
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2013, Vol. 49, No. 2, 550–568
DOI: 10.1214/11-AIHP468
© Association des Publications de l’Institut Henri Poincaré, 2013

Almost everywhere convergence of convolution powers on
compact Abelian groups

Jean-Pierre Conzea and Michael Linb

aIRMAR, CNRS UMR 6625 Université de Rennes 1, 35042 Rennes Cedex, France. E-mail: conze@univ-rennes1.fr
bDepartment of Mathematics, Ben-Gurion University, Beer-Sheva, Israel. E-mail: lin@math.bgu.ac.il

Received 24 August 2011; revised 22 November 2011; accepted 22 November 2011

Abstract. It is well-known that a probability measure μ on the circle T satisfies ‖μn ∗ f − ∫
f dm‖p → 0 for every f ∈ Lp ,

every (some) p ∈ [1,∞), if and only if |μ̂(n)| < 1 for every non-zero n ∈ Z (μ is strictly aperiodic). In this paper we study the a.e.
convergence of μn ∗ f for every f ∈ Lp whenever p > 1. We prove a necessary and sufficient condition, in terms of the Fourier–
Stieltjes coefficients of μ, for the strong sweeping out property (existence of a Borel set B with lim supμn ∗ 1B = 1 a.e. and
lim infμn ∗ 1B = 0 a.e.). The results are extended to general compact Abelian groups G with Haar measure m, and as a corollary
we obtain the dichotomy: for μ strictly aperiodic, either μn ∗ f → ∫

f dm a.e. for every p > 1 and every f ∈ Lp(G,m), or μ has
the strong sweeping out property.

Résumé. Il est connu qu’une mesure de probabilité μ sur le cercle T satisfait ‖μn ∗ f − ∫
f dm‖p → 0 pour toute fonction

f ∈ Lp et pour tout p ∈ [1,∞) (ou pour un p ∈ [1,∞)), si et seulement si μ est strictement apériodique (i.e. |μ̂(n)| < 1 pour tout
n non nul dans Z). Nous étudions ici la convergence presque partout de μn ∗ f pour f ∈ Lp , p > 1. Nous montrons une condition
nécessaire et suffisante portant sur les coefficients de Fourier–Stieltjes de μ pour la propriété de “balayage fort” (existence d’un
borélien B tel que lim supμn ∗ 1B = 1 p.p. et lim infμn ∗ 1B = 0 p.p.). Les résultats sont étendus aux groupes abéliens compacts
généraux G de mesure de Haar m. Comme corollaire nous obtenons la dichotomie suivante : pour μ strictement apériodique, soit
μn ∗ f → ∫

f dm p.p. pour tout p > 1 et toute fonction f ∈ Lp(G,m), soit μ vérifie la propriété de balayage fort.
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1. Introduction

Let (X, B) be a measurable space and P(x,A) :X × B −→ [0,1] a transition probability, with Markov operator
Pf (x) = ∫

f (y)P (x,dy) defined for bounded f . When m is a probability on B which is P -invariant, the operator P

can be extended to a contraction of L1(X,m). Moreover P becomes a contraction in each Lp(X,m) space, 1 ≤ p ≤ ∞
[13].

Hopf’s pointwise ergodic theorem yields that for f ∈ L1(m) the Cesàro averages 1
n

∑n
k=1 P kf converge a.e. and in

Lp-norm when f ∈ Lp(m), 1 ≤ p < ∞. The limit is
∫

f dm if P is ergodic in L1, i.e. when Pf = f a.e. for f ∈ L1
holds only for f constant a.e.

It is therefore a natural question to study the convergence of the unaveraged sequence {P nf }, in norm or a.e. The
following general results for a.e. convergence are known:

1. If P ∗ = P and −1 is not an eigenvalue, then P nf converges a.e. for every f ∈ Lp , p > 1 (Stein–Rota theorem
[23,25]; Rota’s proof yields the convergence also for f ∈ L log+ L [6], but in general convergence may fail for f ∈ L1
[17]).
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2. If P is an aperiodic Harris recurrent operator, then P nf → ∫
f dm a.e. for every f ∈ L1(X,m) (m is assumed

finite), by S. Horowitz [11].

Often, a.e. convergence of {P nf }n≥1 for every bounded measurable function fails in a very strong manner ex-
pressed in the following definition, which seems to have been introduced for operator sequences {Pn} in the study of
a.e. convergence of averages along subsequences.

Definition 1.1. We say that {P n} (or simply P ) has the strong sweeping out property (SSO property) if there exists in
B a dense Gδ subset of sets B of positive measure such that lim supn μn ∗ 1B = 1 a.e. and lim infn μn ∗ 1B = 0 a.e.

In this paper we study the strong sweeping out property for the convolution operator Pμ defined by a strictly
aperiodic probability measure μ on a compact Abelian group G, Pμf (x) = μ ∗ f (x) = ∫

G
f (x + y)dμ(y). We

obtain a necessary and sufficient condition for the strong sweeping out property for Pμ (we will say simply “for μ”),
in terms of the Fourier–Stieltjes transform of μ, and deduce the dichotomy: either μn ∗ f → ∫

f dm a.e. for every
f ∈ Lp(G,m), every p > 1, or μ has the strong sweeping out property.

For the sake of clarity, we prove the results first for convolutions on the unit circle (Section 3), and after some
examples for discrete probabilities on the circle (Section 4), we add the necessary ingredients to prove the result in
the general case (Section 5).

2. Convolution powers on compact Abelian groups

In this section we look at the problem of almost everywhere convergence (to the integral) of convolution powers of
a probability μ on a compact Abelian group G, with Borel σ -algebra B and dual group Ĝ. Characters on G will
be denoted by γ . The Markov transition is P(x,A) = μ(A − x), with invariant probability the normalized Haar
measure m, and the corresponding Markov operator is Pf := Pμf = μ ∗ f . The dual Markov operator is P ∗

μ = Pμ̌,
where μ̌ is the reflected probability given by μ̌(A) = μ(−A). By commutativity of G, the operator Pμ is normal in
L2(G,m). We note that the Markov chain {Yn} on Ω = GN induced by Pμ is the random walk on G of law μ, and
μn ∗ 1A(x) = Px{Yn ∈ A}, where Px is the probability on Ω for the chain started at x (initial distribution δx ).

The Fourier–Stieltjes coefficients μ̂(γ ) are eigenvalues of Pμ with continuous eigenfunctions, so a necessary con-
dition for a.e. convergence of {μn ∗ f } to the integral for all continuous functions is that |μ̂(γ )| < 1 for every γ 	= 0,
i.e. μ is strictly aperiodic. We recall the well-known properties equivalent to strict aperiodicity of a probability μ on
a compact Abelian group G:

Proposition 2.1. The following are equivalent:

(i) |μ̂(γ )| < 1 for every character 0 	= γ ∈ Ĝ;
(ii) μn ∗ f → ∫

G
f dm uniformly for every continuous function on G;

(iii) the support of μ is not contained in a class of a proper closed subgroup;
(iv) ‖μn ∗ f − ∫

G
f dm‖2 → 0 for every f ∈ L2(G,m).

It follows that μn ∗ f → ∫
f dm pointwise for f in a dense subspace of Lp , 1 ≤ p < ∞, namely C(G). However,

a result of J. Rosenblatt [20] yields that for α = e2πiθ with θ ∈ (0,1) irrational, the strictly aperiodic μ = 1
2 (δ1 + δα)

is strongly sweeping out on T.
Some of the general results of a.e. convergence cited in the Introduction can be improved for the powers of the

convolution operator Pμ in several particular cases:

1. If μ is symmetric and strictly aperiodic, then for every f ∈ L logL we have μn ∗ f → ∫
f dm a.e. [23] (see

also [18]).
2. In any compact group G (not necessarily Abelian), if some power μk is non-singular with respect to the Haar

measure m, then ‖μn −m‖ → 0 in total variation norm with exponential rate (cf. [2], Theorem 3, for G connected, [1],
Theorem 4.1, for G not necessarily connected and for the precise rate); see [22], Theorem 4.1, for a list of equivalent
conditions. In this case, for every f in L1(G,m) the series

∑∞
n=1 μn ∗ (f − ∫

f dm) converges a.e. It follows that any
μ with the strong sweeping out property has all its convolution powers singular (cf. Proposition 3.4).
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3. Another sufficient condition for a.e. convergence is supγ 	=0 |μ̂(γ )| < 1. It implies sup‖f ‖p≤1 ‖μn ∗ f −∫
f dm‖p → 0 (exponentially fast) for p ∈ (1,∞) by [21], p. 202ff (see also [9], Proposition 4.1); so for p ∈ (1,∞),

the series
∑∞

n=1 μn ∗ (f − ∫
f dm) converges a.e. for any f ∈ Lp(G,m).

