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Abstract. With a view to numerical applications we address the following question: given an ergodic Brownian diffusion with
a unique invariant distribution, what are the invariant distributions of the duplicated system consisting of two trajectories? We
mainly focus on the interesting case where the two trajectories are driven by the same Brownian path. Under this assumption,
we first show that uniqueness of the invariant distribution (weak confluence) of the duplicated system is essentially always true
in the one-dimensional case. In the multidimensional case, we begin by exhibiting explicit counter-examples. Then, we provide
a series of weak confluence criterions (of integral type) and also of a.s. pathwise confluence, depending on the drift and dif-
fusion coefficients through a non-infinitesimal Lyapunov exponent. As examples, we apply our criterions to some non-trivially
confluent settings such as classes of gradient systems with non-convex potentials or diffusions where the confluence is gener-
ated by the diffusive component. We finally establish that the weak confluence property is connected with an optimal transport
problem.

As a main application, we apply our results to the optimization of the Richardson–Romberg extrapolation for the numerical
approximation of the invariant measure of the initial ergodic Brownian diffusion.

Résumé. Initialement motivés par des problèmes numériques d’analyse en temps long d’une diffusion ergodique, nous abordons
ici la question suivante : si une diffusion Brownienne ergodique a une unique probabilité invariante, quelles sont les probabilités
invariantes associées à sa dupliquée, i.e. au système formé par deux copies de la diffusion initiale. Nous nous focalisons notamment
sur le cas où ces deux copies sont dirigées par le même mouvement Brownien (2-point motion). Sous cette hypothèse, nous
montrons que l’unicité de la probabilité invariante relative à la diffusion dupliquée (confluence faible) est essentiellement toujours
vraie en dimension 1. En dimension supérieure, après avoir exhibé un contre-exemple, nous proposons une série de critères de
confluence faible (de type intégral) mais aussi de confluence trajectorielle presque sûre, lisibles sur les coefficients de la diffusion au
travers d’un exposant de Lyapounov non-infinitésimal. Ces critères permettent en particulier de traiter des cas non triviaux comme
certaines classes de systèmes-gradients à potentiel (sur-quadratique) non convexe ou, à l’inverse, des systèmes pour lesquels la
confluence est induite par le coefficient de diffusion. Nous montrons enfin que la propriété de confluence faible est associée à un
problème de transport optimal.

Dans un second temps, nous appliquons nos résultats pour optimiser la mise en œuvre de l’extrapolation Richardson–Romberg
pour l’approximation par simulation de mesures invariantes.
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1. Introduction and motivations

When one discretizes a stochastic (or not) differential equation (SDE) by an Euler scheme with step h, a classical
method to reduce the discretization error is the so-called Richardson–Romberg (RR) extrapolation introduced in [25]
for diffusion processes. Roughly speaking, the idea of this method is to introduce a second Euler scheme with step
h/2 and to choose an appropriate linear combination of the two schemes to cancel the first-order discretization error.
Such an idea can be adapted to the long-time setting. More precisely, when one tries to approximate the invariant
distribution of a diffusion by empirical measures based on an Euler scheme (with decreasing step) of the diffusion,
it is also possible to implement the same strategy by introducing a second Euler scheme with half-step (see [20]).
In fact, tackling the rate of convergence of such a procedure involving a couple of Euler schemes of the same SDE
leads to studying the long run behaviour of the underlying couple of continuous processes that we will call duplicated
diffusion. When the two solutions only differ by the starting value and are driven by the same Brownian motion,
the resulting coupled process is also known as 2-point motion (terminology coming from the more general theory of
stochastic flows, see [3,5,17]). Before being more specific as concerns this motivation, let us now define precisely
what we call a duplicated diffusion.

Consider the following Brownian diffusion solution to the stochastic differential equation

(SDE)≡ dXt = b(Xt )dt + σ(Xt )dWt, X0 = x ∈R
d, (1.1)

where b :Rd → R
d and σ :Rd →M(d, q,R) (d × q matrices with real valued entries) are locally Lipschitz contin-

uous with linear growth and W is a standard q-dimensional Brownian motion defined on a filtered probability space
(Ω,A,P, (Ft )t≥0) (satisfying the usual conditions). This stochastic differential equation (SDE) has a unique strong
solution denoted Xx = (Xx

t )t≥0. Let ρ ∈M(q, q,R) be a square matrix with transpose ρ∗ such that Iq − ρ∗ρ is non-
negative as a symmetric matrix. We consider a filtered probability space, still denoted (Ω,A,P, (Ft )t≥0) on which
is defined a 2q-dimensional standard (Ft )-Brownian motion denoted (W, W̃ ) so that W and W̃ are two independent
q-dimensional standard (Ft )-Brownian motions. Then we define W(ρ) a third standard q-dimensional (Ft )-Brownian
motions by

W(ρ) = ρ∗W +√Iq − ρ∗ρW̃ , (1.2)

which clearly satisfies〈
Wi,W(ρ),j

〉
t
= ρij t, t ≥ 0

(the square root should be understood in the set of symmetric non-negative matrices). The duplicated diffusion or
“duplicated stochastic differential system” (DSDS) is then defined by

(DSDS)≡
{

dXt = b(Xt )dt + σ(Xt )dWt, X0 = x1 ∈R
d ,

dX
(ρ)
t = b(X

(ρ)
t )dt + σ(X

(ρ)
t )dW

(ρ)
t , X

(ρ)
0 = x2 ∈R

d .
(1.3)

Under the previous assumptions on b and σ , (1.3) has a unique (strong) solution. Then both (Xx
t )t≥0 and

(X
x1
t ,X

(ρ),x2
t )t≥0 are homogeneous Markov processes with transition (Feller) semi-groups, denoted (Pt (x,dy))t≥0

and (Q
(ρ)
t ((x1, x2), (dy1,dy2)))t≥0 respectively, and defined on test Borel functions f :Rd →R and g :Rd×R

d →R,
by

Pt(f )(x)= Ef
(
Xx

t

)
and Q

(ρ)
t (g)

(
x1, x2

)= Eg
(
X

x1
t ,X

(ρ),x2
t

)
.

We will assume throughout the paper that the original diffusion Xx has an unique invariant distribution denoted ν

i.e. satisfying νPt = ν for every t ∈ R+. The first part of the paper is devoted to determining what are the invariant
measures of (Q

(ρ)
t )t≥0 (if any) depending on the correlation matrix ρ. Thus, if ρ = 0, it is clear that ν ⊗ ν is invariant

for Q(0) and if ρ = Iq so is νΔ = ν ◦ (x 	→ (x, x))−1, but are they the only ones? To be more precise, we want to
establish easily verifiable criterions on b and σ which ensure that νΔ is the unique invariant distribution of (DSDS).
In the sequel, we will denote by μ a generic invariant measure of Q(ρ). Now, we present the problem in more details
(including references to the literature).



