (Zt , St ).

We will need two auxiliary results.

Lemma 2.7. There exists a constant c = c(M) > 0 such that for any x ∈ [−π,π] and any u1 = (y1, s1) ∈ R
2, u2 =

(y2, s2) ∈ R
2 with s1, s2 ∈ [−M,M] we have∣∣g(u1, x) − g(u2, x)

∣∣ ≤ c
(|u2 − u1| ∧ 1

)
.

Proof. From a+ = (a + |a|)/2 we conclude that |a+ − b+| ≤ |a − b| for all a, b ∈ R.
Let x ∈ [−π,π], u1 = (y1, s1) ∈ R

2, u2 = (y2, s2) ∈ R
2 and s1, s2 ∈ [−M,M]. We have∣∣g(u1, x) − g(u2, x)

∣∣
≤ ∣∣((W(y1) − W(y1 + x)

)
s1

)
+ − ((

W(y2) − W(y2 + x)
)
s2

)
+
∣∣
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≤ ∣∣(W(y1) − W(y1 + x)
)
s1 − (

W(y2) − W(y2 + x)
)
s2

∣∣
≤ ∣∣(W(y1) − W(y1 + x)

)
s1 − (

W(y1) − W(y1 + x)
)
s2

∣∣
+ ∣∣(W(y1) − W(y1 + x)

)
s2 − (

W(y2) − W(y2 + x)
)
s2

∣∣
≤ ∣∣W(y1) − W(y1 + x)

∣∣|s1 − s2| +
∣∣W(y1) − W(y2)

∣∣|s2|
+ ∣∣W(y1 + x) − W(y2 + x)

∣∣|s2|
≤ 2‖W‖∞|s1 − s2| + 2M

∥∥W ′∥∥∞|y1 − y2|.
Since, trivially, |g(u1, x) − g(u2, x)| ≤ 4‖W‖∞M , the claim follows with c = 4(‖W‖∞ + ‖W ′‖∞)(M + 1). �

As an easy corollary of Lemma 2.7 we get

Lemma 2.8. There exists a constant c = c(M) > 0 such that for any u1 = (y1, s1) ∈ R
2, u2 = (y2, s2) ∈ R

2 with
s1, s2 ∈ [−M,M] we have∣∣∥∥g(u1, ·)

∥∥
1 − ∥∥g(u2, ·)

∥∥
1

∣∣ ≤ c
(|u2 − u1| ∧ 1

)
.

Proof of Proposition 2.2. Let f ∈ C∗(R2). Throughout the proof we will assume that supp(f ) ⊂ R × (−M0,M0)

for some M0 > 0. Note that

|St | =
∣∣∣∣S0 +

∫ t

0
W(Yr)dr

∣∣∣∣ ≤ |S0| + ‖W‖∞ ≤ M0 + ‖W‖∞

for all starting points (Y0, S0) = (y, s) ∈ R × [−M0,M0] and all 0 ≤ t ≤ 1. Put

M1 = M0 + ‖W‖∞.

If (Y0, S0) = (y, s) /∈ R × [−M1,M1], then

|St | =
∣∣∣∣S0 +

∫ t

0
W(Yr)dr

∣∣∣∣ > M1 − ‖W‖∞ = M0, 0 ≤ t ≤ 1,

so f (Yt , St ) = 0. It follows that for any (y, s) /∈ R × [−M1,M1] and 0 < h ≤ 1 we have

E
(y,s)f (Yh,Sh) − f (y, s)

h
= 0.

By the same argument,

E
(y,s)f (Ŷh, Ŝh) − f (y, s)

h
= 0.

It now follows from the definition of Rf (y, s) that Rf (y, s) = 0 for (y, s) /∈ R × [−M1,M1]. It is, therefore, enough
to consider (y, s) ∈ R × [−M1,M1].

The arguments above tell us that for all starting points (Y0, S0) = (y, s) ∈ R × [−M1,M1] and all 0 ≤ t ≤ 1,
|St | ≤ |S0| + ‖W‖∞ ≤ M1 + ‖W‖∞. Setting

M = M1 + ‖W‖∞,

we get from the definition of the function g that∥∥g(Yr , Sr , ·)
∥∥

1 ≤ 2π2‖W‖∞M, 0 ≤ r ≤ 1,
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and so

σ(t) =
∫ t

0

∥∥g(Yr , Sr , ·)
∥∥

1 dr ≤ 4π‖W‖∞Mt = c0t, 0 ≤ t ≤ 1,

with the constant c0 = 4π‖W‖∞M .
From now on we will assume that (y, s) ∈ R × [−M1,M1] and 0 < h ≤ 1. We have

Thf (y, s) − f (y, s)

h
= E

(y,s)f (Yh,Sh) − f (y, s)

h

= 1

h
E

(y,s)
[
f (Yh,Sh) − f (y, s);N(

σ(h)
) = 0

]
+ 1

h
E

(y,s)
[
f (Yh,Sh) − f (y, s);N(

σ(h)
) = 1

]
+ 1

h
E

(y,s)
[
f (Yh,Sh) − f (y, s);N(

σ(h)
) ≥ 2

]
= I + II + III.

Since σ(h) ≤ c0h we obtain

|III| ≤ 2‖f ‖∞
h

P
(y,s)

[
N

(
σ(h)

) ≥ 2
] ≤ 2‖f ‖∞

h
P

(y,s)
[
N(c0h) ≥ 2

]
= 2‖f ‖∞

1 − e−c0h − c0he−c0h

h
−→
h→0+ 0

uniformly for all (y, s) ∈ R × [−M1,M1].
Now we will consider the expression I. We have

I = 1

h
E

(y,s)

[
f

(
y + Xh, s +

∫ h

0
W(y + Xr)dr

)
− f (y, s);N(

σ(h)
) = 0

]
= 1

h
E

(y,s)
[
f (Ŷh, Ŝh) − f (y, s);N(

σ(h)
) = 0

]
= 1

h
E

(y,s)
[
f (Ŷh, Ŝh) − f (y, s)

] − 1

h
E

(y,s)
[
f (Ŷh, Ŝh) − f (y, s);N(

σ(h)
) ≥ 1

]
= I1 + I2.

Note that

I1 = T̂hf (y, s) − f (y, s)

h
.

It will suffice to prove that I2 → 0 and II → Rf . We have

|I2| ≤ 1

h
E

(y,s)
[∣∣f (Ŷh, Ŝh) − f (y, s)

∣∣;N(c0h) ≥ 1
]

= 1 − e−c0h

h
E

(y,s)
[∣∣f (Ŷh, Ŝh) − f (y, s)

∣∣].
Recall that f ∈ C∗(R2) is bounded and uniformly continuous. We will use the following modulus of continuity

ε(f ; δ) = ε(δ) = sup
(y,s)∈R2

sup
|y1|∨|s1|≤δ

∣∣f (y + y1, s + s1) − f (y, s)
∣∣.
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Clearly, ε(δ) ≤ 2‖f ‖∞ and limδ→0+ ε(δ) = 0.
Note that for Ŷ0 = y, Ŝ0 = s we have Ŷh − y = Xh, Ŝh − s = ∫ h

0 W(Ŷr)dr which gives |Ŝt − s| ≤ h‖W‖∞ for all
t ≤ h. It follows that

E
(y,s)

[∣∣f (Ŷh, Ŝh) − f (y, s)
∣∣] ≤ E

(y,s)
[
ε
(

sup
0<t≤h

(|Xt | ∨ h‖W‖∞
))]

.

