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Abstract. If conditional independence constraints define a family of positive distributions that is log-convex then this family turns
out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the
regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or
Gibbs–Markov equivalence is obtained.

Résumé. Si des contraintes d’indépendance conditionnelle définissent une famille de distributions positives qui est log-convexe,
alors cette famille doit être un modèle de Markov sur un graphe non-dirigé. Ceci est démontré pour les distributions sur le pro-
duits d’ensembles finis et pour les distributions gaussiennes régulières. Par conséquent, l’assertion connue comme le théorème de
factorisation de Brook, le théorème de Hammersley–Clifford ou l’équivalence de Gibbs–Markov est obtenue.
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1. Main result

Let N be a finite set, Xi , i ∈ N , finite nonempty state spaces, XI the product of Xi over i ∈ I , and πI the coordinate
projection of XN to XI , I ⊆ N . The marginal of a probability measure (p.m.) P on XN to I is the p.m. πIP on XI

given by

πIP (πI x) =
∑
y∈X

P (y)δI
x,y, x ∈ XN,

where δI
x,y equals one if πIx = πIy and zero otherwise.

A p.m. P on XN satisfies a conditional independence (CI-) constraint if

πijKP (πijKx) · πKP (πKx) = πiKP (πiKx) · πjKP (πjKx), x ∈ XN, (1)

where i, j ∈ N are different and K ⊆ N \ ij . By convention, an element i ∈ N is not distinguished from the singleton
{i} and the sign ∪ for unions of subsets of N is omitted.
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The family of all ordered couples (ij |K) with i, j and K as above is denoted by R. For L ⊆ R let PL denote the
family of p.m.’s on XN that satisfy the CI-constraint given by each (ij |K) ∈ L and P +

L = PL ∩ P +. Here, P + is the
family of p.m.’s on XN that are positive in the sense P(x) > 0 for all x ∈ XN . Given a p.m. P , the projections πi ,
i ∈ N , can be interpreted as the random variables jointly distributed according to P . Their distribution belongs to P L
if and only if πi and πj are stochastically independent given (πk)k∈K for all (ij |K) ∈ L.

A nonempty subfamily of P + is log-convex if it contains together with p.m.’s P and Q also the p.m. proportional
to x �→ P t (x)Q1−t (x), x ∈ XN , for all 0 < t < 1. The general definition of log-convexity is recalled and discussed in
Section 5.3.

A hypergraph (N, A) consists of the vertex set N and a nonempty family A of subsets of N , called hyperedges.
A p.m. P on XN is factorizable w.r.t. the hypergraph if for each I ∈ A there exists a real-valued function ψI on XI

such that

P(x) =
∏
I∈A

ψI (πI x), x ∈ XN. (2)

The family of all p.m.’s on XN that factorize w.r.t. the hypergraph is denoted by F A and F +
A = F A ∩ P +. An

undirected graph G = (N,E) has a vertex set N and an edge set E, contained in the family
(
N
2

)
of all two-element

subsets of N . A set L of vertices is a clique of G if
(
L
2

) ⊆ E. If A is the family of cliques of G, the notation F +
G is

preferred to F +
A and one speaks about the factorization w.r.t. G.

Theorem 1. If L ⊆ R and P +
L is log-convex then this family coincides with F +

G where G = (N,E) is the graph with
ij ∈ E if and only if (ij |K) /∈ L for all K ⊆ N \ ij .

In other words, given a family L the graph G is constructed on N by removing from
(
N
2

)
all ij such that (ij |K) ∈ L

for some K ⊆ N \ ij ; Theorem 1 asserts that the log-convexity of P +
L implies P +

L = F +
G .

If L consists exclusively of the couples (ij |K) having K = N \ ij then it is log-convex. This follows easily from
a well-known equivalent definition of CI-constraints, see (6) below. In this special case Theorem 1 implies what is
called by statisticians Brook factorization theorem [5,16] or Hammersley–Clifford theorem [3,7] and by physicists
Gibbs–Markov equivalence [19,26].

Corollary 1. If G = (N,E) is an undirected graph and L consists of all couples (ij |N \ ij) such that ij is not an
edge of G then P +

L = F +
G .

A proof of Theorem 1 is deferred to Section 4. It is based on properties of interaction spaces, summarized in
Section 2, and new observations on the behaviour of the family PL around the uniform p.m., presented in Section 3.
Discussion and remarks are collected in Section 5 that contains also a short independent proof of Corollary 1 of
geometric flavor. Section 6 is devoted to a version of Theorem 1 involving regular multidimensional Gaussian p.m.’s,
formulated as Theorem 2.

