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Abstract. We consider complex sample covariance matrices MN = 1
N

YY ∗ where Y is a N × p random matrix with i.i.d. entries
Yij ,1 ≤ i ≤ N,1 ≤ j ≤ p, with distribution F . Under some regularity and decay assumptions on F , we prove universality of some
local eigenvalue statistics in the bulk of the spectrum in the limit where N → ∞ and limN→∞ p/N = γ for any real number
γ ∈ (0,∞).

Résumé. On considère des matrices de covariance empirique complexes MN = 1
N

YY ∗ où Y est une matrice de taille N × p dont
les coefficients Yij ,1 ≤ i ≤ N,1 ≤ j ≤ p, sont des variables aléatoires i.i.d. de loi F . Sous certaines hypothèses de régularité et de
décroissance sur F , on montre l’universalité de certaines statistiques locales de valeurs propres au milieu du spectre quand N → ∞
et limN→∞ p/N = γ pour tout réel γ ∈ (0,∞).
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1. Introduction

1.1. Model and result

This paper is concerned with universal properties of large complex sample covariance matrices in the bulk of the
spectrum. We consider N × p random matrices Y = (Yij ) where the Yij ’s are i.i.d. random variables with some
probability distribution F . Let then MN be the sample covariance matrix:

MN = 1

N
YY ∗.

In the whole paper we assume that p ≥ N and that

∃γ ∈ [1,∞) such that p/N → γ as N → ∞.

The case where p < N can be deduced from the above setting using the fact that YY ∗ and Y ∗Y have the same non-
zero eigenvalues. In the sequel we call λ1 ≥ λ2 ≥ · · · ≥ λN the ordered eigenvalues of MN and πN := 1

N

∑N
i=1 δλi

its
spectral measure. Assuming that F has a finite variance σ 2, Marčenko and Pastur ([18], see also [20]) have shown
that πN almost surely converges as N → ∞ to the so-called Marčenko–Pastur distribution ρMP

γ,σ 2 . This probability
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distribution depends on σ 2 only and not on any other detail (higher moments e.g.) of F : in this sense it is universal. It
is defined by the density with respect to the Lebesgue measure:

dρMP
γ,σ 2(x)

dx
=

√
(u+ − x)(x − u−)

2πxσ 2
1x∈[u−,u+], (1.1)

where u+ = σ 2(1 + √
γ )2 and u− = σ 2(1 − √

γ )2.

It has been conjectured (see [19] for instance) that, in the large-N -limit, some finer properties of the spectrum are
also universal. For instance, the spacing between nearest neighbor eigenvalues in the vicinity of a point u ∈ (u−, u+)

is expected to be universal, under the sole assumption that the variance of F is finite. The spacing is actually believed
to be “more universal” than the limiting Marčenko–Pastur distribution, in the sense that it is expected to be the same
as for Hermitian Wigner matrices. To investigate such local properties of the spectrum, we introduce the so-called
local eigenvalue statistics in the bulk of the spectrum. Given a function f ∈ L∞(Rm) (m fixed) with compact support,
a point u ∈ [u−, u+], and a scaling factor ρN , we define the local eigenvalue statistic S

(m)
N (f,u,ρN) by

S
(m)
N (f,u,ρN) =

∑
i1,...,im

f
(
ρN(λi1 − u), . . . , ρN(λim − u)

)
, (1.2)

where the sum is over all distinct indices from {1, . . . ,N}. When u is in the bulk of the spectrum, that is u ∈ (u−, u+),
the natural choice for the scaling factor is ρN = NρMP

γ,σ 2(u), which should give the scale of the spacing between nearest
neighbor eigenvalues in the vicinity of u.

We here prove universality of some local linear statistics in the bulk of the spectrum for a wide class of complex
sample covariance matrices. We follow the approach used by [14] (and a series of papers [11–13]) where universality
in the bulk of Wigner matrices is proved. We now define the class of matrices under consideration in this paper. Let
μ be the real Gaussian distribution with mean 0 and variance 1/2. Let F be a complex probability distribution whose
real and imaginary parts are of the form

ν(dx) = e−V (x)μ(dx), (1.3)

for some real function V satisfying the following assumptions:

– V ∈ C 6 and there exists an integer k ≥ 1 such that

6∑
j=1

∣∣V (j)(x)
∣∣ ≤ C∗

(
1 + x2)k, (1.4)

– there exist δ1,C
′ > 0 such that ∀x ∈ R,

ν(x) ≤ C′e−δ1|x|2 . (1.5)

This assumption can actually be relaxed as explained in Remark 1.2 below to consider distributions ν with sub-
exponential decay only.

– F is normalized so that∫
x dν(x) = 0 and

∫
|x2|dν(x) = 1/2. (1.6)

In the sequel we consider sample covariance matrices MN = 1
N

YY ∗ where Y = (Yij ) is a N × p random matrix
such that:

Yij ,1 ≤ i ≤ N;1 ≤ j ≤ p, are i.i.d. random variables with distribution F . (1.7)

One shall remark that the condition (1.6) can always be achieved by rescaling and does not impact on the generality
of our next results.
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We now give our two main results. Let ε > 0 small be given.

Theorem 1.1. Assume that F satisfies (1.3)–(1.6). Let also u ∈ (u− + ε,u+ − ε) be a point in the bulk of the spectrum
and ρN = NρMP

γ,1 (u). Then

lim
N→∞ ES

(2)
N (f,u,ρN) =

∫
R2

f (x, y)

(
1 −

(
sin(x − y)π

π(x − y)

)2)
dx dy.

Remark 1.1. It is also possible to prove universality of local eigenvalue statistics for m = 3 using the approach devel-
oped hereafter. Nevertheless to consider higher integers m, one needs to increase the regularity of V (see Remark 1.1
in [14]).

We can also prove that the spacing distribution close to a point u in the interior of the support of Marčenko–
Pastur’s law is universal. Let s ≥ 0 and (tN ) be a sequence such that limN→∞ tN = +∞ and limN→∞ tN

N1−β = 0

for some β > 0. Let u ∈ (u− + ε,u+ − ε) be given and ρN = NρMP
γ,1 (u). Define then the “spacing function” of the

eigenvalues by

SN(s,u) := 1

2tN
�

{
1 ≤ j ≤ N − 1, λj+1 − λj ≤ s

ρN

, |λj − u| ≤ tN

ρN

}
. (1.8)

Intuitively the expectation of the spacing function is the probability, knowing that there exists an eigenvalue in the
interval [u − tN ,u + tN ], to find its nearest neighbor within a distance s

ρN
. Finally, we define

p(s) = d2

ds2
det(I − K)L2(0,s), where K(x,y) := sinπ(x − y)

π(x − y)
. (1.9)

Theorem 1.2. Assume that F satisfies (1.3)–(1.6). Let also u ∈ (u− +ε,u+ −ε) be a point in the bulk of the spectrum.
Then,

lim
N→∞ ESN(s,u) =

∫ s

0
p(w)dw. (1.10)

Remark 1.2. Using truncation and centralization techniques, it is possible to prove both Theorem 1.1 and Theorem 1.2
when assumption (1.5) is replaced by the weaker assumption

∃C1,C2 > 0 such that ν(x) ≤ C1e−C2|x|.

This extension is examined in full detail in Section 5 of [14] for Wigner random matrices and readily extends to sample
covariance matrices.

The first proofs of universality in the bulk of the spectrum of large random matrices have been obtained for the
so-called invariant ensembles [7–9]. Their proof relies on the fact that the joint eigenvalue density of such ensembles
can be computed and the asymptotic local eigenvalue statistics can then be determined. A breakthrough in the proof
of the conjecture was obtained in [17] (following the idea of [5] and [6]), proving universality in the bulk for the
so-called Dyson Brownian motion model [10]. This then allowed to extend universality results to a wide class of
non-invariant Hermitian random matrix ensembles – the so-called Gauss divisible ensembles (see Section 1.2 for
the definition). [4] have then obtained the same universality result for Gauss divisible complex sample covariance
matrices. Very recently, such universality results have been greatly improved by [22] and [14] for Hermitian Wigner
random matrices. Both the papers remove the Gauss divisible assumption and only assume sufficient decay of the
entries of Wigner random matrices. The approach of [22] is to make a Taylor expansion of local eigenvalue statistics
of Wigner matrices. The core of the proof is then to show that these statistics depend, in the large-N -limit, only on
the first four moments of the entries of the Wigner matrix. Proving that any Wigner matrix can be matched to a Gauss
divisible matrix with the same first 4 moments allows to prove a very general universality result. On the other hand,
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the approach of [14] is to show that any Wigner matrix (under suitable decay of the entries) can be sufficiently well
approximated by a Gauss divisible random matrix, so that the bulk universality follows. We also refer the reader to
[15] where the two approaches are combined.

While writing this paper, a proof of universality in the bulk of the spectrum of large sample covariance matrices
has been obtained in [23] in the sole case where p − N = O(N43/48), but with much milder assumptions on the decay
of the distribution ν. Therein ν satifies

∫ |x|Co dν(x) < ∞ for some sufficiently large Co in place of our assumptions
(1.4) and (1.5). Their approach is based on the ideas developed in [22].

Our paper closely follows the ideas developed in [14]. We give an overview of the proof in the next subsection.

1.2. The idea of the proof

Following the pioneering work of [17] and [4,5] have shown universality of local eigenvalue statistics in the bulk of
the spectrum for complex sample covariance matrices when the distribution of the sample is Gauss divisible. We recall
that a complex distribution μG is Gauss divisible if there exist a complex probability distribution P and a non-trivial
complex Gaussian distribution G such that μG = P � G. Equivalently [4] consider random matrices of the form

M̃N = 1

N
(W + aX)(W + aX)∗, (1.11)

where W and X are independent N ×p complex random matrices both with i.i.d. entries. The Wij ’s are P distributed
and the Xij ’s are complex standard Gaussian random variables. In the above context a is real number independent
of N . The proof of [17] and [4] relies on three main steps:

– conditionnally on H = 1
N

WW ∗, the eigenvalue process induced by M̃N defines a so-called determinantal random
point field;

– the corresponding correlation kernel can be expressed as a double integral in the complex plane depending on H

through its sole spectral measure μN ;
– under suitable assumptions on W and thanks to concentration results for the spectral measure μN established by

[2,3] and [16], the asymptotic analysis of the correlation kernel (and local statistics) can be performed.