Since t �→ Xt is right-continuous and X0 ≡ 0 we have, a.s.,

sup
0<t≤h

|Xt | −→
h→0+ 0 and, therefore, ε

(
sup

0<t≤h

(|Xt | ∨ h‖W‖∞
)) −→

h→0+ 0.

By the bounded convergence theorem

E
(y,s)

[
ε
(

sup
0<t≤h

(|Xt | ∨ h‖W‖∞
))]

−→
h→0+ 0

uniformly for all (y, s) ∈ R × [−M1,M1] because the expression ε(sup0<t≤h |Xt | ∨ h‖W‖∞) does not depend on
(y, s). It follows that

|I2| −→
h→0+ 0

uniformly for all (y, s) ∈ R × [−M1,M1].
Now we turn to II. We have

II = 1

h
E

(y,s)
[
f (Yh,Sh) − f (Yh, s);N

(
σ(h)

) = 1
]

+ 1

h
E

(y,s)
[
f (Yh, s) − f (y, s);N(

σ(h)
) = 1

]
= II1 + II2.

Since σ(h) ≤ c0h

|II1| ≤ 1

h
E

(y,s)

[∣∣∣∣f (
Yh, s +

∫ h

0
W(Yr)dr

)
− f (Yh, s)

∣∣∣∣;N(c0h) ≥ 1

]
≤ 1

h
E

(y,s)

[
ε

(∣∣∣∣∫ h

0
W(Yr)dr

∣∣∣∣);N(c0h) ≥ 1

]
≤ 1

h
E

(y,s)
[
ε
(
h‖W‖∞

);N(c0h) ≥ 1
]

= 1 − e−c0h

h
E

(y,s)
[
ε
(
h‖W‖∞

)] −→
h→0+ 0

uniformly for all (y, s) ∈ R × [−M1,M1]. It will suffice to show that II2 → Rf .
From now on we will use the following shorthand notation

Ut := (Yt , St ), Ût := (Ŷt , Ŝt ), u := (y, s).

We have

II2 = 1

h
E

(y,s)
[
f

(
y + Xh + η1(Uτ1−), s

) − f
(
y + η1(Uτ1−), s

);N(
σ(h)

) ≥ 1
]

+ 1

h
E

(y,s)
[
f

(
y + η1(Uτ1−), s

) − f (y, s);N(
σ(h)

) ≥ 1
]
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− 1

h
E

(y,s)
[
f

(
y + Xh + η1(Uτ1−), s

) − f (y, s);N(
σ(h)

) ≥ 2
]

= II2a + II2b + II2c.

Observe that

|II2c| ≤ 2‖f ‖∞
1 − e−c0h − c0he−c0h

h
−→
h→0+ 0

and that the convergence is uniform in (y, s) ∈ R × [−M1,M1].
Moreover,

|II2a | ≤ 1

h
E

(y,s)
[∣∣f (

y + Xh + η1(Uτ1−), s
) − f

(
y + η1(Uτ1−), s

)∣∣;N(c0h) ≥ 1
]

≤ 1

h
E

(y,s)
[
ε
(

sup
0≤t≤h

|Xh|
)
;N(c0h) ≥ 1

]
= 1 − e−c0h

h
E

(y,s)
[
ε
(

sup
0≤t≤h

|Xh|
)]

−→
h→0+ 0

uniformly for all (y, s) ∈ R × [−M1,M1]. It will suffice to show that II2b → Rf .
Note that

N
(
σ(h)

) ≥ 1 ⇐⇒ τ1 ≤ h ⇐⇒
∫ h

0

∥∥g(Ur, ·)
∥∥

1 dr ≥ σ1. (2.10)

We claim that∫ h

0

∥∥g(Ur, ·)
∥∥

1 dr ≥ σ1 ⇐⇒
∫ h

0

∥∥g(Ûr , ·)
∥∥

1 dr ≥ σ1. (2.11)

First, we assume that
∫ h

0 ‖g(Ur, ·)‖1 dr ≥ σ1. This implies that τ1 ≤ h. Recall that Ur = Ûr for r < τ1. Hence∫ h

0

∥∥g(Ûr , ·)
∥∥

1 dr ≥
∫ τ1

0

∥∥g(Ûr , ·)
∥∥

1 dr =
∫ τ1

0

∥∥g(Ur, ·)
∥∥

1 dr = σ1,

where the last equality follows from the definition of τ1.
Now let us assume that

∫ h

0 ‖g(Ur, ·)‖1 dr < σ1. This implies that τ1 > h. Using again Ur = Ûr for r < h < τ1, we
obtain

σ1 >

∫ h

0

∥∥g(Ur, ·)
∥∥

1 dr =
∫ h

0

∥∥g(Ûr , ·)
∥∥

1 dr,

which finishes the proof of (2.11).
By (2.10) and (2.11) we obtain

II2b = 1

h
E

(y,s)
[
f

(
y + η1(Uτ1−), s

) − f (y, s); τ1 ≤ h
]

= 1

h
E

(y,s)
[
f

(
y + η1(U(τ1∧h)−), s

) − f (y, s); τ1 ≤ h
]

= 1

h
E

(y,s)

[
f

(
y + η1(Û(τ1∧h)−), s

) − f (y, s);
∫ h

0

∥∥g(Ûr , ·)
∥∥

1 dr ≥ σ1

]
.
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We will use the following abbreviations:

u = (y, s),

A =
{∫ h

0

∥∥g(Ûr , ·)
∥∥

1 dr ≥ σ1

}
,

B =
{∫ h

0

∥∥g(u, ·)∥∥1 dr ≥ σ1

}
,

F = 1

h

(
f

(
y + η1(Û(τ1∧h)−), s

) − f (y, s)
)
.