2. Interaction spaces and factorizability

The factorization (2) of positive p.m.’s w.r.t. a hypergraph can be equivalently described on the exponential scale by
a linear space. The space decomposes orthogonally to interaction spaces. The material of this section is standard, see
[10] and [20], Appendix B.2. The aim is to prepare arguments used in Sections 3 and 4, and supply self-contained
proofs.

For I ⊆ N let VI denote the linear space of those functions v of x ∈ XN that depend on x only through πIx, thus
v(x) = v(y) once πIx = πIy, x, y ∈ XN . For v ∈ VI

πI v(πI x) = |XN\I |v(x), x ∈ XN, (3)

where the marginalization of functions on XN is defined analogously to that of p.m.’s, thus πIv(πI x) is the sum of
v(y) over y ∈ XN satisfying πIx = πIy.
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Lemma 1. A function u on XN is orthogonal to VJ , J ⊆ N , if and only if πJ u = 0.

Proof. A function v belongs to VJ if and only if it can be written as the composition v = vJ πJ where vJ :XJ → R.
Since

〈u,v〉 =
∑

x∈XN

u(x) · v(x) =
∑

xJ ∈XJ

πJ u(xJ ) · vJ (xJ ) = 〈πJ u, vJ 〉

and vJ is arbitrary the assertion follows. �

For I ⊆ N let UI denote the orthogonal complement in VI to the sum of VJ over J � I , and be referred to as an
interaction space.

Lemma 2. If J ⊆ N does not contain I ⊆ N and u ∈ UI , then πJ u = 0.

Proof. Since UI ⊆ VI the marginal πJ u of u ∈ UI to J depends on xJ ∈ XJ only through πJ
I∩J xJ where πJ

I∩J

denotes the coordinate projection of XJ to XI∩J . It follows from (3), applied to πJ u and I ∩ J in the roles of v

and I , that πJ
I∩J πJ u(πJ

I∩J xJ ) equals |XJ\I |πJ u(xJ ) for xJ ∈ XJ . Therefore, it suffices to prove that the marginal
πJ

I∩J πJ u = πI∩J u of u ∈ UI vanishes. By Lemma 1, this is equivalent to the orthogonality of u and VI∩J which holds
by the definition of UI and I ∩ J 
= I . �

Lemma 3. The spaces UI , I ⊆ N , are pairwise orthogonal.

Proof. If I, J ⊆ N are different then, up to symmetry, J does not contain I . By Lemma 2, if u ∈ UI then πJ u = 0.
Lemma 1 implies that u is orthogonal to VJ . Thus, UI and UJ are orthogonal. �

For a hypergraph (N, A), let W A denote the sum of VI over I ∈ A.

Lemma 4. For a hypergraph (N, A) the space W A equals the orthogonal sum of UI over all I ⊆ N that are covered
by some hyperedge from A.

Proof. By Lemma 3, the assertion follows from its special instance disregarding orthogonality. On account of the
definition of W A, it suffices to restrict to the hypergraphs with A = {I }, I ⊆ N , in which case W A = VI . Induction
on the cardinality of I is employed to prove that VI is the sum of UJ over J ⊆ I . If I = ∅ then V∅ and U∅ coincide
with the space of constant functions on XN and the assertion is trivial. Otherwise, VI decomposes orthogonally into UI

and the sum of VJ over J � I . By the induction assumption, this sum equals the sum of UJ over J � I whence the
induction step is completed. �

Corollary 2. The Euclidean space VN = RXN decomposes orthogonally to UI , I ⊆ N .

Lemma 5. For every hypergraph (N, A) the family F +
A consists of the p.m.’s that are proportional to ew where w

belongs to the orthogonal sum of UI over all I ⊆ N that are covered by some hyperedge from A.