1564 V. Lemaire, G. Pagès and F. Panloup

� Existence of an invariant distribution for (Q
(ρ)
t )t≥0. First, the family of probability measures (μ

(ρ)
t )t>0 defined

on (Rd ×R
d ,Bor(Rd)⊗2) by

μ
(ρ)
t = 1

t

∫ t

0
ν⊗2(dx1,dx2)Q

(ρ)
s

(
(x1, x2), (dy1,dy2)

)
ds (1.4)

is tight since both its marginals on R
d are equal to ν. Furthermore, the semi-group (Q

(ρ)
t )t≥0 being Feller, one

easily shows that any of its limiting distributions μ(ρ) as t →+∞ is an invariant distribution for (Q
(ρ)
t )t≥0 such that

μ(ρ)(dx × R
d) = μ(ρ)(Rd × dx) = ν(dx). Also note that, if uniqueness fails and (Pt )t≥0 has two distinct invariant

distributions ν and ν′, a straightforward adaptation of the above (sketch of) proof shows that (Q
(ρ)
t )t≥0 has (at least)

an invariant distribution with marginals (ν, ν′) and another with (ν′, ν) as marginals.
� Uniqueness of the invariant distribution of (Q

(ρ)
t )t≥0. It is clear that in full generality the couple (X,X(ρ)) may

admit several invariant distributions even if X has only one such distribution. So is the case when σ ≡ 0 if the flow
Φ(x, t) of the ODE ≡ ẋ = b(x) has 0 as a unique repulsive equilibrium and a unique invariant distribution ν on
R

d \ {0}. Then both distributions ν⊗2 and νΔ (defined as above) on (Rd \ {0})2 are invariant and if ν is not reduced
to a Dirac mass (think e.g. to a 2-dimensional ODE with a limit cycle around 0) (DSDS) has at least two invariant
distributions.

In the case (σ �≡ 0) the situation is more involved and depends on the correlation structure ρ between the two
Brownian motions W and W(ρ). The diffusion matrix Σ(X

x1
t ,X

(ρ),x2
t ) of the couple (Xx1 ,X(ρ),x2) at time t > 0 is

given by any continuous solution to the equation

Σ(ξ1, ξ2)Σ(ξ1, ξ2)
∗ =
[

σσ ∗(ξ1) σ (ξ1)ρσ ∗(ξ2)

σ (ξ2)ρ
∗σ ∗(ξ1) σσ ∗(ξ2)

]
(e.g. the square root in the symmetric non-negative matrices or the Choleski transform. . . ).

First, note that if Iq − ρ∗ρ is positive definite as a symmetric matrix, it is straightforward that ellipticity or

uniform ellipticity of σσ ∗ (when q ≥ d) for Xx is transferred to Σ(X
x1
t ,X

(ρ),x2
t )Σ(X

x1
t ,X

(ρ),x2
t )∗ for the couple

(Xx1 ,X(ρ),x2). Now, uniform ellipticity, combined with standard regularity and growth/boundedness assumption on
the coefficients b, σ and their partial derivatives, classically implies the existence for every t > 0 of a (strictly) pos-
itive probability density pt(x, y) for Xx

t . These additional conditions are automatically satisfied by the “duplicated
coefficients” of (DSDS). At this stage, it is classical background that any homogeneous Markov process whose tran-
sition has a (strictly) positive density for every t > 0 has at most one invariant distribution (if any). Consequently,
under these standard assumptions on b and σ which ensure uniqueness of the invariant distribution ν for X, we get
uniqueness for the “duplicated” diffusion process (X,X(ρ)) as well.

The hypo-elliptic case also implies the existence of a density for Xx
t and the uniqueness of the invariant distribution

under controllability assumptions on a companion differential system of the SDE. This property can also be transferred
to (DSDS), although the proof becomes significantly less straightforward than above (see Appendix B for a precise
statement and a detailed proof).

We now consider one of the main problems of this paper: the degenerate case ρ = Iq . This corresponds to W(ρ) =
W so that X(ρ),x2 = Xx2 , i.e. (DSDS) is the equation of the 2-point motion in the sense of [17], Section 4.2, and
[10]. This 2-point motion has been extensively investigated (see [5]) from an ergodic viewpoint, especially when
the underlying diffusion, or more generally the stochastic flow Φ(ω,x, t) lives on a (smooth) compact Riemannian
manifold M . When this flow is smooth enough in x, the long run behaviour of such a flow (under its steady regime)
can be classified owing to its Lyapunov spectrum. For what we are concerned with, this classification is based on the
top Lyapunov exponent defined by

λ1 := lim sup
t→+∞

1

t
log
∥∥DxΦ(x, t)

∥∥,
where ‖DxΦ(x, t)‖ denotes the operator norm of the differential (tangent) of the flow. In this compact setting and
when the top Lyapunov exponent is positive, the long run behaviour of the two-point on M2 \ Δ has been deeply
investigated in [3] (see also [9] for further results in this direction). Such an assumption implies that Δ is somewhat
repulsive.
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Here, we are in fact concerned with the opposite case. Our aim is to identify natural assumptions under which
the invariant distribution of the 2-point motion is unique (hence equal to νΔ). It seems clear that these conditions
should in some sense imply that the paths cluster asymptotically either in a pathwise or in a statistical sense. When
λ1 < 0, a local form of such a clustering has been obtained in [5] (see Proposition 2.3.3): it is shown that at a given
point “asymptotic clustering” holds with an arbitrarily high probability, provided the starting points are close enough.
However, this result seems to be not sufficient to imply uniqueness of the invariant distribution for the two-point
motion and is still in a compact setting.

In Sections 2 and 3, we provide precise answers under verifiable conditions on the coefficients b and σ of the origi-
nal Rd -valued diffusion, not assumed to be smooth. More precisely, we show in Section 2 that in the one-dimensional
case, uniqueness of νΔ is almost always true (as soon as (SDE) has a unique invariant distribution) and that under
some slightly more constraining conditions, the diffusion is pathwise confluent (i.e. pathwise asymptotic clustering
holds). This second result slightly extends by a different method a result by Has’minskii in [11].