This allows us to rewrite II2b as

II2b = E
u[F ;A] = E

u[F ;B] + E
u[F,A \ B] − E

u[F ;B \ A].
Recall that X = (Xt )t≥0, N = (N(t))t≥0 and U = (Un)n∈N are independent. Therefore the probability measure P

can be written in the form P = PX ⊗PN ⊗PU ; the conditional probability, given N or U , is PX and the corresponding
expectation is denoted by EX . In a similar way P(X,N) = PX ⊗ PN and E(X,N) denote conditional probability and
conditional expectation if U is given. As usual, the initial (time-zero) value of the process under consideration is given
as a superscript. Note that Ût = (Ŷt , Ŝt ) is a function of X and does not depend on N or U . In particular, Ût and σ1
are independent. Since σ1 is the time of the first jump of the Poisson process N(t), it is exponentially distributed with
parameter 1. It follows that∣∣Eu[F,A \ B]∣∣

≤ 2‖f ‖∞
h

P
u

[∫ h

0

∥∥g(Ûr , ·)
∥∥

1 dr ≥ σ1 >

∫ h

0

∥∥g(u, ·)∥∥1 dr

]
= 2‖f ‖∞

h
E

u
X

[
e− ∫ h

0 ‖g(u,·)‖1 dr − e− ∫ h
0 ‖g(Ûr ,·)‖1 dr ;

∫ h

0

∥∥g(Ûr , ·)
∥∥

1 dr >

∫ h

0

∥∥g(u, ·)∥∥1 dr

]
≤ 2‖f ‖∞

h
E

u
X

∣∣e− ∫ h
0 ‖g(u,·)‖1 dr − e− ∫ h

0 ‖g(Ûr ,·)‖1 dr
∣∣

≤ 2‖f ‖∞
h

E
u
X

∣∣∣∣∫ h

0

(∥∥g(u, ·)∥∥1 − ∥∥g(Ûr , ·)
∥∥

1

)
dr

∣∣∣∣
≤ 2‖f ‖∞E

u
X sup

0≤r≤h

∣∣∥∥g(u, ·)∥∥1 − ∥∥g(Ûr , ·)
∥∥

1

∣∣.
For the penultimate inequality we used the elementary estimate |e−a − e−b| ≤ |a − b|, a, b ≥ 0. From Lemma 2.8 we
infer that the last expression is bounded by

2‖f ‖∞cE
u
X

[
sup

0≤r≤h

(|Ûr − u| ∧ 1
)]

= 2‖f ‖∞cE
u
X

[
sup

0≤r≤h

(∣∣∣∣(Xr,

∫ r

0
W(Ŷt )dt

)∣∣∣∣ ∧ 1

)]
−→
h→0+ 0

uniformly for all (y, s) ∈ R × [−M1,M1]. This convergence follows from the right-continuity of Xr and the fact that
| ∫ r

0 W(Ŷt )dt | ≤ h‖W‖∞.
A similar argument shows that |Eu[F ;B \A]| −→

h→0+ 0 uniformly in (y, s) ∈ R ×[−M1,M1]. It will suffice to show

that E
u[F ;B] → Rf .
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We have

E
u[F ;B] = 1

h
E

(y,s)

[
f

(
y + η1(Û(τ1∧h)−), s

) − f (y, s);
∫ h

0

∥∥g(u, ·)∥∥1 dr ≥ σ1

]
= 1

h
E

(y,s)

[
f

(
y + η1(Û(τ1∧h)−), s

) − f
(
y + η1(u), s

);∫ h

0

∥∥g(u, ·)∥∥1 dr ≥ σ1

]
+ 1

h
E

(y,s)

[
f

(
y + η1(u), s

) − f (y, s);
∫ h

0

∥∥g(u, ·)∥∥1 dr ≥ σ1

]
= A + B.

In order to deal with A and B we introduce the following auxiliary notation.
Recall that X, N and U are independent. As before let E

(y,s)

(X,N) be the conditional expectation given U ; the super-
script (y, s) indicates that Y0 = y and S0 = s. Moreover, EU denotes conditional expectation given X and N .

Lemma 2.9. Let u1 = (y1, s1) ∈ R
2, u2 = (y2, s2) ∈ R

2 be such that s1, s2 ∈ [−M,M] and ‖g(u2, ·)‖1 > 0. Then we
have ∣∣EU

(
f

(
y + η1(u1), s

) − f
(
y + η1(u2), s

))∣∣ ≤ c

( |u1 − u2|
‖g(u2, ·)‖1

∧ 1

)
for some c = c(f,M) > 0.

Proof. We will distinguish two cases: ‖g(u1, ·)‖1 = 0 and ‖g(u1, ·)‖1 > 0.
Assume that ‖g(u1, ·)‖1 = 0. Then by Lemma 2.8 we have∥∥g(u2, ·)

∥∥
1 = ∣∣∥∥g(u2, ·)

∥∥
1 − ∥∥g(u1, ·)

∥∥
1

∣∣ ≤ c|u2 − u1|.
Hence,∣∣EU

(
f

(
y + η1(u1), s

) − f
(
y + η1(u2), s

))∣∣ ≤ 2‖f ‖∞ ≤ 2‖f ‖∞c|u1 − u2|
‖g(u2, ·)‖1

.

Now we will consider the second case: ‖g(u1, ·)‖1 > 0. We have∣∣EU
(
f

(
y + η1(u1), s

) − f
(
y + η1(u2), s

))∣∣
=

∣∣∣∣∫ π

−π

f (y + x, s)

‖g(u1, ·)‖1
g(u1, x)dx −

∫ π

−π

f (y + x, s)

‖g(u2, ·)‖1
g(u2, x)dx

∣∣∣∣
≤ | ∫ π

−π f (y + x, s)[g(u1, x)‖g(u2, ·)‖1 − g(u2, x)‖g(u1, ·)‖1]dx|
‖g(u1, ·)‖1‖g(u2, ·)‖1

≤ ‖f ‖∞
‖g(u1, ·)‖1‖g(u2, ·)‖1

[∫ π

−π

∣∣g(u1, x)
∥∥g(u2, ·)

∥∥
1 − g(u1, x)

∥∥g(u1, ·)
∥∥

1

∣∣dx

+
∫ π

−π

∣∣g(u1, x)
∥∥g(u1, ·)

∥∥
1 − g(u2, x)

∥∥g(u1, ·)
∥∥

1

∣∣dx

]
.

By Lemmas 2.7 and 2.8 this is bounded from above by

‖f ‖∞
‖g(u1, ·)‖1‖g(u2, ·)‖1

[∫ π

−π

g(u1, x)dxc′|u2 − u1| + 2πc′′|u1 − u2|
∥∥g(u1, ·)

∥∥
1

]
≤ (c′ + 2πc′′)‖f ‖∞|u2 − u1|

‖g(u2, ·)‖1
.
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The lemma follows now from the observation that∣∣EU
(
f

(
y + η1(u1), s

) − f
(
y + η1(u2), s

))∣∣ ≤ 2‖f ‖∞. �

Proof of Proposition 2.2 (continued). We go back to A + B. If ‖g(u, ·)‖1 = 0 then A + B = 0 = Rf (y, s). The proof
of the proposition is complete in this case.