Proof. If w belongs to the above sum of UI then it is in the sum of VI over I ∈ A. Writing w as the sum of functions
vIπI where vI :XI → R, a p.m. proportional to ew is given by x �→ t exp[�I∈AvI (πI x)], x ∈ XN , with some constant
t > 0. Such a p.m. belongs to F +

A , choosing ψI in (2) proportional to evI .
If P ∈ F +

A then, by (2), positive functions ψI exist such that P(x) = ew(x), x ∈ XN , where w is the sum over
I ∈ A of the functions x �→ lnψI (πI x). Thus, P is proportional to ew , with the proportionality constant equal to 1.
By definition, w belongs to W A, equal to the above sum of UI by Lemma 4. �



1140 F. Matúš

Corresponding to the interaction spaces UI , a special base αy , y ∈ XN , of the space RXN is constructed. To this
end, it is assumed that each Xi has a distinguished element denoted by 0i and 0 = (0i )i∈N . The function αy is defined
at x ∈ XN by

αy(x) =
{

(−1)|s(y)∩s(x)|, x ∼ y,
0, otherwise,

where s(y) denotes the support {i ∈ N : yi 
= 0i} of y and x ∼ y abbreviates the equality of projections of x and y

onto s(x) ∩ s(y).

Lemma 6. If I ⊆ N then {αy : s(y) ⊆ I } is a base of VI and {αy : s(y) = I } a base of UI .

Proof. For y, z ∈ XN the scalar product of αy and αz equals the sum of (−1)|[s(y)�s(z)]∩s(x)| over x ∈ XN such that
x ∼ y and x ∼ z. For i ∈ s(y) \ s(z) the range of summation is partitioned into the pairs that differ only in the ith
coordinate, belonging to {0i , yi}. By the summations over the pairs, the scalar product vanishes. Therefore, αy and αz

are orthogonal when s(y) 
= s(z). If y and z have the same support then αy(z) = (−1)|s(y)|δN
y,z, and thus the functions

αy with s(y) = I are independent. It follows that {αy : s(y) ⊆ I } is an independent set. This set is a base of VI because
αy ∈ Vs(y) ⊆ VI and dim VI = |XI |. Then, {αy : s(y) = I } is a base of UI by Lemma 4. �

In particular, the space UI has a positive dimension if and only if |Xi | > 1 for all i ∈ I . If Xi = {0i ,1i}, i ∈ N , then
each UI is spanned by the single function αy where y = (yi)i∈N has yi equal to 1i for i ∈ I and 0i otherwise. These
functions form an orthogonal base of RXN by Corollary 2.

The following technical lemma is prepared for the discussion in Section 5.2.

Lemma 7. For any hypergraph (N, A) the family W A is the direct sum of the spaces

V0 ,I = {
v ∈ VI : v(x) = 0 once xi = 0i for some i ∈ I

}

over I ⊆ N that can be covered by some J ∈ A.

The space V0 ,I consists of the functions vIπI where vI :XI → R vanishes on each xI ∈ XI having a coordinate
xi = 0i . Such a function vI is said to be adapted to 0 .

Proof of Lemma 7. For I ⊆ N let ρI map x ∈ XN to y ∈ XN given by πIy = πIx and πN\I y = πN\I0 . Let w ∈ RXN

be decomposed as the sum of vIπI over I ⊆ N where every vI is adapted to 0 . If x ∈ XN and I = s(x) then

∑
L⊆I

(−1)|I\L|w(ρLx) =
∑
L⊆I

(−1)|I\L| ∑
K⊆L

vK(πKρLx)

=
∑
K⊆I

vK(πKx)
∑

K⊆L⊆I

(−1)|I\L| = vI (πI x). (4)

Therefore, the functions vI are unique and, in turn, the sum of all V0 ,I , I ⊆ N , is direct.
If v is a function on XN then

∑
I⊆N

(−1)|N\I |vρI ∈ V0 ,N .

In fact, if x ∈ XN has a coordinate xi = 0i then ρI x = ρI\ix for i ∈ I ⊆ N , and grouping the summands into the pairs
I , I \ i the sum vanishes. Since v = vρN and vρI ∈ VI it follows that VN = RXN equals V0 ,N plus the sum of VI over
I � N . By induction on the cardinality of N , VN is the sum of V0 ,I over I ⊆ N , which implies the assertion. �
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3. Conditional independence and interactions

In this section, the CI-constraints are related to interaction spaces. This is done via the relation (ij |K)  L between
(ij |K) ∈ R and L ⊆ N defined by the statement ‘i /∈ L or j /∈ L or L 
⊆ ijK .’ In other words, (ij |K) /L if and only
if ij ⊆ L ⊆ ijK , see Section 5.3. From now on, mI denotes |XI |−1, I ⊆ N .