Section 3 is devoted to the multidimensional framework. We first provide a simple counter-example where unique-
ness of νΔ does not hold. Then, we obtain some sharp criterions for uniqueness. We begin by a general uniqueness
result (for νΔ) (Theorem 3.1) involving in an Euclidean framework (induced by a positive definite matrix S and its
norm | · |

S
) a pseudo-scale function fθ designed from a non-negative continuous function θ :R+ →R. Basically, both

uniqueness and pathwise confluence follow from conditions involving the coefficients of the diffusion b and σ , S

and θ , combined with a requested behavior of the pseudo-scale function at 0+. The main ingredient of the proof is
Birkhoff’s ergodic Theorem applied to the one-dimensional Itô process fθ (|Xx1

t −X
x2
t |2S ). Using additional martingale

arguments, we also establish that the asymptotic pathwise confluence holds under slightly more stringent conditions.
Then, in Section 3.3, we draw a series of corollaries of Theorem 3.1 (illustrated on few examples) which highlight

easily verifiable conditions. To this end we introduce a function Λ
S

:Rd ×R
d \ΔRd×Rd →R called Non-Infinitesimal

S-Lyapunov (NILS) exponent defined for every x, y ∈R
d , x �= y by

Λ
S
(x, y)= (b(x)− b(y)|x − y)

S

|x − y|2
S

+ 1

2

‖σ(x)− σ(y)‖2
S

|x − y|2
S

−
(∣∣∣∣ (σ ∗(x)− σ ∗(y))S(x − y)

|x − y|2
S

∣∣∣∣2). (1.5)

In particular we show (see Corollary 3.1) that if, for every probability measure m on cΔRd×Rd such that
m(dx ×R

d)=m(Rd × dy)= ν,∫
Rd×Rd

Λ
S
(x, y)m(dx,dy) < 0,

then νΔ is unique and if furthermore Λ
S
≤−c0 < 0 on a uniform stripe around the diagonal ΔRd×Rd , then pathwise

confluence holds true. Moreover, under a directional ellipticity condition on σ , we show that the negativity of Λ
S

(at
least in an integrated sense) can be localized near the diagonal (see Section 3.3 for details). A differential version of
the criterion is established when b and σ are smooth (see Corollary 3.2).

Note that these criterions obtained in the case ρ = Iq can be extended to the (last) case ρ∗ρ = Iq using that
W(ρ) = ρW is still a standard B.M. (think to ρ =−1 when d = 1). For the sake of simplicity (and since it is of little
interest for the practical implementation of the Richardson–Romberg extrapolation), we will not consider this case in
the paper.

Then, we give some examples and provide an application to gradient systems (b =−∇U and a constant σ func-
tion). In particular, we obtain that our criterions can be applied to some situations where the potential is not con-
vex. More precisely, we prove that for a large class of non-convex potentials, super-quadratic at infinity, the 2-point
motion is weakly confluent if the diffusive component σ is sufficiently large. Furthermore, in the particular case
U(x)= (|x|2 − 1)2, we prove that the result is true for every σ > 0.

We end the first part of the paper by a connection with optimal transport. More precisely, we show that, up to a
slight strengthening of the condition on the Integrated NILS, the weak confluence property can be connected with an
optimal transport problem.

The second part of the paper (Section 4) is devoted to a first attempt in a long run ergodic setting to combine
the Richardson–Romberg extrapolation with a control of the variance of this procedure (see [22] in a finite horizon
framework). To this end we consider two Euler schemes with decreasing steps γn and γ̃n satisfying γ̃2n−1 = γ̃2n =
γn/2 and ρ-correlated Brownian motion increments. We show that the optimal efficiency of the Richardson–Romberg
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extrapolation in this framework is obtained when ρ = Iq , at least when the above uniqueness problem for νΔ is
satisfied. To support this claim we establish a Central Limit Theorem whose variance is analyzed as a function of ρ.

Notations.

• |x| = √xx∗ denotes the canonical Euclidean norm of x ∈R
d (x∗ transpose of the column vector x).

• ‖A‖ =√Tr(AA∗) if A ∈M(d, q,R) and A∗ is the transpose of A (which is but the canonical Euclidean norm on
R

d2
).

• ΔRd×Rd = {(x, x), x ∈R
d} denotes the diagonal of Rd ×R

d .
• S(d,R)= {S ∈M(d, d,R), S∗ = S}, S+(d,R) the subset of S(d,R) of non-negative matrices, S++(d,R) denotes

the subset of positive definite such matrices and
√

S denotes the unique square root of S ∈ S+(d,R) in S++(d,R)

(which commutes with S). x ⊗ y = xy∗ = [xiyj ] ∈M(d, d,R), x, y ∈R
d .

• If S ∈ S++(d,R), we denote by (·|·)
S

and by | · |
S
, the induced inner product and norm on R

d , defined by (x|y)
S
=

(x|Sy) and |x|2
S
= (x|x)

S
respectively. Finally, for A ∈M(d, d,R), we set ‖A‖2

S
= Tr(A∗SA).

• μn
(Rd )�⇒ μ denotes the weak convergence of the sequence (μn)n≥1 of probability measures defined on (Rd ,Bor(Rd))

toward the probability measure μ. P(X,A) denotes the set of probability distributions on (X,A).
• For every function f :Rd →R, define the Lipschitz coefficient of f by [f ]Lip = supx �=y

|f (x)−f (y)|
|x−y| ≤ +∞.

2. The one-dimensional case

We first show that, in the one-dimensional case d = q = 1, uniqueness of ν implies that νΔ, as defined in the Introduc-
tion, is the unique invariant distribution of the duplicated diffusion. The main theorem of this section is Theorem 2.1
which consists of two claims. The first one establishes this uniqueness claim using some ergodic-type arguments. Note
that we do not require that σ never vanishes. The second claim is an asymptotic pathwise confluence property for the
diffusion in its own scale, established under some slightly more stringent assumptions involving the scale function
p, see below. This second result, under slightly less general assumptions, is originally due to Has’minskii (see [11],
Appendix to the English edition, Theorem 2.2, p. 308). It is revisited here by different techniques, mainly comparison
results for one-dimensional diffusions and ergodic arguments. Note that uniqueness of νΔ can always be retrieved
from asymptotic confluence (see Remark 2.1).

Before stating the result, let us recall some definitions. We denote by M the speed measure of the diffusion classi-
cally defined by M(dξ)= (σ 2p′)−1(ξ)dξ , where p is the scale function defined (up to a constant) by

p(x)=
∫ x

x0

dξe
− ∫ ξ

x0
(2b/σ 2)(u)du

, x ∈R.

Obviously, we will consider p only when it makes sense as a finite function (so is the case if b/σ 2 is locally integrable
on the real line). We are now in position to state the result.

Theorem 2.1. Assume that b and σ are continuous functions on R being such that strong existence, pathwise unique-
ness and the Feller Markov property hold for (SDE) from any x ∈ R. Assume furthermore that there exists λ :R+ →
R+, strictly increasing, with λ(0)= 0 and

∫
0+ λ(u)−2 du=+∞ such that for all x, y ∈R, |σ(y)−σ(x)| ≤ λ(|x−y|).

Then, the following claims hold true.

(a) If (Xt )t≥0 admits a unique invariant distribution ν, the distribution νΔ = ν ◦ (ξ 	→ (ξ, ξ))−1 is the unique
invariant measure of the duplicated diffusion (X

x1
t ,X

x2
t )t≥0.

(b) (Has’minskii) Assume that the scale function p is well-defined as a real function on the real line and that,

lim
x→±∞p(x)=±∞ and M is finite.

