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Abstract. We consider regenerative processes with values in some general Polish space. We define their ε-big excursions as
excursions e such that ϕ(e) > ε, where ϕ is some given functional on the space of excursions which can be thought of as, e.g., the
length or the height of e. We establish a general condition that guarantees the convergence of a sequence of regenerative processes
involving the convergence of ε-big excursions and of their endpoints, for all ε in a set whose closure contains 0. Finally, we provide
various sufficient conditions on the excursion measures of this sequence for this general condition to hold and discuss possible
generalizations of our approach to processes that can be written as the concatenation of i.i.d. motifs.

Résumé. Nous considérons des processus régénératifs à valeurs dans un espace polonais quelconque. Nous définissons leurs
excursions ε-grandes comme les excursions e telles que ϕ(e) > ε, où ϕ est une fonctionnelle donnée sur l’espace des excursions,
qui peut par exemple être la longueur ou la hauteur de e. Nous établissons une condition générale garantissant la convergence d’une
suite de processus régénératifs, qui porte sur la convergence des excursions ε-grandes et de leurs extrémités, pour tout ε dans un
ensemble dont l’adhérence contient 0. Enfin, nous donnons plusieurs conditions suffisantes sur les mesures d’excursion de cette
suite pour que cette condition générale soit satisfaite, et nous discutons de possibles généralisations de notre approche à certains
processus pouvant être écrits comme la concaténation de motifs i.i.d.
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1. Introduction

This paper is concerned with the weak convergence of processes that regenerate when hitting some distinguished
point, say a. These processes are usually called regenerative processes and a regeneration point. When a regenerative
process started at a returns to a immediately (e.g., Brownian motion), its excursions are described by a σ -finite
measure, called excursion measure, on the space of càdlàg paths killed (or stopped) when they return to a. Together
with some positive parameter, the excursion measure not only describes excursions but actually characterizes the law
of the whole process. In this paper, we go one step further and study the extent to which the asymptotic behavior of a
sequence of excursion measures contains information about the asymptotic behavior of the entire associated processes.
For more details about excursion theory, the reader is referred to Blumenthal [3] for Markov processes or Chapter 22
in Kallenberg [9] (and references therein) for the general setting.

Some special care is needed when dealing with sequences of excursion measures. Indeed, although the framework
for the weak convergence of measures is well-studied for finite measures, see for instance Billingsley [2], the technical
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apparatus available to study σ -finite measures such as the excursion measures we will be interested in is more limited
(see nevertheless [10,13,14] for examples where the convergence of excursion measures is directly dealt with). For this
reason, we will be interested in the weak convergence of probability measures obtained by conditioning the excursion
measures. This approach also has a natural sample-path interpretation that can be illustrated by considering a sequence
of renormalized random walks converging to Brownian motion.

Excursions of the random walks away from 0 converge weakly to the Dirac mass at the trivial excursion constantly
equal to 0. This is a typical behavior due to the fact that the excursion measure of the Brownian motion is infinite.
On the other hand, it can be shown that big excursions of the random walks, e.g., excursions with length greater
than ε > 0, converge weakly to big excursions of Brownian motion. If ε can be taken arbitrarily small, one may
hope that this convergence characterizes the convergence of the whole process. The main result of the present paper,
Theorem 1 below, provides sufficient conditions for such a statement to hold. It must be noted that the convergence
of big excursions does not in general imply tightness (a counter-example is provided at the beginning of Section 4.2).
Our main theorem can therefore be seen as a new way of characterizing accumulation points.

More generally than the length, we can fix a non-negative mapping ϕ on the space of excursions such that the
push-forward of the excursion measure by ϕ is still σ -finite (in the more accurate sense that any half-line [ε,+∞] has
finite mass), and call e an “ε-big” excursion when ϕ(e) > ε. We will sometimes call ϕ(e) the “size” of e and say that
e is “measured” according to ϕ. The law of an ε-big excursion is then well-defined: it can be equivalently seen as the
law of the first ε-big excursion of the process away from a, or as the probability measure obtained by conditioning the
excursion measure on ϕ > ε.

The approach we develop is initially motivated by queueing theory: in particular, a special case of Theorem 1 of
the present paper was used in Lambert et al. [12] to study the Processor-Sharing queue. Decomposing a process into
its excursions is natural in queueing theory. Indeed, for many stochastic networks the difficulties in analyzing the
dynamics arise from the behavior at the boundaries of the state-space. Focusing on excursions that live in the interior
of the state-space therefore makes it possible to circumvent this problem. Using Theorem 4 of the present paper, this
approach was successfully used in [4], see Section 2.2 for more details.

Organization of the paper

Section 2 contains the main result of the paper together with the minimal set of notation needed to state it; it also
includes in Section 2.2 a brief discussion of potential applications. Section 3 is devoted to the proof of this main
result: Section 3.1 sets down notation used throughout the paper and Section 3.2 contains deterministic continuity
results used in Section 3.3 to prove Theorem 1. Section 4 displays various conditions under which the assumptions
in Theorem 1 hold. Finally, we discuss in Section 5 potential generalizations of our approach to processes which are
obtained by the concatenation of i.i.d. motifs.

2. Main result

2.1. Main result

Let V be a Polish space with some distinguished element a ∈ V . Let D be the set of càdlàg functions from [0,∞)

to V , endowed with the J1 topology (see next section). For t ≥ 0, let θt :D → D be the shift operator, defined by
θt (f ) := f ( · + t). Let T :D → [0,∞] be the first hitting time of a, defined by

T (f ) := inf
{
t > 0: f (t) = a

} ∈ [0,+∞].
Note that we allow T to take the value +∞. We call excursion a càdlàg function stopped whenever hitting a, that

is, e ∈ D is an excursion if e(t) = a for every finite t ≥ T (e). We will sometimes call T (e) the length of e. We let
E ⊂ D denote the set of excursions. Also let a ∈ E be the function which takes constant value a:

a : [0,∞) −→ V,

t �−→ a.
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Then a is the only excursion with null length. For f ∈ D, we call zero set of f the set Z(f ) := {t ≥ 0: f (t) = a}.
From the right-continuity of f , one sees that the set Z c = [0,∞) \ Z is a countable union of disjoint intervals of the
form (g, d) or [g, d) called excursion intervals, see Kallenberg [9], Chapter 22. With every such interval, we may
associate an excursion e ∈ E , defined as the function θg(f ) stopped at its first hitting time T (e) = d − g of a. We call
g and d its left and right endpoints, respectively.

In the rest of the paper, we fix a measurable map ϕ : E → [0,∞] such that

e �= a ⇐⇒ ϕ(e) > 0.

Note in particular that ϕ(a) = 0. We call ϕ(e) the size of the excursion e. For each ε > 0, we say that e is ε-big, or
just big if the context is unambiguous, if its size is strictly larger than ε, and ε-small or small otherwise. We denote
by Dϕ ⊂ D the set of càdlàg functions f such that ε-big excursions are locally finitely many for any ε > 0:

Dϕ = {f ∈ D: ∀ε > 0,∀t > 0, the number of ε-big excursions starting before t is finite}.
Then we can define eε(f ) for f ∈ Dϕ as the first excursion e of f satisfying ϕ(e) > ε and gε(f ) as its left endpoint,

with the convention (gε, eε)(f ) = (+∞,a) if no such excursion exists. The maps eε and gε are measurable maps from
Dϕ to E and [0,∞] respectively.

Regeneration of Markov processes is well-studied since Itô’s seminal paper [7], see for instance Blumenthal [3].
Here, we need not assume that our processes are Markovian. We will say that a process X with law P is regenerative
(at a) if there exists a measure Pa such that for any stopping time τ

P
(
θτ (X) ∈ · | Fτ

) = Pa, P -almost surely on
{
τ < +∞,X(τ) = a

}
, (1)

where F is the natural filtration of X. It is known, see Kallenberg [9] for rigorous statements, that for any regenerative
process, the distributional behavior of its excursions away from a can be characterized by a σ -finite measure N on
E \ {a} called excursion measure.

Note that if X is a regenerative process with excursion measure N , then N (ϕ = 0) = 0 and X almost surely
belongs to Dϕ if and only if N (ϕ > ε) < +∞ for every ε > 0. Moreover, if holding times at a are nonzero, then by
the regeneration property they must be exponentially distributed. In the rest of the paper (except in the last section)
we use the following notation.

Notation. In all the paper except in Section 5, Xn,X are regenerative processes that almost surely belong to Dϕ , N
denotes the excursion measure of X and it is assumed to have infinite mass.

In the sequel C for C ⊂ R denotes the closure of C. The following theorem is the main result of the paper.

Theorem 1. Let C ⊂ (0,∞) be such that 0 ∈ C and N (ϕ = ε) = 0 for all ε ∈ C. If the sequence (Xn) is tight and for
every ε ∈ C,

(gε, eε, T ◦ eε, ϕ ◦ eε)(Xn) ⇒ (gε, eε, T ◦ eε, ϕ ◦ eε)(X), (2)

then Xn ⇒ X.

The conditions of the previous theorem are sharp, in the sense that if one of the assumptions is removed, one can
build an example where the conclusion does not hold.

The proof of Theorem 1 essentially relies on continuity properties of some truncation and concatenation operators
(Lemmas 3.1, 3.3 and 3.5) which allow to identify accumulation points of the tight sequence (Xn). It must be noted
that these operators are not continuous in general (the aforementioned lemmas prove continuity properties under
specific assumptions), so that it is not at all natural, and even less obvious, that the previous theorem holds under such
minimal assumptions.

Section 4 contains several results related to the assumptions of this theorem. Of particular interest are Section 4.2,
where we discuss the implications of the assumption (2) with respect to tightness of the sequence (Xn) (we show
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that (2) does not imply tightness but simplifies its proof), and Section 4.3, where we consider the special case where
the Xn’s have finite excursion measures and give various conditions on their excursion measures that imply tightness
or partial versions of (2).