Lemma 8. If (ij |K)  L and u ∈ UL then the measure given by P(x) = mN [1 + u(x)], x ∈ XN , satisfies the CI-
constraint given by (ij |K).

Proof. By Lemma 2, if ijK does not contain L then the marginal of P to ijK is uniform. Thus, the CI-constraint (1)
reduces to mijKmK = miKmjK . Otherwise, L ⊆ ijK , and it follows from (ij |K)  L that i /∈ L or j /∈ L. By the
symmetry between i and j , it suffices to restrict to the case i /∈ L. Then, L ⊆ jK which implies that u belongs to
VjK ⊆ VijK . By the double use of (3) with ijK and jK in the role of I , the constraint (1) rewrites to

mijK

[
1 + u(x)

] · πKP (πKx) = πiKP (πiKx) · mjK

[
1 + u(x)

]
, x ∈ XN. (5)

If j ∈ L then K and iK do not contain L. By Lemma 2, the marginals of P to K and iK are uniform whence (5)
holds. If j /∈ L then L ⊆ K , and thus u ∈ VK ⊆ ViK . By the double use of (3) with K and iK in the role of I ,
πKP (πKx) = mK [1 + u(x)] and πiKP (πiKx) = miK [1 + u(x)]. Hence, (5) is always satisfied. �

For L ⊆ R let L denote the family of L ⊆ N such that (ij |K)  L for all (ij |K) ∈ L.

Corollary 3. If L ⊆ R and L ∈ L then any p.m. on XN that differs from the uniform one by a vector from UL, as in
Lemma 8, belongs to PL.

An example of the construction L �→ L arises from a graph G = (N,E) and KG = {(ij |N \ ij): ij ∈ (
N
2

) \ E},
arriving at the family K

G of cliques of G.
For a later reference the following simple assertion is needed.

Lemma 9. For any L ⊆ R, if M ⊆ N and every different i, j ∈ M can be covered by some Lij ∈ L contained in M

then M ∈ L.

Proof. If a couple (ij |K) ∈ L has i, j ∈ M then, by the assumption, ij ⊆ Lij ⊆ M for some Lij ∈ L. The definition
of L implies that (ij |K)  Lij , and thus Lij 
⊆ ijK because ij ⊆ Lij . Hence, M 
⊆ ijK . It follows that (ij |K)  M .
In turn, M ∈ L. �

In the remaining part of this section, the CI-constraints (1) are analyzed via the mappings Ψij |K given by

Ψij |K(w) = (
πijKw(πijKx) · πKw(πKx) − πiKw(πiKx) · πjKw(πjKx)

)
x∈XN

.

Here, (ij |K) ∈ R and w is a function on XN . A p.m. can play the role of w as well.

Lemma 10. The Jacobian of Ψij |K at the uniform p.m. on XN is equal to

(
mKδ

ijK
x,y + mijKδK

x,y − mjKδiK
x,y − miKδ

jK
x,y

)
x,y∈XN

.

Proof. The coordinate function of Ψij |K indexed by x ∈ XN equals

∑
z∈XN

∑
z∈XN

w(z)w(z)
[
δ
ijK
x,z δK

x,z − δiK
x,zδ

jK
x,z

]
.
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Differentiating w.r.t. w(y), y ∈ XN ,

∑
z∈XN

∑
z∈XN

[
δN
y,zw(z) + w(z)δN

z,y

][
δ
ijK
x,z δK

x,z − δiK
x,zδ

jK
x,z

]
.

When w(z) = mN , z ∈ XN , this equals

mN

∑
z∈XN

[
δ
ijK
x,y δK

x,z − δiK
x,yδ

jK
x,z

] + mN

∑
z∈XN

[
δ
ijK
x,z δK

x,y − δiK
x,zδ

jK
x,y

]

and the assertion follows. �

Let Ker(ij |K) denote the kernel of the Jacobian of Ψij |K at the uniform p.m.

Lemma 11. For L ⊆ R the intersection of Ker(ij |K) over (ij |K) ∈ L is equal to the sum of UL over L ∈ L.

Proof. If L /∈ L then ij ⊆ L ⊆ ijK for some (ij |K) ∈ L. For u ∈ UL and v ∈ Ker(ij |K)

∑
x∈XN

u(x)
∑

y∈XN

[
mKδ

ijK
x,y + mijKδK

x,y − mjKδiK
x,y − miKδ

jK
x,y

]
v(y) = 0

because the inner sums equal zero due to Lemma 10. Since none of the sets K , iK and jK contains L the marginals
of u to these sets vanish by Lemma 2 and the above equation rewrites to

∑
x∈XN

∑
y∈XN

u(x)v(y)δ
ijK
x,y = 0.