One may also point out that the correlation kernel is expressed in terms of Bessel functions with a large parameter
and whose order may be bounded or not. The asymptotic analysis requires uniform asymptotic expansions of such
Bessel functions. In [4], the authors consider the case where γ = 1 and p − N = O(N43/48) only, for which uniform
asymptotic expansions of Bessel functions are easier to handle. In this paper, we are able to consider the general case
with γ ≥ 1, using different uniform asymptotic expansions of Bessel functions.

The parameter a is to be seen as the “order of the Gaussian regularization” of P . In principle the above result would
yield a full proof of the universality conjecture if one could let a approach (and be smaller than) 1/

√
N . Unfortunately

this idea fails whatever sharp concentration results can be established for μN . The asymptotic analysis is not stable in
this scale.

A breakthrough to overcome this difficulty is obtained in [14]. In [11–13] concentration results are deeply sharp-
ened so as to be able to consider a Gaussian regularization of order a � 1√

N
. Given an arbitrary (non-Gauss divisible)

distribution F , the main point is however to show that one can find a Gauss divisible distribution approximating F

sufficiently well so that one can deduce universality in the bulk for a sample covariance matrix with i.i.d. F distributed
entries. This is the main step achieved in [14], which we now briefly expose.

Consider the Ornstein–Uhlenbeck (OU) process

L = 1

4

∂2

∂x2
− x

2

∂

∂x
, ∂tu = Lu.

Given a complex probability distribution μ̃, let then Xt be the N × p matrix process with initial distribution μ̃⊗Np

and whose entries (real and imaginary parts) evolve independently according to the OU process. Then Xt evolves as

t �→ e−t/2(Ĥ + (
et − 1

)1/2
X

)
,
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where Ĥ has i.i.d. entries with distribution μ̃ and X has standard complex Gaussian entries. Let et L := (etL)⊗Np

denote the dynamics of the OU process for all the matrix elements. Here, for small t , one should think that t � a2.

Erdős et al. [14] prove that there exists a Gauss divisible distribution μt
G approximating F in the total variation

norm in a sufficiently good way. Roughly speaking, let

μt
G = etL

(
1 − tL + tL2/2

)
Fc, μ̃ = (

1 − tL + t2L2/2
)
Fc,

where Fc is obtained from F after truncation and centralization. Intuitively, it is reasonable to expect that μt
G is a good

approximation of F in the scale t � 1. For sake of completeness we here recall their result (Proposition 2.1).
Let θ be a smooth cutoff function satisfying θ(x) = 1 if |x| ≤ 1 and θ(x) = 0 for |x| ≥ 2.

Proposition 1.1. Let V satisfy (1.4), (1.5) for some k and (1.6). Let λ > 0 be sufficiently small and t = Nλ−1. Let
cN , dN be real numbers so that vdμ defines a centered probability density if the function v is given by:

v(x) := e−V c(x), V c(x) := V (x)θ
(
(x − cN)N−λ/4k

) + dN .

Let then L := L⊗Np,fN,p := (e−V )⊗Np, and fc,N,p := v⊗Np.

1. There exist constants C > 0, c > 0 depending on k and λ such that
∫ |fc,N,p − fN,p|dμ⊗Np ≤ Ce−c(Np)c/2

.
2. gt := (1− tL+ t2L2/2)v is a probability measure with respect to dμ. Setting Gt := [gt ]⊗Np, there exists a constant

C depending on λ and the constants C∗ and δ1 defined in (1.4) and (1.5) such that∫ |et LGt − fc,N,p|2
et LGt

dμ⊗Np ≤ CNpt6−λ ≤ CN−4+8λ p

N
.

The idea is then to prove Theorem 1.1 and Theorem 1.2 for the Gauss divisible ensembles with small parameter
a ∼ N(λ−1)/2 for some λ > 0. Then, using Proposition 1.1, and following the idea of [14], Section 4, one can extend
universality of local eigenvalue statistics S

(m)
N (f,u,ρN) with m = 2,3 and that of the spacing function to sample

covariance matrices satisfying (1.7).
The paper is organized as follows. In Section 2 we study eigenvalue statitics in the bulk of the spectrum for Gauss

divisible sample covariance matrices. To this aim, we first recall some properties of the Deformed Wishart ensemble.
This is the conditional distribution of M̃N knowing W . Such an ensemble is in particular known to be determinantal, as
we recall. We then establish some improved convergence rates for the spectral measure of sample covariance matrices
whose entries have a sub-Gaussian tail. These concentration results then allow to compute the asymptotic correlation
functions as N → ∞ in the regime where a → 0, a � 1√

N
. We then prove Theorem 1.2 and Theorem 1.1 in Section 3.

In the whole paper, we use C and c to denote constants whose value may vary from line to line.

2. The Gauss divisible ensemble

In this section we establish some universality results for the following Gauss divisible ensemble: let

M̃N = 1

N
(W + aX)(W + aX)∗, (2.1)

be a Hermitian N × N random matrix where

• (H0) X and W are independent N × p random matrices where p ≥ N and there exists γ ≥ 1 so that
limN→∞ p/N = γ ;

• (H1) a = aN =
√

Nλ

N
where λ > 0 is a (small) real number;

• (H2) X is a N × p random matrix with complex standard Gaussian entries:

ReXij , ImXij ∼ N (0,1/2) ∀1 ≤ i ≤ N,1 ≤ j ≤ p;
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• (H3) W = (Wij ),1 ≤ i ≤ N,1 ≤ j ≤ p, is a complex random matrix such that ReWij , ImWij ,1 ≤ i ≤ N,1 ≤ j ≤
p, are i.i.d. and satisfy:

(A1) There exists a constant δo > 0 such that Eeδo|Wij |2 < ∞,∀i, j.

Without loss of generality, we also make the assumption that

E|Wij |2 = 1/4. (2.2)

Note that (2.2) can always be achieved by rescaling M̃N . From now on, we denote by y1 ≥ y2 ≥ · · · ≥ yN the ordered
eigenvalues of H = HN = WW ∗/N and let μN = 1

N

∑N
i=1 δyi

be its spectral measure. Under assumption (2.2), it is
known that μN almost surely converges to the Marčenko–Pastur distribution with parameters γ and 1/4, ρMP

γ,1/4 =
ρMP

γ , whose density function is given by (1.1) with σ 2 = 1/4. When γ = 1, we simply denote ρMP
1 by ρMP for short.

2.1. Correlation functions

The sample covariance Gauss divisible ensemble has a nice mathematical structure that we are going to make use
of in the sequel: the conditional distribution of M̃N with respect to W is the so-called complex deformed Wishart
ensemble. Such an ensemble has been widely studied in random matrix theory as it induces a determinantal random
point field. We recall some results used in [4] (see references therein) that will be needed for the sequel. Let then
P H

N (λ1, λ2, . . . , λN) be the joint eigenvalue distribution induced by the conditional distribution of M̃N w.r.t. H . Then
(see Section 3 in [4]), P H

N is absolutely continuous with respect to Lebesgue measure on R
N+ . Its density f H

N is given
by:

f H
N (x1, x2, . . . , xN) = V (x)

V (y)
det

(
1

S
e{−(yi+xj )/S}Iν

(
2
√

yixj

S

)(
xj

yi

)ν/2)N

i,j=1
, (2.3)

where V (x) := ∏
1≤i<j≤N(xi −xj ), ν = p−N , Iν is the modified Bessel function of the first kind, and S = a2/N . The

main tools to study local eigenvalue statistics are the so-called eigenvalue correlation functions (see Section 3). They
are defined for any integer 1 ≤ m ≤ N by R

(m)
N (x1, x2, . . . , xm;H) = N !

(N−m)!
∫

R
N−m+

f H
N (x1, x2, . . . , xm,λm+1, . . . ,

λN)
∏N

i=m+1 dλi . Then, for any integer 1 ≤ m ≤ N , one has that

R
(m)
N (x1, x2, . . . , xm;H) = det

(
KN(xi, xj ;H)

)m
i,j=1,

for some correlation kernel KN(u, v;H). This gives the determinantal random point field structure. Furthermore
KN(u, v;H) is given by

KN(u, v;H) := 1

2i2π2S2

∫
iR+A

dw

∫
Γ

dze(−z2+w2)/SKν

(
2w

√
v

S

)
Iν

(
2z

√
u

S

)

×
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν(
w + z

w − z
− w − z

w + z

)
, (2.4)

where Kν is the modified Bessel function of the second kind. Γ is a contour oriented counterclockwise enclosing the
±y

1/2
i , i = 1, . . . ,N , and A is large enough so that the two contours Γ and Υ = iR + A do not cross each other (see

Fig. 1).
Due to the determinantal structure, correlation functions are not impacted by conjugation of the correlation kernel.

In particular, for any b ∈ R and any integer m ≥ 1,

det
(
KN(ui, uj ;H)

)m
i,j=1 = det

(
KN(ui, uj ;H)e2b(

√
uj −√

ui)/S
)m
i,j=1.

In the sequel we consider the conjugation for some b that will be defined in the asymptotic analysis. We set

Kb
N(ui, uj ;H) := KN(ui, uj ;H)e2b(

√
uj −√

ui)/S. (2.5)
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Fig. 1. The two contours defining the correlation kernel KN(u, v;H).

The correlation kernel Kb
N(u, v;H) only depends on H through its spectral measure μN . As in the case where

a is fixed (independent of N ), the idea is to use the convergence of μN to the Marčenko–Pastur distribution. In
particular, one would like to make the replacement (outside a suitably negligible set)

∏N
i=1(w

2 − yi) = exp{N(1 +
o(1))

∫
ln(w2 − y)dρMP

γ (y)}. In Section 2.2, we prove that this replacement can be made in some sense provided

Im(w2) is not too small.
Also, the kernel Kb

N(u, v;H) depends on Bessel functions with large argument and whose order can be bounded
or grow unboundedly. For some technical reasons (namely uniform asymptotic expansions of Bessel functions with
bounded/unbounded order), we will separate the asymptotic analysis of the kernel depending on the case where ν is
bounded (Section 2.3) or not (Section 2.4). This has no impact (up to technicalities) on the strategy of the proof.