Finally, we discuss in Section 5 the possibility to extend Theorem 1 to processes which can be written as the
concatenation of i.i.d. paths, which we call motifs, even if these motifs are not excursions.

2.2. Potential applications

Before delving into technical details, we discuss in this section the potential of applications of the main results of
the present paper. As mentioned in the Introduction, a natural context in which these ideas can be applied is queueing
theory. In this context, the results of the present paper have been used in [12] to improve and simplify results previously
known and in [4,11] to solve two open problems.

The initial motivation for this work comes from the study of the Processor-Sharing queue, a fundamental service
discipline which is notoriously challenging to analyze. The scaling limit of the Processor-Sharing queue, assuming
finite fourth moment of the service distribution, has been derived by Gromoll [5], by building on [6] and using the
state-space collapse approach. It is fair to say that this method, although very intuitive and powerful, is also extremely
technical to implement. In Lambert et al. [12], we revisited this result with the approach of the present paper: in
addition to a much shorter and less technical proof, we could also improve the moment condition on the service
distribution to a minimal finite variance assumption (however, by considering general arrival processes and measure-
valued processes, Gromoll’s result [5] is on some other aspects stronger than ours, see [12] for a detailed discussion).
In [12] a special case of Theorem 1 was proved and used: indeed, the proof of Theorem 1 can be simplified when the
sequence (Xn) is known to be C-tight.

Moreover, the results of the present paper allowed to solve a long-standing open question regarding the scaling
limit of the Processor-Sharing queue in the case of service distribution with infinite second moment. In particular,
in [11] uniqueness of the scaling limit was proved, and the only possible limit was characterized through its excursion
measure; in this context, the results of Section 4.3, in particular Theorem 3, were used. The example of the Processor-
Sharing queue is also interesting because it shows the added-value of allowing for a general function ϕ: because of
time-change manipulations, it is natural in this context to measure excursions according to ϕ(e) = ∫ T (e)

0 (1/e). As a
last example of the potential usefulness of our approach in queueing theory, let us mention the recent paper [4]: there,
Theorem 4 of the present paper was invoked to derive the scaling limit of a multi-dimensional stochastic network.
Both for the Processor-Sharing queue in the infinite variance case and for this last example, it is not clear whether
other classical approaches (e.g., convergence of the finite-dimensional distributions, continuous mapping theorem,
martingale functional central limit theorem) could be used.

3. Proof

3.1. J1 topology

Let v :V 2 → [0,∞) be the metric on V and write v(x) = v(x, a) for x ∈ V . For f ∈ D and t ≥ 0 set

�f (t) = v
(
f (t), f (t−)

)
with the convention f (t−) = f (t) for t = 0. If f,h ∈ D and m ≥ 0, let v(f,h) ∈ D denote the function

v(f,h) : [0,∞) −→ [0,∞),

t �−→ v
(
f (t), h(t)

)
and let vm(f,h), v∞(f,h) ≥ 0 be the numbers

vm(f,h) := sup
[0,m]

v(f,h) and v∞(f,h) := sup
[0,∞)

v(f,h) = lim
m→+∞vm(f,h).
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For any f ∈ D and m ∈ [0,∞), we define

v(f ) := v(f,a) and vm(f ) = vm(f,a).

Let Λ be the set of real-valued functions which are continuous, strictly increasing, unbounded and start at 0:

Λ = {
λ : [0,∞) → [0,∞): λ is an increasing bijection

}
.

If f : [0,∞) → R is a real-valued function and m ≥ 0, set ‖f ‖m := sup[0,m] |f | and ‖f ‖∞ := sup[0,∞) |f |. Let
Id ∈ Λ be the identity map and Λm for m ∈ [0,∞] be the set of Λ-valued sequences (λn) such that ‖λn − Id‖m → 0.
For fn,f ∈ D we write fn → f for the convergence in the J1 topology. We will indifferently use two equivalent
characterizations of this convergence: either that there exists a Λ-valued sequence (λn) such that (λn) ∈ Λm and
vm(fn ◦λn,f ) → 0 for every m in a discrete, unbounded set, see for instance Stone [15]; or that there exists a sequence
(λn) ∈ Λ∞ such that vm(fn ◦ λn,f ) → 0 for every m in a discrete, unbounded set, see for instance Billingsley [2].

If fn and f are real-valued càdlàg functions, we will also use the notation fn → f to denote convergence in the
corresponding J1 topology. Note that when fn,f ∈ D are such that fn → f , then v(fn) → v(f ), as can be seen from
the following inequality, valid for any fn,f ∈ D, λn ∈ Λ and m ≥ 0 and that results from the reversed triangular
inequality:∥∥v(fn) ◦ λn − v(f )

∥∥
m

= sup
0≤t≤m

∣∣v(
fn

(
λn(t)

)
, a

) − v
(
f (t), a

)∣∣
≤ sup

0≤t≤m

v
(
fn

(
λn(t)

)
, f (t)

) = vm(f ◦ λn,f ).

So far, we have defined the convergence of real-valued and V -valued càdlàg functions in the corresponding J1
topologies. In the following, (finite or infinite) product spaces will always be equipped with the product topology. For
instance, if for each n ≥ 1 we have a sequence Un = (un,k, k ≥ 1) where un,k for each k is either a real number or an
R- or V -valued function, then we note Un → U = (uk, k ≥ 1) to mean that un,k → uk for each k ≥ 1.

Remark. If f,h ∈ D, then (f,h) can be seen as an element of D ×D or as an element of D(V 2), the space of càdlàg
functions taking values in V × V . As topological spaces, for the J1 topology, the topology of D(V 2) is strictly finer
than the product topology of D × D (see Jacod and Shiryaev [8], Remark VI.1.21). In particular, if (fn) and (hn)

are relatively compact sequences of D, then the sequence (fn,hn) is also relatively compact in the product topology
(which we consider in the present paper) but may fail to be so in the topology of D(V 2).

3.2. Truncation and path decompositions

The proof of Theorem 1 essentially relies on continuity properties of the family (Φε, ε > 0) of truncation maps, defined
as follows: let ε > 0, f ∈ D, t ≥ 0 and est (f, t) ∈ E be the excursion of f straddling t (which is unambiguously
defined for t ∈ [0,∞) \ Z(f ), while for t ∈ Z(f ) is defined as est (f, t) = a). Then Φε(f )(t) is defined by:

Φε(f )(t) =
{

f (t) if ϕ
(
est (f, t)

)
> ε,

a else.
(3)

In words, Φε is the map that truncates ε-small excursions to a. We have the following intuitive result, pertained to
continuity properties of the family (Φε, ε > 0) as ε → 0.

Lemma 3.1. For any f ∈ D, we have Φε(f ) → f as ε → 0.

Proof. Let m ≥ 0: then by definition for any t ≥ 0 we have v(Φε(f )(t), f (t)) = v(f (t)) if ϕ(est (f, t)) ≤ ε and 0
otherwise, so that

vm

(
Φε(f ), f

) ≤ sup
{
vm(e): e ∈ Tε

}
,
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where Tε is the set of excursions e of f with ϕ(e) ≤ ε and left endpoint g ≤ m. Let δ > 0: because f is càdlàg, there
may only be finitely many excursions e of f starting before m with vm(e) ≥ δ. Let ε0 > 0 be the smallest size of these
excursions: then clearly, for ε < ε0 any excursion e ∈ Tε must satisfy vm(e) < δ, in particular sup{vm(e): e ∈ Tε} ≤ δ

for ε < ε0 which proves the result. �

We are now interested in continuity properties of Φε for a given ε > 0. We adopt a more general viewpoint, inspired
by Lemma 4.3 in Whitt [16], and see Φε as the concatenation of paths according to a given subdivision. To formalize
this idea we introduce some additional notation.

We call S = (sk, k ≥ 0) ∈ [0,∞]∞ a subdivision if the two following conditions are met: (1) sk ≤ sk+1 for k < |S|
and sk = +∞ for k ≥ |S|, with |S| = inf{k ≥ 0: sk = +∞} ∈ {1, . . . ,+∞} and (2)

⋃
k≥0[sk, sk+1) = [0,∞), where

from now on we adopt the convention [+∞,+∞) = ∅. Note in particular that these two conditions imply that s0 = 0.
The subdivision S is called strict if sk < sk+1 for k < |S| and in the rest of the paper, S and S+ denote respectively

the set of subdivisions and of strict subdivisions.
For S = (sk, k ≥ 0) ∈ S we consider the truncation and patching operators ΦS :D → D and Ψ S :D∞ → D. They

are defined as follows, for f ∈ D, ζ = (ζk, k ≥ 1) ∈ D∞ and t ≥ 0:

ΦS(f )(t) =
{

f (t) if t ∈ ⋃
k≥0[s2k+1, s2k+2),

a else

and

Ψ S(ζ )(t) =
{

ζk+1(t − s2k+1) if there exists k ≥ 0 such that t ∈ [s2k+1, s2k+2),
a else.

Note that if it exists, the k appearing in the definition of Ψ S is necessarily unique. For S ∈ S we also define the
decomposition operator ES :D → D∞ for f ∈ D, t ≥ 0 and k ≥ 1 by ES(f ) = (eS

k (f ), k ≥ 1) ∈ D∞ with

eS
k (f )(t) =

{
f (t + s2k−1) if 0 ≤ t < s2k − s2k−1,
a else

with the convention in the above display that s2k − s2k−1 = 0 if s2k−1 = +∞. In particular, if |S| < +∞ then only
finitely many of the eS

k ’s may be different from a.
In words, ΦS(f ) is obtained from f by truncating it to a on odd intervals (first interval, third interval, . . . ) of S;

eS
k (f ) is the path taken by f on the kth even interval; Ψ S(ζ ) is obtained from the sequence of paths ζ by placing the

nth one on the nth even interval (and truncating it to a away from this interval). It is therefore plain that these three
operators are related as follows.

Lemma 3.2. For any S ∈ S , we have ΦS = Ψ S ◦ ES .