In particular, on the circle T, the condition supγ 	=0 |μ̂(γ )| < 1 holds when μ̂(n) → 0 as |n| → ∞ [9]. Note that the
above norm convergence needs not hold for p = 1 or p = ∞ [9].

4. There exists on T a continuous probability μ with all its convolution powers singular, such that supn	=0 |μ̂(n)| <
1 (and then, by [21], μn ∗ f → ∫

f dm a.e. for every f ∈ Lp(T,m), p > 1). See [9], Proposition 4.7, for a construc-
tion along classical lines. A result of Varopoulos [26] shows that we can find μ continuous with all its convolution
powers singular satisfying μ̂(n) → 0 as |n| → ∞ (see also the first lines following [19], Theorem 4.2). (The result of
Varopoulos is that in any non-discrete compact Abelian group there is a probability μ with all its convolution powers
singular to the Haar measure such that μ̂(γ ) vanishes at infinity.)

Notations. The spectrum of the operator Pf = μ ∗ f in L2(T,m) is denoted by σ(P ). It is the closure of {μ̂(γ ): γ ∈
Ĝ}. In the sequel we study the peripheral spectrum of P , i.e. the unimodular complex numbers in σ(P ). It will be
useful to distinguish notationally T, the group on which the convolution operates (the state space of the Markov chain
generated), from S = S1, the boundary of the closed unit disk which contains the spectrum.

Since the spectral radius of an operator is bounded by its norm, and using the spectral theorem, one easily proves
the equivalence between the following conditions:

(i)
∥∥P n(I − P)

∥∥
2 → 0, (ii) sup

λ∈σ(P )

∣∣λn(1 − λ)
∣∣ → 0, (1)

(iii) sup
γ∈Ĝ

∣∣μ̂n(γ )
(
1 − μ̂(γ )

)∣∣ → 0, (iv) σ(P ) ∩ S = {1}. (2)

Remarks. 1. If ‖μn+1 − μn‖1 → 0, then for 1 ≤ p < ∞ continuity of the representation of G in Lp(G,m) by trans-
lations yields ‖P n+1 − P n‖p → 0.

2. If ‖P n+1 − P n‖2 → 0, then by the Riesz–Thorin theorem ‖P n+1 − P n‖p → 0 for every 1 < p < ∞. However,
for p = 1 we may still have ‖μn+1 − μn‖1 = 2 for every n (e.g., [12], Remark 2.16(b)).

Proposition 2.2. Let μ be a strictly aperiodic probability on a compact Abelian group G. If σ(P )∩S 	= S, then there
exists an increasing subsequence {nk} such that μnk ∗ f → ∫

f dm a.e. for every f ∈ L2(G,m).

Proof. Since P is a positive contraction, the assumption σ(P ) ∩ S 	= S implies that this intersection is finite, and for
some j ≥ 1 we have σ(P j ) ∩ S = {1} [14], Proposition 1 (see Lemma 3.5 below for a direct proof). Therefore (iii) of
(2) holds for μj and it follows from [12], Proposition 2.15, that there exists an increasing subsequence {	k} such that
μj	k ∗ f → ∫

f dm a.e. for every f ∈ L2(G,m). �

Remark. The probability μ = 1
2 (δ1 + δα) on T has the strong sweeping out property as mentioned above, although

σ(Pμ) ∩ S = {1} (and also ‖μn+1 − μn‖1 → 0 by Foguel’s zero-two law). By Proposition 2.2 there is a subsequence
{nk} with μnk ∗ f → ∫

f dm for every f ∈ L2(T,m).

Now we give a variant of a result of [5] (see also [12], Theorem 2.20) which gives a sufficient condition for the
a.e. convergence for f in Lp , p > 1. It is based on Theorem 14 of [4], or the following extension of it which does not
require normality.

We consider a positive contraction T on L2(X,m) where (X,m) is a probability space. For every integer r ∈ [1, n],
let ΔrT n := T n−r (T − I )r , where I is the identity on L2(X,m).

Theorem 2.3. Let T be a positive contraction of L2(X,m), with W be a closed T -invariant subspace. Let W =⊕
j∈J Vj be an orthogonal decomposition of W into closed T -invariant subspaces such that the restriction Tj of T

to Vj satisfies ‖Tj‖ < 1. Let L(j) := ‖Ij −Tj ‖
1−‖Tj ‖ , where Ij is the identity on Vj .

Put f ∗
0 (x) := supn≥0 |T nf (x)| and f ∗

r (x) = supn≥r |nrΔrT nf (x)|, for r ≥ 1. Then:
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(i) For f ∈ W , if f = ∑
j Πjf is its orthogonal decomposition, the maximal function satisfies

∥∥f ∗
0

∥∥
2 ≤ 2‖f ‖2 +

[∑
j

‖Πjf ‖2
2L(j)2

]1/2

(3)

and
∑

j ‖Πjf ‖2L(j)2 < ∞ implies the convergence limn T nf = 0 m-a.e. and in L2(m).
(ii) If L∞ := supj L(j) < ∞, there are finite constants Cr such that for every f ∈ W ,∥∥f ∗

r

∥∥
2 ≤ Cr‖f ‖2, ∀r ≥ 0, (4)

and for every r ≥ 0, the convergence limn nrΔrT nf = 0 holds m-a.e. and in L2(m).

Proof. (i) The proof is based on the idea of comparing T n with its Cesàro averages, like the proof of Stein’s theorem
for self-adjoint positive contractions [25] or that of [4] for positive normal contractions, but does not require the
spectral theorem.

For n ≥ 1 put Anf = 1
n

∑n−1
k=0 T kf . By Akcoglu’s ergodic theorem [13], p. 190, for every f ∈ L2 the sequence

Anf (x) converges a.e. and the maximal function A∗f (x) = supk≥0 |Akf |(x) satisfies ‖A∗f ‖2 ≤ 2‖f ‖2. Using the
inequality(

1

n

∣∣∣∣∣
n∑

k=1

kak

∣∣∣∣∣
)2

≤
n∑

k=1

k|ak|2, (5)

which holds for every complex numbers a1, . . . , an, we can write for f ∈ W :

∣∣T nf − Anf
∣∣2 =

(
1

n

∣∣∣∣∣
n∑

k=1

k
(
T kf − T k−1f

)∣∣∣∣∣
)2

≤
n∑

k=1

k
∣∣T kf − T k−1f

∣∣2 ≤ F1(f )2,

with F1(f )2 = ∑∞
k=1 k|T k−1(T − I )f |2.

Observe that for 0 ≤ λ < 1, we have (1 − λ)2 ∑∞
1 kλ2(k−1) = 1/(1 + λ)2 ≤ 1. Therefore,

∥∥F1(f )
∥∥2

2 =
∞∑

k=1

k

∫
X

∣∣∣∣∑
j

T k−1
j (Tj − Ij )Πjf

∣∣∣∣
2

dm =
∑

k

k
∑
j

∥∥T k−1
j (Tj − Ij )Πjf

∥∥2
2

≤
∑
j

(∑
k

k‖Tj‖2(k−1)

)
‖Tj − Ij‖2‖Πjf ‖2

2 ≤
∑
j

‖Tj − Ij‖2

(1 − ‖Tj‖)2
‖Πjf ‖2

2 =
∑
j

‖Πjf ‖2
2L(j)2.

This proves (3), since we have |T nf | ≤ A∗f + F1(f ),∀n ≥ 1; hence f ∗
0 ≤ A∗f + F1(f ). The convergence in

L2-norm follows from the assumption ‖Tj‖ < 1.
Let K be a finite subset of J . Write f = ϕK + ρK , with ϕK = ∑

j∈K Πjf and ρK = ∑
j /∈K Πjf . For ε > 0, take

K such that ‖ρK‖2 ≤ ε and
∑

j /∈K ‖Πjf ‖2
2L(j)2 ≤ ε2.

Clearly lim supn |T nϕK | = 0, since limn ‖T nΠjf ‖ = 0,∀j ∈ J . Hence lim supn |T nf | ≤ lim supn |T nϕK | +
lim supn |T nρK | ≤ (ρK)∗0. Applying inequality (3) to ρK , we obtain

∥∥∥lim sup
n

∣∣T nf
∣∣∥∥∥

2
≤ ∥∥(ρK)∗0

∥∥
2 ≤ ∥∥A∗ρK

∥∥
2 + F1(ρK) ≤ 2‖ρK‖2 +

[∑
j /∈K

‖Πjf ‖2
2L(j)2

]1/2

≤ 3ε.