Since L ⊆ ijK the function u belongs to VijK , and thus u(x)δ
ijK
x,y = u(y)δ

ijK
x,y . Therefore, u and v are orthogonal. In

turn, Ker(ij |K) is orthogonal to UL.
By Corollary 2, the intersection of Ker(ij |K) over (ij |K) ∈ L is contained in the sum of UL over L ∈ L. The

opposite inclusion is a consequence of Corollary 3. �

4. Log-convexity and conditional independence

A nonempty family of positive p.m.’s on XN is log-linear if it contains together with p.m.’s P and Q also the p.m.
proportional to x �→ P t (x)Qs(x), x ∈ XN , for all real t and s. The family is log-affine if this is required only with
s = 1 − t . The log-convexity assumes the additional restriction 0 < t < 1. The log-affine families correspond to the
full exponential families [20].

In this section, L ⊆ R.

Lemma 12. If P +
L is log-convex then it is log-linear.

Proof. Let P,Q ∈ P +
L , 0 < t < 1 and Rt(x) = P t (x)Q1−t (x), x ∈ X. By the log-convexity, for (ij |K) ∈ L Eqs (1)

hold with P replaced by Rt . Thus, the coordinate functions of t �→ Ψij |K(Rt ) vanish when t ranges between 0 and 1.
Since they are holomorphic they vanish identically. It follows that P +

L is closed to the log-affine combinations. The
assertion follows because it is not difficult to see that a log-affine family that contains the uniform p.m. on XN is
log-linear. �

Lemma 13. If P +
L is log-convex and a p.m. P on XN is proportional to ew for some w ∈ RXN then P ∈ P +

L if and
only if w belongs to the sum of UL over L ∈ L.
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Proof. The log-convex combinations of P with the uniform p.m.

Pt(x) = etw(x)
/ ∑

y∈XN

etw(y), x ∈ XN,

are viewed as a curve parameterized by t . Its tangent vector at the uniform p.m. P0 equals

mNw − m2
N

∑
y∈XN

w(y).

If P ∈ P +
L then the log-convexity of P +

L implies that the curve ranges in P +
L . Hence, the tangent belongs to

Ker(ij |K) for (ij |K) ∈ L. By Lemma 11, the tangent is in the sum of UL over L ∈ L. Since ∅ ∈ L and U∅ consists
of the constant functions the sum contains w.

Let w belong to the sum of UL over L ∈ L. By Lemma 12, P +
L is log-linear. Therefore, to prove that P ∈ P +

L
it suffices to confine to the case w ∈ UL for some L ∈ L. The assertion is trivial if L = ∅, having w constant and
P uniform. Otherwise, L 
= ∅ and w is orthogonal to U∅ by Lemma 3. Then, x �→ mN [1 + εw(x)] defines a p.m.
for ε sufficiently close to 0. By Corollary 3, this p.m. belongs to P L. It is proportional to eln[1+εw]. The log-affinity
of P +

L implies that the p.m. Pε proportional to ewε with wε = 1
ε

ln[1 + εw] belongs to P +
L . Limiting with ε to 0 the

functions wε converge to w and Pε converges to P ∈ P +. Hence, P ∈ P +
L . �

The CI-constraint (1) given by (ij |K) can be equivalently expressed as

Q(xixjxK) · Q(yiyj xK) = Q(xiyjxK) · Q(yixj xK), xi, yi ∈ Xi, xj , yj ∈ Xj ,xK ∈ XK, (6)

where Q denotes the marginal of P to ijK , xixj xK is the element of XijK that projects to xi , xj and xK , and yiyj xK ,
xiyj xK and yixj xK have analogous meaning. If K = N \ ij then Q = P and it is easy to see that if two p.m.’s satisfy
the equations in (6) then the equations also hold for the log-linear combinations of the p.m.’s.

Under the additional natural assumption |Xi | > 1 for all i ∈ N , the following lemma and the proof of Theorem 1
can be slightly simplified but when not excluding |Xi | = 1 only additional minor technicalities are needed.

Lemma 14. If P +
L is log-convex, L ∈ L and |X
| > 1 for each 
 ∈ L then all subsets of L belong to L.