Then, ν =M/M(R) is the unique invariant distribution of (Xt )t≥0 and (p(Xt ))t≥0 is pathwise confluent: P-a.s., for
every x1, x2 ∈R, p(X

x1
t )− p(X

x2
t ) tends to 0 when t →+∞.
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Remark 2.1. � The general assumptions on b and σ are obviously fulfilled whenever these functions are locally
Lipschitz with linear growth.

� The proofs of both claims are based on (typically one-dimensional) comparison arguments. This also explains
the assumption on σ which is a classical sufficient assumption to ensure comparison of solutions, namely, if x1 ≤ x2,
then X

x1
t ≤X

x2
t for every t ≥ 0 a.s. (see [14]).

� The additional assumptions made in (b) imply the uniqueness of ν (see the proof below). The uniqueness of
the invariant distribution νΔ for the duplicated diffusion follows by (a). However, it can also be viewed as a direct
consequence of the asymptotic pathwise confluence of p(X

xi
t ), i = 1,2 as t →+∞. Actually, if for all x1, x2 ∈ R

d ,

p(X
x1
t )− p(X

x2
t )

t→+∞−→ 0 a.s., we deduce that for any invariant distribution μ of (Xx1,Xx2) and every K > 0∫
R

(∣∣p(x1)− p(x2)
∣∣∧K

)
μ(dx1,dx2)≤ lim sup

t→+∞
1

t

∫ t

0
Eμ

(∣∣p(Xx1
s

)− p
(
Xx2

s

)∣∣∧K
)

ds = 0.

As a consequence, p(x1) = p(x2) μ(dx1,dx2)-a.s. Since p is an increasing function, it follows that
μ({(x, x), x ∈R})= 1 and thus that μ= νΔ.

� As mentioned before, (b) slightly extends a result by Has’minskii obtained in [11] with different methods and
under the additional assumption that σ never vanishes (whereas we only need the scale function p to be finite which
allows e.g. for the existence of integrable singularities of b

σ 2 ). Note however that the case of an infinite speed mea-
sure M (which corresponds to null recurrent diffusions) is also investigated in [11], requiring extra non-periodicity
assumptions on σ .

Proof of Theorem 2.1. (a) Throughout the proof we denote by (X
x1
t ,X

x2
t ) the duplicated diffusion at time t ≥ 0

and by (Qt ((x1, x2),dy1,dy2))t≥0 its Feller Markov semi-group. The set IDSDS of invariant distributions of (Qt )t≥0

is clearly non-empty, convex and weakly closed. Since any such distribution μ has ν as marginals (in the sense
μ(dx1 × R) = μ(R× dx2) = ν), the set IDSDS is tight and consequently weakly compact in the topological vector
space of signed measures on (R2,Bor(R2)) equipped with the weak topology. As a consequence of the Krein–Millman
Theorem, IDSDS admits extremal distributions and is the convex hull of these extremal distributions.

Let μ be such an extremal distribution and consider the following three subsets of R2:

A+ = {(x1, x2), x2 > x1
}
, A− = {(x1, x2), x1 > x2

}
and A0 =

{
(x, x), x ∈R

}=ΔR2 .

We first want to show that if μ(A+) > 0 then the conditional distribution μA+ defined by μA+ = μ(·∩A+)

μ(A+)
is also an

invariant distribution for (Qt )t≥0.
Under the above assumptions on b and σ , one derives from classical comparison theorems and strong pathwise

uniqueness arguments for the solutions of (SDE) (see e.g. [14]) that

∀(x1, x2) ∈ cA+ =R
2 \A+, Qt

(
(x1, x2),

cA+
)= 1.

We deduce that for every (x1, x2) ∈R
2 and t ≥ 0,

Qt

(
(x1, x2),A

+)= P
((

X
x1
t ,X

x2
t

) ∈A+
)= 1A+(x1, x2)P(τx1,x2 > t),

where τx1,x2 = inf{t ≥ 0,X
x2
t ≤X

x1
t }. The second equality follows from the pathwise uniqueness since no bifurcation

can occur. Now, let μ ∈ IDSDS. Integrating the above equality and letting t go to infinity implies

μ
(
A+
)= ∫

A+
μ(dx1,dx2)P(τx1,x2 =+∞).

If μ(A+) > 0, then μ(dx1, x2)-a.s. P(τx1,x2 =+∞)= 1 on A+ i.e. X
x2
t > X

x1
t for every t ≥ 0 a.s. As a consequence,

μ(dx1,dx2)-a.s., for every B ∈ B(Rd ×R
d),

1(x1,x2)∈A+Qt

(
(x1, x2),B

)= 1(x1,x2)∈A+Qt

(
(x1, x2),B ∩A+

)=Qt

(
(x1, x2),B ∩A+

)
,
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where we used again that Qt((x1, x2),A
+)= 0 if x2 ≤ x1. Then, since μ is invariant, we deduce from an integration

of the above equality that

μ
(
B ∩A+

)= ∫
R2

Qt

(
(x1, x2),B

)
1(x1,x2)∈A+μ(dx1,dx2).

It follows that if μ(A+) > 0, μA+ is invariant.
If μ(A+) < 1, one shows likewise that μ

cA+ an invariant distribution for (Qt )t≥0 as well. Then, if μ(A+) ∈ (0,1),
then μ is a convex combination of elements of IDSDS

μ= μ
(
A+
)
μA+ +μ

(
cA+

)
μ

cA+

so that μ cannot be extremal. Finally μ(A+)= 0 or 1.
Assume μ(A+) = 1 so that μ = μ(· ∩ A+). This implies that X1

0 > X2
0 Pμ-a.s. But μ being invariant, both its

marginals are ν i.e. X1
0 and X2

0 are ν-distributed. This yields a contradiction. Indeed, let ϕ be a bounded increasing
positive function. For instance, set ϕ(u) := 1+ u√

u2+1
, u ∈ R. Then, E[ϕ(X1

0)− ϕ(X2
0)]> 0 since X1

0 > X2
0 Pμ-a.s.

but we also have E[ϕ(X1
0)− ϕ(X2

0)] = 0 since X1
0 and X2

0 have the same distribution. This contradiction implies that
μ(A+)= 0.