We will consider the case ‖g(u, ·)‖1 > 0. Because of the independence of σ1, Xt and (η1(u))u∈R2 we get

|A| =
∣∣∣∣ 1

h
E

u
(X,N)

[
EU

[
f

(
y + η1(Û(τ1∧h)−), s

) − f
(
y + η1(u), s

)];h∥∥g(u, ·)∥∥1 ≥ σ1
]∣∣∣∣.

By Lemma 2.9 this is bounded from above by∣∣∣∣ 1

h
E

u
(X,N)

[
c

( |Û ((τ1 ∧ h)−) − u|
‖g(u, ·)‖1

∧ 1

)
;h∥∥g(u, ·)∥∥1 ≥ σ1

]∣∣∣∣
≤

∣∣∣∣ c

h‖g(u, ·)‖1
E

u
(X,N)

[
sup

0≤r≤h

|Ûr − u| ∧ ∥∥g(u, ·)∥∥1;h
∥∥g(u, ·)∥∥1 ≥ σ1

]∣∣∣∣
=

∣∣∣∣ c

h‖g(u, ·)‖1
E

u
(X,N)

[
sup

0≤r≤h

∣∣∣∣(Xr,

∫ r

0
W(Ŷt )dt

)∣∣∣∣ ∧ ∥∥g(u, ·)∥∥1;h
∥∥g(u, ·)∥∥1 ≥ σ1

]∣∣∣∣
≤

∣∣∣∣ c

h‖g(u, ·)‖1
E

u
(X,N)

[
sup

0≤r≤h

∣∣(Xr,h‖W‖∞
)∣∣ ∧ ∥∥g(u, ·)∥∥1;h

∥∥g(u, ·)∥∥1 ≥ σ1

]∣∣∣∣.
Using the independence of X and σ1 this is equal to

c

h‖g(u, ·)‖1

(
1 − e−h‖g(u,·)‖1

)
E

u
X

[
sup

0≤r≤h

∣∣(Xr,h‖W‖∞
)∣∣ ∧ ∥∥g(u, ·)∥∥1

]
≤ cE

u
X

[
sup

0≤r≤h

∣∣(Xr,h‖W‖∞
)∣∣ ∧ ∥∥g(u, ·)∥∥1

]
−→
h→0+ 0

uniformly for all u = (y, s) ∈ R × [−M1,M1].
It will suffice to show that B −→

h→0+ Rf . Because of the independence of η1 and σ1 we get

B = EU
[
f

(
y + η1(u), s

) − f (y, s)
] 1

h

(
1 − e−h‖g(u,·)‖1

)
=

∫ π

−π

(
f (y + x, s) − f (y, s)

)((
W(y) − W(y + x)

)
s
)
+ dx

1 − e−h‖g(u,·)‖1

h‖g(u, ·)‖1

= Rf (y, s)
1 − e−h‖g(u,·)‖1

h‖g(u, ·)‖1

= Rf (y, s) + Rf (y, s)

(
1 − e−h‖g(u,·)‖1

h‖g(u, ·)‖1
− 1

)
. (2.12)

For u = (y, s) ∈ R × [−M1,M1] we have∣∣Rf (y, s)
∣∣ ≤ 2‖f ‖∞2π2‖W‖∞M1 = 8π‖f ‖∞‖W‖∞M1,∥∥g(u, ·)∥∥1 ≤ 2π2‖W‖∞M1 = 4π‖W‖∞M1.

Note that for any h, c > 0 we have

−hc

2
≤ 1 − e−hc − hc

hc
≤ 0.
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Therefore,∣∣∣∣1 − e−h‖g(u,·)‖1

h‖g(u, ·)‖1
− 1

∣∣∣∣ ≤ h‖g(u, ·)‖1

2
≤ 4π‖W‖∞M1

2
h.

It follows that the expression in (2.12) tends to Rf (y, s) when h → 0+ uniformly for all u = (y, s) ∈ R×[−M1,M1].
We have shown that B −→

h→0+ Rf . This was the last step in the proof. �

We will now introduce some further notation. Let N be the positive integers and N0 = N ∪ {0}. For any f : S → R

we set

f̃ (x) := f
(
eix), x ∈ R.

We say that f : S → R is differentiable at z = eix , x ∈ R, if and only if f̃ is differentiable at x and we put

f ′(z) := (f̃ )′(x), where z = eix, x ∈ R.

Analogously, we say that f : S → R is n times differentiable at z = eix , x ∈ R, if and only if f̃ is n times differentiable
at x and we write

f (n)(z) = (f̃ )(n)(x), where z = eix, x ∈ R.

In a similar way we define for f : S × R → R

f̃ (y, s) = f
(
eiy, s

)
, y, s ∈ R. (2.13)

We say that Dαf (z, s), z = eiy , y, s ∈ R, α ∈ N
2
0, exists if and only if Dαf̃ (y, s) exists and we set

Dαf (z, s) = Dαf̃ (y, s), where z = eiy, y, s ∈ R.

When writing C2(S), C2
c (S × R), etc., we are referring to the derivatives defined above.

Proof of Corollary 2.3. We will use the notation f̃ introduced in (2.13). Let f ∈ Cc(S × R). Then f̃ ∈ C∗(R2). Let
z = eiy , z ∈ S, s ∈ R. We have, cf. [3], Eq. (2.9),

T S
t f (z, s) − f (z, s)

t
= Tt f̃ (y, s) − f̃ (y, s)

t
, (2.14)

T̂ S
t f (z, s) − f (z, s)

t
= T̂t f̃ (y, s) − f̃ (y, s)

t
. (2.15)

Using this and Proposition 2.2 we get that limt→0+(T S
t f − f )/t exists if and only if limt→0+(T̂ S

t f − f )/t exists,
where both limits are in ‖ · ‖∞ norm. Consequently,

f ∈ D(G) ∩ Cc(S × R) ⇐⇒ f ∈ D(Ĝ) ∩ Cc(S × R).

The second assertion of the proposition follows from (2.5), the definition of the infinitesimal generator and from
the fact that for z ∈ S and s ∈ R

Rf̃ (y, s) = RSf (z, s), z = eiy. (2.16)
�

Proof of Proposition 2.4. Note that (2.6) follows from (2.7) by Proposition 2.2. So it is sufficient to show (2.7).
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Pick f ∈ C2∗(R2). Throughout this proof we assume that supp(f ) ⊂ R × (−M0,M0) for some M0 > 0. With
exactly the same argument as at the beginning of the proof of Proposition 2.2, we can restrict our attention to (y, s) ∈
R × [−M1,M1] where M1 := M0 + ‖W‖∞. We have for 0 < h < 1,

T̂hf (y, s) − f (y, s)

h

= E
(y,s)f (Ŷh, Ŝh) − E

(y,s)f (Ŷh, s)

h
+ E

(y,s)f (Ŷh, s) − E
(y,s)f (y, s)

h

= I + II.