Lemmas 3.3 and 3.5 are the most important continuity results on these operators.

Lemma 3.3 (Continuity of the truncation map). Let Sn,S ∈ S and fn,f ∈ D. If Sn → S, fn → f and the sequence
(ΦSn(fn)) is relatively compact, then ΦSn(fn) → ΦS(f ).

Proof. Write S = (sk) and Sn = (sn,k), let φ be any accumulation point of the relatively compact sequence (ΦSn(fn))

and assume without loss of generality that ΦSn(fn) → φ. Consider t ≥ 0 such that t /∈ S and both φ and f are
continuous at t ; in particular ΦSn(fn)(t) → φ(t) and fn(t) → f (t). Let k ≥ 0 such that sk < t < sk+1 and consider
n large enough such that sn,k < t < sn,k+1 (Sn → S implies that sn,k → sk for every k). If k is even then we have
ΦSn(fn)(t) = a = ΦS(f )(t) while if k is odd then we have ΦSn(fn)(t) = fn(t) → f (t) = ΦS(f )(t). This proves
ΦSn(fn)(t) → ΦS(f )(t) and since ΦSn(fn)(t) → φ(t) this shows that φ and ΦS(f ) coincide on a dense subset of
[0,∞). Since they are càdlàg they must be equal everywhere, hence the result. �

Remark. The sequence (ΦSn(fn)) is not necessarily relatively compact under the assumptions of the previous lemma,
as can be seen from the example f (t) = 1 + 1{1≤t<2}, fn(t) = 1 + 1{1+1/n≤t<2−1/n} and Sn = S = (0,1,2,+∞, . . .)

(where a = 0).
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We now want to prove Lemma 3.5, which considers the convergence of the sequence (ΦSn(fn)) when the two
sequences (Sn) and ESn(fn) converge. To this end we need a preliminary result on the concatenation map C :D ×
[0,∞) × D → D defined for f,h ∈ D and s, t ≥ 0 by

C(f, t, h)(s) =
{

f (s) if s < t ,
h(s − t) if s ≥ t .

Lemma 3.4 (Continuity of the concatenation map). If fn,hn, f,h ∈ D and tn, t > 0 are such that tn → t , fn → f ,
hn → h and �fn(tn) → �f (t), then C(fn, tn, hn) → C(f, t, h).

Proof. Let (λn), (μn) ∈ Λ∞ such that vm(fn ◦ λn,f ) ∨ vm(hn ◦ μn,h) → 0 for every m ∈ M with M some discrete,
unbounded subset of [0,∞). If f is discontinuous at t , then the assumption �fn(tn) → �f (t) implies that λn(t) = tn
for n large enough, see Proposition VI.2.1 in Jacod and Shiryaev [8]. Else, f is continuous at t and by modifying
λn locally we can assume without loss of generality that λn(t) = tn. In either case, we can assume without loss of
generality that λn(t) = tn for every n ≥ 1. Consider now

νn(s) =
{

λn(s) if s < t ,
μn(s − t) + tn if s ≥ t .

Then νn lies in Λ. Indeed, νn is continuous and strictly increasing in each interval [0, t) and [t,∞) so it only has
to be checked that it is continuous at t , which follows from the facts that νn is càdlàg by construction with

νn(t−) = λn(t) = tn = μn(0) + tn = νn(t).

Moreover, the triangular inequality yields

‖νn − Id‖∞ ≤ ‖λn − Id‖∞ + ‖μn − Id‖∞ + |t − tn|
and so (νn) ∈ Λ∞. For any 0 ≤ s ≤ m, we have by definition of C and νn

v
(

C(fn, tn, hn)
(
νn(s)

)
, C(f, t, h)(s)

) =
{

v
(
fn

(
λn(s)

)
, f (s)

)
if s < t ,

v
(
hn

(
μn(s − t)

)
, h(s − t)

)
if s ≥ t

and so

vm

(
C(fn, tn, hn) ◦ νn, C(f, t, h)

) ≤ vm(fn ◦ λn,f ) ∨ vm(hn ◦ μn,h)

which gives C(fn, tn, hn) → C(f, t, h) by considering m ∈ M . �

Lemma 3.5 (Limit of the truncation map). Let Sn ∈ S , S ∈ S+ and fn, ζk ∈ D. If Sn → S and ESn(fn) → ζ =
(ζk, k ≥ 1), then ΦSn(fn) → Ψ S(ζ ).

Proof. We treat the case where |S| = +∞, the other case can be treated similarly. Write S = (sk) and Sn = (sn,k) and
define s′

k = (s2k + s2k+1)/2 for k ≥ 0 (which is finite by the assumption |S| = +∞ on S). For K ≥ 0 let

φn,K(t) = ΦSn(fn)
(
t ∧ s′

K

)
and ψK(t) = Ψ S(ζ )

(
t ∧ s′

K

)
, t ≥ 0.

Since s′
K → +∞ as K → +∞, the result ΦSn(fn) → Ψ S(ζ ) will be proved if we can prove that φn,K → ψK for

every K ≥ 0. We prove this by induction on K ≥ 0. The result for K = 0 is trivial, since ψ0 = a and φn,0 = a for n

large enough, so assume that K ≥ 1. First, note that by definition we have Ψ S(f )(t) = a for s2K ≤ t < s2K+1 and so
ψK is continuous at s′

K (here we use that s2K < s2K+1 because S is assumed to be a strict subdivision). Consider n

large enough such that sn,2K < s′
K < sn,2K+1, so that

φn,K+1 = C
(
φn,K, s′

K, C
(
a, sn,2K+1 − s′

K, e
Sn

K+1(fn)
))

.
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Since a is continuous we have C(a, sn,2K+1 − s′
K, e

Sn

K (fn)) → C(a, s2K+1 − s′
K, ζK) by Lemma 3.4. By induction

hypothesis we have φn,K → ψK and since ψK is continuous at s′
K we obtain that φn,K+1 → C(ψK, s′

K, C(a, s2K+1 −
s′
K, ζK+1)) again by Lemma 3.4. By construction this last process is equal to ψK+1, hence the result. �

3.3. Proof of Theorem 1

In the rest of this subsection we assume that the assumptions of Theorem 1 hold. Moreover, we assume without loss
of generality (by considering a subset thereof) that the set C appearing in the statement of the theorem is countable;
this allows to simplify the statement of Lemma 3.6.

Fix some ε ∈ C and let Nε ∈ {0, . . . ,+∞} be the number of ε-big excursions of X. By regeneration, we may
consider a sequence ((g̃ε,k, eε,k), k ≥ 1) of i.i.d. pairs with common distribution (gε, eε)(X) such that eε,k for 1 ≤
k ≤ Nε is the kth big excursion of X with left endpoint gε,k = g̃ε,1 + · · · + g̃ε,k and right endpoint dε,k = gε,k +
T (eε,k). Consider then the [0,∞]-valued sequence Πε = (0, gε,1, dε,1, . . .), so that Πε ∈ S+ since N has infinite
mass. Define finally the sequence Eε = (eε,k, k ≥ 1): then the two sequences Eε and EΠε(X) coincide until the first
infinite excursion of X and in particular ΦΠε(X) = Ψ Πε(Eε) = Φε(X).

Since Xn is also regenerative, we can do the same construction and consider Nn
ε the number of big excursions of Xn

and a sequence ((g̃n
ε,k, e

n
ε,k), k ≥ 1) of i.i.d. pairs with common distribution (gε, eε)(Xn) such that en

ε,k for 1 ≤ k ≤ Nn
ε

is the kth big excursion of Xn with left endpoint gn
ε,k = g̃n

ε,1 + · · · + g̃n
ε,k and right endpoint dn

ε,k = gn
ε,k + T (en

ε,k).
Consider then the [0,∞]-valued sequence Πn

ε = (0, gn
ε,1, d

n
ε,1, . . .) ∈ S (since Xn is not assumed to have infinite mass

Πn
ε may fail to be a strict subdivision by having two big excursions following one another) and define En

ε = (en
ε,k, k ≥

1), so that ΦΠn
ε (Xn) = Ψ Πn

ε (En
ε ) = Φε(Xn).

Lemma 3.6 (Continuity of thinning). We have ((Πn
ε ,En

ε ), ε ∈ C) ⇒ ((Πε,Eε), ε ∈ C).

Proof. Let C′ be any finite subset of C: since C has been assumed to be countable, to prove the result it is
enough to show that ((Πn

ε ,En
ε ), ε ∈ C′) ⇒ ((Πε,Eε), ε ∈ C′). Consider the case where C′ = {ε0 < ε1} ⊂ C, the

general case following similarly by induction. For i = 0,1 and k ≥ 1, let qi,k = (gεi ,k, eεi ,k, dεi ,k, ϕ(eεi ,k)), qn
i,k =

(gn
εi ,k

, en
εi ,k

, dn
εi ,k

, ϕ(en
εi ,k

)), Qn
i = (qn

i,k, k ≥ 1) and Qi = (qi,k, k ≥ 1): we will show that (Qn
0,Qn

1) ⇒ (Q0,Q1),
which clearly implies the desired result. It follows readily from (2) that Qn

i ⇒ Qi for i = 0,1, so we only have to
prove that these two convergences hold jointly.

Since ε0 < ε1, an excursion which is ε1-big is also ε0-big and so Qn
1 is a subsequence of Qn

1 , and Q1 a subsequence
of Q0. More explicitly, if un

k , resp. uk , is the index of the kth element of the sequence En
ε0

, resp. Eε0 , which is ε1-big,
then we have qn

1,k = qn
0,un

k
and q1,k = q0,uk

.