Proof. It suffices to prove that L\
 ∈ L for all 
 ∈ L. This is accomplished when the violation of (ij |K) (L\
) for
some (ij |K) implies that the couple is not in L. Thus, assume ij ⊆ L \ 
 ⊆ ijK . By the assumption on cardinalities,
there exists y ∈ XN with s(y) = L. Let z ∈ XN have s(z) = 
 and the same 
th coordinate as y, y
 
= 0
. Since
L,
 ∈ L Lemma 6 implies αy ∈ UL and αz ∈ U
. By the log-convexity and Lemma 13, the p.m. P proportional to
eαy+αz is in P +

L .
There exists t > 0 such that t · πN\
P (xN\
) equals

eαy(0
xN\
)+αz(0
xN\
) + eαy(y
xN\
)+αz(y
xN\
) +
∑

x
∈X
\{0 ,y
}
eαy(x
xN\
)+αz(x
xN\
)

= eαy(0
xN\
)+1 + eαy(y
xN\
)−1 + |X
| − 2, xN\
 ∈ XN\
,

where αy and αz vanish at x
xN\
. Combining ij ⊆ L \ 
 ⊆ ijK and L ∈ L, the set ijK cannot contain 
. Therefore,

πijKP = Q is a marginal of πN\
P . Since πN\
P depends on xN\
 only through π
N\

ijK xN\
 it follows from (3) that

Q(π
N\

ijK xN\
) is equal to |XN\
ijK |πN\
P (xN\
). Therefore,

Q(0i0j0K)Q(yiyj0K) − Q(0iyj0K)Q(yi0j0K)

is a positive multiple of [e2 + e−2 + |X
| − 2]2 − |X
|2. Using (6), this implies (ij |K) /∈ L. �

Proof of Theorem 1. Let RN,X consist of the couples (ij |N \ ij) with |Xi | = 1 or |Xj | = 1. By (1), P L = P L∪RN,X

for all L ⊆ R. Let GL = (N,E) be the graph with ij /∈ E if and only if (ij |K) ∈ L for some K ⊆ N \ ij . By (2),
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a p.m. factorizes w.r.t. GL if and only if it does w.r.t. GL∪RN,X
. It follows that it suffices to prove the assertion of

Theorem 1 under the additional assumption RN,X ⊆ L. Hence, any L ∈ L with at least two elements has |X
| > 1
for all 
 ∈ L. By Lemma 14, all subsets of any L ∈ L belong to L; thus L is hereditary. Using Lemma 9, a set
L ⊆ N with at least two elements belongs to L if and only if ij ∈ L for every i, j ∈ L; thus L is conformal. It
follows that L is the family of cliques of GL. Hence, the assertion of Theorem 1 obtains from Lemmas 5 and 13. �

5. Discussion and remarks

5.1. The main result and its corollary

For an undirected graph G = (N,E) let KG consist of the couples (ij |N \ ij) having ij /∈ E. The p.m.’s from PKG

are called pairwise Markov w.r.t. G. The families P +
KG

parameterized by undirected graphs G have been known
in the statistical literature as the Markov models over undirected graphs [9,20], over the contingency tables. They
are log-convex because each family P +

{(ij |N\ij)} is log-linear by the argument following (6) and intersections of log-

linear families are log-linear. Hence, Theorem 1 directly implies the assertion of Corollary 1, P +
KG

= F +
G . Rephrased

verbally, given an undirected graph, a positive p.m. is pairwise Markov if and only if it factorizes. The assumption of
positivity matters, see [26], p. 22, and [20], Example 3.10.

Alternatively, P +
KG

= F +
G is a simple consequence of the lemmas on the interaction spaces from Section 2. In fact,

it is rather straightforward that P ∈ P + satisfies the CI-constraint (ij |N \ ij) if and only if lnP :x �→ lnP(x) belongs
to the sum of VN\i and VN\j , see, e.g., [20], (3.6). This is the sum of UI where I does not contain ij , on account
of Lemma 4. Therefore, by Corollary 2, P ∈ P + is pairwise Markov w.r.t. G if and only if lnP belongs to the sum
of UI where I contains no ij /∈ E, thus I is a clique of G. To conclude P +

KG
= F +

G it suffices to evoke Lemma 5.
It seems that this short geometric proof of Corollary 1 via the intersections of sums of the interaction spaces is new.
The presented argumentation is coordinate-free; no projectors, Moebius transform, algebras, and a special choice of
0 ∈ XN are employed. The only comparable proof of Corollary 1 is the inductive one by Brook [5], see also [16],
Theorem 7.1, which however has no geometric content.