(ii) For r ≥ 1, x ∈ [0,1[, we have
∑∞

k=r k2r−1xk−r = ρr(x)/(1 − x)2r , where ρr is a polynomial. Therefore there
exists a finite constant Dr such that

(1 − λ)2r
∞∑

k=r

k2r−1λ2(k−r) = ρr

(
λ2)/(1 + λ)2r ≤ D2

r , 0 ≤ λ < 1. (6)
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The relation Cr−1
k + Cr

k = Cr
k+1, satisfied by the binomial coefficients Cr

k , yields

Cr+1
n+1Δ

rT n =
n∑

k=r

Cr
kΔ

rT k +
n∑

k=r+1

Cr+1
k Δr+1T k, 0 ≤ r ≤ n. (7)

For f ∈ L2(X,m), it follows from (5):

∣∣∣∣∣1

n

n∑
k=r

Cr
kΔ

rT kf

∣∣∣∣∣
2

≤
n∑

k=r

k
(
Cr

k/k
)2∣∣T k−r (T − I )rf

∣∣2 ≤ F 2
r ,

with

Fr =
( ∞∑

k=r

k−1(Cr
k

)2∣∣T k−r (T − I )rf
∣∣2

)1/2

.

From the decomposition in the orthogonal subspaces Vj , we get:

‖Fr‖2
2 ≤

∑
j

[ ∞∑
k=r

k−1(Cr
k

)2‖Tj‖2(k−r)

]
‖Tj − Ij‖2r‖Πjf ‖2. (8)

According to (6) with λ = ‖Tj‖, the series in [ ] in (8) is less than D2
r /(1 − ‖Tj‖)2r , so

‖Fr‖2
2 ≤ D2

r

∑
j

L(j)2r‖Πjf ‖2 ≤ D2
r

(
sup
j

L(j)
)2r ∑

j

‖Πjf ‖2 = D2
r L

2r∞‖f ‖2.

For n ≥ r ≥ 1 the identity (7) implies the inequality

∣∣∣∣ 1

n + 1
Cr+1

n+1Δ
rT nf

∣∣∣∣ ≤ 1

n + 1

∣∣∣∣∣
n∑

k=r+1

Cr+1
k Δr+1T kf

∣∣∣∣∣ + 1

n + 1

∣∣∣∣∣
n∑

k=r

Cr
kΔ

rT kf

∣∣∣∣∣ ≤ Fr+1 + Fr ;

since Cr+1
n+1 = n+1

r+1

∏r−1
j=0

n−j
r−j

≥ n+1
r+1 ( n

r
)r for n ≥ r ≥ 1, putting Br = (r + 1)rr we obtain

∥∥f ∗
r

∥∥
2 =

∥∥∥sup
n≥r

∣∣nrΔrT nf
∣∣∥∥∥

2
≤ Br

∥∥∥∥∥sup
n≥r

∣∣∣∣ 1

n + 1
Cr+1

n+1Δ
rT nf

∣∣∣∣
∥∥∥∥

2

≤ Br

(‖Fr+1‖2 + ‖Fr‖2
) ≤ Br

(
Dr+1L

r+1∞ + DrL
r∞

)‖f ‖2.

The proof of the convergence statement in (ii) is similar to that of (i). �

Suppose now that T defines a positive contraction of each Lp(m), 1 ≤ p ≤ ∞, and W = L2(m) in Theorem 2.3.
The inequalities (4) and the classical inequalities ‖ supn

1
n+1 (f + Tf + · · · + T nf )‖p ≤ p

p−1‖f ‖p,f ∈ Lp(m), 1 <

p < ∞, are the needed properties for Stein’s complex interpolation theorem [25] (see also [7] for a detailed presenta-
tion of the method applied to iterates of composed conditional expectations). It implies for 1 < p < ∞ the maximal
inequality and the a.e. convergence of T nf for f ∈ Lp(m). This applies to convolution powers, i.e. T = Pμ, even on
non-Abelian (compact) groups. In the Abelian case, it yields:

Theorem 2.4 ([4]). Let μ be a strictly aperiodic probability on a compact Abelian group G. If

sup
γ 	=0

|1 − μ̂(γ )|
1 − |μ̂(γ )| < ∞, (9)
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then for p > 1 there is a constant Cp such that for every f ∈ Lp(G,m), the maximal inequality ‖f ∗
0 ‖p ≤ Cp‖f ‖p

holds and μn ∗ f → ∫
f dm a.e.

Proof. Let Pf = μ ∗ f be the normal operator induced on L2(G,m). Then σ(P ) is the closure of {μ̂(γ ): γ ∈ Ĝ},
and (9) implies that σ(P ) contains no unimodular points except 1 and is included in a Stolz region of the closed unit
disk. Using part (ii) of Theorem 2.3, when Vγ is the space of multiples of the character γ ∈ Ĝ, the maximal inequality
and the a.e. convergence follow from Stein’s theorem as explained above. �

As mentioned in the Introduction, failure of a.e. convergence for a sequence of operators may be quite strong. In
[8], del Junco and Rosenblatt gave a condition which implies the SSO property (cf. Definition 1.1) and, for powers of
convolution operators on G, reads:

Theorem 2.5. Let μ be a probability measure on the compact Abelian group G. If for every integer N0 > 1 and every
ε > 0, there exists a measurable set A such that m(A) < ε and m{supn≥N0

μn ∗ 1A(x) ≥ 1 − ε} > 1 − ε, then μ has
the strong sweeping out property.

The next lemma shows that it suffices to fulfill the conditions for N0 = 1.

Lemma 2.6. If for every ε > 0 there exists a set A ∈ B such that m(A) < ε and

m
{
x ∈ G: sup

n≥1
μn ∗ 1A(x) ≥ 1 − ε

}
> 1 − ε, (10)

then μ has the strong sweeping out property on G.

Proof. Let be given N0 ≥ 1 and ε > 0. By applying (10) with ε′ = ε
2N0+ε

instead of ε, we obtain a set A with
μ(A) < ε′ which satisfies the condition of Theorem 2.5 since

m
{

sup
n≥N0

μn ∗ 1A(x) ≥ 1 − ε
}

≥ m
{

sup
n≥N0

μn ∗ 1A(x) ≥ 1 − ε′}

≥ m
{

sup
n

μn ∗ 1A(x) ≥ 1 − ε′} − N0m(A)/
(
1 − ε′)

≥ 1 − ε′ − N0m(A)/
(
1 − ε′) ≥ 1 − ε′ − N0ε

′/
(
1 − ε′) ≥ 1 − ε. �

3. Convergence and divergence of convolution powers on the circle

Our aim is to characterize the strong sweeping out property on the circle T by a property of the Fourier–Stieltjes
coefficients of μ, and to study the a.e. convergence of the convolution powers of μ. In order to avoid repetition
when dealing with general groups, we denote the characters by γ and the Fourier–Stieltjes coefficients by μ̂(γ ). For
γ (x) = e2πinx , we write either μ̂(γ ) or μ̂(n).

Theorem 3.1. Let μ be a strictly aperiodic probability on the unit circle T. If

lim sup
μ̂(n)→1,n	=0

|1 − μ̂(n)|
1 − |μ̂(n)| = ∞, (11)

then μ has the strong sweeping out property on T.

Proof. We will use Lemma 2.6 to show the SSO property. For a character γ 	= 0 denote

L(γ ) = |1 − μ̂(γ )|
1 − |μ̂(γ )| and ρ(γ ) =

∣∣∣∣1 − μ̂(γ )

|μ̂(γ )|
∣∣∣∣. (12)
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L(γ ) is well-defined by strict aperiodicity, L(γ ) ≥ 1 and the triangle inequality yields

ρ(γ ) ≥ ∣∣1 − μ̂(γ )
∣∣ −

∣∣∣∣μ̂(γ ) − μ̂(γ )

|μ̂(γ )|
∣∣∣∣ = (

1 − ∣∣μ̂(γ )
∣∣)(L(γ ) − 1

)
. (13)

By (11), there exists an infinite sequence {γk}, γk(x) = e2πinkx for x ∈ R/Z, such that L(γk) → ∞ and ρ(γk) → 0.
Let 0 < ε < 1 be given and put M = 1+π

2ε
. We will construct A ∈ B satisfying (10), by adapting the ideas of Losert

[16]. From the above sequence {γk}, we fix γk such that

ρ(γk) <
1

M
and L(γk) >

32M2π

ε
. (14)

Since γk is fixed, we denote L = L(γk) and ρ = ρ(γk); in all other quantities defined we will suppress the dependence
on γk . Let ξ ∈ (0,1) satisfy e2πiξ = μ̂(γk)/|μ̂(γk)|. Then ρ = |1 − e2πiξ | = 2| sin(πξ)| ≤ 2πξ . Since L > 2, (13)
yields