In particular, Un = (un
k , k ≥ 1) is a renewal process with step distribution the geometric random variable with

parameter P(ϕ(eε0(Xn)) > ε1). Similarly, U = (uk, k ≥ 1) is a renewal process with geometric step distribution with
parameter P(ϕ(eε0(X)) > ε1). Since by assumption, ϕ(eε0(Xn)) ⇒ ϕ(eε0(X)) and

P
(
ϕ
(
eε0(X)

) = ε1
) = N (ϕ = ε1|ϕ > ε0) = 0

because ε1 ∈ C, we get P(ϕ(eε0(Xn)) > ε1) → P(ϕ(eε0(X)) > ε1) and so Un ⇒ U . We now show that the joint
convergence (Qn

0,Un) ⇒ (Q0,U) holds, which will conclude the proof since Qn
1 = f (Qn

0,Un) and Q1 = f (Q0,U)

for some deterministic and continuous map f .
We show that (Qn

0, un
1) ⇒ (Q0, u1), the general case following similarly since Un and U are renewal processes.

Since Qn
0 ⇒ Q0 and un

1 ⇒ u1 the sequence (Qn
0, un

1) is tight. Let (Q′, u′) be any accumulation point and assume
without loss of generality, using Skorohod’s representation theorem, that (Qn

0, un
1) → (Q′, u′). In particular, Q′ is

equal in distribution to Q0 and u′ to u1. Since un
1 → u′ and since these are integer-valued we have un

1 = u′ for all
n large enough. Let Q′ = (q ′

k, k ≥ 1) with q ′
k = (γk, ζk, δk,φk), in particular it holds that ϕ(en

ε,k) → φk . Consider n

such that un
1 = u′: then ϕ(en

ε,k) ≤ ε1 for k < u′ and ϕ(en
ε,u′) > ε1 which implies, letting n → +∞, that φk ≤ ε1 for

k < u′ while φu′ ≥ ε1. But φu′ = ε1 does almost surely not occur since by choice N (ϕ = ε1) = 0, so that φu′ > ε1 and
u′ = inf{k ≥ 1: φk > ε1}. This proves that (Q′, u′) is equal in distribution to (Q0, u1) and ends the proof. �

Remark. Lemma 3.6 is the only place in the proof of Theorem 1 where the assumption ϕ(eε(Xn)) ⇒ ϕ(eε(X)) is
needed.
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We now conclude the proof of Theorem 1. Let Y be any accumulation point of the tight sequence (Xn), and
assume without loss of generality that Xn ⇒ Y . Denote Πn = (Πn

ε , ε ∈ C), En = (En
ε , ε ∈ C), Π = (Πε, ε ∈ C) and

E = (Eε, ε ∈ C). The previous lemma shows that (Πn,En) ⇒ (Π,E) and so the sequence (Xn,Π
n,En) is tight. Let

(Y ′,Π ′,E′) be any accumulation point, so that Y ′ is equal in distribution to Y and (Π ′,E′) to (Π,E), and assume
without loss of generality using Skorohod’s embedding theorem that the almost sure convergence (Xn,Π

n,En) →
(Y ′,Π ′,E′) holds.

Writing Π ′ = (Π ′
ε, ε ∈ C) and E′ = (E′

ε, ε ∈ C), Lemma 3.5 implies (since Π ′
ε ∈ S+) that ΦΠn

ε (Xn) → Ψ Π ′
ε (E′

ε).
Hence the sequence (ΦΠn

ε (Xn)) is relatively compact and so Lemma 3.3 implies that ΦΠn
ε (Xn) → ΦΠ ′

ε (Y ′). In
particular, ΦΠ ′

ε (Y ′) = Ψ Π ′
ε (E′

ε) for every ε ∈ C: since 0 ∈ C we now want to let ε → 0 (while in C).
Since by construction, Ψ Πε(Eε) = Φε(X) (cf. the beginning of the proof) and (Π ′,E′) is equal in distribution

to (Πε,Eε, ε ∈ C), we see that the family (Ψ Π ′
ε (E′

ε), ε ∈ C) is equal in distribution to (Φε(X), ε ∈ C). Lemma 3.1
shows that Φε(X) → X as ε → 0, which ensures the existence of a càdlàg process X′, defined on the same probability
space as Y ′, Π ′ and E′ and such that X′ is equal in distribution X and Ψ Π ′

ε (E′
ε) → X′ as ε → 0. Then, by construction

and Lemma 3.2, we see that Ψ Π ′
ε (E′

ε) = Φε(X
′), and in particular ΦΠ ′

ε (Y ′) = Φε(X
′).

We now prove that Y ′ = X′, which will prove that Y and X are equal in distribution and will conclude the proof.
Consider t ≥ 0 in an open excursion interval of X′. By definition of Φε , for ε ∈ C smaller than the size of the excursion
of X′ straddling t , we have Φε(X

′)(t) = X′(t) �= a. Since ΦΠ ′
ε (Y ′) = Φε(X

′) we obtain that ΦΠ ′
ε (Y ′)(t) = Y ′(t) =

X′(t) for ε small enough (by definition, if ΦS(f )(t) �= a then ΦS(f )(t) = f (t)). Since N is infinite and X′ is equal
in distribution to X, the zero set of X′ has empty interior, so that the union R of all open excursion intervals is dense
in [0,∞). We have just proved that Y ′ and X′ coincide on R, since they are càdlàg they must coincide everywhere.
The proof of Theorem 1 is complete.

4. Checking assumptions of Theorem 1

4.1. Joint convergence

Theorem 1 requires the joint convergence (2) of the four sequences gε(Xn), eε(Xn), T (eε(Xn)) and ϕ(eε(Xn)). Thanks
to forthcoming Lemma 4.2, this joint convergence follows automatically from the convergence of the three individual
sequences gε(Xn), (eε, ϕ ◦ eε)(Xn) and T (eε(Xn)). Sufficient conditions for the convergence of gε(Xn) are provided
in forthcoming Lemma 4.5 and we informally discuss after Lemma 4.2 the convergence of ϕ ◦ eε .

Lemma 4.1. If en → e with en ∈ E and e ∈ D, then T (e) ≤ lim infn T (en).

Proof. The result holds if lim infn T (en) = +∞, so assume that lim infn T (en) < +∞. Let t > lim infn T (en) be a
continuity point of e and un be a subsequence such that T (eun) → lim infn T (en). Then t > T (eun) for n large enough
and for those n we have eun(t) = a. Since in addition eun → e and e is continuous at t , we get e(t) = a and in
particular, T (e) ≤ t . Letting t → lim infn T (en) gives the result. �

Lemma 4.2. Let ε > 0. If the three convergences gε(Xn) ⇒ gε(X), T (eε(Xn)) ⇒ T (eε(X)) and (eε, ϕ ◦ eε)(Xn) ⇒
(eε, ϕ ◦ eε)(X) hold, then (2) holds.

Proof. Assume that the three individual convergences hold. Since Xn is regenerative, gε(Xn) and (eε, T ◦ eε, ϕ ◦
eε)(Xn) are independent, and since the same holds for X, it is sufficient to prove that (eε, T ◦ eε, ϕ ◦ eε)(Xn) ⇒
(eε, T ◦ eε, ϕ ◦ eε)(X). Since (eε, ϕ ◦ eε)(Xn) ⇒ (eε, ϕ ◦ eε)(X) and T (eε(Xn)) ⇒ T (eε(X)), the joint sequence
((eε, T ◦eε, ϕ ◦eε)(Xn)) is tight and we only have to identify accumulation points. So let (e, τ,φ) be any accumulation
point and assume without loss of generality that (eε, T ◦ eε, ϕ ◦ eε)(Xn) ⇒ (e, τ,φ), where φ = ϕ(e): the result will
be proved if we can show that τ = T (e).

First, note that τ is equal in distribution to T (e). Indeed, since projections are continuous e is equal in distribution
to eε(X) and τ is equal in distribution to T (eε(X)). Second, note that the continuous mapping theorem together with
Lemma 4.1 implies that T (e) ≤ τ . Hence, since τ and T (e) are equal in distribution they must be equal almost surely.
This proves the result. �
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Unfortunately, there seems to be no general recipe to prove the joint convergence of eε(Xn) and ϕ(eε(Xn)).
Nonetheless, there are many natural examples where the convergence of (eε, T ◦ eε)(Xn) (which automatically
holds when each individual sequence eε(Xn) and T (eε(Xn)) converges) helps controlling ϕ(eε(Xn)). For instance,
if fn → f the convergence v∞(fn) → v∞(f ) needs not hold. Nonetheless, it holds if fn → f and T (fn) → T (f ).
Thus in probabilistic terms, if ϕ = v∞ then the two convergences eε(Xn) ⇒ eε(X) and T (eε(Xn)) ⇒ T (eε(X))

imply (eε, ϕ ◦ eε)(Xn) ⇒ (eε, ϕ ◦ eε)(X). Similar remarks apply for instance to maps ϕ of the additive form
e ∈ E �→ ∫ T (e)

0 f (v(e(u)))du.

4.2. Tightness

The weak convergence assumption (2) of Theorem 1 does not imply the tightness of the sequence (Xn). Consider
for instance Xn obtained by modifying a Brownian motion B where one replaces excursions of B with length
τ ∈ [1/n,2/n] by a deterministic triangle with height n and basis τ . Intuitively, this example shows that when big
excursions converge, one is essentially left with the problem of controlling the height of small excursions. Indeed,
tightness of a sequence of càdlàg paths is essentially concerned with controlling oscillations, and for small excursions
we do not lose much by upper bounding their oscillations by their height.

We now introduce some notation necessary in order to study tightness. For f ∈ D and m,δ > 0, let

w′
m(f, δ) = inf

(Ik)
max

k
sup

x,y∈Ik

v
(
f (x), f (y)

)
,

where the infimum extends over all partitions of the interval [0,m) into subintervals Ik = [s, t) such that t − s > δ

when t < m. Then the sequence Xn is tight if and only if the sequence (Xn(t)) is tight (in V ) for every t in a dense
subset of [0,∞) and for every m and η > 0

lim
δ→0

lim sup
n→+∞

P
(
w′

m(Xn, δ) ≥ η
) = 0,

see for instance Jacod and Shiryaev [8]. Tightness criteria in V depend on V . We will discuss the most important case
V = R

d for some d ≥ 1. In this case, (Xn(t)) is tight for every t in a dense subset of [0,∞) if and only if for every
m ≥ 0,

lim
b→+∞ lim sup

n→+∞
P
(‖Xn‖d

m ≥ b
) = 0,

where from now on, ‖f ‖d
m for f : t ∈ [0,∞) �→ (fk(t),1 ≤ k ≤ d) ∈ R

d is defined by ‖f ‖d
m = max1≤k≤d ‖fk‖m.