For L ⊆ R, Theorem 1 and log-convexity of the Markov models imply that P +
L is log-convex if and only if it is

Markov over an undirected graph. Thus, the class of these Markov models can be equivalently defined by means of
the CI-constraints and log-convexity, without any reference to graphs. Here, both the conditional independence [11]
and log-convexity [6], including the geometrical viewpoint of [1], have been recognized for decades as basic building
stones in statistics. Theorem 1 seems to be a new bridge between them.

5.2. Gibbs probability measures

Given a distinguished element 0 = (0i )i∈N of XN and a hereditary hypergraph (N, A), a p.m. P ∈ P + is Gibbsian if
there exist real-valued functions vI on XI such that

lnP(x) =
∑

I∈A,I⊆s(x)

vI (πI x), x ∈ X. (7)

The family of such probability measures is denoted by G+
0 ,A. If xI ∈ XI and for some i ∈ I the ith coordinate of xI

equals 0i then the value vI (xI ) does not occur in (7). Therefore, it can be equivalently assumed in the above definition
that all such values equal zero, thus vI are adapted to 0 . In this situation, the summation in (7) can run equivalently over
I ∈ A. Thus, the Gibbs p.m.’s factorize in a special way, G+

0 ,A ⊆ F +
A . By Lemmas 5 and 7, if P ∈ F +

A then P = ew

for w ∈ W A in the form
∑

I∈A vIπI with all vI adapted to 0 . Therefore, F +
A ⊆ G+

0 ,A. Thus, over a hypergraph, the
notion of Gibbs p.m.’s does not depend on the choice of 0 and coincides with the factorizability of positive p.m.’s. In
literature, e.g., in [7], Theorem 2, [26], Theorem 2, typically (7) is stated to be equivalent to

vK(πKx) =
∑
I⊆K

(−1)|K\I | lnP(ρI x), K ∈ A, x ∈ XN, s(x) = K,

which is a reinterpretation of the computation in (4), based on Moebius transform.
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The identity P +
KG

= F +
G , disguised in Gibbs p.m.’s and potentials, has been revealed and proved independently

several times. Over point lattices it goes back to [2,30]. Two early unpublished manuscripts [14,17]2 have been fre-
quently cited. Other proofs are in [3], p. 198, [7], p. 22, [15,27,28], and three proofs in [26], Theorem 2. For personal
remarks see also Hammersley’s discussion in [3], p. 230.

Under topological assumptions on the state spaces, Hammersley–Clifford theorem from [12,20] asserts that over
a graph the pairwise Markovness is equivalent to the factorization, for the p.m.’s with continuous and positive densities
w.r.t. a product measure.

5.3. Miscellany

When P and Q are p.m.’s on a measurable space that are not mutually singular, p and q are their densities with
respect to a dominating measure R and 0 < t < 1, the log-convex combination of P and Q is defined as the p.m.
with the R-density proportional to ptq1−t . The definition is not dependent on the choice of R. A family of p.m.’s is
called log-convex if it is closed to the log-convex combinations of pairs of not mutually singular p.m.’s. Log-convex
families of mutually absolutely continuous p.m.’s are called ‘geodesically convex’ in [6]. Examples of log-convex sets
comprise the exponential families with convex sets of canonical parameters and their extensions [8].

A crucial role in the proof of Theorem 1 is played by the binary relation  between R and the power set of N . It
appeared previously prior to [23], Theorem 4. In addition to the mapping L �→ L, it gives rise to

A �→ A = {
(ij |K) ∈ R: (ij |K)  L for all L ∈ A

}
,

where A is a family of subsets of N . The pair of mappings forms a Galois connection [4], Chapter V, Sections 7 and 8.
By the remark preceding [23], Theorem 4, the connection gives rise to an antiisomorphism between DCI-relations and
Cw-families, similarly to [23], Theorem 1.

The implication of Lemma 9 is valid for the family of connected sets in any topological space in the role of L; it
goes back at least to [18].

General conditional independence statements can be reduced to families of the CI-constraints (1) by [22], Lemma 3.
The families P L and P +

L have been, in spite of considerable effort, far from being understood in general [12,24,31].