We get

I = 1

h
E

(y,s)

[
∂f

∂s
(Ŷh, ξ)(Ŝh − s)

]
= 1

h
E

(y,s)

[
∂f

∂s
(Ŷh, ξ)

∫ h

0
W(Ŷt )dt

]
= E

(y,s)

[
1

h

∂f

∂s
(y, s)

∫ h

0
W(y)dt

]
+ E

(y,s)

[
1

h

[
∂f

∂s
(Ŷh, ξ) − ∂f

∂s
(y, s)

]∫ h

0
W(y)dt

]
+ E

(y,s)

[
1

h

∂f

∂s
(Ŷh, ξ)

∫ h

0

(
W(Ŷt ) − W(y)

)
dt

]
= I1 + I2 + I3,

where ξ is a point between s and Ŝh. Note that |Ŷh − y| = |Xh| and |ξ − s| ≤ |Ŝh − s| ≤ h‖W‖∞. Moreover,∣∣W(Ŷh) − W(y)
∣∣ ≤ (

2‖W‖∞
) ∧ (∥∥W ′∥∥∞|Ŷh − y|)

≤ c
(|Xh| ∧ 1

)
≤ c

(
sup

0≤t≤h

|Xt | ∧ 1
)

and ∣∣∣∣∂f∂s
(Ŷh, ξ) − ∂f

∂s
(y, s)

∣∣∣∣
≤ 2

∥∥∥∥∂f

∂s

∥∥∥∥∞
∧

[(∥∥∥∥∂2f

∂s2

∥∥∥∥∞
+

∥∥∥∥ ∂2f

∂s ∂y

∥∥∥∥∞

)(|Ŷh − y| + |ξ − s|)]
≤ c

((|Xh| + h
) ∧ 1

)
,

where c = c(W,f ). It follows that

|I2| ≤ c‖W‖∞E
(y,s)

((|Xh| + h
) ∧ 1

) −→
h→0+ 0,

uniformly for all u = (y, s) ∈ R × [−M1,M1]. In a similar way

|I3| ≤ c

∥∥∥∥∂f

∂s

∥∥∥∥∞
E

(y,s)
[

sup
0≤t≤h

|Xt | ∧ 1
]

−→
h→0+ 0,

uniformly for all u = (y, s) ∈ R × [−M1,M1]. So

I −→
h→0+

∂f

∂s
(y, s)W(y)
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uniformly for all u = (y, s) ∈ R × [−M1,M1].
It is well known that

II = E
(y,s)(f (y + Xh, s) − f (y, s))

h
−→
h→0+ −(−Δy)

α/2f (y, s)

uniformly in u = (y, s).

Combining the estimates for I and II shows that f ∈ D(G(Ŷ ,Ŝ)) and that (2.7) holds. �

Proof of Corollary 2.5. Let f ∈ C2
c (D × R). Then f̃ ∈ C2∗(R2) ⊂ D(G(Y,S)). By (2.14) f ∈ D(G). Now let z = eiy ,

z ∈ D, s ∈ R. By (2.14), Proposition 2.4, (2.9) and (2.16) we get

Gf (z, s) = G(Y,S)f̃ (y, s)

= −(−Δy)
α/2f̃ (y, s) + Rf̃ (y, s) + W(y)f̃s(y, s)

= Lzf (z, s) + RDf (z, s) + V (z)fs(z, s).

The proof for Ĝ is the same. �

3. Stationary measure

The aim of this section is to show that the process (Zt , St ) has a unique stationary measure. First we will show that
C2

c (S × R) is a core for (G, D(G)). For this we will need two auxiliary lemmas.

Lemma 3.1. C2
c (S × R) is a core for Ĝ .

Proof. Here we will use the results from [3]. Note that (Ŷt , Ŝt ) is the solution of a SDE of the form (3.1) in [3]. Since
V : S → R is a C3 function, [3], Theorem 3.1, see also [3], Proposition 3.6, guarantees that T̂t f ∈ C2∗(R2) for all
f ∈ C2∗(R2).

Now let f ∈ C2
c (S × R). Then f̃ ∈ C2∗(R2) and T̂t f̃ ∈ C2∗(R2). For z = eiy , z ∈ S, s ∈ R we get as in [3], Eq. (2.9),

T̂ S
t f (z, s) = T̂t f̃ (y, s). Hence, T̂ S

t f ∈ C2
c (S × R). This means that T̂ S

t :C2
c (S × R) → C2

c (S × R). Since C2
c (S × R)

is dense in C0(S × R) – the Banach space where the semigroup {T̂ S
t }t≥0 is defined – [6], Proposition 1.3.3, applies

and shows that C2
c (S × R) is a core for (Ĝ, D(Ĝ)). �

Lemma 3.2. Cc(S × R) ∩ D(G) = Cc(S × R) ∩ D(Ĝ) is a core for (G, D(G)) and (Ĝ, D(Ĝ)).

Proof. The equality of the two families of functions follows from Corollary 2.3.
By Corollary 2.5, C2

c (S × R) ⊂ Cc(S × R) ∩ D(G) and C2
c (S × R) is dense in C0(S × R) where the semigroups

{T S
t }t≥0, {T̂ S

t }t≥0 are defined; so Cc(S × R) ∩ D(G) is dense in C0(S × R).
By the definition of the processes St and Ŝt and the boundedness of W it is easy to see that T S

t :Cc(S × R) →
Cc(S × R) and T̂ S

t :Cc(S × R) → Cc(S × R). It follows that T S
t and T̂ S

t map Cc(S × R) ∩ D(G) into itself. Now [6],
Proposition 1.3.3, gives that Cc(S × R) ∩ D(G) is a core for G and Ĝ . �

Proposition 3.3. C2
c (S × R) is a core for G .

Proof. Pick f ∈ D(G) ∩ Cc(S × R). We have f ∈ D(Ĝ) ∩ Cc(S × R) and C2
c (S × R) is a core for Ĝ so there exists a

sequence (fn)
∞
n=1, where fn ∈ C2

c (S × R) such that

lim
n→∞

(‖fn − f ‖∞ + ‖Ĝfn − Ĝf ‖∞
) = 0.
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Since f ∈ Cc(S × R), there exists some M > 0 such that supp(f ) ⊂ S × [−M,M]. Let g ∈ C∞
c (R) be such that

0 ≤ g ≤ 1, ‖g′‖∞ ≤ 1, g ≡ 1 on [−M − 1,M + 1] and g ≡ 0 on (−∞,−M − 3] ∪ [M + 3,∞). Put

gn(z, s) := g(s)fn(z, s), (z, s) ∈ S × R,

and note that f (z, s) = g(s)f (z, s). Therefore∣∣gn(z, s) − f (z, s)
∣∣ = ∣∣g(s)fn(z, s) − g(s)f (z, s)

∣∣ ≤ ∣∣fn(z, s) − f (z, s)
∣∣

and

‖gn − f ‖∞ ≤ ‖fn − f ‖∞.