2.2. Concentration results

This subsection is devoted to the proof of the following Proposition 2.1, which precises the rate of convergence of μN

to ρMP. Before exposing this proposition we need a few definitions and notations. Given a complex number z = u+ iη,

u ∈ R, η > 0, we define the Stieltjes transform of μN by

mN(z) :=
∫

1

λ − z
dμN(λ), (2.6)

and the Stieltjes transform of the limiting Marčenko–Pastur distribution by

mMP(z) :=
∫

1

λ − z
dρMP

γ (λ). (2.7)

Let ε > 0 be given (small enough).

Proposition 2.1. Let z = u + iη for some u ∈ [u− + ε,u+ − ε] and η > 0. Then, there exist a constant c1 and
Co,C > 0, c > 0 depending on ε only such that ∀δ < c1ε,

P

(
sup

u∈[u−+ε,u+−ε]
∣∣mN(z) − mMP(z)

∣∣ ≥
(

δ + Co

∣∣∣∣ p

N
− γ

∣∣∣∣))
≤ Ce−cδ

√
Nη,

for any (lnN)4/N ≤ η ≤ 1. Furthermore, given η ≥ (lnN)4/N , there exist constants c > 0,C > 0 and Ko such that
∀κ ≥ Ko,

P

(
sup

|x|>(ε/200)2,y≥η

∣∣mN(x + iy)
∣∣ ≥ κ

)
≤ Ce−c

√
κNη.
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Proof. To ease the reading, the proof is postponed to Appendix A. The proof is actually a modification of that of
Theorems 3.1 and 4.1 in [13], where the Stieltjes transform of Hermitian Wigner matrices is considered. We thus
simply indicate the main changes. �

2.3. Asymptotics of the correlation kernel when ν = p − N is bounded

The aim of this subsection is here to prove the following proposition.
Let ε > 0 be given (small) independent of N .

Proposition 2.2. Let u∗ ∈ [u− + ε,u+ − ε] = [ε,1 − ε] and m ≥ 1 be given. Consider a sequence u = uN such that
N1−λ|u − u∗| = o(1). Then, there exist b ∈ R, a set ΩN , and positive constants C,c such that:

– the complement of ΩN is negligible: P(Ωc
N) ≤ Ce−cNλ/4

,
– on ΩN one has that

lim
N→∞ det

(
1

NρMP(u)
Kb

N

(
u + xi

NρMP(u)
,u + xj

NρMP(u)
;H

))m

i,j=1

= det

(
sin(π(xi − xj )

π(xi − xj )

)m

i,j=1
.

Remark 2.1. In Remark 2.3 we explain how to extend Proposition 2.2 to the case where |u−u∗| = o(N−c) with c > 0
arbitrarily small. This extension is needed for the proof of Theorem 1.2.

This subsection is devoted to the proof of Proposition 2.2. The proof is divided into two parts: first we obtain a new
expression for the correlation kernel, which then allows to derive its asymptotics by a saddle point argument.

2.3.1. Rewriting the kernel
Our strategy consists into two parts: we first replace the Bessel functions with their asymptotic expansion and then
remove the singularity 1/(w − z) in the correlation kernel as it will be proved to prevent a direct saddle point analysis.
As this part is highly technical and needs a few notations, we summarize our main result in Lemma 2.3 stated at the
end of this subsection. The reader might skip this part and is simply referred to the above cited lemma.

Our first task to replace in (2.4) Bessel functions with their asymptotic expansion given in Appendix B, formula
(B.1). This replacement can be made, up to a negligible error, provided the contour Γ is cut in a small neighborhood
of the imaginary axis: see Fig. 2. In the sequel (see Fig. 2) we call x±

o (resp. x±
1 ) the endpoints of Γc with Re(xo) < 0

(resp. Re(x1) > 0) with positive/negative imaginary part surrounding the imaginary axis: x±
o and x±

1 will be chosen

Fig. 2. The contour Γc has been cut along the imaginary axis.
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in Section 2.3.2. We also call Γ1 (resp. Γ2) the part of Γc lying to the right (resp. left) of iR. Then Γ1 is the image of
Γ2 by z �→ −z and Γc = Γ1 ∪ Γ2. One obtains the following lemma.

Lemma 2.1. For any b ∈ R, one has that

Kb
N(u, v;H) = (

1 + o(1)
)(

K
1,b
N (u, v;H) + K

2,b
N (u, v;H)

)
, (2.8)

where

K
1,b
N (u, v;H) = e2b(

√
v−√

u)/S

4i2π2S

∫
iR+A

dw

∫
Γ1

dze(−z2+w2)/Se−2w
√

v/Se2z
√

u/S

× 1√
w

√
z(uv)1/4

N∏
i=1

w2 − yi

z2 − yi

(
w

z

)ν
w + z

w − z
,

(2.9)

K
2,b
N (u, v;H) = e2b(

√
v−√

u)/S

4i2π2S

∫
iR+A

dw

∫
Γ1

dze(−z2+w2)/Se−2w
√

v/Se−2z
√

u/S

× 1√
w

√
z(uv)1/4

N∏
i=1

w2 − yi

z2 − yi

(
w

z

)ν
w + z

w − z
eνiπ+iπ/2.

Proof. Here we will call on some arguments already used in [4], which we won’t develop entirely, yet trying to be the
most self-contained as possible. Lemma 2.1 essentially follows from the two claims exposed in the sequel and whose
proof relies on the saddle point analysis in the next subsection.

Claim 2.1. One has that

lim
N→∞

e2b(
√

v−√
u)/S

2i2π2S2

∫
iR+A

dw

∫
Γ \Γc

dze(−z2+w2)/SKν

(
2w

√
v

S

)
Iν

(
2z

√
u

S

)
,

(2.10)
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν(
w + z

w − z
− w − z

w + z

)
= 0.

Claim 2.1 essentially follows from the fact that |Iν(z)| ≤ ez if Re(z) > 0 (and a similar bound for Kν ) and the fact
that Γ \ Γc lies far away from the critical points (a full justification can be derived from the saddle point analysis
performed in Section 2.3.2, see Remark 2.2).

Claim 2.2. One has that

e2b(
√

v−√
u)/S

2i2π2S2

∫
iR+A

dw

∫
Γc

dze(−z2+w2)/SKν

(
2w

√
v

S

)
Iν

(
2z

√
u

S

)

×
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν(
w + z

w − z
− w − z

w + z

)

= e2b(
√

v−√
u)/S

4i2π2S

∫
iR+A

dw

∫
Γ1

dze(−z2+w2)/Se−2w
√

v/S+2z
√

u/S 1

(uv)1/4
√

w
√

z

×
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν(
w + z

w − z
− w − z

w + z

)(
1 + O

(
N−λ/2)). (2.11)
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By a straightforward change of variables, we can reduce Γc to Γ1. Claim 2.2 then follows by uniform asymptotic
expansions of first the w-integral, using the asymptotics of the Bessel function Kν given in (B.1), and then of the
z-integral. Again this follows from the saddle point analysis of Section 2.3.2. This saddle point analysis will prove
that the correlation kernel does not vanish in the large N -limit. Then splitting Γ1 into sufficiently many pieces lying
to the left or to the right of the critical points and moving accordingly Υ = iR + A to pass close enough to the same
critical points yields that the error term is of order N−λ/2. This yields Claim 2.2 and Lemma 2.1. We skip the detail. �

A saddle point analysis of the correlation kernel K
1,b
N cannot be performed at that point, due to the singularity

1/(w − z). Indeed, assuming that
∏N

i=1(w
2 − yi) = e

∫
N ln(w2−y)dρMP(y)(1+o(1)), it is not difficult to see that the z-

and w-integrands have the same critical points. Thus we first remove this singularity (see [4] for a more detailed
explanation).

Define

f N
u (z) := z2 − 2

√
uz + S

N∑
i=1

ln
(
z2 − yi

)
, fN(z) = f N

u (z) + 2b
√

u,

f N
v (z) := z2 − 2

√
vz + S

N∑
i=1

ln
(
z2 − yi

)
, f̃N (z) = f N

v (z) + 2b
√

v,

gN,u(w, z) := (w − b)
(f N

u )′(w) − (f N
u )′(z)

w − z
+ (

f N
u

)′
(z), (2.12)

g1
N,u(w, z) = νbS

wz
+ Sb

2wz

w − z

w + z
, θ(w,b) = −e2(w−b)(

√
u−√

v)/S − 1

2(w − b)(
√

u − √
v)

,

θ1(z, b) = e−2(z−b)(
√

u+√
v)/S − 1

2(z − b)(
√

u + √
v)

.

Lemma 2.2. One has that

K
1,b
N (u, v;H)

= 1

(uv)1/44i2π2S

∫
iR+A

dw

∫
Γ1

dze(fN (w)−fN (z))/S

× w + z√
w

√
z

(
gN,u(w, z) + g1

N,u(w, z)
)(w

z

)ν

θ(w,b) (2.13)

− (x−
1 − b)

4i2π2(uv)1/4

∫
iR+A

dw
w + x−

1√
w

√
x−

1

(
w

x−
1

)ν

e(fN (w)−fN (x−
1 ))/Sθ(w,b)

+ (x+
1 − b)

4i2π2(uv)1/4

∫
iR+A

dw
w + x+

1√
w

√
x+

1

(
w

x+
1

)ν

e(fN (w)−fN (x+
1 ))/Sθ(w,b). (2.14)

Setting K̃
2,b
N (u, v;H) := e−νiπ−iπ/2K

2,b
N (u, v;H), we have that

K̃
2,b
N (u, v;H)

= e−4b
√

u/S

4i2π2S

∫
iR+A

dw

∫
Γ1

dz
(
gN,v(w, z) + g1

N,v(w, z)
)
e(f̃N (w)−f̃N (z))/S

× w + z√
w

√
z(uv)1/4

(
w

z

)ν

θ1(z, b)
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− e−(4b
√

u)/S(x−
1 − b)

4i2π2(uv)1/4

∫
iR+A

dw
w + x−

1√
w

√
x−

1

(
w

x−
1

)ν

e(f̃N (w)−f̃N (x−
1 ))/Sθ1(x−

1 , b)

+ e−4b
√

u/S(x+
1 − b)

4i2π2(uv)1/4

∫
iR+A

dw
w + x+

1√
w

√
x+

1

e(f̃N (w)−f̃N (x+
1 ))/S

(
w

x+
1

)ν

θ1(x+
1 , b

)
. (2.15)

Proof. We only consider K
1,b
N (the arguments are similar for K

2,b
N ). To this aim we make the change of variables

w = b + β(w′ − b), z = b + β(z′ − b) for some β real close to 1 and get the following: set