In the sequel, we will also discuss C-tightness: a sequence of processes is C-tight if it is tight and every accumu-
lation point is almost surely continuous. Necessary and sufficient conditions for Xn to be C-tight are the same as for
tightness, replacing w′ by the modulus of continuity w defined for f ∈ D and m,ε > 0 by

wm(f, δ) = sup
{
v
(
f (t), f (s)

)
: 0 ≤ s, t ≤ m, |t − s| ≤ δ

}
,

see for instance Jacod and Shiryaev [8]. In the sequel we consider the truncation operator Φε , which truncates ε-big
excursions to a (remember the definition (3) of Φε):

Φε(f )(t) =
{

f (t) if ϕ
(
est (f, t)

) ≤ ε,
a else.

Note that f (t) is either equal to Φε(f )(t) or to Φε(f )(t).

Lemma 4.3. Consider some set C ⊂ (0,∞) such that 0 ∈ C and assume that for every ε ∈ C, the three sequences
(gε(Xn)), (eε(Xn)) and (T (eε(Xn))) are tight and every accumulation point (γε, τε) ∈ [0,∞]2 of the sequence
((gε, T ◦ eε)(Xn)) satisfies P(γε = 0) = P(τε = 0) = 0. Then for any m and η > 0,

lim
δ→0

lim sup
n→+∞

P
(
w′

m(Xn, δ) ≥ 4η
) ≤ lim

ε→0
lim sup
n→+∞

P
(
vm

(
Φε(Xn)

) ≥ η
)
. (4)
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If in addition, for each ε ∈ C the sequence (eε(Xn)) is C-tight and any of its accumulation point ζε satisfies
P(ζε(0) = a) = 1, then w′ in the left hand side of (4) can be replaced by w.

Finally, in the particular case V = R
d , a = 0 and ϕ = ‖ · ‖d∞, the above assumptions imply that (Xn) is tight, and

even C-tight if (eε(Xn)) is C-tight and all its accumulation points almost surely start at a.

Proof. Let ε ∈ C: first we prove that (Φε(Xn)) is tight, and even C-tight if (eε(Xn)) is C-tight with P(ζε(0) = a) = 1
for every accumulation point ζε . Let (un) be some subsequence, we must find a subsequence (zn) of (un) such
that (Φε(Xzn)) converges weakly. By assumption, the sequence ((gε, eε, T ◦ eε)(Xn), n ≥ 1) is tight, so there exists
(zn) a subsequence of (un) such that (gε, eε, T ◦ eε)(Xzn) ⇒ (γε, ζε, τε) for some random variable (γε, ζε, τε) ∈
[0,∞]×D ×[0,∞] with P(γε = 0) = P(τε = 0) = 0. Let ((γε,k, ζε,k, δε,k), k ≥ 1) be an i.i.d. sequence with common
distribution (γε, ζε, γε + τε), ζ = (ζε,k, k ≥ 1) and S = (sk) be the subdivision defined recursively by s2k+1 = s2k +
γε,k+1 and s2k+2 = s2k+1 +τε,k+1. Since P(γε = 0) = P(τε = 0) = 0, S is almost surely a strict subdivision, and hence,
proceeding similarly as in the proof of Theorem 1, it can be proved that Φε(Xzn) ⇒ Ψ S(ζ ). This proves tightness.

Assume now in addition that ζε is almost surely continuous with ζε(0) = a: we prove that (Φε(Xn)) is actually
C-tight by proving that Ψ S(ζ ) is continuous. Neglecting a set of zero measure, we can assume that every ζε,k is
continuous and starts at a, in which case it is plain from its definition that Ψ S(ζ ) is continuous if ζε,k(τε,k) = a for
each k ≥ 1. For this it is enough to show that P(ζε(τε) = a) = 1. Assume almost sure convergence (eε, T ◦eε)(Xzn) →
(ζε, τε), so that Lemma 4.1 implies that T (ζε) ≤ τε . If equality holds, then we can use eε(Xzn)(T (eε(Xzn))) → ζε(τε)

(which holds since ζε is continuous) to deduce that ζε(τε) = a. If strict inequality holds then we can use eε(Xzn)(τε) →
ζε(τε) to deduce that ζε(τε) = a. In either case we have ζε(τε) = a, hence the result.

We now prove (4). Let f ∈ D. For any x, y ≥ 0, we have

v
(
f (x), f (y)

) ≤ v
(
Φε(f )(x),Φε(f )(y)

) + v
(
f (x),Φε(f )(x)

) + v
(
f (y),Φε(f )(y)

)
.

Moreover, it is plain from the definitions of Φε and Φε that vm(Φε(f ), f ) ≤ vm(Φε(f )) and so

v
(
f (x), f (y)

) ≤ v
(
Φε(f )(x),Φε(f )(y)

) + 2vm

(
Φε(f )

)
for all 0 ≤ x, y ≤ m, from which it readily follows that

w′
m(f, δ) ≤ w′

m

(
Φε(f ), δ

) + 2vm

(
Φε(f )

)
.

This gives

P
(
w′

m(Xn, δ) ≥ 4η
) ≤ P

(
w′

m

(
Φε(Xn), δ

) ≥ 2η
) + P

(
vm

(
Φε(Xn)

) ≥ η
)
.

Since (Φε(Xn)) is tight, letting first n → +∞, then δ → 0 and finally ε → 0 gives (4). When (Φε(Xn)) is C-tight one
can derive similar inequalities with w instead of w′.

Consider now the case V = R
d , a = 0 and ϕ = v∞ = ‖ · ‖d∞. Then by definition we obtain vm(Φε(f )) ≤ ε since

Φε truncates all excursions with height larger than ε and in particular, P(‖Φε(Xn)‖d
m ≥ η) = 0 for every ε < η. Hence

the right hand side of (4) is equal to 0 and to show that (Xn) is tight it remains to control its supremum. By definition
we have P(‖Xn‖d

m ≥ b) = P(‖Φ1(Xn)‖d
m ≥ b) for b ≥ 1 and since (Φ1(Xn)) is tight we obtain

lim
b→+∞ lim sup

n→+∞
P
(‖Xn‖d

m ≥ b
) = 0

which proves the tightness of (Xn). C-tightness results follow similarly. �

Combining Lemmas 4.2 and 4.3 we obtain the following simple version of Theorem 1.

Theorem 2. Consider the case where V = R
d , a = 0 and ϕ = ‖ · ‖d∞ and let C ⊂ (0,∞) such that 0 ∈ C and

N (ϕ = ε) = 0 for all ε ∈ C. If gε(Xn) ⇒ gε(X), eε(Xn) ⇒ eε(X) and T (eε(Xn)) ⇒ T (eε(X)) for every ε ∈ C, then
Xn ⇒ X.



The weak convergence of regenerative processes using some excursion path decompositions 503

Remark. This result suggests that the choice of the map ϕ = ‖ · ‖d∞ is particularly interesting, because it takes care
of tightness. In Lemma 4.7 we discuss conditions under which a control of excursions measured according to ϕ can
give a control on excursions measured according to ‖ · ‖d∞.

4.3. Conditions based on excursion measures

In this subsection we discuss various conditions on the excursion measures of the processes Xn that guarantee that
parts of the assumptions of Theorem 1 hold. In the rest of this subsection, we make the following assumption, which
we believe to be the most relevant one in practice.

Assumption. In the rest of this subsection, we assume that Xn has only finitely many excursions in any bounded
interval, i.e., its excursion measure has finite mass.

In the rest of this subsection, we denote by Nn the probability measure of excursions of Xn away from a, i.e.,
the law of the process Xn shifted at its first exit time of {a} and stopped upon returning to a. We denote by bn the
parameter of the exponentially distributed holding times at a. We also assume we are given a sequence (cn) of positive
real numbers such that cn → +∞ and (within this subsection) we define the set C as the complement of the set of
atoms of N :

C = {
ε > 0: N (ϕ = ε) = 0

}
.

In the sequel we adopt the canonical notation when dealing with excursions. We will say that (H1) is satisfied if
for any ε ∈ C,

(H1) lim
n→+∞ cnNn(ϕ > ε) = N (ϕ > ε).

We will say that (H2) is satisfied if for any λ > 0 and ε ∈ C,

(H2) lim
n→+∞ cnNn

(
1 − e−λT ;ϕ ≤ ε

) = N
(
1 − e−λT ;ϕ ≤ ε

)
.

We will say that (H3) is satisfied if for any λ > 0

(H3) lim
n→+∞ cnNn

(
1 − e−λT

) = N
(
1 − e−λT

)
.

It is easy to see (and will be established in the proof of Theorem 3) that (H1) and (H2) together imply (H3) when
we have in addition N (ϕ = +∞) = 0. Moreover, (H1), (H2) and (H3) together give the convergence, for ε ∈ C, of
the two sequences (ϕ(eε(Xn))) and (T (eε(Xn))). Indeed, since

P
(
ϕ
(
eε(Xn)

)
> δ

) = Nn(ϕ > δ ∨ ε)

Nn(ϕ > ε)
and E

(
1 − e−λT (eε(Xn))

) = Nn(1 − e−λT ;ϕ > ε)

Nn(ϕ > ε)

we have the following elementary result.

Lemma 4.4. If (H1) holds, then ϕ(eε(Xn)) ⇒ ϕ(eε(X)) for every ε ∈ C. If (H1), (H2) and (H3) hold, then
T (eε(Xn)) ⇒ T (eε(X)) for every ε ∈ C.