ρ

L
≥ (

1 − ∣∣μ̂(γk)
∣∣)L − 1

L
≥ 1

2

(
1 − ∣∣μ̂(γk)

∣∣). (15)

Put j := [ 2π
ρ

] + 1 and r := 1 − |μ̂(γk)|j . By (15) we have 1 − r ≥ (1 − 2ρ
L

)j > 0. Then

−r ≥ ln(1 − r) ≥ j ln

(
1 − 2ρ

L

)
≥ −j

4ρ

L
, (16)

since ln(1 − t) ≥ −2t for t < 1/4, while ρ < 1/M and L > 32π imply ρ
L

≤ 1/32π. The estimate (16) and the
definition of j yield

r ≤ 4ρj

L
≤ 16π

L
. (17)

We now define δ := max{ρ
4 ,

√
r

2ε
}. The estimates (14) and (17) yield

√
r

2ε
≤

√
8π

Lε
<

√
8π

32M2π
= 1

2M
, (18)

which shows δ < 1/2M since ρ < 1/M .
Since 2| sin(πξ)| = ρ < 1, we have ξ < 1/6. We saw that ρ ≤ 2πξ , so

1

j
<

ρ

2π
< ξ <

1

2
sin(πξ) = ρ

4
< δ. (19)

Hence the j intervals [(	 − 1)ξ, 	ξ)mod 1,1 ≤ 	 ≤ j , each of length ξ > 1/j , cover all the unit interval, so for each
x ∈ [0,1) there exists 	x with |nkx mod 1 − 	xξ | < ξ < δ (recall that γk(x) = e2πinkx ).

Fix 1 ≤ 	 ≤ j . Using the definition of ξ we obtain

∣∣μ̂	(nk)
∣∣ = ∣∣μ̂(nk)

∣∣	 = e−2πi	ξ (μ̂(nk)
)	 = e−2πi	ξ

∫
I

e−2πinks dμ	(s)

=
∫

I

e−2πi(nks+	ξ) dμ	(s) =
∫

I

cos
(
2π(nks + 	ξ)

)
dμ	(s) = 1 − 2

∫
I

(
sin

(
π(nks + 	ξ)

))2 dμ	(s).

But for 	 ≤ j , we have |μ̂(nk)|	 ≥ |μ̂(nk)|j = 1 − r , so∫
I

(
sin

(
π(nks + 	ξ)

))2 dμ	(s) = 1

2

(
1 − ∣∣μ̂(nk)

∣∣	) ≤ r

2
.
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From Tchebyshev’s inequality we obtain μ	{s ∈ I : | sin(π(nks + 	ξ))| ≥ δ} ≤ r

2δ2 . Given x ∈ I , we have 	x ≤ j with
|nkx mod 1 − 	xξ | < δ. Hence | sin(π(nks + 	xξ))| < δ implies∣∣sin

(
π(nks + nkx)

)∣∣ ≤ ∣∣sin
(
π(nks + 	xξ)

)∣∣ + ∣∣sin
(
π(nkx − 	xξ)

)∣∣ < (1 + π)δ.

Since δ2 ≥ r/2ε by the definition of δ, it follows that

μ	x
{
s ∈ I :

∣∣sin
(
π(nks + nkx)

)∣∣ < (1 + π)δ
} ≥ 1 − r

2δ2
≥ 1 − ε.

Define ϕ : I −→ I by ϕ(t) = nkt mod 1. Then ϕ preserves Lebesgue’s measure on I . Let A = ϕ−1(B), where B =
{s ∈ I : | sin(πnks)| < (1 + π)δ}. Since | sin(πy)| ≥ |2y| for |y| ≤ 1

2 , we have m(A) = m(B) ≤ (1 + π)δ < 1+π
2M

= ε

and by the previous estimate

sup
1≤	≤j

μ	 ∗ 1A(x) = sup
1≤	≤j

μ	(A − x) ≥ μ	x (A − x)

= μ	x
{
s ∈ I :

∣∣sin
(
π(nks + nkx)

)∣∣ < (1 + π)δ
} ≥ 1 − ε.

This yields m{x ∈ [0,1): supn≥0 μn ∗ 1A(x) > 1 − ε} = m([0,1)) = 1, so (10) is satisfied. �

Corollary 3.2. Let μ be strictly aperiodic such that S ⊂ {μ̂(n): n ∈ Z}. Then (11) holds, and therefore μ has the
strong sweeping out property on the circle.

Proof. Let Pf = μ∗f on L2(T,m) with spectrum σ(P ); it is easy to show that σ(P ) is the closure of {μ̂(n): n ∈ Z}.
Let 1 	= λk ∈ S with λk → 1. By assumption there exists a sequence μ̂(nk,j ) (with |μ̂(nk,j )| < 1 by strict aperiodicity)
converging to λk as j → ∞. Then limj |1− μ̂(nk,j )|/(1−|μ̂(nk,j )|) = ∞, since numerator converges to |1−λk| 	= 0.
Call nk a value of nk,j with j large so |1 − μ̂(nk,j )| < 2|1 − λk| and L(nk,j ) > k. Thus (11) holds, and the strong
sweeping out property follows from the theorem. �

Lemma 3.3 ([15], Lemma 1). Condition (11) is equivalent to

lim sup
μ̂(n)→1,n	=0

|�mμ̂(n)|
1 − �eμ̂(n)

= ∞. (20)

Proof. For the sake of completeness, we give a proof and show the following equivalence: for every sequence {zn}
with |zn| < 1,

lim sup
|zn|<1,zn→1

|1 − zn|
1 − |zn| = ∞ if and only if lim sup

|zn|<1,zn→1

|�mzn|
1 − �ezn

= ∞.

Let z = ρeiα be a complex number with argument α ∈ (− 1
2π, 1

2π) and modulus ρ < 1. Put A(z) = A(α,ρ) = |1−z|
1−|z|

and B(z) = B(α,ρ) = |�mz|
1−�ez

. We have

A(α,ρ) =
(

1 + 4ρ

(
sin(α/2)

1 − ρ

)2)1/2

, B(α,ρ) = 2ρ

∣∣∣∣cos
α

2

∣∣∣∣ | sin(α/2)|
1 − ρ cosα

.

Putting M(z) = Mα,ρ = 2 | sin(α/2)|
1−ρ

, we get

A(α,ρ) = (
1 + ρM2

α,ρ

)1/2
, B(α,ρ) = ρ| cos(α/2)|

| sin(α/2)| + cosαM−1
α,ρ

.

Hence the equivalence between limzn→1 A(zn) = ∞, limzn→1 M(zn) = ∞, limzn→1 B(zn) = ∞. �
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Remarks. 1. Even for μ strictly aperiodic, the condition supn	=0
|1−μ̂(n)|
1−|μ̂(n)| = ∞ is insufficient for the strong sweeping

out (and (9) is not necessary for a.e. convergence). Let θ ∈ (0,1) be irrational, α = e2πiθ ∈ T, and put μ = 1
2 (δα−1 +

δα). The operator Pf = μ ∗ f is self-adjoint on L2(m), so by the Stein–Rota theorem supn P n|f | ∈ L2 for every
f ∈ L2. We have μ̂(n) = cos(2πnθ), so μ is strictly aperiodic, hence μn ∗f → ∫

f dμ a.e. for every f ∈ L2, and thus
μ does not have the sweeping out property. (Note that the result of [5] does not apply to μ, because 1

2 (δ1 + δ−1) is not

strictly aperiodic on Z, but it applies to μ2.) We have supn	=0
|1−μ̂(n)|
1−|μ̂(n)| = ∞ since L(nk) → ∞ when nkθ → 1/2 mod 1,

but (11) fails since when μ̂(n) is close to 1 its values are positive reals and L(n) = 1.
2. Let α = e2πiθ be as above, and define μ = 1

2 (δ1 + δα). Then μ̂(n) = 1
2 (1 + α−n), so μ is strictly aperiodic. For

z = 1
2 (1 + e−2πinθ ), we have |z| = | cos(πnθ)| and |1 − z| = | sin(πnθ)|, so L(n) → ∞ as nθ → 0 mod 1. Hence (11)

holds.
3. Let α = e2πiθ be as above. Theorem 3.1 for μ = ∑

k∈Z
pkδαk (where pk ≥ 0 with

∑
k∈Z

pk = 1) follows from
Theorem 2 of [16]: We put on Z the probability ν := ∑

k∈Z
pkδk and obtain μ̂(n) = ν̂({nθ}). Hence μ̂(n) → 1 implies

{nθ} → 0, so (11) implies lim supt→0
|1−ν̂(t)|
1−|ν̂(t)| = ∞.