E(w) := e(w2−2
√

vw)/S
N∏

i=1

(
w2 − yi

); G(z) = e(z2−2
√

uz)/S
N∏

i=1

(
z2 − yi

)
. (2.16)

Then one has that

K
1,b
N (u, v;H) = e2b(

√
v−√

u)/S

(uv)1/44i2π2S

∫
iR+A

dw

∫
Γ1

dz
1√
wz

E(w)

G(z)

(
w

z

)ν
w + z

w − z

= e2b(
√

v−√
u)/S

4i2π2S(uv)1/4

∫
iR+A

∫
Γ1

β dw dz√
(b + β(w′ − b))(b + β(z′ − b))

×
(

b + β(w′ − b)

b + β(z′ − b)

)ν 2b + β(w′ + z′ − 2b)

w′ − z′
E(b + β(w′ − b))

G(b + β(z′ − b))

− e2b(
√

v−√
u)/S

4i2π2S(uv)1/4

∫
iR+A

∫ b+β(x+
1 −b)

x+
1

dw dz√
wz

(
w

z

)ν
w + z

w − z

E(w)

G(z)

+ e2b(
√

v−√
u)/S

4i2π2S(uv)1/4

∫
iR+A

∫ b+β(x−
1 −b)

x−
1

dw dz√
wz

(
w

z

)ν
w + z

w − z

E(w)

G(z)
. (2.17)

Differentiating with respect to β (close to 1), we find that (see [17] Section 2 for the detail)

(uv)1/4K
1,b
N + (√

v − √
u
) d

d
√

v

(
(uv)1/4K

1,b
N

)
= e2b(

√
v−√

u)/S

4i2π2S2

∫
iR+A

dw

∫
Γ1

dz
1√
wz

(
w

z

)ν
w + z

w − z

E(w)

G(z)

×
([

−2(w + z − b) + 2
√

u + S

N∑
i=1

2yi(w + z) − b(2wz + yi)

(w2 − yi)(z2 − yi)

]
(2.18)

− νbS

wz
− Sb

2wz

w − z

w + z

)

− (x+
1 − b)e2b(

√
v−√

u)/S

4i2π2S

∫
iR+A

dw
1√
wx+

1

(
w

x+
1

)ν w + x+
1

w − x+
1

E(w)

G(x+
1 )

+ (x−
1 − b)e2b(

√
v−√

u)/S

4i2π2S

∫
iR+A

dw
1√
wx−

1

(
w

x−
1

)ν w + x−
1

w − x−
1

E(w)

G(x−
1 )

. (2.19)
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By the definition of f N
u , the term in the bracket (2.18) can also be written

(2.18) = − (w − b)(f N
u )′(w) − (z − b)(f N

u )′(z)
w − z

= −(w − b)
(f N

u )′(w) − (f N
u )′(z)

w − z
− (

f N
u

)′
(z). (2.20)

Integrating by parts yields Lemma 2.2. �

To summarize this highly technical subsection, we have proved that

Lemma 2.3. Assume that ν is a bounded integer. Then

Kb
N(u, v;H) = (

1 + o(1)
)(

K
1,b
N (u, v;H) + K

2,b
N (u, v;H)

)
,

where the kernels K
1,b
N and K

2,b
N are defined in Lemma 2.2.

2.3.2. Saddle point analysis of the correlation kernel
We are now in position to perform the saddle point analysis of the correlation kernel Kb

N(u, v;H) and prove Proposi-
tion 2.2. Let τ be a given real number independent of N and assume that v − u = τ/(NρMP(u)). We mainly focus on
the asymptotics of the first term (2.13) in K

1,b
N . The asymptotic expansion of the two other terms (2.14) in K

1,b
N and

of K
2,b
N will be an easy corrollary of the arguments used hereafter.

We first examine the saddle point analysis for the approximate exponential term:

f (w) = fu(w) := w2 − 2(w − b)
√

u + a2
∫

ln
(
w2 − y

)
dρMP(y). (2.21)

Note that f is the almost sure limit of the exponential term arising in the definition of (2.13) and should thus (approx-
imately) lead its asymptotic analysis. Then using the fact that, when γ = 1, a Marčenko–Pastur random variable has
the same law as a squared semi-circle random variable, one gets that

f ′(w) := 2w − 2
√

u + a2
∫

2w

w2 − y
dρMP(y) = 2w − 2

√
u + 4a2(w −

√
w2 − 1

)
. (2.22)

Given a point u ∈ [ε,1 − ε], ε > 0, it is easy to see that f admits two conjugate critical points:

w±
c = (1 + 2a2)

√
u ± 2a2i

√
1 + 4a2 − u

1 + 4a2
= √

u ± a2iπ
√

uρMP(u) + O
(
a2).

More precisely, one has that Im(w±
c ) = ±a2π

√
uρMP(u) + O(a4), where the O is uniform in the bulk (depending on

ε only). One can also check that

f ′′(w±
c

) = 2
(
1 + 2a2) + 4a2w±

c√
(w±

c )2 − 1
= 2 + O

(
a2),

where the O(·) is uniform as long as u ∈ [ε,1 − ε], ε > 0, and depends on ε only.
We now give the relevant contours for a saddle point analysis of the approximate exponential terms. Let Υ =

Re(w+
c )+ it, t ∈ R, and Γ1 = Γ +

1 ∪Γ +
1 with Γ +

1 = {w+
c (t), t ∈ [ ε

2 ,1− ε
2 ]}∪{w+

c (1 − ε
2 )+x, x > 0}∪{iIm(w+

c ( ε
2 ))+

x, ε/180 ≤ x ≤ Re(w+
c ( ε

2 ))}. Then it is easy to check that Ref achieves its maximum (resp. minimum) at w±
c on Υ

(resp. Γ ).
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We now turn to the saddle point analysis for the true exponential term:

fN(w) := w2 − 2(w − b)
√

u + a2

N

N∑
i=1

ln
(
w2 − yi

)
. (2.23)

One has that f ′
N(w) = 2(w − √

u) − 2wa2mN(w2). Using the concentration results of Proposition 2.1, we now show
that the first derivatives of fN and f are close (on a suitable set). Let ζ > 0 be a very small number and set

Sε,ζ =
{
z = x + iy, x ∈

[
u− + ε

180
, u+ − ε

8

]
, ζa2 ≤ y ≤ 1

}
, (2.24)

with u− = 0 and u+ = 1 here as γ = 1. Define for H = HN = WW ∗
N

,

ΩN =
{∣∣mN(z) − m(z)

∣∣ ≤ N−λ/4, if
ε

180
≤ Re(z) ≤ 1 − ε

8
, ζa2ε ≤ Im(z) ≤ 1;

supyi(H) ≤ K; sup
|x|>(ε/200)2,y≥ζa2

∣∣mN(x + iy)
∣∣ ≤ K

}
. (2.25)

Using Proposition 2.1 and Lemma 7.3 in [12], we can deduce that there exist K large enough and constants c,C > 0
such that

P
(
Ωc

N

) ≤ Ce−cNλ/4
.

From now on we assume that HN ∈ ΩN. As a consequence, there exists C > 0 such that for any w ∈ Sε,ζ ,

∣∣f ′
N(w) − f ′(w)

∣∣ ≤ Ca2

Nλ/4
. (2.26)

By Cauchy’s formula, one can then deduce that for any integer l ≥ 1

∣∣f (l)
N (w) − f (l)(w)

∣∣ ≤ C

a2(l−2)Nλ/4
. (2.27)

Here the value of the constant C varies from line to line.
Let us now show that fN admits two conjugate critical points w±

c,N which are very close to w±
c . The proof directly

follows the arguments of [14], Section 3. The critical points of fN are the solutions of the fixed point equation:

w = FN(w) = √
u − a2

N

N∑
i=1

w

w2 − yi

.

This equation clearly admits 2N − 1 real solutions which are interlaced with −√
y

N
, . . . ,−√

y1,
√

y1, . . . ,
√

y
N

.

It admits also two non real solutions w±
c,N . We now show that w±

c,N are very close to w±
c . Set F(w) = √

u −
a2

∫
w

w2−y
dρMP(y). Define Θ = {z ∈ C, |Re(z) − √

u| ≤ C0a
2, ζa2 ≤ Im(z) ≤ C0a

2}, for some large constant C0.

Then, on Θ, |FN − F | ≤ Ca2N−λ/4. As on Θ , Re(F (z)) = √
u + O(a2) and Im(F (z)) = a2π

√
uρMP(u) + o(a2)

we deduce that FN(Θ) ⊂ Θ. Now it is an easy consequence of (2.27) that FN is a contraction: one has that
|F ′

N(w) − F ′(w)| ≤ CN−λ/4. Thus FN admits a unique fixed point with Im(w+
c,N ) > ζa2. Furthermore, it is an

easy fact that

∣∣w+
c,N − w+

c

∣∣ ≤ Ca2

Nλ/4
.
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We now slightly modify the contours Γ and Υ for the saddle point analysis of fN . Set ΥN = {Re(w+
c,N )+ it, t ∈ R}.

Then ΥN lies within a C1-distance of at most Ca2N−λ/4 from Υ . Furthermore, setting w = Re(w+
c,N ) + it ,

Re

(
d

dt
fN(w)

)
= −t

{
1 − a2

N

N∑
i=1

(
1

|w − √
y

i
|2 + 1

|w + √
y

i
|2

)}
.

By the monotonicity of t �→ ∑N
i=1(

1
|w−√

y
i
|2 + 1

|w+√
y

i
|2 ), we conclude that Re(fN) is maximum on ΥN at w±

c,N . More

precisely, using that Ref ′′
N(w) ≥ 1 for any w ∈ Υ ∩ {Im(w) ≥ ζa2}, one has that, if t stands for Im(w),

Re
(
fN(w) − fN(w+

c,N )
) = −Re

(∫ t−Im(w+
c,N )

0
s ds

∫ 1

0
f ′′

N(w+
c,N + ius)du

)

≤ − (t − Im(w+
c,N ))2

4
. (2.28)

This implies in particular that

Re
(
fN

(
Re

(
w+

c,N

) + iζa2) − fN

(
w+

c,N

)) ≤ −(
ζ − a−2Im

(
w+

c,N

))2
a4/4.