One shows likewise that μ(A−) = 0 if μ is an extremal measure. Finally any extremal distribution of IDSDS is
supported by A0 =ΔR2 . Given the fact that the marginals of μ are ν this implies that μ= νΔ = ν ◦ (x 	→ (x, x))−1

which in turn implies that IDSDS = {νΔ}.
(b) Since the speed measure M is finite and σ never vanishes, the distribution ν(dξ)=M(dξ)/M(R) is the unique

invariant measure of the diffusion. Thus, by (a), we also have the uniqueness of the invariant distribution for the
duplicated diffusion. Let x1, x2 ∈R. If x1 > x2 then X

x1
t ≥X

x2
t , still by a comparison argument, and p(X

x1
t )≥ p(X

x2
t )

since p is increasing. Consequently M
x1,x2
t = p(X

x1
t )−p(X

x2
t ), t ≥ 0, is a non-negative continuous local martingale,

hence P-a.s. converging toward a finite random limit �
x1,x2∞ ≥ 0. One proceeds likewise when x1 < x2 (with �

x1,x2∞ ≤ 0).
When x1 = x2, Mt = �

x1,x2∞ ≡ 0. The aim is now to show that �
x1,x2∞ = 0 a.s. To this end, we introduce

μt(dy1,dy2) := 1

t

∫ t

0
Qs

(
(x1, x2),dy1,dy2

)
ds, (x1, x2) ∈R

d ×R
d

and we want to check that for every (x1, x2) ∈ R
d × R

d , (μt (dy1,dy2))t≥1 converges weakly to νΔ. Owing to the
uniqueness of νΔ established in (a) and to the fact that any weak limiting distribution of (μt (dy1,dy2))t≥1 is always
invariant (by construction), it is enough to prove that (μt (dy1,dy2))t≥1 is tight. Since the tightness of a sequence of
probability measures defined on a product space is clearly equivalent to that of its first and second marginals, it is here
enough to prove the tightness of (t−1

∫ t

0 Ps(x0,dy)ds)t≥1 for any x0 ∈R.
Let x0 ∈ R. Owing to the comparison theorems, we have for all t ≥ 0 and M ∈ R, Pt(x0, [M,+∞)) ≤

Pt (x, [M,+∞)) if x ≥ x0 and Pt (x0, (−∞,M]) ≤ Pt (x, (−∞,M]) if x0 ≥ x. Since ν is invariant and equivalent
to the Lebesgue measure, we deduce that

Pt

(
x0, [M,+∞)

)≤ ν([M,+∞))

ν([x0,+∞))
and Pt

(
x0, (−∞,M)

)≤ ν((−∞,M))

ν((−∞, x0]) .

The tightness of (Pt (x0,dy))t≥1 follows (from that of ν) and we derive from what preceeds that

∀(x1, x2) ∈R
d ×R

d,
1

t

∫ t

0
Qs

(
(x1, x2),dy1,dy2

)
ds

(Rd )�⇒ νΔ(dy1,dy2).

Now, note that for every L ∈ N, the function g
L

: (y1, y2) 	→ |p(y1)− p(y2)| ∧ L is continuous and bounded. Hence
by Césaro’s Theorem, we have that

1

t

∫ t

0
Qs(gL

)(x1, x2)ds = 1

t

∫ t

0
Eg

L

(
Xx1

s ,Xx2
)

ds −→ E
(∣∣�x1,x2∞

∣∣∧L
)
,
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whereas, by the above weak convergence of (μt (dy1,dy2))t≥1, we get

1

t

∫ t

0
Qs(gL

)(x1, x2)ds −→
∫
Rd

g
L
(y1, y2)νΔ(dy1,dy2)= 0 as t →+∞

since g
L

is identically 0 on ΔRd×Rd . It follows, by letting L go to infinity, that

E
∣∣�x1,x2∞

∣∣= 0.

This implies �
x1,x2∞ = 0 P-a.s. which in turn implies that

P-a.s. p
(
X

x1
t

)− p
(
X

x2
t

)−→ 0 as t →+∞.

Finally, it remains to prove that we can exchange the quantifiers, i.e. that P-a.s., p(X
x1
t )− p(X

x2
t ) −→ 0 for every

x1, x2 as t →+∞. Assume that x1 ≥ x2. Again by the comparison theorem and the fact that p increases, we have
0 ≤ p(X

x1
t )− p(X

x2
t ) ≤ p(X

�x1�+1
t )− p(X

�x2�
t ). This means that we can come down to a countable set of starting

points. �

In the continuity of the second part of Theorem 2.1(b), it is natural to wonder whether a one-dimensional diffusion
is asymptotically confluent, i.e. when for all x1, x2 ∈ R, X

x1
t − X

x2
t tends to 0 a.s. as t →+∞. In the following

corollary, we show that such property holds in a quite general setting.

Corollary 2.1. (a) Assume the hypothesis of Theorem 2.1(b) hold. If furthermore,

σ never vanishes and lim sup
|x|→+∞

∫ x

0

b

σ 2
(ξ)dξ <+∞

then, P-a.s., for every x1, x2 ∈R,

X
x1
t −X

x2
t −→ 0 as t →+∞.

(b) The above condition is in particular satisfied if there exists M > 0 such that

|x|> M �⇒ sign(x)b(x)≤ 0.

Proof. (a) Under the assumptions of the theorem, p is continuously differentiable on R and

p′(x)= e
− ∫ x

x0
(2b/σ 2)(u)du

, x ∈R.

Then it is clear that p′inf = infx∈R p′(x) > 0 iff lim sup|x|→+∞
∫ x

x0

2b

σ 2 (ξ)dξ < +∞. By the fundamental theorem of
calculus, we know that,∣∣Xx1

t −X
x2
t

∣∣≤ 1

p′min

∣∣p(Xx1
t

)− p
(
X

x2
t

)∣∣
and the result follows from Theorem 2.1(b).

(b) Since σ never vanishes, p′′ is well-defined and for every x ∈R, p′′(x)=− 2b(x)p′(x)

σ 2(x)
. Using that p′ is positive,

we deduce from the assumptions that

∃M > 0 such that

{
p′′(x)≥ 0, x ≥M ,
p′′(x)≤ 0, x ≤−M .

Now, p′ being continuous, it follows that p′ attains a positive minimum p′min > 0. �
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Examples.

1. Let U be a positive a twice differentiable function such that lim|x|→+∞U(x) = +∞ and consider the one-
dimensional Kolmogorov equation dXt =−U ′(Xt )dt + σ dWt with σ > 0. Then,

lim inf|x|→+∞xU ′(x) >
σ 2

2
�⇒ Xx

t −X
y
t

t→+∞−→ 0 a.s.

Note that in particular, this result holds true even if U has several local minimas.
2. Let σ :R→ (0,+∞) be a locally Lipschitz continuous function with linear growth so that the SDE

dXt = σ(Xt )dWt

defines a (Markov) flow (Xx
t )t≥0 of local martingales. If 1

σ
∈L2(R,Bor(R), λ) then there exists a unique invariant

measure ν(dξ) = cσ
dξ

σ 2(ξ)
and (X

xi
t )t≥0, i = 1,2 is pathwise confluent (in the sense of Theorem 2.1(b)) since

p(x)= x. Note that the linear growth assumption cannot be significantly relaxed since a stationary process cannot
be a true martingale which in turn implies that ν has no (finite) first moment.