Example 1. Let {αk = e2πiθk }dk=1 ⊂ T with d > 1, and assume that 1, θ1, θ2, . . . , θd are linearly independent over the

rationals. Let μ = ∑d
k=1 pkδαk

(where 0 ≤ pk < 1 and
∑

pk = 1). Then μ has the strong sweeping out property on T.

Proof. We have μ̂(n) = ∑d
k=1 pkα

−n
k , and μ is strictly aperiodic since its support has at least two “irrational” points.

The linear independence implies, by a result of Kronecker (e.g. [10], p. 382, [13], pp. 12–13), that the powers of
(α1, . . . , αd) are dense in the d-dimensional torus Td ; hence for λ ∈ S there exists a subsequence {nj } such that
α

nj

k → λ for k = 1, . . . , d , which yields that μ̂(nj ) → λ. We conclude that S ⊂ {μ̂(n): n ∈ Z}, and Corollary 3.2
applies. �

Remark. Since the flow defined on (T,m) by Ttx = e2πit x is periodic, for d = 3 we cannot obtain Example 1 from
Theorem 2.18 of [12] (which yields only non-convergence for some f ∈ L2(T,m), and not the strong sweeping out
property).

Proposition 3.4. There exists a continuous probability μ on T which has the strong sweeping out property on T.

Proof. Recall that a closed set K ⊂ T is called a Kronecker set if every continuous f on K with |f | ≡ 1 can be
uniformly approximated by continuous characters, i.e., there is a sequence {nj } such that αnj → f (α) uniformly for
α ∈ K.

Hence for λ ∈ S there exists {nj } such that αnj → λ for α ∈ K (uniformly). If μ is a probability supported in K, we
obtain that μ̂(nj ) → λ. When μ is strictly aperiodic, Corollary 3.2 applies and μ has the strong sweeping out property
on T.

By Theorem 5.2.2(a) in [24], T contains a Cantor set K which is a Kronecker set. Hence K supports a continu-
ous probability μ with uncountable support (so strictly aperiodic), and by the above μ has the strong sweeping out
property. �

By Theorem 3.1, a.e. convergence of μn ∗ f for every f ∈ L2(T,m) implies

lim sup
μ̂(n)→1,n	=0

|1 − μ̂(n)|
1 − |μ̂(n)| < ∞ (21)

for the Fourier–Stieltjes coefficients of μ. We will prove the converse in Theorem 3.6 below.
First, let us observe that the proof of Corollary 3.2 shows that, if there is a sequence {λk} ⊂ S ∩ σ(P ) with 1 	=

λk → 1, then (11) holds, contradicting (21). Hence, if (21) holds, then σ(P ) ∩ S 	= S and therefore this intersection is
finite, with σ(P j ) ∩ S = {1} for some j ≥ 1, since P is a positive contraction [14], Proposition 1. We give below a
simple proof of this last fact for the convolution operators treated in this paper.
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Lemma 3.5. Let μ be a probability on a compact Abelian group G. Then the peripheral spectrum σ(Pμ) ∩ S is a
closed subgroup of the multiplicative group of the circle.

Proof. Let λ1, λ2 ∈ σ(Pμ) ∩ S. Since the spectrum is the closure of the Fourier coefficients, also λ1 = λ−1
1 and

λ2 = λ−1
2 are in the peripheral spectrum, so there are sequences of characters with μ̂(γ ′

k) → λ1 and μ̂(γ ′′
j ) → λ2.

∣∣∣∣
∫

G

γ ′′
j γ ′

k dμ − λ2λ1

∣∣∣∣ ≤
∣∣∣∣
∫

G

γ ′′
j γ ′

k dμ − λ2

∫
G

γ ′
k dμ

∣∣∣∣ +
∣∣∣∣λ2

∫
G

γ ′
k dμ − λ1λ2

∣∣∣∣
≤

∫
G

∣∣γ ′′
j − λ2

∣∣dμ +
∣∣∣∣
∫

G

γ ′
k dμ − λ1

∣∣∣∣ ≤
[∫

G

∣∣γ ′′
j − λ2

∣∣2 dμ

]1/2

+
∣∣∣∣
∫

G

γ ′
k dμ − λ1

∣∣∣∣.
The last term tends to zero, and we have the estimate[∫

G

∣∣γ ′′
j − λ2

∣∣2 dμ

]1/2

= √
2

[
1 − �e

(
λ2

∫
G

γ ′′
j dμ

)]1/2

≤ √
2

∣∣∣∣1 − λ2

∫
G

γ ′′
j dμ

∣∣∣∣
1/2

→ 0.

Hence the peripheral spectrum is a subgroup, closed since the spectrum is closed. �

Remark also that, if in addition to (21) we have lim sup|μ̂(n)|→1 |1 − μ̂(n)| <
√

3, then σ(P ) ∩ S = {1} (see proof
of Theorem 5 in [14]). When σ(P ) ∩ S = {1}, (21) implies (9); hence Theorem 2.4 applies.

Theorem 3.6. The following are equivalent for a strictly aperiodic probability μ on T:

(i) for every f ∈ Lp(T,m), p > 1, we have μn ∗ f → ∫
f dm a.e.;

(ii) for every A ∈ B we have μn ∗ 1A → m(A) a.e.;

(iii) for some j ≥ 1 the Fourier–Stieltjes coefficients of μ satisfy supn	=0
|1−μ̂(n)j |
1−|μ̂(n)|j < ∞;

(iv) for every f ∈ Lp(T,m), p > 1, we have supμn ∗ |f | ∈ Lp(T,m);
(v) the Fourier–Stieltjes coefficients of μ satisfy (21).

Proof. Obviously (i) implies (ii).
We now assume (ii). By Corollary 3.2 we must have that the peripheral spectrum σ(P ) ∩ S of the convolution

operator Pf = μ ∗ f on L2 is not all of S, so by Lemma 3.5 it is a finite group, with σ(P j ) ∩ S = {1} for some j ≥ 1.
Put η = μj , which is clearly also strictly aperiodic. (ii) implies ηn ∗1A → m(A) a.e. for every A ∈ B. By Theorem 3.1
we must have

lim sup
η̂(n)→1,n	=0

|1 − η̂(n)|
1 − |η̂(n)| < ∞ (22)

and η then satisfies (9) since σ(P j ) ∩ S = {1}. Thus (iii) holds.
Assume (iii), and put η = μj . Theorem 2.4 applied to η yields ηn ∗ f → ∫

f dm a.e. for every f ∈ Lp(T,m),
p > 1. Applying this to μk ∗ f,0 ≤ k < j , we obtain (i).

(iii) also implies supηn ∗ |f | ∈ Lp(T,m), for every f ∈ Lp(T,m), p > 1 (Theorem 2.4). Hence (iv) is satisfied.
(iv) implies (i) by the Banach principle, since pointwise convergence holds for f continuous.
As (i) implies (v) by Theorem 3.1, it remains to show that (v) implies (iii).
Assume (v). By Lemma 3.5 σ(P ) ∩ S is a closed subgroup of S, which is not all of S by Corollary 3.2, so it is a

finite group of roots of unity, say of order r . When r = 1, (9) holds and (iii) of Theorem 3.6 holds with j = r . If r > 1,
then the peripheral spectrum of Pμr = P r contains only the point 1. By the assumption (v) and Proposition 3.7 below,

lim sup
μ̂(γ )→e2πi	/r

|1 − μ̂(γ )r |
1 − |μ̂(γ )|r < ∞

for every 0 ≤ 	 ≤ r − 1, hence (iii) holds with j = r . �
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Proposition 3.7. Let μ be a strictly aperiodic probability on a compact Abelian group G. Let r ≥ 1 be an integer and
e2πiα = e2πi	/r , 0 ≤ 	 ≤ r − 1, a root of unity of order r . The condition

lim sup
μ̂(γ )→e2πiα

|1 − μ̂(γ )r |
1 − |μ̂(γ )|r = ∞ (23)

implies

lim sup
γ 	=0,μ̂(γ )→1

|1 − μ̂(γ )|
1 − |μ̂(γ )| = ∞. (24)

Proof. Let {γk} ⊂ Ĝ be a sequence of characters on G such that limk μ̂(γk) = e2πiα and

lim
k

|1 − μ̂(γk)
r |

1 − |μ̂(γk)|r = ∞. (25)

We write μ̂(γk) = (1 − εk)e2πi(	/r+δk), with εk > 0 and limk εk = limk δk = 0. The quotient in (23) for γk reads

|1 − (1 − εk)
re2πirδk |

1 − (1 − εk)r
=

∣∣∣∣ rεk + o(εk) − (1 − rεk + o(εk))(2πirδk + o(δk))

rεk + o(εk)

∣∣∣∣
=

∣∣∣∣1 − (1 − rεk + o(εk))(2πirδk + o(δk))

rεk + o(εk)

∣∣∣∣.
Therefore by (25) we have

lim
k

|(1 − rεk + o(εk))(2πiδk + r−1o(δk))|
εk + r−1o(εk)

= ∞,

i.e.

lim
k

|δk|
εk

= ∞. (26)

Now let us consider two characters γj , γk from our sequence, where k and j are two indices which will be chosen
later. The computations in the proof of Lemma 3.5 yield

∣∣∣∣
∫

G

γ jγk dμ − e2πiα
∫

G

γk dμ

∣∣∣∣ ≤ √
2

∣∣∣∣e−2πiα −
∫

G

γj dμ

∣∣∣∣
1/2

.