Let then w ∈ Υ ∩ {z,0 ≤ Im(z) ≤ ζa2}.Then, with a slight abuse of notation when Im(w) = 0,∣∣exp
{
fN(w) − fN

(
Re

(
w+

c,N

) + iζa2)}∣∣ ≤ eζ 2a4
.

If one chooses ζ in (2.24) small enough so that for any v ∈ [ε,1 − ε], ζa2 ≤ Im(w+
c,N )/8, one can then deduce that

the contribution of the contour Υ ∩ {z, Im(z) ≤ ζa2} is negligible. Thus, using (2.28), the main contribution to the
w-integral comes from a neighborhood of width

√
S of the critical point.

We now turn to the z-contour. Let

Γ +
N = {

w+
c,N (t), ε/2 ≤ t ≤ 1 − ε/2

} ∪ {
w+

c,N (1 − ε/2) + x, x > 0
}

∪ {
iIm

(
w+

c,N (ε/2)
) + x, ε/180 ≤ x ≤ Re

(
w+

c,N (ε/2)
)}

. (2.29)

We can now define x±
1 := ε/180 ± iIm(w+

c,N (ε/2)). The choice of 180 here is arbitrary: we only need a sufficiently

large constant. We also set x±
o = −x∓

1 .
By construction, for any t, ε

2 ≤ t ≤ 1 − ε
2 ,

Re
(−fN

(
w+

c,N (t)
) + fN

(
w+

c,N

)) ≤ −c
(√

u − √
t
)2

,

for some constant c > 0 small enough. This follows from the fact that for any t, ε
2 ≤ t ≤ 1 − ε

2 , Im(w+
c,N (t)) ≥ ζa2

and Re(
dw+

c,N (t)

dt
) = 1+O(a2)

2
√

t
. Moreover Re(fN(w+

c,N (1 − ε
2 )) − fN(w+

c,N (1 − ε
2 ) + x)) ≤ −cx2, for some constant

c > 0 small enough. This follows from the fact that on ΩN a2zmN(z2) → 0 uniformly along ΓN as mN is bounded.
Thus the contribution of {w+

c,N (1 − ε
2 ) + x, x > 0} is negligible as N → ∞. For the same reason, the contribution

of {iIm(w+
c,N ( ε

2 )) + x, ε/180 ≤ x ≤ Re(w+
c,N ( ε

2 ))} is negligible in the large N limit. As for the w-integral, the main

contribution to the z-integral comes from a neighborhood of width
√

S of the critical point.

Remark 2.2. This analysis justifies Claim 2.1 as Re(fN(w+
c,N ) − fN(x+

1 )) ≤ −c for some c > 0. One can choose

Γ \ Γc as {x+
1 + ia2t,0 < t < A − Im(x+

1 )} ∪ {x+
o + ia2t,0 < t < A − Im(x+

1 )} ∪ {x + ia2A,Re(x+
o ) ≤ x ≤ Re(x+

1 )}
plus its conjugate, for some large enough constant A. There exists C > 0 such that Re(fN(x+

1 )− fN(z)) ≤ Ca2,∀z ∈
Γ \ Γc , thus yielding a negligible contribution.
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We can now conclude to the asymptotic expansion of the correlation kernel and prove Proposition 2.2. Let u∗ be
as in Proposition 2.2.

We first consider the asymptotics for the first term (2.13) in K
1,b
N . We now fix b as follows:

b = Re
(
w+

c,N (u∗)
)
.

Thanks to this choice, |Re(w+
c,N )−b| = o(Nλ−1). Therefore the function θ has no impact on the saddle point argument

exposed in the above, neither do the functions gN,u and g1
N,u. At the critical points, one deduces from (2.12) that:

gN,u

(
w±

c,N ,w±
c,N

) = (
w±

c,N − b
)
f ′′

N

(
w±

c,N

) � iIm
(
w±

c,N

)
f ′′

N

(
w±

c,N

);
gN,u

(
w±

c,N ,w∓
c,N

) = 0;
g1

N,u

(
w±

c,N ,w±
c,N

) = g1
N,u

(
w±

c,N ,w∓
c,N

) = O(S) = O
(
Im

(
w±

c,N

)
/N

);
θ
(
w±

c,N , b
) = ei2(

√
u−√

v)Im(w±
c,N )/S − 1

2iIm(w
N,±
c )(

√
u − √

v)

(
1 + o(1)

)
.

Let us now consider the 4 combined contributions of the different critical points. The contribution to (2.13) from
z = w = w±

c,N gives (at the leading order)

±i

4i2π2S

( √
2πS√

f ′′(w±
c,N )

)2 1

(uv)1/4
f ′′(w±

c,N

)e2Imw±
c,N (

√
u−√

v)/S − 1

(
√

u − √
v)

. (2.30)

The contribution to (2.13) from z = w = w±
c,N is O(N1−λ/2) due to the fact that gN,u anneals at that point. Combining

the above yields that:

lim
N→∞

1

NρMP(u)
(2.13) = lim

N→∞
1

NρMP(u)
(2.30) = sin(πτ)

πτ
.

The contributions of the two other terms in (2.14) is exponentially small since there exists a constant c > 0 depend-
ing on ε such that:

Re

(
fN

(
w±

c,N

(
ε

2

)))
− Re

(
fN

(
w+

c,N

))
> c.

This finishes the asymptotic expansion of K
1,b
N .

Let us now turn to the asymptotics for K
2,b
N . The function θ1 is not bounded. Nevertheless there exists χ > 0

depending on ε such that |e−4b
√

u/Sθ1(z, b)| ≤ e−χS−1
. This follows from the fact that Re(b − z) < b along the

contour ΓN . One can now use the same saddle point arguments as for the study of K
1,b
N to show that

1

NρMP(u)
K

2,b
N (u, v;H) = O

(
e−χS−1)

.

This is enough to ensure Proposition 2.2.

Remark 2.3. In the case where |u−u∗| = o(N−c) for some c ≤ 1−λ, we choose a sequence û(N) such that N1−λ|u−
û(N)| → 0, |u∗ − û(N)| = o(N−c) and û(N) ∈ [u− + ε,u+ − ε] for all N . We can then replace u∗ → û(N) in all the
asymptotic analysis (in particular b = b(N) = Re(w+

c,N (û(N)))). This has no impact on the validity of the arguments.
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2.4. The case where ν → ∞

We now turn to the case where ν is unbounded (that is either γ = 1 and ν → ∞ or γ �= 1) and study the asymptotics of
the correlation kernel (2.4). The aim of this section is to prove the following Proposition. Let ε > 0 be given (small).

Proposition 2.3. Assume that γ ≥ 1 and λ < 1/2. Let u∗ ∈ [u− + ε,u+ − ε] and u = u(N) be a sequence such that
limN→∞ N1−λ(u − u∗) = 0. Then there exists b ∈ R such that outside a set of negligible probability,

lim
N→∞

1

NρMP
γ (u)

Kb
N

(
u,u + τ

NρMP
γ (u)

;H
)

= sin(πτ)

πτ
.

Remark 2.4. Proposition 2.3 extends to the case where |u−u∗| = o(N−c) for some c ≤ 1 −λ by the same arguments
as in Remark 2.3.

The whole subsection is devoted to the proof of Proposition 2.3. The proof follows the same steps as in Section 2.3.2
and we explain the main changes only.

2.4.1. Rewriting the kernel
Again the basic argument is to replace Bessel functions with their asymptotic expansion (large order large argument)
and then derive the asymptotics of the correlation kernel by a saddle point argument.

We again cut the contour Γ in a small neighborhood of the imaginary axis as on Fig. 2. We also call Γc this cut
contour and the endpoints x±

1 , x±
o will be defined in the sequel. Let us denote again Γ1 the part of Γc lying to the

right of the imaginary axis, so that Γc := Γ1 ∪ (−Γ1). We now consider the uniform asymptotic expansion (B.2) of
Appendix B. We assume for a while that we can replace the modified Bessel functions with their asymptotic expansion
in the correlation kernel (this will be proved in Lemma 2.4 below). Thus, setting v = u + τ

NρMP
γ (u)

, we consider the

kernel:

K̃N(u, v;H) := 1

4i2π2S(uv)1/4

∫
iR+A

dw

∫
Γ1

dz
e(w2−z2+2(z−b)

√
u−2(w−b)

√
v)/S

√
w

√
z

× e((γ−1)2Nλ/(4u∗))(1/w−1/z)

N∏
i=1

w2 − yi

z2 − yi

(
w

z

)ν
w + z

w − z
(2.31)

− 1

4i2π2S(uv)1/4

∫
iR+A

dw

∫
Γ1

dz
e(w2−z2+2(z−b)

√
u−2(w−b)

√
v)/S

√
w

√
z

× e((γ−1)2Nλ/(4u∗))(1/w−1/z)
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν
w − z

w + z
. (2.32)

We call again K
1,b
N (resp. K

2,b
N ) the kernel given by (2.31) (resp. (2.32)). Set

Ψ (w,z) = exp

{
(γ − 1)2Nλ

4u∗
(1/w − 1/z)

}
.

We can now slightly modify the arguments of Section 2.3.1 to deduce that:

K
1,b
N (u, v;H)

= 1

(uv)1/44i2π2S

∫
iR+A

dw

∫
Γ1

dz e(fN (w)−fN (z))/SΨ (w, z)

× w + z√
w

√
z

(
gN,u(w, z) + g2

N,u(w, z)
)(w

z

)ν

θ(w,b) (2.33)
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− (x−
1 − b)

4i2π2(uv)1/4

∫
iR+A

dw
w + x−

1√
w

√
x−

1

(
w

x−
1

)ν

e(fN (w)−fN (x−
1 ))/Sθ(w,b)Ψ

(
w,x−

1

)

+ (x+
1 − b)

4i2π2(uv)1/4

∫
iR+A

dw
w + x+

1√
w

√
x+

1

(
w

x+
1

)ν

e(fN (w)−fN (x+
1 ))/Sθ(w,b)Ψ

(
w,x+

1

)
, (2.34)

where

g2
N,u(w, z) = g1

N,u(w, z) + SNλ(γ − 1)2

4u∗

(
1

wz
− b

w + z

z2w2

)
.

We leave K
2,b
N unchanged since the singularity 1/(w + z) will not prevent its direct saddle point analysis.

2.4.2. Saddle point analysis
We shall now perform the saddle point analysis of the correlation kernels hereabove. The arguments follow closely
those of Section 2.3. The approximate exponential term to be considered here is given by

hu(z) := z2 − 2
√

u(z − b) + a2
∫

ln
(
z2 − y

)
dρMP

γ (y) + a2(γ − 1) ln z.