These assumptions also imply the convergence of the sequence (gε(Xn)) under an additional assumption on bn

and cn. Note that the sequence (gε(Xn)) plays a particular role in (2), since by regeneration gε(Xn) is independent
of eε(Xn), T (eε(Xn)) and ϕ(eε(Xn)) which are all direct functionals of eε(Xn). In particular, one has to prove the
convergence of (gε(Xn)) separately to check (2).

We stress that the excursion measure N is uniquely defined only after the local time has been normalized. A local
time process (L(t), t ≥ 0), is a nondecreasing process with values in R+, which satisfies L(0) = 0 and for any t > s,
L(t) > L(s) if and only if there is u ∈ (s, t) such that X(u) = a. It is unique up to a multiplicative constant. It is
known (see Kallenberg [9]) that the inverse of L is a subordinator, i.e., an increasing Lévy process. We let d be the
drift coefficient of this subordinator. In particular, the zero set of X has positive Lebesgue measure if and only if d > 0.
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Lemma 4.5. If (H1) and (H2) hold, and cn/bn → d with d as above, then gε(Xn) ⇒ gε(X) for all ε ∈ C.

Proof. Since the excursion measure of Xn is finite, gε(Xn) can be written as

gε(Xn) = Hn,0 +
Nn,ε∑
i=1

(Tn,ε,i + Hn,i),

where all random variables are independent, and the sum is understood to be zero when Nn,ε = 0. The (Tn,ε,i , i ≥ 1)

are i.i.d. distributed as the lifetime T under Nn( · | ϕ ≤ ε), the (Hn,i , i ≥ 0) are independent exponential random
variables with common parameter bn and P(Nn,ε = k) = Nn(ϕ > ε)(Nn(ϕ ≤ ε))k . As a consequence,

En

(
e−λgε(Xn)

) = Nn(ϕ > ε)E(e−λHn,1)

1 − Nn(e−λT ;ϕ ≤ ε)E(e−λHn,1)
= bn/(λ + bn)

1 + An,ε − Rn,ε

,

where

An,ε := λ/bn

(λ/bn + 1)Nn(ϕ > ε)
+ Nn(1 − e−λT ;ϕ ≤ ε)

Nn(ϕ > ε)

and

Rn,ε := λ

λ + bn

(
1 + Nn(1 − e−λT ;ϕ ≤ ε)

Nn(ϕ > ε)

)
.

Under the assumptions of the lemma, we have bn → +∞, in particular An,ε → Aε and Rn,ε → 0, where

Aε := dλ

N (ϕ > ε)
+ N (1 − e−λT ;ϕ ≤ ε)

N (ϕ > ε)
.

On the other hand, basic excursion theory ensures that E(e−λgε(X)) = (1 + Aε)
−1, so we have proved the conver-

gence of the Laplace transform of gε(Xn) to the Laplace transform of gε(X) which proves the result. �

The previous two lemmas show how one can exploit the assumptions (H1), (H2) and (H3) to show that (2) holds.
We now investigate in view of Lemma 4.3 how these assumptions can be used to show tightness. In the following
lemma, Nn( · |T = +∞) refers to the null measure when Nn(T = +∞) = 0.

Lemma 4.6. For any n ≥ 1, m ≥ 0 and ε, η,λ and α > 0, it holds that

P
(
vm

(
Φε(Xn)

) ≥ η
) ≤ αcnNn(v∞ ≥ η|ϕ ≤ ε,T < +∞)

+ eλm exp

(
−�αcn�λ

λ + bn

− �αcn�Nn

(
1 − e−λT |T < +∞))

+ Nn(vm ≥ η,ϕ ≤ ε|T = +∞). (5)

Proof. Let αn = �αcn�, and consider first the case where Xn has no infinite excursion, i.e., Nn(T = +∞) = 0. Let
Rα,n < +∞ be the right endpoint of the αnth excursion of Xn: then by monotonicity of vm in m, we obtain

P
(
vm

(
Φε(Xn)

) ≥ η
) ≤ P(Rα,n ≤ m) + P

(
vRα,n

(
Φε(Xn)

) ≥ η
)
.

Let Nα,n,ε be the number of ε-big excursions e of Xn among the first αn:

P
(
vRα,n

(
Φε(Xn)

) ≥ η
) = 1 − E

[{
Nn(v∞ < η|ϕ ≤ ε)

}Nα,n,ε
] ≤ αcnNn(v∞ ≥ η|ϕ ≤ ε)
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using to derive the second inequality the inequalities 1 − xn ≤ n(1 − x) and Nα,n,ε ≤ αcn. By definition, Rα,n is equal
to

Rα,n =
αn∑
i=1

(En,i + Tn,i),

where all the random variables appearing in the right hand side are independent, En,i is exponentially distributed with
parameter bn and Tn,i is equal in distribution to T under Nn. Thus

P(Rα,n ≤ m) ≤ eλm
E

(
e−λRα,n

) = eλm
{
E

(
e−λEn

)}αn
{

Nn

(
e−λT

)}αn

and by convexity, we obtain that

P(Rα,n ≤ m) ≤ exp
(
λm − αnE

(
1 − e−λEn

) − αnNn

(
1 − e−λT

))
.

This proves the result when Nn(T = +∞) = 0. Assuming Nn(T = +∞) > 0, we can write isolating the infinite
excursion (which has law Nn( · |T = +∞))

P
(
vm

(
Φε(Xn)

) ≥ η
) ≤ P

(
vm

(
Φε

(
X′

n

)) ≥ η
) + Nn(vm ≥ η,ϕ ≤ ε|T = +∞),

where X′
n(t) = Xn(t) if T (est (Xn, t)) < +∞ and X′

n(t) = a if T (est (Xn, t)) = +∞ (recall that est (f, t) ∈ E is the
excursion of f straddling t ). But we have

P
(
vm

(
Φε

(
X′

n

)) ≥ η
) ≤ P

(
vm

(
Φε

(
X′′

n

)) ≥ η
)

with X′′
n a regenerative process with holding times with parameter bn and normalized excursion measure Nn( · |T <

+∞), to which we can apply the previous results. �

A corollary to the previous observations is the following statement, which illustrates a possible way to combine the
previous results. See also Theorems 2 and 4 for other extensions in the case when V = R

d .

Theorem 3. Assume that the zero set of X has zero Lebesgue measure, that N (ϕ = +∞) = 0, that (H1) and (H2)
hold and that cn/bn → 0. Then gε(Xn) ⇒ gε(X), T (eε(Xn)) ⇒ T (eε(X)) and ϕ(eε(Xn)) ⇒ ϕ(eε(X)) for every
ε ∈ C.

Assume in addition that Nn(T = +∞) = 0 for every n ≥ 1, that the joint convergence (eε, ϕ ◦ eε)(Xn) ⇒ (eε, ϕ ◦
eε)(X) holds for every ε ∈ C and that

lim
ε→0

lim sup
n→+∞

[
cnNn(v∞ ≥ η,ϕ ≤ ε)

] = 0 (6)

for every η > 0. Then Xn ⇒ X.

Proof. First we prove that (H1) and (H2) together with the assumption N (ϕ = +∞) = 0 imply (H3). Let λ > 0 and
ε > 0: using 0 ≤ 1 − e−λT ≤ 1 one gets

cnNn

(
1 − e−λT ;ϕ ≤ ε

) ≤ cnNn

(
1 − e−λT

) ≤ cnNn

(
1 − e−λT ;ϕ ≤ ε

) + cnNn(ϕ > ε).

Letting first n → +∞ and then ε → +∞ (while in C) then implies (H3). Thus (H1), (H2) and (H3) all hold and the
first part of the theorem is just a combination of Lemmas 4.4 and 4.5. Assuming in addition that (eε, ϕ ◦ eε)(Xn) ⇒
(eε, ϕ ◦ eε)(X) for every ε ∈ C gives (2) by Lemma 4.2. Hence in order to apply Theorem 1 we only need to prove
tightness of Xn. Combining (4), (5) and the fact that cn/bn → 0 one readily sees that one is left with showing that

lim
ε→0

lim sup
n→+∞

cnNn(v∞ ≥ η|ϕ ≤ ε) = 0.
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Since Nn(v∞ ≥ η|ϕ ≤ ε) = Nn(v∞ ≥ η,ϕ ≤ ε)/Nn(ϕ ≤ ε) and Nn(ϕ ≤ ε) → 1 as a consequence of (H1), the
result follows from the assumption (6). �

Let us make a final comment related to the convergence of excursion measures, following the remark made after
Theorem 2. Lemma 4.3 shows that controlling excursions measured according to v∞ makes it possible to automat-
ically control oscillations, and even implies tightness when V = R

d . It is therefore natural to ask whether such a
control can be obtained from the control of excursions measured according to ϕ. More generally, if e

φ
ε (f ) denotes the

first excursion e of f that satisfies φ(e) > ε, it is natural to ask under which conditions a control on e
ϕ1
ε gives a control

on e
ϕ2
ε , given two different maps ϕ1, ϕ2 : E → [0,∞].

Lemma 4.7. For i = 1,2, let ϕi : E → [0,∞] be a measurable map such that ϕi(e) = 0 if and only if e = a. Let
Ci = {ε > 0 : N (ϕi = ε) = 0} and assume that N (ϕi > ε) is finite for every ε > 0.

If for every ε1 ∈ C1 and ε2 ∈ C2, cnNn(ϕ1 > ε1) → N (ϕ1 > ε1), cnNn(ϕ2 > ε2) → N (ϕ2 > ε2) and (e
ϕ1
ε1 , ϕ2 ◦

e
ϕ1
ε1 )(Xn) ⇒ (e

ϕ1
ε1 , ϕ2 ◦ e

ϕ1
ε1 )(X), then e

ϕ2
ε2 (Xn) ⇒ e

ϕ2
ε2 (X) for every ε2 ∈ C2.