Since
∫
G

γ j dμ = μ̂(γj ) → e2πiα , we can find j , independently of k, such that
∫
G

γ jγk dμ is arbitrarily close to
e2πiα

∫
G

γk dμ for every k. This implies that for each k we have

lim
j→∞

|1 − ∫
G

γ jγk dμ|
1 − | ∫

G
γ jγk dμ| = |1 − e2πiα

∫
G

γk dμ|
1 − | ∫

G
γk dμ| .

We can therefore for each k choose j = p(k) such that

lim
k

μ̂(γp(k)γ k) = lim
k

∫
G

γ p(k)γk dμ = e2πiα lim
k

∫
G

γk dμ = 1 (27)

and ∣∣∣∣ |1 − ∫
G

γ p(k)γk dμ|
1 − | ∫

G
γ p(k)γk dμ| − |1 − e2πiα

∫
G

γk dμ|
1 − | ∫

G
γk dμ|

∣∣∣∣ ≤ 1. (28)
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Using the expression of μ̂(γk) = ∫
G

γ k dμ we get

|1 − e2πiα
∫
G

γk dμ|
1 − | ∫

G
γk dμ| = |1 − e−2πiα

∫
G

γ k dμ|
1 − | ∫

G
γ k dμ|

= |εk − (1 − εk)(2πiδk + o(δk))|
εk

=
∣∣∣∣1 − (1 − εk)

(
2πi

δk

εk

+ o(δk)

εk

)∣∣∣∣.
This, put together with (26) and (28), implies:

lim
k

|1 − μ̂(γp(k)γ k)|
1 − |μ̂(γp(k)γ k)|

= lim
k

|1 − ∫
G

γ p(k)γk dμ|
1 − | ∫

G
γ p(k)γk dμ| = +∞.

Since limk

∫
G

γ p(k)γk dμ = 1 by (27), (24) is proved. �

Corollary 3.8. Let μ be a strictly aperiodic probability on T. Then either for every f ∈ Lp(T,m), p > 1, μn ∗ f →∫
f dm a.e., or μ has the strong sweeping out property.

Proof. Assume that μ does not have the strong sweeping out property. Then (21) holds, so by Theorem 3.6 we have
the convergence. �

Remark. The corollary yields that if for some f ∈ L∞ the sequence μn ∗ f does not converge a.e., then μ has the
strong sweeping out property on T. The general theory, given in Theorem 1 and Corollary 2 of [3], yields only that μ

on T is δ-sweeping out for some δ > 0.

Problem. Does condition (21) imply μn ∗ f → ∫
f dm a.e. for every f ∈ L1(T,m)?

Remarks. 1. In view of Theorem 3.6, the problem is equivalent to the question whether condition (9) implies μn ∗f →∫
f dm a.e. for every f ∈ L1(T,m).
2. A particular case of the problem is whether symmetry of μ implies μn ∗f → ∫

f dm a.e. for every f ∈ L1(T,m).
In general, the Stein–Rota result for self-adjoint Markov operators may fail in L1 [17].

3. Another special case is whether the condition supn	=0 |μ̂(n)| < 1, which is strictly stronger than (9), implies
μn ∗ f → ∫

f dm a.e. for every f ∈ L1(T,m).

Proposition 3.9. If μ and ν are two probabilities on T satisfying the conditions of Theorem 3.6, so do ν ∗ μ and
convex combinations aμ + bν.

Proof. Remark that if μ is strictly aperiodic, so are ν ∗μ and proper convex combinations aμ+bν. One easily checks
that ν ∗ μ and aμ + bν satisfy condition (iv) of Theorem 3.6. �

In the following propositions the normalized continuous and discrete parts of a probability μ are denoted by μc

and μd .

Proposition 3.10. There exists a strictly aperiodic probability μ on T with all its powers singular, such that

(i) μc is non-zero and satisfies μn
c ∗ f → ∫

f dm a.e. for every f ∈ Lp , p > 1;
(ii) μd is strictly aperiodic and has the strong sweeping out property on T;

(iii) μn ∗ f → ∫
f dm a.e. for every f ∈ Lp , p > 1.

Proof. Let μ1 be the probability constructed in [9], which is continuous with all its powers singular, and satisfies
supn	=0 |μ̂(n)| = c < 1. Let μ2 be a discrete probability as in Example 1 (or any discrete probability supported in a

Kronecker set), and put μ = 1
2 (μ1 + μ2). Then (i) and (ii) are satisfied by the construction. For n 	= 0 we have

∣∣μ̂(n)
∣∣ ≤ 1

2

(∣∣μ̂1(n)
∣∣ + ∣∣μ̂2(n)

∣∣) ≤ (c + 1)/2 < 1.



562 J.-P. Conze and M. Lin

Hence (iii) holds by Theorem 2.4. �

Proposition 3.11. There exists a strictly aperiodic probability μ on T with all its powers singular, such that

(i) μc has the SSO property on T;
(ii) μd is non-zero strictly aperiodic and satisfies μn

c ∗ f → ∫
f dm a.e. for every f ∈ Lp , p > 1;

(iii) μ has the strong sweeping out property on T.

Proof. Take a continuous measure μ1 supported on a Kronecker set K. By Proposition 3.4 it has the SSO property
on T. Let μ2 be the discrete measure 1

2 (δe2πiθ + δe−2πiθ ), with e2πiθ ∈ K. Let λk = e2πiβk , k ≥ 1, be a sequence in S

with limk λk = 1. By the construction in Proposition 3.4, for each k there is a sequence {nk,j } such that αnk,j → λk

uniformly on K. Hence limj μ̂1(nk,j ) = λk , and limj μ̂2(nk,j ) = limj cos(2πnk,j θ) = cos(2πβk).
For the barycenter μ := 1

2 (μ1 + μ2) we have, when j tends to ∞:

μ̂(nk,j ) = 1

2

(
μ̂1(nk,j ) + μ̂2(nk,j )

) → 1

2

(
e2πiβk + cos(2πβk)

) = cos(2πβk) + 1

2
i sin(2πβk).

Now we use the method of Corollary 3.2. Let nk be a value for j large of the sequence {nk,j , j ≥ 1} such that∣∣1 − μ̂1(nk)
∣∣ < 2|1 − λk|,

∣∣1 − cos(2πnkθ)
∣∣ < 2

∣∣1 − cos(2πβk)
∣∣.

We have limk μ̂(nk) = 1. Using the criterion (20), let us consider:

|�mμ̂(nk)|
1 − �eμ̂(nk)

= |�mμ̂1(nk)|
1 − �eμ̂1(nk) − cos(2πnkθ)

= sin(2πβk) + εk

2 − 2 cos(2πβk) + ε′
k

= cos(πβk) + (2 sin(πβk))
−1εk

2 sin(πβk) + (2 sin(πβk))−1ε′
k

,

with εk, ε
′
k small. Since we can take nk such that the errors εk, ε

′
k are much smaller than sin(πβk), we obtain that

the lim sup in the previous quotient is infinite, when k tends to ∞. By (20), the probability measure μ has the SSO
property; however, for its discrete part μ2, almost everywhere convergence of μn

2 ∗ f holds since μ2 is symmetric. �

Problem. Let μ be a non-discrete probability with the SSO property on T. Must its continuous component have the
SSO property? At least one component must, by Proposition 3.9(ii).

If μ has singular powers and both its discrete and continuous components are non-zero with the SSO property,
must μ have it?

4. Convolution powers of discrete probabilities on the circle

In this section we study the a.e. convergence of convolution powers of discrete probabilities, and use condition (21)
to check the a.e. convergence of μn ∗ f for every f ∈ Lp , p > 1.

Theorem 4.1. Let {1, τ1, . . . , τs} be linearly independent over Q. Let {αk = e2πiθk } be a finite or countably infinite set
of different points in T, with

θk =
s∑

j=1

rk,j τj mod 1, rk,j ∈ Q,∀k.