3. The multidimensional case

In this section, we begin by an example of a multidimensional Brownian diffusion (Xx1 ,Xx2) for which νΔ (image
of ν on the diagonal) is not the only one invariant distribution. Thus, Theorem 2.1 is specific to the case d = 1 and
we cannot hope to get a similar result for the general case d ≥ 2. It is of course closely related to the classification
of two-point motion on smooth compact Riemannian manifolds since the unit circle will turn out to be a uniform
attractor of the diffusion.

3.1. Counterexample in 2-dimension

Roughly speaking, saying that νΔ is the only one invariant distribution means in a sense that Xx
t −X

y
t has a tendency

to converge towards 0 when t → +∞. Thus, the idea in the counterexample below is to build a “turning” two-
dimensional ergodic process where the angular difference between the two coordinates does not depend on t . Such a
construction leads to a model where the distance between the two coordinates can not tend to 0 (note that some proofs
are deferred to Appendix B).

We consider the 2-dimensional SDE with Lipschitz continuous coefficients defined for every x ∈R
2 by

b(x)=
(

x1{0≤|x|≤1} − x

|x|1{|x|≥1}
)(

1− |x|),
σ (x)= ϑ Diag

(
b(x)

)+ [ 0 −cx2

cx1 0

]
,

where ϑ, c ∈ (0,+∞) are fixed parameters.
Switching to polar coordinates Xt = (rt cosϕt , rt sinϕt ), t ∈R+, we obtain that this SDE also reads

drt =min(rt ,1)(1− rt )
(
dt + ϑ dW 1

t

)
, r0 ∈R+, (3.1)

dϕt = c dW 2
t , ϕ0 ∈ [0,2π), (3.2)

where x0 = r0(cosϕ0, sinϕ0) and W = (W 1,W 2) is a standard 2-dimensional Brownian motion.
Standard considerations about Feller classification (see Appendix B for details) show that, if x0 �= 0 (i.e. r0 > 0)

and ϑ ∈ (0,
√

2) then

rt −→ 1 as t →+∞, (3.3)
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while it is classical background that

P-a.s. ∀ϕ0 ∈R+,
1

t

∫ t

0
δ

ei(ϕ0+cW2
s ) ds �⇒ λS1 as t →+∞,

where S1 denotes the unit circle of R2. Combining these two results straightforwardly yields

∀x ∈R
2 \ {(0,0)

}
, P-a.s.

1

t

∫ t

0
δXx

s
ds

(R2)�⇒ λS1 as t →+∞.

On the other hand, given the form of ϕt , it is clear that if x = r0eiϕ0 and x′ = r ′0eiϕ′0 , r0, r ′0 �= 0, ϕ0, ϕ′0 ∈ [0,2π),
then

lim
t→+∞

∣∣Xx
t −Xx′

t

∣∣= ∣∣ei(ϕ0−ϕ′0) − 1
∣∣

which in turn implies that

lim
t→+∞

1

t

∫ t

0

∣∣Xx
s −Xx′

s

∣∣ds = ∣∣ei(ϕ0−ϕ′0) − 1
∣∣ P-a.s.

This limit being different from 0 as soon as ϕ0 �= ϕ′0, one derives, as a consequence, that νΔ cannot be the only
invariant distribution. In fact, a more precise statement can be proved.

Proposition 3.1. (a) A distribution μ is invariant for the semi-group (Qt )t≥0 of the duplicated diffusion if and only if
μ has the following form:

μ= L
(
eiΘ, ei(Θ+V )

)
, (3.4)

where Θ is uniformly distributed over [0,2π] and V is a [0,2π)-valued random variable independent of Θ .
(b) When V = 0 a.s., we retrieve νΔ whereas, when V also has uniform distribution on [0,2π], we obtain ν ⊗ ν.

Finally, μ is extremal in the convex set of (Qt )t≥0 invariant distributions if and only if there exists θ0 ∈ [0,2π) such
that V = θ0 a.s.

The proof is postponed to Appendix B. However, note that the claim about extremal invariant distributions follows
from the fact that for every θ ∈ [0,2π), (Qt )t≥0 leaves the set Γθ := {(eiϕ, eiϕ′) ∈ S1×S1, ϕ

′ −ϕ ≡ θ mod 2π} stable.

Remark 3.1. In the above counterexample, the invariant measure of (rt )t≥0 is the Dirac measure δ1. In fact, setting

again x = ε0eiϕ0 and x′ = r ′0eiϕ′0 and using that Xx
t −Xx′

t = rx
t (ei(ϕ0+W 2

t )− ei(ϕ′0+W 2
t ))+ (rx

t − rx′
t )ei(ϕ′0+W 2

t ), an easy
adaptation of the above proof shows that it can be generalized to any ergodic non-negative process (rt )t≥0 solution to
an autonomous SDE and satisfying the following properties:

• Its unique invariant distribution π satisfies π(R∗+)= 1.
• For every x, y ∈ (0,+∞), rx

t − r
y
t −→ 0 a.s. as t →+∞.

For instance, let (Xx
t )t≥0 be an Ornstein–Uhlenbeck process satisfying the SDE dXt =−Xt dt + σ dWt,X0 = x. Set

rx
t = (Xx

t )2 (this is a special case of the Cox–Ingersoll–Ross process). The process (rx
t ) clearly satisfies the first two

properties. Furthermore, (Xx
t )t≥0 satisfies a.s. for every x, y ∈ R and every t ≥ 0, |Xx

t − X
y
t | = |x − y|e−t . Then,

since for every x ∈R,

Xx
t

t
=−1

t

∫ t

0
Xx

s ds + σ
Wt

t
→ 0 a.s. as t →+∞,

it follows that (rx
t )t≥0 also satisfies for all positive x, y, rx

t − r
y
t −→ 0 a.s. as t →+∞ (many other examples can be

built using Corollary 2.1).
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Finally, note that if μ= L(ReiΘ,Rei(Θ+V )) where R, Θ and V are independent random variables such that the
distributions of R and Θ are respectively π and the uniform distribution on [0,2π] and V takes values in [0,2π),
then μ is an invariant distribution of the associated duplication system.

In connection with this counterexample we can mention a general result on the Brownian flows of Harris (see [10],
[17], Theorem 4.3.2). The theorem gives conditions on b and σ under which ν is an invariant measure of the one point
motion (Xx

t )t≥0 and ν ⊗ ν is an invariant measure of the two point motion (X
x1
t ,X

x2
t )t≥0.

3.2. Uniqueness of the invariant measure: (S, θ)-confluence

In the sequel of this section, we propose criterions for the uniqueness of the invariant distribution of the duplicated
system in the multidimensional case. The underlying idea of the criterions discussed below is to analyze the coupled
diffusion process (Xx1,Xx2) through the squared distance process rt = |Xx1

t −X
x2
t |2S (where we recall that for a given

positive definite matrix S, | · |
S

is the Euclidean norm on R
d induced by the scalar product (x|y)

S
= (x|Sy)). It is

somewhat similar to that of Has’minskii’s test for explosion of diffusions in R
d or to the one proposed in Chen and

Li’s work devoted to the coupling of diffusions (see [7]). We begin by a general abstract result under an assumption
depending on a continuous function θ : (0,+∞)→R+ to be specified further on. Then, more explicit pointwise or in-
tegrated criterions are derived in the next subsections. In particular, one involves a kind of bi-variate non-infinitesimal
Lyapunov exponent.