Proof. Let ε1 ∈ C1, ε2 ∈ C2 and f : E → [0,∞) be a bounded and continuous function: we must prove that
Nn(f |ϕ2 > ε2) → N (f |ϕ2 > ε2). Let M = supf : then we have

Nn(f 1{ϕ1>ε1}|ϕ2 > ε2) ≤ Nn(f |ϕ2 > ε2) ≤ Nn(f 1{ϕ1>ε1}|ϕ2 > ε2) + MNn(ϕ1 ≤ ε1|ϕ2 > ε2).

By definition,

Nn(f 1{ϕ1>ε1}|ϕ2 > ε2) = Nn(ϕ1 > ε1)

Nn(ϕ2 > ε2)
Nn(f 1{ϕ2>ε2}|ϕ1 > ε1)

so that by assumption,

lim
n→+∞ Nn(f 1{ϕ1>ε1}|ϕ2 > ε2) = N (ϕ1 > ε1)

N (ϕ2 > ε2)
N (f 1{ϕ2>ε2}|ϕ1 > ε1)

= N (f 1{ϕ1>ε1}|ϕ2 > ε2).

Since Nn(ϕ1 ≤ ε1|ϕ2 > ε2) = 1− Nn(ϕ1 > ε1|ϕ2 > ε2), the previous formula for f = 1 (the function with constant
value 1) gives Nn(ϕ1 ≤ ε1|ϕ2 > ε2) → N (ϕ1 ≤ ε1|ϕ2 > ε2). In particular, we get the following bounds:

N (f 1{ϕ1>ε1}|ϕ2 > ε2) ≤ lim inf
n→+∞ Nn(f |ϕ2 > ε2) ≤ lim sup

n→+∞
Nn(f |ϕ2 > ε2)

≤ N (f 1{ϕ1>ε1}|ϕ2 > ε2) + MN (ϕ1 ≤ ε1|ϕ2 > ε2).

Since ε1 ∈ C1 is arbitrary, letting ε1 → 0 gives the result by monotone convergence. �

4.4. Shifting the first excursion to reach level ε

Consider for a moment the case V = R and ϕ = ‖ · ‖∞. It is natural, at least in the context of Markov processes, to
follow an excursion e conditioned on entering (ε,∞) only after the time T

↑
ε when it enters (ε,∞). Indeed, in the case

of strong Markov processes the conditioning only affects the shifted process θ
T

↑
ε
(e) through the value e(T

↑
ε ). Hence

following the excursion after time T
↑
ε makes it possible to get rid of the conditioning and should therefore be an easier

task than studying the whole conditioned excursion. This approach turned out to be useful in Borst and Simatos [4],
see also the closely related remark by Aldous [1], Section 6.3, in the context of random graphs.

In the rest of this subsection, because of tightness issues we restrict ourselves to the case V = R
d , a = 0 and

ϕ = ‖ · ‖d∞. With an abuse in notation define |x| = max1≤k≤d |xi | for x = (xi,1 ≤ i ≤ d) ∈ R
d . For ε > 0 and f ∈ D

define the times T̃ ↑(f, ε) ≤ T ↑(f, ε) as follows:

T ↑(f, ε) = inf
{
t ≥ 0: |f (t)| > ε

}
and T̃ ↑(f, ε) = inf

{
t ≥ 0: |f (t)| ≥ ε or |f (t−)| ≥ ε

}
.
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Recall that θt (f ) = f (t + · ) and let e
↑
ε :D → E be given by

e↑
ε (f ) = θT ↑(eε(f ),ε)

(
eε(f )

)
, f ∈ D.

We need preliminary results on continuity properties of the shift operator and also on the two times T ↑(f, ε) and
T̃ ↑(f, ε).

Lemma 4.8. If fn,f ∈ D and tn, t > 0 are such that fn → f , tn → t and �fn(tn) → �f (t), then θtn(fn) → θt (f ).

Proof. The proof is very similar to that of Lemma 3.4, so we only sketch it. Let (λn) ∈ Λ∞ such that vm(fn◦λn,f ) →
0 for every m ∈ M , and assume without loss of generality that λn(t) = tn. Considering νn(s) = λn(t + s) − tn, one
can check that (νn) ∈ Λ∞ and that vm(θtn(fn) ◦ νn, θt (f )) → 0 for every m ∈ M , which gives the result. �

For the following lemma remember that for f = (f1, . . . , fd) : [0,∞) → R
d we have ‖f ‖d

t = max1≤k≤d ‖fk‖t .

Lemma 4.9. Let fn,f ∈ D and ε > 0. If fn → f , then lim supn T ↑(fn, ε) ≤ T ↑(f, ε). If in addition T̃ ↑(f, ε) =
T ↑(f, ε), then T ↑(fn, ε) → T ↑(f, ε).

Proof. Note for simplicity T ↑ = T ↑(f, ε) and T
↑
n = T ↑(fn, ε). Consider η > 0 and tη ∈ (T ↑, T ↑ + η) such that f

is continuous at tη and |f (tη)| > ε. Such a tη always exists by definition of T ↑, and because f has at most countable
many discontinuities. Then |fn(tη)| → |f (tη)| and so |fn(tη)| > ε for n large enough, which entails for those n that

T
↑
n ≤ tη. Hence lim supn T

↑
n ≤ tη ≤ T ↑ + η and letting η → 0 gives the result.

Assume now that T̃ ↑(f, ε) = T ↑(f, ε), and let t < T ↑ be a continuity point of f , so that ‖f ‖d
t < ε. Then ‖fn‖d

t →
‖f ‖d

t and so ‖fn‖d
t < ε for n large enough. For those n we therefore have T

↑
n > t and hence lim infn T

↑
n ≥ t . Since

t < T ↑ was arbitrary, letting t → T ↑ gives T ↑ ≤ lim infn T
↑
n . �

For f ∈ D let Sf ∈ D be the process recording its past supremum: Sf (t) = ‖f ‖d
t . Then Sf is an increasing function

and T ↑(f, ε) = inf{t ≥ 0: Sf (t) > ε} = S−1
f (ε) with S−1

f the right-continuous inverse of Sf . If f is continuous, then
we also have

T̃ ↑(f, ε) = inf
{
t ≥ 0: |f (t)| ≥ ε

} = inf
{
t ≥ 0: Sf (t) ≥ ε

} = S̃−1
f (ε)

with S̃−1
f the left-continuous inverse of Sf . Since S̃−1

f and S−1
f coincide exactly at continuity points of Sf we get the

following result.

Lemma 4.10. If f ∈ D is continuous, then{
ε > 0: T ↑(f, ε) = T̃ ↑(f, ε)

} = {
ε > 0: �S−1

f (ε) = 0
}
.

Proposition 4.11. Consider ϕ = ‖ · ‖d∞. Assume that X is continuous and that e
↑
ε (Xn) ⇒ e

↑
ε (X) and T (e

↑
ε (Xn)) ⇒

T (e
↑
ε (X)) for every ε such that N (ϕ = ε) = 0. Then it holds that (eε, T ◦ eε)(Xn) ⇒ (eε, T ◦ eε)(Xn) for every ε such

that N (ϕ = ε) = 0.

Proof. In the rest of the proof let C = {ε > 0: N (ϕ = ε) = 0} and define J (f ) = (f,T (f )) for f ∈ D. Using
Lemma 4.2 the assumptions entail J (e

↑
ε (Xn)) ⇒ J (e

↑
ε (X)) for every ε ∈ C. In the rest of this proof we fix ε ∈ C and

note En = eε(Xn) and E = eε(X). The goal is to prove that J (En) ⇒ J (E), and the proof operates in four steps:
first we prove that J (e

↑
δ (En)) ⇒ J (e

↑
δ (E)) for any 0 < δ < ε with δ ∈ C and then that the sequence (En,n ≥ 1) is

C-tight. Then we identify accumulation points and finally conclude that J (En) ⇒ J (E).
Step 1. Let 0 < δ < ε with δ ∈ C: we prove that J (e

↑
δ (En)) ⇒ J (e

↑
δ (E)). So let f : E × [0,∞) → [0,∞) be a

bounded, continuous function: we must show that

lim
n→+∞ E

[
f

(
J

(
e
↑
δ (En)

))] = E
[
f

(
J

(
e
↑
δ (E)

))]
.
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Since Xn is regenerative, En = eε(Xn) is equal in distribution to eδ(Xn) conditioned on {‖eδ(Xn)‖d∞ > ε} and so

E
[
f

(
J

(
e
↑
δ (En)

))] = E
[
f

(
J

(
e
↑
δ

(
eδ(Xn)

)))|∥∥eδ(Xn)
∥∥d

∞ > ε
]
.

By definition we have e
↑
δ ◦ eδ = e

↑
δ and ‖e↑

δ (f )‖d∞ = ‖eδ(f )‖d∞, hence

E
[
f

(
J

(
e
↑
δ (En)

))] = E[f (J (e
↑
δ (Xn))); ‖e↑

δ (Xn)‖d∞ > ε]
P(‖e↑

δ (Xn)‖d∞ > ε)
.

The continuous mapping theorem together with J (e
↑
δ (Xn)) ⇒ J (e

↑
δ (X)) imply that (J ◦ e

↑
δ , ϕ ◦ e

↑
δ )(Xn) ⇒

(J ◦ e
↑
δ , ϕ ◦ e

↑
δ )(X). Moreover, since N (ϕ = ε) = 0 we obtain

P
(∥∥e

↑
δ (X)

∥∥d

∞ = ε
) = P

(∥∥eδ(X)
∥∥d

∞ = ε
) = N (ϕ = ε|ϕ > δ) = 0

and so letting n → +∞ we obtain

lim
n→+∞ E

[
f

(
J

(
e
↑
δ (En)

))] = E[f (J (e
↑
δ (X))); ‖e↑

δ (X)‖d∞ > ε]
P(‖e↑

δ (X)‖d∞ > ε)
= E

[
f

(
J

(
e
↑
δ (E)

))]
invoking similar arguments for X as for Xn to get the last equality. This achieves the first step.