Let μ = ∑
k pkδαk

, with 0 ≤ pk < 1 and
∑

k pk = 1. We suppose that μ is strictly aperiodic (i.e. θj − θk irrational for
some j, k with pj · pk > 0). Then μ has the strong sweeping out property on T if and only if

lim sup
0	=�x=(x1,...,xs )→0

|∑k pk sin(2π
∑s

j=1 rk,j xj )|
1 − ∑

k pk cos(2π
∑s

j=1 rk,j xj )
= ∞. (29)
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Proof. Note that we may assume for the proof that all pk are positive. The Fourier–Stieltjes coefficients of μ are

μ̂(n) =
∑

k

pkδ̂αk
(n) =

∑
k

pke2πinθk =
∑

k

pke2πi
∑s

j=1 rk,j nτj .

The spectrum of Pf = μ ∗ f in L2(T,m) is the closure in the unit disk of the set {μ̂(n): n ∈ Z}, which yields, by
Kronecker’s theorem,

σ(P ) = {
F(x1, . . . , xs): (x1, . . . , xs) ∈ Rs

}
,

where

F(x1, . . . , xs) :=
∑

k

pke2πi
∑s

j=1 rk,j xj =
∑

k

pk

(
cos

(
2π

s∑
j=1

rk,j xj

)
+ i sin

(
2π

s∑
j=1

rk,j xj

))
.

Condition (20) is therefore equivalent to

lim sup
0	=�x=(x1,...,xs )→0

|∑k pk sin(2π
∑s

j=1 rk,j xj )|
1 − ∑

k pk cos(2π
∑s

j=1 rk,j xj )
= lim sup

0	=�x→0

|�mF(�x)|
1 − �eF (�x)

= ∞.

In view of the equivalence of conditions (11) and (20), we obtain the equivalence of (29) and the strong sweeping out
property. �

Corollary 4.2. Let θ ∈ (0,1) be irrational and α = e2πiθ . Let μ = ∑
k∈Z

pkδαk with 0 ≤ pk < 1 and
∑

k∈Z
pk = 1.

Then μ has the SSO property on T if and only if

lim sup
0	=x→0

|∑k pk sin(2πkx)|
1 − ∑

k pk cos(2πkx)
= ∞.

Remark. When we assume that {k ∈ Z: pk > 0} is not in a class of a subgroup of Z, the corollary is actually a
particular case of the characterization of SSO obtained by combining results of [5] and [16]. We do not make such
an assumption, and our result covers, for example, the case of 1

2 (δα−1 + δα). We note that if
∑

k∈Z
|k|pk < ∞ and∑

k∈Z
kpk 	= 0, then we have SSO [5]. See also Proposition 4.3 below.

Proposition 4.3. Let {αk = e2πiθk } be a set of d different points in T, which generate an s-dimensional subspace of R

over Q, and let {τ1, . . . , τs} be linearly independent over Q with

θk =
s∑

j=1

rk,j τj mod 1, rk,j ∈ Q,∀k.

Let μ = ∑
k pkδαk

, with 0 < pk < 1 and
∑

k pk = 1. We suppose that μ is strictly aperiodic (i.e. θj − θk irrational for
some j, k). Then μn ∗ f converges a.e. for every f ∈ Lp , p > 1, if and only if

∑d
k=1 pkrk,j = 0, ∀j ∈ {1, . . . , s}.

Proof. Assume first that we have the convergence, so by Theorem 4.1 (29) fails – the lim sup is finite. Let A(�x),B(�x)

be the numerator and denominator in the left-hand side of (29). By taking the approximation of order 1 or 2 at 0, we
write:

A(�x) =
d∑

k=1

pk

s∑
j=1

rk,j xj + o
(‖�x‖), 2B(�x) =

d∑
k=1

pk

(
s∑

j=1

rk,j xj

)2

+ o
(‖�x‖2). (30)
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Assume there is j0 ∈ {1, . . . , s} such that
∑d

k=1 pkrk,j0 	= 0, and put xj = 0 for every j 	= j0. Then the quotient of the
right-hand sides of (30), for xj0 	= 0, is

∑d
k=1 pkrk,j0xj0 + o(|xj0 |)∑d
k=1 pkr

2
k,j0

x2
j0

+ o(|xj0 |2)
=

∑d
k=1 pkrk,j0 + o(1)∑d
k=1 pkr

2
k,j0

+ o(1)

1

xj0

−→
xj0 →0

∞.

Then (29) holds. Since we assume that (29) fails,
∑d

k=1 pkrk,j = 0 for 1 ≤ j ≤ s.
By Theorem 4.1, the a.e. convergence will follow from

lim sup
0	=�x→0

|∑d
k=1 pk sin(2π

∑
j rk,j xj )|

1 − ∑d
k=1 pk cos(2π

∑
j rk,j xj )

< ∞. (31)

By the assumption that
∑d

k=1 pkrk,j = 0 for every j , we see that for the numerator we have to take the third order
approximation. Then, up to a constant factor, for �x tending to 0 the ratio can be written:

|∑k pk(
∑

j rk,j xj )
3|∑

pk(
∑

j rk,j xj )2

(
1 + o

(|�x|)). (32)

To show that (32) is well defined and its lim sup is finite, it suffices to prove that the quadratic form

Q(�x) :=
d∑

k=1

pk

(
s∑

j=1

rk,j xj

)2

is positive definite. Since it is non-negative, this is equivalent to: Q(x1, . . . , xs) = 0 ⇒ (x1, . . . , xs) = 0. But
Q(x1, . . . , xs) = 0 implies

∑s
j=1 rk,j xj = 0 for k = 1, . . . , d . If there is a non-null solution (x1, . . . , xs) for this

system of linear equations, then the rank of the system is less than s, which contradicts the fact that the dimension of
the space generated by (θ1, . . . , θd) over Q is s. Hence Q(�x) is positive definite. �

Example 2. A probability μ with finite support satisfying μn ∗ f → ∫
f dm a.e.

Let τ1, τ2 be two reals in (0,1), such that (1, τ1, τ2) are linearly independent over Q. Put α1 = e2πi((1/2)τ1−τ2),
α2 = e2πi(−(1/3)τ1+τ2) and α3 = e2πi(−τ2). Let μ be the discrete probability measure on T defined by

μ = 1

3
δα1 + 1

2
δα2 + 1

6
δα3 .

Here d = 3 and s = 2, and we have r1,1 = 1
2 , r1,2 = −1, r2,1 = − 1

3 , r2,2 = 1, r3,1 = 0, r3,2 = −1, so there is no index

j0 ∈ {1,2} such that
∑3

k=1 pkrk,j0 	= 0. We can therefore apply Proposition 4.3. An elementary computation shows
that σ(P ) ∩ S is precisely the set of roots of unity of order 6: {e2πi	/6, 	 = 0,1, . . . ,5}. Hence P is not self-adjoint.

In the previous results and examples, the discrete probabilities were supported by “irrational points” (in R/Z),
i.e. points in T of the form α = e2πiθ with θ irrational. It is easy to construct strictly aperiodic discrete probabilities
μ supported on rational points only, such that μn ∗ f → ∫

f dm a.e. for f ∈ Lp , p > 1; take an infinite sequence
of rationals {θk}k≥1 ⊂ (0,1) which has an irrational limit point (this is not really necessary, see below), a sequence
{pk}k≥1 with pk > 0 and

∑∞
k=1 pk = 1, and put μ := 1

2

∑∞
k=1 pk(δe2πiθk + δe−2πiθk ). The a.e. convergence follows from

the symmetry [25].

Example 3. A discrete probability supported on Q which has the SSO property.

Let 0 < t < 1. Using additive notations, we take on R/Z the following measure μ = (1 − t)t−1 ∑
k≥1 tkδ1/k .



Almost everywhere convergence of convolution powers 565

In order to obtain the SSO property, we want to prove (20), so we need to find a sequence (	n) such that

lim
n

|∑∞
k=1 pk sin(2π	n/k)|∑∞

k=1 pk(sin(π	n/k))2
= ∞. (33)

Let n be prime and 	n = (n−1)!(n+1) · · · (n+n−1)(n+ rn) = (2n−1)!(n+rn)
n

, where rn is a positive integer which
will be chosen below.

Since n is prime, we have (n − 1)! 	= 0 modn. We choose rn, 1 ≤ rn < n, such that 	n = 1 modn. We have 	n =
0 mod(n + j), for j = 1, . . . , n − 1.