Let us introduce some notations. For some probability measures ν and ν′ on R
d , we set

P�
ν,ν′ =

{
m ∈ P

(
R

d ×R
d
)
,m
(
dx ×R

d
)= ν,m

(
R

d × dy
)= ν′,m(ΔRd×Rd )= 0

}
and P� = {P�

ν,ν′, ν, ν′ ∈ ISDE} where ISDE denotes the set of invariant distributions of (SDE). In particular, P� =P�
ν,ν

when ISDE = {ν} (which is the cas of main interest).
For S ∈ S++(d,R), we also set

[b]S,+ = sup
x �=y

(b(x)− b(y)|x − y)
S

|x − y|2
S

.

Note that if [b]S,+ < +∞ and if σ is Lipschitz continuous, strong existence, pathwise uniqueness and the Feller
Markov property hold for (SDE).

For a continuous function θ : (0,+∞)→R+, we define the pseudo-scale C2-function fθ and its companion gθ by

∀u ∈ (0,+∞), fθ (u)=
∫ u

1
e
∫ 1
ξ (θ(w)/w)dw dξ and gθ (u)= uf ′θ (u). (3.5)

Finally, for S and θ defined as above, we define the (S, θ)-confluence function Ψθ,S on cΔR2d by

Ψθ,S(x, y)= (b(x)− b(y)|x − y
)

S
+ 1

2

∥∥σ(x)− σ(y)
∥∥2

S
− θ
(|x − y|2

S

)∣∣∣∣(σ ∗(x)− σ ∗(y)
)S(x − y)

|x − y|
S

∣∣∣∣2.
Let us now state the result.

Theorem 3.1. Let S ∈ S++(d,R). Assume that b is a continuous function such that [b]S,+ <+∞ and σ is Lipschitz
continuous. Assume that the set ISDE of invariant distributions of SDE is (non-empty, convex and) weakly compact.
Furthermore, assume that for every m ∈ P�, the following (S, θ)-confluence condition is satisfied: there exists a
continuous function θ : (0,+∞)→R+ such that⎧⎪⎪⎨⎪⎪⎩

(i) lim sup
u→0+

∫ 1

u

θ(w)− 1

w
dw <+∞,

(ii)
∫
Rd×Rd

f ′θ
(|x − y|2

S

)
Ψθ,S(x, y)m(dx,dy) < 0.

(3.6)
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(a) Weak confluence (Uniqueness of both invariant distributions): Then, if IDSDS denotes the set of invariant dis-
tributions of the duplicated system (DSDS), one has

ISDE = {ν} and IDSDS = {νΔ}
keeping in mind that νΔ = ν ◦ (x 	→ (x, x))−1.

(b) Pathwise confluence: Let θ : (0,+∞)→R+ be a continuous function such that
∫ 1

0 e
∫ 1
v (θ(w)/w)dw dv <+∞ and

such that

∀x, y ∈R
d, x �= y, Ψθ,S(x, y) < 0.

If furthermore, for every x ∈R
d , ( 1

t

∫ t

0 Ps(x,dy)ds)t≥1 is tight, we have a.s. pathwise asymptotic confluence:

∀x1, x2 ∈R
d, X

x1
t −X

x2
t −→ 0 as t →+∞ P-a.s. (3.7)

Remark 3.2. � Owing to assumption (i) and to [b]S,+ < +∞, (x, y) 	→ f ′θ (|x − y|2)Ψθ,S(x, y) is always bounded
from above on cΔRd×Rd so that the integrals with respect to m ∈ P� are well-defined. Also note that since f ′θ is
positive, assumption (ii) holds in particular if there exists θ and S such that the (S, θ)-confluence function Ψθ,S is
negative on cΔRd×Rd .

� If we also assume in (a), that ( 1
t

∫ t

0 Ps(x,dy)ds)t≥1 is tight then, so is ( 1
t

∫ t

0 Qs(x, x′,dy,dy′)ds)t≥1. Since, by
construction, the weak limiting distributions of this sequence as t →+∞ are invariant distributions, it follows that
1
t

∫ t

0 Qs(x, x′,dy,dy′)ds weakly converges to νΔ as t →+∞. This motivates the “weak confluence” terminology.
� It is natural to wonder if the assumptions for pathwise asymptotic confluence (claim (b)) are more stringent

than assumptions (i) and (ii). The fact that Ψθ,S < 0 on R
d × R

d \ ΔRd×Rd implies assumption (ii) has already

been mentioned. One can also check that
∫ 1

0 e
∫ 1
v

θ(w)
w

dw dv < +∞ implies assumption (i): one first derives from the

Cauchy criterion that
∫ 1

0 e
∫ 1
v (θ(w)/w)dw dv <+∞ implies that

∫ u

u/2 e
∫ 1
v (θ(w)/w)dw dv→ 0 as u→ 0+. Using that v 	→

e
∫ 1
v (θ(w)/w)dw is non-increasing on (0,1], it follows that ue

∫ 1
u (θ(w)/w)dw → 0+ as u→ 0. Taking the logarithm yields∫ 1

u
θ(w)−1

w
dw→−∞ and thus, assumption (i).

� If b and σ are Lipschitz continuous, Kunita’s Stochastic flow theorem (see [17], Section 4.5) ensures in particular
that, if x1 �= x2, the solutions X

x1
t and X

x2
t a.s. never get stuck. Taking advantage of this remark slightly shortens the

proof below.
� Tightness criterions of ( 1

t

∫ t

0 Ps(x,dy)ds)t≥1 for every x ∈ R
d usually rely on the mean-reversion property of

the solutions of (SDE) usually established under various assumptions involving the existence of a so-called Lyapunov
function V going to infinity at infinity and such that AV is upper-bounded and lim sup|x|→+∞AV (x) < 0 where A
denotes the infinitesimal generator of Xx (so-called Has’minskii’s criterion). Keep in mind that

AV (x)= (b|∇V )(x)+ 1

2
Tr
(
σσ ∗(x)D2V (x)

)
,

where Tr(A) stands for the trace of the matrix A.
On the other hand, a classical criterion for pathwise asymptotic confluence (a.s. at exponential rate, see e.g. [1,20]

and often referred to as asymptotic flatness) is

∀x, y ∈R
d,

(
b(x)− b(y)|x − y

)+ 1

2

∥∥σ(x)− σ(y)
∥∥2

<−c|x − y|2, c > 0, (3.8)

and, as a straightforward consequence, uniqueness of the invariant distribution ν of (SDE) (and of (DSDS) as well).
Moreover, putting y = 0 in the above inequality straightforwardly yields real coefficients α > 0, β ≥ 0 such that
AV ≤ β − αV with V (x) = |x|2. Hence Has’minskii criterion is fulfilled, so it is also an existence criterion for
the invariant distribution. In fact, both weak and pathwise assumptions in Theorem 3.1 are much weaker than (3.8)
but some of the properties which hold under (3.8) are still preserved. For instance, since the left-hand side of (3.8)
corresponds to the (S,0)-confluence function, we deduce from the criterions that if the (S,0)-confluence function is
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(only) negative on cΔRd×Rd , uniqueness of the invariant distribution ν of (SDE) (and of νΔ for (DSDS)) holds and,
combined with the tightness of the occupation measure of the semi-group, it becomes a criterion for a.s. pathwise
asymptotic confluence.