Step 2. We now prove the C-tightness of the sequence (En). We control the oscillations, control over the supremum
is given by similar arguments. Let m,ζ > 0, we must show that

lim
η→0

lim sup
n→+∞

P
(
wm(En,η) ≥ ζ

) = 0.

For any t ≥ 0 and δ > 0, we have by definition

En(t) = e
↑
δ (En)

(
t − T ↑(En, δ)

)
if t ≥ T ↑(En, δ) whereas |En(t)| ≤ δ if t < T ↑(En, δ). Hence for any δ, η > 0 and 0 ≤ s, t ≤ m with |t − s| ≤ η,
we have |En(t) − En(s)| ≤ 2δ + wm(e

↑
δ (En), η) (the difference En(t) − En(s) is to be understood componentwise).

Choosing any δ < ζ/2 gives

P
(
wm(En,η) ≥ ζ

) ≤ P
(
wm

(
e
↑
δ (En), η

) ≥ ζ/2
)

and in particular,

lim
η→0

lim sup
n→+∞

P
(
wm(En,η) ≥ ζ

) ≤ lim
η→0

lim sup
n→+∞

P
(
wm

(
e
↑
δ (En), η

) ≥ ζ/2
)
.

For δ < ε we have e
↑
δ (En) = e

↑
δ ◦ eε(Xn) = e

↑
δ (Xn) which is by assumption C-tight for δ ∈ C. Thus for δ small

enough (i.e., δ < ε and δ < ζ/2) and in C, the right-hand side of the inequality in the previous display is zero, which
ends this step.

Step 3. We prove that En ⇒ E: let E′ be any continuous accumulation point of the C-tight sequence (En), and let
(un) be a subsequence such that Eun ⇒ E′. We must show that E′ is equal in distribution to E. Remember that SE′ is
the process of the past supremum of E′ with right-continuous inverse S−1

E′ , and let H be the following deterministic
set:

H = {
δ > 0: P

(
�S−1

E′ (δ) = 0
) = 1

}
.

Since S−1
E′ is almost surely càdlàg it is well-known, see for instance Billingsley [2], Section 13, that the set Hc =

[0,∞) \H is countable; thus H is dense. Assume by Skorohod’s representation theorem that the convergence Eun →
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E′ holds almost surely. Let δ ∈ H , and assume without loss of generality that �S−1
E′ (δ) = 0. Then Lemma 4.10 gives

T ↑(E′, δ) = T̃ ↑(E′, δ), which combined with Lemma 4.9 implies that T ↑(Eun, δ) → T ↑(E′, δ). In turn, this gives
together with Lemma 4.8 and the definition of e

↑
δ that e

↑
δ (Eun) → e

↑
δ (E′), since E′ is continuous.

On the other hand we have proved that e
↑
δ (Eun) ⇒ e

↑
δ (E) and so e

↑
δ (E′) and e

↑
δ (E) are equal in distribution for

every δ ∈ H . Since H is dense, we have 0 ∈ H and so we can let δ → 0.
Observe that T ↑(e, δ) → 0 as δ → 0 if e ∈ E : if |e(0)| > 0 then T ↑(e, δ) = 0 for δ < |e(0)| while if |e(0)| = 0 then

T ↑(e, δ) → 0 follows by right-continuity of e at 0. As a consequence, e↑
δ (e)(t) → e(t) as δ → 0 for any e ∈ E and any

t ≥ 0, and we obtain, identifying final-dimensional distributions, that E and E′ are equal in distribution. This proves
that En ⇒ E. The previous arguments even show that T ↑(En, δ) ⇒ T ↑(E, δ) for any δ ∈ H , a fact that will be used
in the next step.

Step 4. We now prove that T (En) ⇒ T (E), from which the joint convergence J (En) ⇒ J (E) follows similarly
as for Lemma 4.2. For any δ > 0, we have by definition

T (En) = T ↑(En, δ) + T
(
e
↑
δ (En)

)
and so we have the following bounds, valid for any η ∈ (0,1) and x > 0:

P
(
T

(
e
↑
δ (En)

)
> x

) ≤ P
(
T (En) ≥ x

) ≤ P
(
T ↑(En, δ) ≥ ηx

) + P
(
T

(
e
↑
δ (En)

) ≥ (1 − η)x
)
.

Fix now x such that P(T (E) = x) = 0 and δ ∈ H . Since T ↑(En, δ) ⇒ T ↑(E, δ) by the previous step and
T (e

↑
δ (En)) ⇒ T (e

↑
δ (E)) by the first step, the portmanteau theorem gives

P
(
T

(
e
↑
δ (E)

)
> x

) ≤ lim inf
n→+∞ P

(
T (En) ≥ x

) ≤ lim sup
n→+∞

P
(
T (En) ≥ x

)
≤ P

(
T ↑(E, δ) ≥ ηx

) + P
(
T

(
e
↑
δ (E)

) ≥ (1 − η)x
)
.

Recall that T ↑(e, δ) → 0 as δ → 0. Since T (e) = T ↑(e, δ) + T (e
↑
δ (e)) this shows that T (e

↑
δ (e)) → T (e). Thus

letting δ → 0 in the previous display gives

P
(
T (E) > x

) ≤ lim inf
n→+∞ P

(
T (En) ≥ x

) ≤ lim sup
n→+∞

P
(
T (En) ≥ x

) ≤ P
(
T (E) ≥ (1 − η)x

)
.

Letting now η → 0 ends to prove that T (En) ⇒ T (E) since x was chosen such that P(T (E) = x) = 0. The proof
is complete. �

Combining Theorem 2 and Proposition 4.11 we obtain the following result.

Theorem 4. Let V = R
d , a = 0 and ϕ = ‖ · ‖d∞. Let C ⊂ (0,∞) such that 0 ∈ C and N (ϕ = ε) = 0 for all ε ∈ C. If

X is continuous, gε(Xn) ⇒ gε(X), e
↑
ε (Xn) ⇒ e

↑
ε (X) and T (e

↑
ε (Xn)) ⇒ T (e

↑
ε (X)) for every ε ∈ C, then Xn ⇒ X.

5. Generalization of Theorem 1

In this section we do not assume anymore that Xn and X are regenerative processes in the sense of (1). The deter-
ministic results of Section 3.2 concern concatenation of paths that are not assumed to be excursions; this allows to
generalize Theorem 1 to such a general setting. Let us begin by recalling Itô’s construction [7], which starts from a
σ -finite measure N on E \ {a} and builds a process X with excursion measure N .

Assume that N satisfies N (1 ∧ T ) < +∞, let ∂ be a cemetery point and (αt , t ≥ 0) be a {∂} ∪ (E \ {a})-valued
Poisson point process with intensity measure N . Let d ≥ 0 and

Y(t) = dt +
∑

0≤s≤t

T (αs)
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with the convention T (∂) = 0. Since N (1 ∧ T ) < +∞, Y is well-defined and is a subordinator with drift d and Lévy
measure N (T ∈ · ). Let Y−1 be its right-continuous inverse and define the process X as follows:

X(t) = αY−1(t−)

(
t − Y−1(Y(t)−))

for t ≥ 0 such that �Y(Y−1(t)) > 0 and 0 otherwise.
The key observation is that this construction also works if N is a σ -finite measure on the set of paths f killed at

some time κ(f ) ∈ (0,∞], which may not be the first hitting time of a: then one needs to consider the subordinator
with Lévy measure N (κ ∈ · ) instead of N (T ∈ · ). Let us call this construction the extended Itô’s construction. The
main difference with the setting of Theorem 1 is that it may not be possible anymore to recognize the regenerative
motifs on a sample path of X, i.e., the generalization of the map eε to this setting may not be well-defined. Consider
for instance the case where the motif is the concatenation of a random number of excursions. Hence the generalization
of Theorem 1 takes a slightly different form.

In the following statement, I :D → D is the identity map and ϕ is now a map with domain D, i.e., ϕ :D → [0,∞].
Moreover, for X obtained by the extended Itô’s construction from a measure N and a drift coefficient d , we define
ge

ε(X) as the left endpoint of the first motif m with ϕ(m) > ε. The notation ge
ε(X) is a little abusive, since rigorously

ge
ε is well-defined as a function of the Poisson point process of motifs α of X, but not necessarily as a function of X.

Theorem 5. Let N and Nn be σ -finite measures on the set of killed paths. Assume that N has infinite mass and let X

and Xn the processes obtained by applying the extended Itô’s construction to N and Nn, respectively (and arbitrary
drift coefficients). Let C ⊂ (0,+∞) such that 0 ∈ C and N (ϕ = ε) = 0 for all ε ∈ C. Assume that the sequence (Xn)

is tight and that ge
ε(Xn) ⇒ ge

ε(X) and that (I, κ,ϕ) under Nn( · |ϕ > ε) converges to (I, κ,ϕ) under N ( · |ϕ > ε) for
every ε ∈ C. Then Xn ⇒ X.

Let us conclude by one remark and one example that motivate this extension. The remark is that the classical
definition (1) of a regenerative process is, to some extent, quite restrictive. For instance, this definition excludes
processes that stay at a for a duration that is not exponential. It also excludes processes (even Markovian ones)
that have non-zero holding times but leave a continuously. Consider for instance the Markov process that stays at
0 for an exponential time, then increases at rate 1 for an exponential time and jumps back to 0: then (1) fails for
τ = inf{t ≥ 0: X(t) > 0}.

The second example comes from queueing theory: consider the example of the G/G/1 queue. Then the queue
length process does not regenerate when it hits 0, because when it hits 0 it stays there for a duration that may depend
on the excursion that just finished. On the other hand, it does regenerate when a customer initiates a busy cycle, i.e.,
when the queue length process jumps from 0 to 1.

Although not regenerative in the sense of (1), all these processes can be obtained via the previous extended Itô’s
construction and therefore fall within the framework of the previous theorem.
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