Since gn ∈ C2
c (S × R) ⊂ D(Ĝ), we find for (z, s) ∈ S × [−M,M],

∣∣Ĝgn(z, s) − Ĝf (z, s)
∣∣ =

∣∣∣∣V (z)
∂gn

∂s
(z, s) + Lzgn(z, s) − Ĝf (z, s)

∣∣∣∣
=

∣∣∣∣V (z)
∂fn

∂s
(z, s) + Lzfn(z, s) − Ĝf (z, s)

∣∣∣∣
= ∣∣Ĝfn(z, s) − Ĝf (z, s)

∣∣
≤ ‖Ĝfn − Ĝf ‖∞,

whereas for (z, s) /∈ S × [−M,M],

Ĝf (z, s) = V (z)
∂f

∂s
(z, s) + Lzf (z, s) = 0,

and ∣∣Ĝgn(z, s) − Ĝf (z, s)
∣∣

=
∣∣∣∣V (z)

∂gn

∂s
(z, s) + Lzgn(z, s)

∣∣∣∣
=

∣∣∣∣V (z)g′(s)fn(z, s) + V (z)
∂fn

∂s
(z, s)g(s) + g(s)Lzfn(z, s)

∣∣∣∣
≤ ∣∣V (z)

∣∣ · ∣∣g′(s)
∣∣ · ∣∣fn(z, s)

∣∣ + ∣∣g(s)
∣∣∣∣∣∣V (z)

∂fn

∂s
(z, s) + Lzfn(z, s)

∣∣∣∣
≤ ‖V ‖∞

∣∣fn(z, s)
∣∣ + ∣∣Ĝfn(z, s)

∣∣
= ‖V ‖∞

∣∣fn(z, s) − f (z, s)
∣∣ + ∣∣Ĝfn(z, s) − Ĝf (z, s)

∣∣
≤ ‖V ‖∞‖fn − f ‖∞ + ‖Ĝfn − Ĝf ‖∞.

Hence

‖gn − f ‖∞ + ‖Ĝgn − Ĝf ‖∞ ≤ (
1 + ‖V ‖∞

)‖fn − f ‖∞ + ‖Ĝfn − Ĝf ‖∞

and we see that

lim
n→∞

(‖gn − f ‖∞ + ‖Ĝgn − Ĝf ‖∞
) = 0.

Note that for every M > 0 there exists a constant CM,V > 0 such that∥∥RSh
∥∥∞ ≤ CM,V ‖h‖∞
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for all h ∈ Cc(S × R) such that supp(h) ⊂ S × [−M + 3,M + 3]. Hence

‖gn − f ‖∞ + ‖Ggn − Gf ‖∞
= ‖gn − f ‖∞ + ∥∥Ĝgn − Ĝf + RSgn − RSf

∥∥∞
≤ ‖gn − f ‖∞ + ‖Ĝgn − Ĝf ‖∞ + ∥∥RSgn − RSf

∥∥∞
≤ (

1 + ‖V ‖∞
)‖fn − f ‖∞ + ‖Ĝfn − Ĝf ‖∞ + CM,V ‖gn − f ‖∞

≤ (
1 + ‖V ‖∞ + CM,V

)‖fn − f ‖∞ + ‖Ĝfn − Ĝf ‖∞
−→
n→∞ 0.

This shows that for every f ∈ D(G) ∩ Cc(S × R) there exists a sequence (gn)
∞
n=1, such that gn ∈ C2

c (S × R) and

‖gn − f ‖∞ + ‖Ggn − Gf ‖∞ −→
n→∞ 0.

Since we know that D(G) ∩ Cc(S × R) is a core for (G, D(G)), we conclude that C2
c (S × R) is also a core for

(G, D(G)). �

We will now identify the form of the stationary distribution of the process (Zt , St ). For this we need two auxiliary
results, Lemma 3.4 and Proposition 3.5.

Lemma 3.4. For any f ∈ C2(S) we have∫
S

Lf (z)dz = 0.

The proof of this lemma is the same as the proof of [3], Lemma 2.8, and is omitted.

Proposition 3.5. Let

π(dz,ds) = 1

2π
e−πs2

dz ds.

Then for any f ∈ C2
c (S × R) we have∫

S

∫
R

Gf (z, s)π(dz,ds) = 0.

Proof. Let f ∈ C2
c (S × R). By Corollary 2.5 we have

2π

∫
S

∫
R

Gf (z, s)π(dz,ds)

=
∫

R

∫
S

Lzf (z, s)dze−πs2
ds +

∫
S

V (z)

∫
R

fs(z, s)e
−πs2

ds dz

+
∫

R

∫
S

∫
S

(
f (w, s) − f (z, s)

)((
V (z) − V (w)

)
s
)
+ dw dze−πs2

ds

= I + II + III.

From Lemma 3.4 we know that I = 0. Integrating by parts we obtain

II = 2π

∫
S

∫
R

V (z)f (z, s)e−πs2
s ds dz.
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Now we will simplify III. Note that a+ = (a + |a|)/2, a ∈ R. Hence∫
S

∫
S

(
f (w, s) − f (z, s)

)((
V (z) − V (w)

)
s
)
+ dw dz

= s

2

∫
S

∫
S

(
f (w, s) − f (z, s)

)(
V (z) − V (w)

)
dw dz

+ |s|
2

∫
S

∫
S

(
f (w, s) − f (z, s)

)∣∣V (z) − V (w)
∣∣dw dz

= III1 + III2.

By interchanging w and z in III2 we get

III2 = |s|
2

∫
S

∫
S

(
f (z, s) − f (w, s)

)∣∣V (w) − V (z)
∣∣dw dz = −III2,

which means that III2 = 0.
By assumption,

∫
S
V (z)dz = 0. Therefore

III1 = s

2

∫
S

f (w, s)dw

∫
S

V (z)dz − s

2

∫
S

f (w, s)V (w)dw

∫
S

dz

− s

2

∫
S

f (z, s)V (z)dz

∫
S

dw + s

2

∫
S

f (z, s)dz

∫
S

V (w)dw

= −2πs

∫
S

f (z, s)V (z)dz.

Informally, III = ∫
((III1)e−πs2

)ds, so

III = −2π

∫
S

∫
R

V (z)f (z, s)e−πs2
s ds dz.

Consequently I + II + III = 0. �

Theorem 3.6. The measure

π(dz,ds) = 1

2π
e−πs2

dz ds (3.1)

is a stationary distribution of the process (Zt , St ).

Proof. Let (Yt , St ) be the Markov process given by (2.3) and let (Zt , St ) be the Markov process where Zt = eiYt . By
{T S

t }t≥0 we denote the transition semigroup of (Zt , St ) on the Banach space C0(S × R), cf. (2.4), and by G we denote
its generator. Let P (R×R) and P (S×R) denote the sets of all probability measures on R×R and S×R respectively.
In this proof, for any μ̃ ∈ P (S × R) we define μ ∈ P (R × R) by μ([0,2π) × R) = 1 and μ(A × B) = μ̃(eiA × B) for
Borel sets A ⊂ [0,2π), B ⊂ R.