We are indeed going to show that the perturbative term coming from Ψ does not play a role in the asymptotics. Let
mγ (z) be the Stieltjes transform of the Marčenko–Pastur distribution ρMP

γ . One can check that

mγ (z) = −2 + γ − 1

2z
+ 2

√
(z − (1 + √

γ )2/4)(z − (1 − √
γ )2/4)

z
.

The function hu admits two non-real critical points which are conjugate:

w±
c = w±

c (u) = √
u
(
1 − 2a2) ± ia2π

√
uρMP

γ (u) + O
(
a4). (2.35)

We now define the contours relevant for the saddle point analysis of the approximate exponential term. Let Υ =
Re(w+

c ) + it, t ∈ R, be oriented positively from bottom to top. The contour Γ1 is defined as in Section 2.3.2: we set

Γ1 = Γ +
1 ∪ Γ +

1 where Γ1 is oriented counterclockwise and

Γ +
1 = {

w+
c (t), t ∈ [u− + ε/90, u+ − ε/2]} ∪ {

w+
c (u+ − ε/2) + x, x > 0

}
∪

{
iIm

(
w+

c

(
u− + ε

90

))
+ x, ε/180 ≤ x ≤ Re

(
w+

c

(
u− + ε

90

))}
.

We first consider the z-contour. There exists c(ε) > 0 depending on ε only such that for all points t ∈ [u− +ε/90, u+ −
ε/2] in the bulk of the Marčenko–Pastur distribution Re(h′′

u(w
+
c (t))) > c(ε). Using the fact that

d

dt
Re

(
hu

(
w+

c (t)
)) = (√

t − √
u
)
Re

1√
th′′

u(w
+
c (t))

, (2.36)

−Re(hu) achieves its maximum at z = w±
c along the first part of Γ +

1 . There now remains to show that −Re(hu) also
decreases along {w+

c (u+ −ε/2)+x, x > 0} and {w+
c (u− + ε

90 )−x,0 < x < Re(w+
c (u− + ε

90 ))− ε
180 }. This assertion

follows from the fact that mγ is bounded along this curve. Using the same arguments as in Section 2.3.2, it is easily
seen that Re(hu) admits its maximum on Υ at w±

c . All the above reasoning holds unchanged if γ is replaced by p/N .
Thus, without loss of generality, we assume in the rest of this section that p/N = γ .

We now consider the true exponential term. We set

hN,u(z) = hN(z) := z2 − 2
√

u(z − b) + a2

N

N∑
i=1

ln
(
z2 − yi

) + a2(γ − 1) ln z.
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Again we can show that, provided H belongs to a suitable set, the derivatives of hu and hN,u are very close and that
hN,u admits two non-real critical points w±

c,N very close to w±
c . Let ζ > 0 be given (small) and Sε,ζ be given by

(2.24). Define for H = HN = WW ∗
N

,

ΩN,γ =
{

supyi(H) ≤ K; sup
|x|>(ε/200)2,y≥ζa2

∣∣mN(x + iy)
∣∣ ≤ K;

∣∣mN(z) − m(z)
∣∣ ≤ N−λ/4,∀z with ζa2ε ≤ Im(z) ≤ 1 and u− + ε

180
≤ Re(z) ≤ u+ − ε

8

}
. (2.37)

Using Proposition 2.1 and Lemma 7.3 in [11], we can deduce that there exist K large enough and constants c,C > 0
such that

P
(
Ωc

N,γ

) ≤ Ce−cNλ/4
.

From now on we assume that HN ∈ ΩN,γ . Mutatis mutandis, all the arguments used to consider the true exponential
term when ν is bounded (starting with (2.26)) can be copied to consider the true exponential term when ν is not
bounded. In particular, one has that

∣∣w±
c,N − w±

c

∣∣ ≤ Ca2

Nλ/4
,

∣∣h(l)
N,u(w) − h(l)

u (w)
∣∣ ≤ C

a2(l−2)Nλ/4
∀l ≥ 1,∀w ∈ Sε,ζ .

We now consider the subsequent modified contours. We set ΓN = Γ +
N ∪ Γ +

N with

Γ +
N =

{
w+

c,N (t), u− + ε

90
≤ t ≤ u+ − ε

2

}
∪

{
w+

c,N

(
u+ − ε

2

)
+ x, x > 0

}
∪

{
iIm

(
w+

c,N

(
u− + ε

90

))
+ x, ε/180 ≤ x ≤ Re

(
w+

c,N

(
u− + ε

90

))}
; (2.38)

ΥN = Re
(
w+

c,N

) + it, t ∈ R.

Accordingly, we now choose x±
1 = ±iIm(w+

c,N (u− + ε
90 )) + ε

180 and x±
o = −x∓

1 .

Then the main contribution to the exponential term of (2.33) comes from a neighborhood of width
√

S of w±
c,N

for both the w- and z-integral. Thus one is left with showing that the function Ψ does not impact on the saddle
point analysis. Let Ow = {w′ ∈ C, |w′ − w| ≤ Nα

√
S} for some α that we determine hereafter. In order to ensure

that Ψ has no impact on the saddle point analysis outside Ow±
c,N

, it is enough that α > λ/2. Now one can check

that

∀w,z ∈ Ow±
c,N

,
∣∣Ψ (w,z) − 1

∣∣ ≤ CN3λ/2+α−1 � 1,

if α and λ are small enough (in particular λ < 1/2). This finishes the proof that the main contribution to (2.33) comes
from a neighborhood of width

√
S of w±

c,N for both the w- and z-integral.

We now set b = Re(w+
c,N (u∗)), so that |b − w+

c,N | = o(Nλ−1), which implies in particular that the function θ does

not impact the saddle point argument. Let us now consider the contribution of the functions gN,u(w, z) + g2
N,u(w, z)

and θ(w, z) close to the critical points. One has that

gN,u

(
w±

c,N ,w±
c,N

) + g2
N

(
w±

c,N ,w±
c,N

) = (
w±

c,N − b
)
h′′

N

(
w±

c,N

) + O(S)

+ SNλ(γ − 1)2

4u∗
w±

c,N − 2b

(w±
c,N )3

= (
w±

c,N − b
)
h′′

N

(
w±

c,N

) + O
(
SNλ

);
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gN,u

(
w±

c,N ,w∓
c,N

) + g2
N

(
w±

c,N ,w∓
c,N

) = O
(
SNλ

);
θ
(
w±

c,N , b
) = n

ei2(
√

u−√
v)Im(w±

c,N )/S − 1

2(w±
c,N − b)(

√
u − √

v)

(
1 + o(1)

)
.

We can copy the end of the proof of Proposition 2.2 to show that on ΩN,γ

lim
N→∞

1

NρMP
γ (u)

K
1,b
N (u, v;H) = sin(πτ)

πτ
.

To study the asymptotics of K
2,b
N , we use the same saddle point analysis argument. Note that this is possible since

ΥN ∩ (−ΓN) = ∅. We consider as leading exponential term for both the w- and z-integrals the function hN,u as above.
Note that the w-integrand has then a “perturbative term” e2(w−b)(

√
u−√

v)/S which does not play a role in the saddle
point analysis. It is easy to deduce that

lim
N→∞

1

NρMP
γ (u)

K
2,b
N (u, v;H) = 0.

This follows from the fact that the contribution from equal critical points is negligible (due to the (w−z) factor), while

that of conjugate critical points is of order 1/N due to the rescaling and the fact that |eS−1(hN,u(z±
c,N (u))−hN,v(w∓

c,N (v))| ≤
C for some C > 0 independent of N .

Thus we are now left with showing the following lemma.

Lemma 2.4. One has that

lim
N→∞

1

NρMP
γ (u)

∣∣K̃N(u, v;H) − Kb
N(u, v;H)

∣∣ = 0.

Proof. Note that it is enough to show that |K̃N(u, v;H) − Kb
N(u, v;H)| = o(N). First Claim 2.1 can be translated

with no modification to the case where ν is unbounded. Also we can reduce Γc to Γ1 in Kb
N using the change of

variables z �→ −z. There remains to prove the counterpart of Claim 2.2. Set

Z = 2
√

uz

(γ − 1)a2
, Z∗ = 2

√
u∗z

(γ − 1)a2
, W = 2

√
vw

(γ − 1)a2
, W∗ = 2

√
u∗w

(γ − 1)a2
,

A′
1(Z) := eν(Z−1/(2Z))

√
2πνZ

, A1(Z) = eν(Z−1/(2Z∗))
√

2πνZ
,

A′
2(W) := √

π
e−ν(W−1/(2W))

√
2νW

, A2(W) = √
π

e−ν(W−1/(2W∗))
√

2νW
.

In K̃N we have replaced the Bessel functions Iν and Kν with the “approximations” A1 and A2. It is an easy compu-
tation that, along ΥN and ΓN , one has:∣∣∣∣Iν(νZ)

A′
1(Z)

− 1

∣∣∣∣ ≤ O(S),

∣∣∣∣Kν(νW)

A′
2(W)

− 1

∣∣∣∣ ≤ O(S). (2.39)

We first consider the contribution of Γ l
N := ΓN ∩{Re(x1) ≤ Re(z) ≤ Re(w+

c,N )} to K̃N (u, v;H)−Kb
N(u, v;H) where

the new contour Υ ε′
N is slightly deformed around w±

c,N so that d(ΥN,Γ l
N ) = ε′√S for some small ε′ (see Fig. 3). It is
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Fig. 3. The contour ΥN has been deformed around w±
c,N

.

then easy to deduce from (2.39) and the previous saddle point analysis that∣∣∣∣∣e2b(
√

v−√
u)/S

2i2π2S2

∫
Υ ε′

N

dw

∫
Γ l

N

dze(−z2+w2)/S
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν
w + z

w − z

×
(

A′
2(W)Iν

(
2z

√
u

S

)
− A′

2(W)A′
1(Z)

)∣∣∣∣∣
≤ O

(√
S
)
. (2.40)