By the choice of 	n and definition of pk , the left-hand side of (33) reads:

| sin(2π	n/n) + p−1
n

∑∞
k=2n pk sin(2π	n/k)|

(sin(π	n/n))2 + p−1
n

∑∞
k=2n pk(sin(π	n/k))2

= | sin(2π	n/n) + tn
∑∞

k=2n tk−2n sin(2π	n/k)|
(sin(π	n/n))2 + tn

∑∞
k=2n tk−2n(sin(π	n/k))2

≥ | sin(2π	n/n)| − tn(1 − t)−1

(sin(π	n/n))2 + tn(1 − t)−1
= | sin(2π/n)| − tn(1 − t)−1

(sin(π/n))2 + tn(1 − t)−1
∼

n→∞ 2n.

Example 4. A discrete probability supported on Q for which a.e. convergence holds.

Now we give an example of a non-symmetric probability measure supported on an infinite set of rationals, for
which the a.e. convergence holds. Let 0 < t < 1. We take the following discrete measure μ = (1 − t)t−1 ∑

k≥1 tkδ1/2k

on R/Z. We have to prove that

lim sup
μ̂(n)→1,n	=0

|�mμ̂(n)|
1 − �eμ̂(n)

< ∞. (34)

Let us write n = 2rnun, with un odd. The quotients in (34) read

|∑∞
k=1 pk sin(2πun/2k−rn)|∑∞

k=1 pk(sin(πun/2k−rn))2
= |±p2+rn + ∑∞

k=3 pk+rn sin(2πun/2k)|
p2+rn + (1/2)p2+rn + ∑∞

k=3 pk+rn(sin(πun/2k))2

= |±1 + t−(2+rn)
∑∞

k=3 tk+rn sin(2πun/2k)|
t−1 + 1/2 + t−(2+rn)

∑∞
k=3 tk+rn(sin(πun/2k))2

≤ 2 + 2t (1 − t)−1.

Therefore Condition (34) holds.

5. Convergence of convolution powers on compact Abelian groups

Let G be a compact Abelian group with Borel σ -algebra B. We denote by m its normalized Haar measure and by Ĝ

its dual group (which is discrete since G is compact). The elements of Ĝ, i.e. the characters on G, will be denoted
by γ . We have the following generalization of Theorem 3.1, which as we will see has a content only for G not of
bounded order.

Theorem 5.1. Let μ be a strictly aperiodic probability on G. If

lim sup
μ̂(γ )→1,γ 	=0

|1 − μ̂(γ )|
1 − |μ̂(γ )| = ∞ (35)

then μ has the strong sweeping out property on G.
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Proof. We will use Lemma 2.6 to show the strong sweeping out property on G. The proof starts using (35) like the
proof of Theorem 3.1, up to equation (19).

We fix the character γk defined by (14). Let H̃ be the subgroup of Ĝ generated by γk and H the closed subgroup
of G of all elements x such that γk(x) = 1. By Pontryagin duality, G/H is isomorphic to the dual of the discrete
group H̃ [24], Theorem 2.1.2. Since H̃ is either Z or a finite cyclic group, say Z/pZ, for some integer p ≥ 1, the
quotient G/H is isomorphic to a group G0 which is T in the first case, Z/pZ identified with { s

p
, s = 0, . . . , p − 1} in

the second case (when G is connected, H̃ = Z and G0 = T). There is a canonical homomorphism Π0 from G onto
G0 and the push-forward measure of the normalized Haar measure m on G by Π0 is the uniform measure m0 on G0
(i.e. m0(A) = m(Π−1

0 A) for Borel sets of G0). We denote by μ0 the measure on G0 obtained from μ by Π0. In the
second case μ0 is a discrete probability measure on { s

p
: s = 0, . . . , p − 1}.

The character γk can be written as γk(x) = ζ(Π0x), where ζ is the character on G0, defined by ζ(y) = e2πiy, y ∈
R/Z, in the first case, and ζ(s) = e2πis/p, s ∈ Z/pZ, in the second case. By construction we have the formula:∫

G

γk(s)dμ	(s) =
∫

G0

ζ(y)dμ	
0(y),

and the value of the integral is either
∫ 1

0 e2πiy dμ	
0(y) or

∑p−1
s=0 e2πis/pμ	

0(s).
We now prove the theorem by adapting the second part of the proof of Theorem 3.1. As in the proof of Theorem 3.1,

with the same definition of j, r and δ, we obtain

μ	
0

{
y ∈ G0:

∣∣sin
(
π(y + 	ξ)

)∣∣ ≥ δ
} ≤ r

2δ2
, 1 ≤ 	 ≤ j.

Given z ∈ G0, there is 	z ≤ j with |z − 	zξ | < δ. Hence | sin(π(y + 	zξ))| < δ implies∣∣sin
(
π(y + z)

)∣∣ ≤ ∣∣sin
(
π(y + 	zξ)

)∣∣ + ∣∣sin
(
π(z − 	zξ)

)∣∣ < (1 + π)δ,

so, since δ2 ≥ r
2ε

by the definition of δ,

μ
	z

0

{
y ∈ G0:

∣∣sin
(
π(y + z)

)∣∣ < (1 + π)δ
}

≥ μ
	z

0 {y ∈ G0:
∣∣sin

(
π(y + 	zξ)

)∣∣ < δ
} ≥ 1 − r

2δ2
≥ 1 − ε.

Let B = {y ∈ G0: | sin(πy)| < (1 + π)δ}, and define a subset A of G by A = Π−1
0 B . Since | sin(πy)| ≥ 2|y| for

|y| ≤ 1
2 , we have m(A) = m0(B) ≤ (1 +π)δ ≤ 1+π

2M
= ε. Note that when G0 is finite, this implies that ε ≥ 1/p (which

is impossible for small ε if G has a bounded order). By the previous estimate, for any x ∈ G,

sup
1≤	≤j

μ	 ∗ 1A(x) = sup
1≤	≤j

μ	(A − x) ≥ μ	Π0x (A − x)

= μ
	Π0x

0

{
y ∈ G0:

∣∣sin
(
π(y + Π0x)

)∣∣ < 2δ
} ≥ 1 − ε.

This yields m{x ∈ G: supn≥0 μn ∗ 1A(x) > 1 − ε} = m(G) = 1, so (10) is satisfied. �

The proof of the following corollary is similar to that of Corollary 3.2.

Corollary 5.2. Let μ be strictly aperiodic on G such that S ⊂ {μ̂(γ ): γ ∈ Ĝ}. Then (35) holds, and therefore μ has
the strong sweeping out property on G.

Using Theorem 5.1 and Proposition 3.7, we can obtain the following analogue of Theorem 3.6, with practically the
same proof.

Theorem 5.3. The following are equivalent for a strictly aperiodic probability μ on a compact Abelian group G:
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(i) for every f ∈ Lp(G,m), p > 1, we have μn ∗ f → ∫
f dm a.e.;

(ii) for every A ∈ B we have μn ∗ 1A → m(A) a.e.;

(iii) for some j ≥ 1 the Fourier–Stieltjes coefficients of μ satisfy supγ 	=0
|1−μ̂(γ )j |
1−|μ̂(γ )|j < ∞;

(iv) for every f ∈ Lp(G,m), p > 1, we have supμn ∗ |f | ∈ Lp(G,m);

(v) the Fourier–Stieltjes coefficients of μ satisfy lim supμ̂(γ )→1,γ 	=0
|1−μ̂(γ )|
1−|μ̂(γ )| < ∞.

Corollary 5.4. Let μ be a strictly aperiodic probability on G. Then either for every f ∈ Lp(G,m), p > 1, μn ∗ f →∫
f dm a.e. or μ has the strong sweeping out property.

Theorem 5.5. Let G be a compact Abelian group.

(i) If G is of bounded order (i.e. there exists q ∈ N such that qx = 0 for every x ∈ G, where qx is the sum of x

with itself q times), then for any strictly aperiodic probability measure μ on G, we have limn μn ∗f (x) = ∫
f dm a.e.

for every p > 1 and f ∈ Lp(G,m).
(ii) If G is not of bounded order, then there exists a continuous probability measure μ on G which has the strong

sweeping out property on G.

Proof. (i) Under the assumption of (i), γ (x)q ≡ 1 for every γ character of G and for any probability μ we can write
μ(γ ) as a convex combination of the qth roots of unity. This shows that all the values of μ̂(γ ), and therefore also
σ(Pμ), are inside the polygon with vertices the qth roots of unity {e2πik/q : 0 ≤ k ≤ q −1}. It follows that for μ strictly

aperiodic we have lim supμ̂(γ )→1,γ 	=0
|1−μ̂(γ )|
1−|μ̂(γ )| < ∞ and we can apply Theorem 5.3.

(ii) Since G is not of bounded order, it has a dense set of elements of infinite order [24], Theorem 2.5.3. Hence
by [24], Theorem 5.2.2(a), G contains a Cantor set which is a Kronecker set. Using Corollary 5.2 the proof is now
similar to that of Proposition 3.4. �
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