Consider any μ̃ ∈ P (S×R) and the corresponding μ ∈ P (R×R). For this μ there exists a Markov process (Yt , St )

given by (2.3) such that (Y0, S0) has the distribution μ. It follows that for any μ̃ ∈ P (S × R) there exists a Markov
process (Zt , St ) with Zt = eiYt and with initial distribution μ̃. By [6], Proposition 4.1.7, (Zt , St ) is a solution of the
martingale problem for (G, μ̃). By [6], Theorem 4.4.1, for any μ̃ ∈ P (S × R), uniqueness holds for the martingale
problem for (G, D(G), μ̃). Hence the martingale problem for G is well posed.

Proposition 3.3 gives that C2
c (S × R) is a core for G . By Proposition 3.5 and [6], Proposition 4.9.2, we get that π

is a stationary measure for G . This means that π is a stationary distribution for (Zt , St ). �

Theorem 3.7. The measure π defined in (3.1) is the unique stationary distribution of the process (Zt , St ).
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Proof. The proof is similar to the proof of [3], Theorem 2.1.2.
Step 1. Suppose that (Yt , St ) satisfies

Yt = y + Xt, St = s +
∫ t

0
W(Yr)dr,

where X0 = 0. Suppose that Xt is a stable Lévy process with X0 = 0. The following Lévy inequality for symmetric
Lévy processes is well known

P

(
sup

0≤r≤τ

|Xr | > ε
)

≤ 2P
(|Xτ | > ε

) ≤ 1 − δ.

It follows that for every τ < ∞, y, s ∈ R and ε > 0 there exists δ > 0 such that

P
y,s

(
sup

0≤r≤τ

|Yr − y| ≤ ε
)

= P

(
sup

0≤r≤τ

|Xr | ≤ ε
)

≥ δ. (3.2)

Step 2. Recall that V ∈ C3 and it is not identically constant. This and the fact that
∫

S
V (z)dz = 0 imply that W is

strictly positive on some interval and strictly negative on some other interval. We fix some a1, a2 ∈ (−π,π), b1 > 0,
b2 < 0 and ε0 ∈ (0,π/100), such that V (z) > b1 for z ∈ S, Arg(z) ∈ [a1 − 4ε0, a1 + 4ε0], and V (z) < b2 for z ∈ S,
Arg(z) ∈ [a2 − 4ε0, a2 + 4ε0].

Suppose that there exist two stationary probability distributions π and π̂ for (Z,S). Let ((Zt , St ))t≥0 and
((Ẑt , Ŝt ))t≥0 be processes with (Z0, S0) and (Ẑ0, Ŝ0) distributed according to π and π̂ , respectively. The transition
probabilities for these processes are the same as for the processes which are solutions to (2.3). Recall that X denotes
the driving stable Lévy process for Z and τ1 is the time of the first “extra jump” in the representation (2.3).

We will show that St �= 0 for some t > 0, a.s. Suppose that the event A = {St = 0 for all t ≥ 0} has strictly positive
probability. On A we have Yt = Xt + y for all t ≥ 0, according to (2.3). Recall that W(x) > 0 for all x in the set
Γ := ⋃

k∈Z
(a1 − 4ε0 + 2πk, a1 + 4ε0 + 2kπ). It is easy to see that X enters Γ − y at a finite time s0, a.s. Hence, Y

enters Γ at a finite time s0, on the event A. Since Y is right-continuous, Yt ∈ Γ for all t ∈ (s0, s1) for some random
s1 > s0. This and (2.3) imply that St �= 0 for some t ∈ (s0, s1), on the event A. This contradicts the definition of A and
hence it proves that St �= 0 for some t > 0, a.s.

Assume without loss of generality that St > 0 for some t > 0, with positive probability. Then there exist ε1 > 0,
t1 > 0 and p1 > 0 such that

P
π (St1 > ε1, τ1 > t1) > p1.

Let F1 = {St1 > ε1, τ1 > t1} and t2 = ε1/(2‖W‖∞). Clearly, for some p2 > 0 we have

P
π
(∃t ∈ [t1, t1 + t2]: Arg(Zt ) ∈ [a2 − ε0, a2 + ε0], τ1 > t1 + t2|F1

)
> p2.

Since Arg(Zt ) has right-continuous paths, this implies that there exist ε1 > 0, t1 > 0, t3 ∈ [t1, t1 + t2] and p3 > 0 such
that

P
π
(
St1 > ε1,Arg(Zt3) ∈ [a2 − 2ε0, a2 + 2ε0], τ1 > t3

)
> p3.

Note that |St3 − St1 | ≤ ‖W‖∞t2 < ε1/2. Hence,

P
π
(
St3 > ε1/2,Arg(Zt3) ∈ [a2 − 2ε0, a2 + 2ε0], τ1 > t3

)
> p3.

Let ε2 ∈ (ε1/2,∞) be such that

P
π
(
St3 ∈ [ε1/2, ε2],Arg(Zt3) ∈ [a2 − 2ε0, a2 + 2ε0], τ1 > t3

)
> p3/2.
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Set t4 = 2ε2/|b2| and t5 = t3 + t4. By (3.2), for any ε3 > 0 and some p4 > 0,

P
π
(

sup
t3≤r≤t5

|Xr − Xt3 | ≤ ε3, St3 ∈ [ε1/2, ε2],

Arg(Zt ) ∈ [a2 − 3ε0, a2 + 3ε0] for all t ∈ [t3, t5], τ1 > t5

)
> p4.

Since V (x) < b2 < 0 for x ∈ [a2 − 3ε0, a2 + 3ε0], if the event in the last formula holds then

St5 = St3 +
∫ t5

t3

V (Zs)ds ≤ ε2 + b2t4 ≤ −ε2.

This implies that,

P
π
(

sup
t3≤r≤t5

|Xr − Xt3 | ≤ ε3, St3 ≥ ε1/2, St5 ≤ −ε2, τ1 > t5

)
> p4. (3.3)

Step 3. By the Lévy–Itô representation we can write the stable Lévy process X in the form Xt = Jt + X̃t , where J

is a compound Poisson process comprising all jumps of X which are greater than ε0 and X̃ = X − J is an indepen-
dent Lévy process (accounting for all small jumps of X). Denote by λ = λ(α, ε0) the rate of the compound Poisson
process J and let (Ỹ , S̃) be the solution to (2.3), with Xt replaced by X̃t for t ≥ t3. Similarly τ̃1 denotes the first
“extra jump” in the representation (2.3) for the process (Ỹ , S̃). Moreover, we take ε3 < ε0/2. By our construction
supt3≤r≤t5

|Xr − Xt3 | ≤ ε3 entails that supt3≤r≤t5
|Jr − Jt3 | = 0; therefore, (3.3) becomes

P
π

(
sup

t3≤r≤t5

|X̃r − X̃t3 | ≤ ε3, S̃t3 ≥ ε1

2
, S̃t5 ≤ −ε2, τ̃1 > t5

)
≥ P

π

(
sup

t3≤r≤t5

|X̃r − X̃t3 | ≤ ε3, sup
t3≤r≤t5

|Jr − Jt3 | = 0, S̃t3 ≥ ε1

2
, S̃t5 ≤ −ε2, τ̃1 > t5

)
> p4 > 0.