Indeed replacing A1 and/or A2 with A′
1 and/or A′

2 does not impact on the saddle point argument. Similarly∣∣∣∣∣e2b(
√

v−√
u)/S

2i2π2S2

∫
Υ ε′

N

dw

∫
Γ l

N

dze(−z2+w2)/S
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν
w + z

w − z

×
(

A′
2(W)Iν

(
2z

√
u

S

)
− Kν

(
2w

√
v

S

)
Iν

(
2z

√
u

S

))∣∣∣∣∣
≤ O

(√
S
)
, (2.41)

by using (2.39), the fact that Iν(νZ)/A′
1(Z) is uniformly bounded for N large enough and the previous saddle point

analysis. Lastly∣∣∣∣∣e2b(
√

v−√
u)/S

2i2π2S2

∫
Υ ε′

N

dw

∫
Γ l

N

dze(−z2+w2)/S
(
A2(W)A1(Z) − A′

2(W)A′
1(Z)

)
×

N∏
i=1

w2 − yi

z2 − yi

(
w

z

)ν
w + z

w − z

∣∣∣∣∣
≤ O

(
Nλ+α

√
S|u − u∗|

ε′√S
+ Nλ|u − u∗|

Nα
√

S
+ Nλ/2

)
(2.42)

≤ O
(
Nα+2λ−1 + N3λ/2−α + Nλ/2) = o(N). (2.43)

In (2.42) we have separated the cases where d(w, z) ≥ Nα
√

S or not, where z ∈ Γ l
N and w ∈ Υ ε′

N and used the fact that
|u−v| � N−1 and |u−u∗| = o(Nλ−1). Replacing w+z

w−z
with w−z

w+z
in (2.40), (2.41) and (2.43) yields similar estimates.
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We now turn to the contribution of Γ r
N := ΓN ∩ {Re(z) ≥ Re(w+

c,N } to K̃N(u, v;H) − Kb
N(u, v;H). Note that ΥN

can be moved to the left of Re(w+
c,N ) up to adding the residue at w = z. Define Υ −ε′

N as the contour obtained by

reflecting Υ ε′
N with respect to the line Re(z) = Re(w+

c,N ). Then∫
A+iR

dw

∫
Γ r

N

dze(−z2+w2)/S
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν
w + z

w − z

×
(

Kν

(
2w

√
v

S

)
Iν

(
2z

√
u

S

)
− A′

1(Z)A′
2(W)

)

=
∫

Υ −ε′
N

dw

∫
Γ r

N

dze(−z2+w2)/S
N∏

i=1

w2 − yi

z2 − yi

(
w

z

)ν
w + z

w − z

×
(

Kν

(
2w

√
v

S

)
Iν

(
2z

√
u

S

)
− A′

1(Z)A′
2(W)

)
(2.44)

+ 2iπ
∫

Γ r
N

dz2z

(
Kν

(
2z

√
v

S

)
Iν

(
2z

√
u

S

)
− A′

1(Z)A′
2

(
2z

√
v

a2(γ − 1)

))
. (2.45)

The analysis of (2.44) is similar to that of Γ l
N ∩ Υ ε′

N . We thus have to consider (2.45). One has that∣∣(2.45)
∣∣ = O

(
S

∫
Γ r

N

dz2zA′
1(Z)A′

2

(
2z

√
v

a2(γ − 1)

))
. (2.46)

As the integrand in the r.h.s. of (2.46) has no singularity, one can thus move Γ r
N to the line joining the two critical

points w±
c,N . Using now that |b − Re(w+

c,N )| = o(Nλ−1), one can easily see that there exists a constant C > 0 such
that

e2b(
√

v−√
u)/S(2.46)S−2 ≤ C.

One gets similar estimates replacing w+z
w−z

with w−z
w+z

. This yields Lemma 2.4. �

3. Proof of Theorem 1.1 and Theorem 1.2

We only give the proof of Theorem 1.1 when γ = 1 and ν is bounded. The extension to other parameters γ is
straightforward. The proof of universality for the spacing distribution can easily be deduced from [17] and [14] and
is based on the extension of Proposition 2.2 given in Remark 2.1. Let then f ∈ L∞(R2) with compact support and
S

(2)
N (f,u, ρ̃N ) be defined by (1.2) with u ∈ [ε,1 − ε] and ρ̃N = NρMP(u). Then if E denotes the expectation w.r.t. the

distribution of M̃N in (2.1),

ES
(2)
N (f,u, ρ̃N ) =

∫
dPN(H)

∫
R

N+
f H

N (x1, . . . , xN)S
(2)
N (f,u, ρ̃N )[x]dxN,

where f H
N (·) (resp. S

(2)
N (f,u, ρ̃N )[·]) is the density function (2.3) (resp. local eigenvalue statistic) of the deformed

Wishart ensemble. Then, using (2.25) and setting

dP N(H) = 1

ZN

dPN(H)1H∈ΩN
,

where ZN is the normalizing constant, we get that ∃C > 0 such that∣∣∣∣ES
(2)
N (f,u, ρ̃N ) −

∫
dP N(H)

∫
R

N+
f H

N (x)S
(2)
N (f,u, ρ̃N )[x]dxN

∣∣∣∣
≤ CN2|f |∞e−cNλ/4 = o(1). (3.1)
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Now,

lim
N→∞

∫
dP N(H)

∫
R

N+
f H

N (x)S
(2)
N (f,u, ρ̃N )[x]dxN

= lim
N→∞

∫
dP N(H)

∫
R2

f (t1, t2)

ρ̃N
2

R
(2)
N

(
u + t1

ρ̃N

,u + t2

ρ̃N

;H
)

dt1 dt2

=
∫

R2
f (t1, t2)

(
1 −

(
sinπ(t1 − t2)

π(t1 − t2)

)2)
dt1 dt2, (3.2)

where we used the definition of correlation functions, Proposition 2.2 and the fact that f has compact support.
There now remains to extend the result to non-Gauss divisible ensembles in order to prove the full Theorem 1.1.

The argument exactly follows the arguments of [14]. We recall them for seek of completeness. (3.1) and (3.2) show
that the sine kernel holds for the complex measure et LGt dμ⊗Np ⊗ et LGt dμ⊗Np if t = N−1+λ. More precisely,
let pN,t (x) denote the density function of the eigenvalues x = (x1, . . . , xN) w.r.t. this measure and let R

(2)
N,t be its

two point correlation function. Similarly, we define pN,c(x) (resp. pN(x)) and R
(2)
N,c (resp. R

(2)
N,F ) for the eigenvalue

density and two point correlation function w.r.t. truncated complex measure Fc,N,p = fc,N,p dμ⊗Np ⊗ fc,N,p dμ⊗Np

(resp. w.r.t. measure FN,p = F⊗Np). We also set in the following

u(t1) = u + t1

ρN

and u(t2) = u + t2

ρN

with ρN = NρMP
1,1 (u).

Then ∣∣∣∣∫ [
R

(2)
N,F

(
u(t1), u(t2)

) − R
(2)
N,t

(
u(t1), u(t2)

)]f (t1, t2)

ρ2
N

dt1 dt2

∣∣∣∣ ≤ (I ) + (II),

where

(I ) :=
∣∣∣∣∫ [

R
(2)
N,F

(
u(t1), u(t2)

) − R
(2)
N,c

(
u(t1), u(t2)

)]f (t1, t2)

ρ2
N

dt1 dt2

∣∣∣∣,
(II) :=

∫ ∣∣R(2)
N,c

(
u(t1), u(t2)

) − R
(2)
N,t

(
u(t1), u(t2)

)∣∣∣∣∣∣f (t1, t2)

ρ2
N

∣∣∣∣dt1 dt2.

It is easy to see from Proposition 1.1 that

(I ) ≤ N2‖f ‖∞2Ce−cNc ≤ C′e−c′Nc

with some C′, c′ > 0 as N → ∞. To estimate (II), we use the fact that

(II)2 ≤
∫ [

R
(2)
N,c

R
(2)
N,t

(
u(t1), u(t2)

) − 1

]2

R
(2)
N,t

(
u(t1), u(t2)

)∣∣∣∣f (t1, t2)

ρ2
N

∣∣∣∣dt1 dt2 (3.3)

×
[∫

R
(2)
N,t

(
u(t1), u(t2)

)∣∣∣∣f (t1, t2)

ρ2
N

∣∣∣∣dt1 dt2

]
. (3.4)

The factor (3.4) is bounded using (3.1) and (3.2). We now use the beautiful idea of [14] to bound (3.3). As f is
bounded, one has that

(
(3.3)

)1/2 ≤ C

[∫ [
R

(2)
N,c(z, y)

R
(2)
N,t (z, y)

− 1

]2

R
(2)
N,t (z, y)dz dy

]1/2

≤ C

[
N2

∫ (
pN,c(x)

pN,t (x)
− 1

)2

pN,t (x)dx

]1/2
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≤ C

[
N2

∫ |et LGt − fc,N,p|2
et LGt

dμ⊗Np

]1/2

≤ CN−1+4λ, (3.5)

where C > 0 is a constant that varies from line to line. Here the basic argument is that the distance D(f,g) :=∫ |f/g − 1|2g between two probability measures f and g decreases when taking marginals as well as when passing
from the matrix ensemble to the induced joint eigenvalue density. Finally, we used the estimate of Proposition 1.1.
This completes the proof of Theorem 1.1.

Appendix A: Proof of Proposition 2.1

To ease the reading, we here recall Proposition 2.1.

Proposition A.1. Let z = u + iη for some u ∈ [u− + ε,u+ − ε] and η > 0. Then, there exist a constant c1 and
Co,C > 0, c > 0 depending on ε only such that ∀δ < c1ε,

P

(
sup

u∈[u−+ε,u+−ε]
∣∣mN(z) − mMP(z)

∣∣ ≥
(

δ + Co

∣∣∣∣ p

N
− γ

∣∣∣∣))
≤ Ce−cδ

√
Nη,

for any (lnN)4/N ≤ η ≤ 1. Furthermore, given η ≥ (lnN)4/N , there exist constants c > 0,C > 0 and Ko such that
∀κ ≥ Ko,

P

(
sup

|x|>(ε/200)2,y≥η

∣∣mN(x + iy)
∣∣ ≥ κ

)
≤ Ce−c

√
κNη.

Proof. The proof follows closely that of Theorems 3.1, 4.1 and 4.6 in [13]. We only prove here the first statement.
The second one is simple adaptation of the latter statement and ideas given in the proof of Theorem 4.6 in [13] (see
also the proof of Theorem 2.1 in [12]).