6. Gaussian probability measures

In this section N = {1,2, . . . , n}. A p.m. on Rn is regular Gaussian (rG) if its density with respect to the Lebesgue
measure has the form

x �→ (2π)−n/2(detA)−1/2 exp
[− 1

2 (x − μ)T A−1(x − μ)
]
, x ∈ Rn,

where μ is a (column) vector from Rn and A = (ai,j )i,j∈N a real positive definite matrix. The standard notation detA
is used for the determinant of A and T for the transposition.

An rG p.m. satisfies the CI-constraint given by (ij |K) ∈ R if and only if detAiK,jK vanishes where AiK,jK is the
submatrix of A whose rows are indexed by iK and columns by jK , see [21]. Hence, the p.m. is pairwise Markov
w.r.t. an undirected graph G = (N,E) if and only if detAN\j,N\i = 0 whenever ij /∈ E; this equality is equivalent to
vanishing of the element of A−1 indexed by i, j . It follows that the p.m. factorizes w.r.t. the graph [20], Section 5.1.4,
which implies Markovness [20], Proposition 3.8. Thus, as well-known, the pairwise Markovness of any rG p.m. is
equivalent to a factorization, over an undirected graph. For the general CI-constraints on Gaussian variables see [12,
13,21,25,29].

Log-convex combinations of two rG p.m.’s parameterized by μ,A and ν,B are the rG p.m.’s parameterized by
some λμ,ν,t ∈ Rn and [tA−1 + (1 − t)B−1]−1, 0 < t < 1.

Theorem 2. If the set of rG p.m.’s on Rn that satisfy all CI-constraints from L ⊆ R is log-convex then this set
coincides with the set of all rG p.m.’s that factorize w.r.t. the graph (N,E) that has ij ∈ E if and only if (ij |K) /∈ L
for all K ⊆ N \ ij .

2The former work is not available to the author.
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Proof. Two sets of positive definite n × n matrices A are introduced: the first one AL is given by detAiK,jK = 0 for
all (ij |K) ∈ L, and the second one BL by Ai,j = 0 for ij /∈ E. The set of rG p.m.’s specified by the CI-constraints from
L is parameterized by the pairs μ,A with A ∈ AL. The set of rG p.m.’s that factorize w.r.t. the graph is parameterized
by the pairs μ,A with A−1 ∈ BL.

By [21], Lemma 1, detAiK,jK = 0 if and only if det(A−1)N\jK,N\iK = 0, for all invertible matrices A. Thus,
A ∈ AL is equivalent to A−1 ∈ AL� where L� is the set of (ij |N \ijK) having (ij |K) ∈ L. Since BL = BL� Theorem 2
asserts that AL� = BL� . The assumption of log-convexity is equivalent to the convexity of {A−1: A ∈ AL} = AL� .
Therefore, it suffices to prove that if AL is convex then AL = BL.

The unit matrix I always belongs to AL. This set is closed to the positive multiples. These observations and the
convexity of AL imply that if A ∈ AL then A + tI belongs to AL for all t > 0. Therefore, det(A + tI )iK,jK = 0 for
(ij |K) ∈ L. The determinant is a polynomial in t with the leading coefficient Ai,j . Hence, Ai,j = 0 for (ij |K) ∈ L
which implies AL ⊆ BL.

For ij ∈ E let I [ij ] be the symmetric matrix with the elements at the positions i, j and j, i equal to 1 and the
remaining elements equal to zero. The matrix I + ε|E|I [ij ] belongs to AL for ε is sufficiently close to zero. By
convexity, I (ε) = I + ε

∑
ij∈E I [ij ] is in AL. Let K denote the set of (ij |K) ∈ R such that N \ ijK separates i

from j . Then, [21], Theorem 1, implies that up to finitely many ε for all (ij |K) ∈ R the determinant of I (ε)iK,jK

vanishes if and only if (ij |K) ∈ K. Thus, AK ⊆ AL. It suffices to show that BL ⊆ AK . Under the separation of i and
j by N \ ijK , the set K partitions into Ki and Kj such that there is no edge between iKi and jKj . If A ∈ BL then
Aki,kj

= 0 for ki ∈ iKi and kj ∈ jKj , implying detAiK,jK = 0, and thus A ∈ AK . �

The version of Theorem 2 that features the rG p.m.’s with the means equal to the zero instead of the rG p.m.’s also
holds. This follows from λμ,ν,t = 0 whenever μ = 0 and ν = 0, and minor modifications in the argumentation of the
above proof.
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