Let τ be the time of the first jump of J in the interval [t3, t5]; we set τ = t5 if there is no such jump. We can represent
{(Yt , St ),0 ≤ t ≤ τ } in the following way: (Yt , St ) = (Ỹt , S̃t ) for 0 ≤ t < τ , Sτ = S̃τ , and Yτ = Ỹτ− + Jτ − Jτ−. Note
that Ỹt = y + X̃t if t < τ1.

We say that a non-negative measure μ1 is a component of a non-negative measure μ2 if μ2 = μ1 + μ3 for some
non-negative measure μ3. Let μ(dz,ds) = P

π (Zτ ∈ dz,Sτ ∈ ds). We will argue that μ(dz,ds) has a component with
a density bounded below by c2 > 0 on S × (−ε2, ε1/2). We find for every Borel set A ⊂ S of arc length |A| and every
interval (s1, s2) ⊂ (−ε2, ε1/2)

μ
(
A × (s1, s2)

)
= P

π
(
Zτ ∈ A,Sτ ∈ (s1, s2)

)
≥ P

π

(
Zτ ∈ A,Sτ ∈ (s1, s2), sup

t3≤r≤t5

|X̃r − X̃t3 | ≤ ε3, S̃t3 ≥ ε1

2
, S̃t5 ≤ −ε2, τ̃1 > t5

)
≥ P

π
(

ei(Jτ −Jτ−) ∈ e−iX̃τ−A, S̃τ ∈ (s1, s2),

sup
t3≤r≤t5

|X̃r − X̃t3 | ≤ ε3, S̃t3 ≥ ε1/2, S̃t5 ≤ −ε2, τ̃1 > t5,N
J = 1

)
.

Here NJ counts the number of jumps of the process J occurring during the interval [t3, t5]. Without loss of generality
we can assume that ε0 < 2π. In this case the density of the jump measure of J is bounded below by c3 > 0 on (2π,4π).
Observe that the processes (X̃, S̃) and J are independent. Conditional on {NJ = 1}, τ is uniformly distributed on
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[t3, t5], and the probability of the event {NJ = 1} is λ(t5 − t3)e−λ(t5−t3). Thus,

μ
(
A × (s1, s2)

)
≥ c3|A|Pπ

(
S̃τ ∈ (s1, s2)

∣∣ sup
t3≤r≤t5

|X̃r − X̃t3 | ≤ ε3, S̃t3 ≥ ε1/2, S̃t5 ≤ −ε2, τ̃1 > t5,N
J = 1

)
× p4 · λ(t5 − t3)e

−λ(t5−t3).

Since the process S̃ spends at least (s2 − s1)/‖W‖∞ units of time in (s1, s2) we finally arrive at

μ
(
A, (s1, s2)

) ≥ p4λe−λ(t5−t3)c3|A|(s2 − s1)/‖W‖∞.

This proves that μ(dz,ds) has a component with a density bounded below by c2 = p4λe−λ(t5−t3)c3/‖W‖∞ on S ×
(−ε2, ε1/2).

Step 4. Let ε4 = ε1
2 ∧ε2 > 0. We have shown that for some stopping time τ , P

π (Zτ ∈ dz,Sτ ∈ ds) has a component
with a density bounded below by c2 > 0 on S × (−ε4, ε4). We can prove in an analogous way that for some stopping
time τ̂ and ε̂4 > 0, P

π̂ (Ẑτ̂ ∈ dz, Ŝτ̂ ∈ ds) has a component with a density bounded below by ĉ2 > 0 on S × (−̂ε4, ε̂4).
Since π �= π̂ , there exists a Borel set A ⊂ S × R such that π(A) �= π̂ (A). Moreover, since any two stationary

probability measures are either mutually singular or identical, cf. [9], Chapter 2, Theorem 4, we have π(A) > 0 and
π̂ (A) = 0 for some A. By the strong Markov property applied at τ and the ergodic theorem, see [9], Chapter 1,
page 12, we have P

π -a.s.

lim
t→∞(1/t)

∫ t

τ

1{(Zs ,Ss )∈A} ds = π(A) > 0.

Similarly, we see that P
π̂ -a.s.

lim
t→∞(1/t)

∫ t

τ̂

1{(Ẑs ,Ŝs )∈A} ds = π̂ (A) = 0.

Since the distributions of (Zτ , Sτ ) and (Ẑτ̂ , Ŝτ̂ ) have mutually absolutely continuous components, the last two state-
ments contradict each other. This shows that we must have π = π̂ . �

Acknowledgement

We are grateful to an anonymous referee for suggestions for improvement.

References

[1] M. Barlow, A. Grigor’yan and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626
(2009) 135–157. MR2492992

[2] R. Bass, K. Burdzy, Z. Chen and M. Hairer. Stationary distributions for diffusions with inert drift. Probab. Theory Related Fields 146 (2010)
1–47. MR2550357

[3] K. Burdzy, T. Kulczycki and R. Schilling. Stationary distributions for jump processes with inert drift. Preprint, 2010. Available at
arXiv:1009.2347.

[4] K. Burdzy and D. White. A Gaussian oscillator. Electron. Commun. Probab. 9 (2004) 92–95. MR2108855
[5] K. Burdzy and D. White. Markov processes with product-form stationary distribution. Electron. Commun. Probab. 13 (2008) 614–627.

MR2461535
[6] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986. MR0838085
[7] N. Ikeda, N. Nagasawa and S. Watanabe. A construction of Markov processes by piecing out. Proc. Japan Acad. Ser. A Math. Sci. 42 (1966)

370–375. MR0202197
[8] P.-A. Meyer. Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann. Inst. Fourier (Grenoble) 25 (1975) 464–497.

MR0415784
[9] Ya. G. Sinai. Topics in Ergodic Theory. Princeton Univ. Press, Princeton, NJ, 1994. MR1258087

http://www.ams.org/mathscinet-getitem?mr=2492992
http://www.ams.org/mathscinet-getitem?mr=2550357
http://arxiv.org/abs/1009.2347
http://www.ams.org/mathscinet-getitem?mr=2108855
http://www.ams.org/mathscinet-getitem?mr=2461535
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=0202197
http://www.ams.org/mathscinet-getitem?mr=0415784
http://www.ams.org/mathscinet-getitem?mr=1258087

	Introduction
	Notation

	The construction of the process and its generator
	Stationary measure
	Acknowledgement
	References