Using a discretization scheme with step δ/4η2 (see [13]), it is possible to show that it is actually enough to prove that

P

(∣∣mN(z) − mMP(z)
∣∣ ≥

(
δ + Co

∣∣∣∣ p

N
− γ

∣∣∣∣))
≤ Ce−cδ

√
Nη,

for any (lnN)4/N ≤ η ≤ 1 and for a given z = u + iη where u ∈ [u− + ε,u+ − ε]. Denote by Ck the kth column of
W/

√
N , Ck := 1√

N
(W)k, then one has that:

HN =
p∑

k=1

CkC
∗
k . (A.1)

We define also RN(z) = (HN − zI)−1 and for any integer k = 1, . . . , p, R(k)
N (z) := (HN − CkC

∗
k − zI)−1. Then

mN(z) = 1
N

Tr RN(z) and one has that

1 + zmN(z) = p

N
− 1

N

p∑
k=1

1

1 + C∗
k R(k)

N (z)Ck

. (A.2)

Equation (A.2) simply follows from (A.1) and the identity RN(z)(HN − zI) = I. In addition we denote by
y

(k)
1 ≥ y

(k)
2 ≥ · · · ≥ y

(k)
N the ordered eigenvalues of HN − CkC

∗
k and set μ

(k)
N := 1

N

∑N
i=1 δ

y
(k)
i

. By the well-known

interlacing property of eigenvalues, for any k = 1, . . . , p, y1 ≥ y
(k)
1 ≥ y2 ≥ y

(k)
2 ≥ · · · ≥ yN ≥ y

(k)
N . Denote by FN

(resp. F
(k)
N ) the p.d.f. of the spectral measure μN (resp. μ

(k)
N ). Then one has that∣∣NFN(x) − NF

(k)
N (x)

∣∣ ≤ 1 ∀x ∈ R. (A.3)
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Last call v
(k)
i , i = 1, . . . ,N , a set of orthonormal eigenvectors associated to the ordered eigenvalues y

(k)
i and define

ξ
(k)
i := ∣∣〈v(k)

i ,
√

NCk

〉∣∣2.
From (A.2), one gets that

1 + zmN(z) = p

N
− 1

N

p∑
k=1

1

1 + (1/N)
∑N

i=1 ξ
(k)
i /(y

(k)
i − z)

. (A.4)

The latter formula (A.4) is the counterpart of formula (2.6) in [13]. The proof of [13] can be summarized into 2 basic
ideas.

First the random vectors Ck are centered with i.i.d. entries and they are independent of R(k)
N . It is known that the

random variables C∗
k R(k)

N (z)Ck concentrate around their means which is given by E|W11|2 Tr R(k)
N /N . The speed of

concentration is explicited under assumption (A1) in Lemma 4.2 in [13] for Wigner matrices. The extension to Wishart
matrices states as follows.

Lemma A.1. Set X(k) = X = 1
N

∑p

k=1
σ−2ξ

(k)
i −1

y
(k)
i −z

where z = u + iη,u ∈ [u− + ε,u+ − ε]. Then there exists a positive

constant c (depending on ε) so that for every δ > 0 we have

P
[|X| ≥ δ

] ≤ 5e−c min{δ√Nη/γ ,δ2Nη/γ }

if Nη ≥ (lnN)2 and N is sufficiently large (independently of δ).

The proof of Lemma A.1 is postponed to the end of Appendix A.

Remark A.1. Lemma A.1 is established under the assumption that the real and imaginary parts of the components of
Ck are i.i.d. (in addition to the gaussian decay assumption (A1)). This is the reason for our assumption (H3).

One can then use (A.3) to show that for any k = 1, . . . , p, |Tr R(k)
N − Tr RN | ≤ η−1. By Lemma A.1, |X(k)| ≤ δ,

∀k = 1, . . . , p in (A.4) with high probability. A bootstrap argument exposed in [11], Section 2, yields that with high
probability, the Stieltjes transform mN(z) satisfies

1 + zmN(z) = p

N
− p

N

1

1 + σ 2mN(z)
+ Δ, (A.5)

where |Δ| ≤ C′δ for some C′ > 0 is a small error term and σ 2 = E|W11|2 = 1/4.
The second basic idea is the stability of the equation (A.5). The equation

1 + zm(z) = p

N
− p

N

1

1 + σ 2m(z)
(A.6)

admits a unique solution satisfying Im(m(z)) > 0 whenever Im(z) > 0. This solution is mMP,p/N(z), that is the
Stieltjes transform of the Marčenko–Pastur distribution with parameter p/N . Now, the stability of equation (A.5)
implies that there exists a constant C such that for any z ∈ {z = u + iη,u ∈ [u− + ε,u+ − ε], (lnN)4/N ≤ η ≤ 1},∣∣mN(z) − mMP,p/N(z)

∣∣ ≤ CΔ.

The constant C here depends on ε only. Now, as |z − u±| ≥ ε and 1/|z| = O(1), there exists Co > 0 depending on ε

only such that∣∣mMP,p/N(z) − mMP(z)
∣∣ ≤ C|p/N − γ |.

This finishes the proof of Proposition 2.1 provided we show Lemma A.1. �
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Proof of Lemma A.1. Define for n ≥ 1 the intervals In = [u − 2n−1η,u + 2n−1η] and let M and K0 be sufficiently
large numbers. We have [−K0,K0] ⊂ In0 with n0 = C1 ln(K0/η) ≤ C2 ln(NK0) for some constants C1,C2 > 0.
Denote by A the event:

A =
{

max
n≤no

N (In)√
Np|In| ≥ M

}
∪ {maxyi ≥ K0},

where for a given interval I , we denote by |I | its length and set N (I ) = �{i = 1, . . . ,N |yi ∈ I }. Let then Pk denote
the probability w.r.t. Ck . One has that

P
[∣∣X(k)

∣∣ ≥ δ
] ≤ E

(
1AcPk

[|X| ≥ δ
]) + P(A).

The first term can be handled as in [13]. It is proved in [13], Proposition 4.5, under assumption (A1), and if η ≥ 1/N ,
and for sufficiently large M and K0, that there is a positive constant c = c(M,K0) such that for any δ > 0

E
(
1AcPk

(∣∣X(k)
∣∣ ≥ δ

)) ≤ 4e−c min{δ√Nη/
√

p/N,δ2N2η/p}.

The above estimate requires again the full assumption (H3).
We now turn to the estimate of P(A). This is the only part which has to be modified to consider sample covariance

matrices. For this result, we need that (lnN)2/N ≤ η ≤ 1. Then for sufficiently large M and K0 there are positive
constants c, C such that for all N ≥ 2,

P(A) ≤ Ce−c
√

Mη
√

Np. (A.7)

To prove (A.7), we first recall Lemma 7.3 of [12]. Let Y be a N ×p,p ≥ N , random matrix with i.i.d. centered entries
with variance 1. If the entries of Y also satisfy assumption (A1), there exists a positive constant c such that for C > 0
large enough

P
(
ymax

(
YY ∗/p

) ≥ C
) ≤ e−cCp.

Thus we only have to consider

P

({
max
n≤no

N (In)√
Np|In| ≥ M

})
.

To this aim we consider an interval I of length |I | = α for some α ≥ η and call u its midpoint. In the following we
set z = u + iα and assume that |z| ≥ ε for some ε > 0 small. Let 0 < ϑo < 1/8 be given. For each k = 1,2, . . . ,N , we
define the events

B(k) :=
∑

m,ym∈I

ξ (k)
m ≤ ϑo

(
N (I ) − 1

)
,

and set B = ⋃
k B(k). As the eigenvalues of HN and H

(k)
N are interlaced, at least N (I ) − 1 eigenvalues of H

(k)
N lie in

I . It is proved in Lemma 4.7 of [13] that

∃c > 0, Pk

(
B(k)

) ≤ e−c
√

N (I )−1.

From this, we deduce that there exists C > 0 such that if M is large enough,

P
(
B ∩ {

N (I ) ≥ Mα
√

Np
}) ≤ Ce−c

√
Mα

√
Np.

Then on Bc we have for some constant C2 > 0

N (I ) ≤ C2Nα Im
(
mN(u + iα)

)
= C2Nα Im

(
p/N − 1

z
− 1

N

p∑
k=1

1

z + zC∗
KR(k)

N Ck

)
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≤ C2Nα Im

(
− 1

N

p∑
k=1

1

z + zC∗
KR(k)

N Ck

)
(A.8)

≤ 4C2Npα2

εϑoN (I )
. (A.9)

In (A.8) we used that Im(1/z) < 0 and p/N ≥ 1. To derive (A.9), we used the fact that

Im

(
− 1

z + zC∗
KR(k)

N Ck

)
≤ 1

|z||1 + C∗
KR(k)

N Ck|
≤ 1

|z| Im(C∗
KR(k)

N Ck)
,

with 1
|z| ≤ ε−1 and we estimated from below

N∑
m=1

ξk
m

|y(k)
m − z|2

≥ ϑoN (I )/
(
4α2).

This now implies that N (I ) ≤ α
√

4C2Np/ϑoε on Bc. This yields the desired result: one simply chooses M large
enough. �

Appendix B: Asymptotics of Bessel functions

We use two types of asymptotics for Bessel functions.
The first one deals with is well-known asymptotics of Bessel functions with bounded order and large argument (see

[21] e.g.). They are used in Section 2.3.
Assume that ν is bounded. Then, for large |z|, z ∈ C

Iν(z) = 1√
2πz

(
ez + e−z+(ν+1/2)iπ)(

1 + O(1/z)
)
, −π

2
< Arg z <

3π

2
;

Kν(z) =
√

π√
2z

e−z
(
1 + O(1/z)

)
, |Arg z| ≤ 3π

2
. (B.1)

We also make use in Section 2.4 of asymptotics of Bessel functions with large order and large argument.
Abramowitz and Stegun [1] (p. 378) give the following uniform asymptotic expansion of modified Bessel functions
of large order:

Iν(νz) = eνϕ

√
2πν(1 + z2)1/4

(
1 +

∞∑
k=1

uk(t)

νk

)
,

Kν(νz) =
√

πe−νϕ

√
2ν(1 + z2)1/4

(
1 +

∞∑
k=1

(−1)kuk(t)

νk

)
,

t = 1√
1 + z2

, ϕ =
√

1 + z2 + ln

(
z

1 + √
1 + z2

)
,

∣∣arg(z)
∣∣ ≤ π

2
− ε, (B.2)

where uk(t) = tkvk(t) for some polynomial vk .
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