Proof of Theorem 3.1. STEP 1: Exactly like in the beginning of the proof of Theorem 2.1(a), one checks that the set
IDSDS of invariant distributions of (Qt )t≥0 is a non-empty, convex and weakly compact subset of P(Rd ×R

d). As a
consequence of the Krein–Millman theorem, IDSDS has extremal distributions (and is their closed convex hull).

On the other hand, it follows from strong uniqueness theorem for SDE’s that the semi-group (Qt )t≥0 leaves stable
the diagonal ΔRd×Rd = {(x, x), x ∈R

d}.
Let x1, x2 ∈R

d , x1 �= x2. We define the stopping time

τx1,x2 := inf
{
t ≥ 0 |Xx1

t =X
x2
t

}
.

Still by a strong uniqueness argument it is clear that {τx1,x2 > t} = {Xx1
t �=X

x2
t } so that

Qt

(
(x1, x2),

cΔRd×Rd

)= 1cΔ
Rd×Rd

(x1, x2)P(τx1,x2 > t)

and Qt((x1, x1),
cΔRd×Rd )= 0.

Let μ ∈ IDSDS be an extremal invariant measure. We have, for every t ≥ 0,

μ
(
cΔRd×Rd

)= ∫
cΔ

Rd×Rd

μ(dx1,dx2)P(τx1,x2 > t).

Letting t go to +∞ yields

μ
(
cΔRd×Rd

)= ∫
cΔ

Rd×Rd

μ(dx1,dx2)P(τx1,x2 =+∞)

so that, on cΔRd×Rd , μ(dx1,dx2)-a.s., P(τx1,x2 =+∞)= 1 or equivalently the process (Xx1 ,Xx2) lives in cΔRd×Rd .

Consequently, if μ(cΔRd×Rd ) ∈ (0,1), both conditional measures μ
cΔ

Rd×Rd and μ
Δ

Rd×Rd are invariant distributions
for (SDSD) as well. If so,

μ= μ
(
cΔRd×Rd

)
μ

cΔ
Rd×Rd +μ(ΔRd×Rd )μ

Δ
Rd×Rd

cannot be extremal. Consequently μ(ΔRd×Rd )= 0 or 1.
STEP 2: Let μ be an extremal distribution in IDSDS and assume that μ(cΔRd×Rd ) = 1 so that μ ∈ P�. We will

prove that this yields a contradiction under assumptions (i) and (ii).
Note that f ′θ and gθ defined in (3.5) are positive on (0,+∞), that assumption (i) reads lim supu→0+ gθ (u) <+∞

and that g′θ (u)= f ′θ (u)(1− θ(u)). Moreover, if assumption (ii) is fulfilled, so is the case for any continuous function θ̃

satisfying θ̃ ≥ θ . As a consequence, we may modify θ on [1,+∞) so that θ still satisfies (ii) and θ ≥ 1 over [2ε,+∞).
Then the function gθ is non-increasing on [2,+∞). Consequently, without loss of generality, we may assume in the
sequel of the proof that

sup
u>0

gθ (u) <+∞. (3.9)

We now define a (Lyapunov) function ϕ : cΔRd×Rd →R by

ϕ(y1, y2) := fθ

(|y1 − y2|2S
)
.

We know from Step 1 that μ(dx1,dx2)-a.s., (Xx1
t �=X

x2
t for every t ≥ 0) a.s. Then, fθ being a C2-function, we derive
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from Itô’s formula applied to ϕ(X
x1
t ,X

x2
t ) that μ(dx1,dx2)-a.s.,

ϕ
(
X

x1
t ,X

x2
t

) = ϕ(x1, x2)+
∫ t

0
A(2)ϕ

(
Xx1

s ,Xx2
s

)
ds

+
∫ t

0
f ′θ
(∣∣Xx1

s −Xx2
s

∣∣2
S

)((
σ ∗
(
Xx1

s

)− σ ∗
(
Xx2

s

))
S
(
Xx1

s −Xx2
s

)|dWs

)
︸ ︷︷ ︸

=:Mt local martingale

,

where, for every (x1, x2) ∈ (Rd)2,

A(2)ϕ(x1, x2) = 2

((
b(x1)− b(x2)|x1 − x2

)
S
+ 1

2

∥∥σ(x1)− σ(x2)
∥∥2

S

)
f ′θ
(|x1 − x2|2S

)
+ 2f ′′θ

(|x1 − x2|2S
)∣∣(σ ∗(x1)− σ ∗(x2)

)
S(x1 − x2)

∣∣2. (3.10)

Using that fθ is increasing and satisfies the ODE≡ θ(ξ)f ′θ (ξ)+ ξf ′′θ (ξ)= 0, ξ ∈ (0,+∞), we deduce that

A(2)ϕ(x1, x2)= 2f ′θ
(|x1 − x2|2S

)
Ψθ,S(x1, x2)

so that
∫
Rd×Rd A(2)ϕ(x1, x2)μ(dx1,dx2) < 0 by assumption (ii).

On the one hand, since μ is extremal and since A(2)ϕ is bounded from above (see Remark 3.2), we can apply
Birkhoff’s theorem and obtain:

μ(dx1,dx2)-a.s.,
1

t

∫ t

0
A(2)ϕ

(
Xx1

s ,Xx2
s

)
ds

t→+∞−→
∫

cΔ
Rd×Rd

A(2)ϕ dμ ∈ [−∞,0) a.s. (3.11)

On the other hand, using that gθ is bounded and σ is Lipschitz continuous, it follows that (Mt)t≥0 is an L2-martingale
such that

〈M〉t =
∫ t

0
gθ

(∣∣Xx1
s −Xx2

s

∣∣2
S

)2∣∣∣∣ (σ ∗(Xx1
s )− σ ∗(Xx2

s ))

|Xx1
s −X

x2
s |S

S(X
x1
s −X

x2
s )

|Xx1
s −X

x2
s |S

∣∣∣∣2 ds ≤ Ct Pμ-a.s., (3.12)

where C is a deterministic positive constant so that Mt

t
→ 0 Pμ-a.s.

As a consequence, μ(dx1,dx2)-a.s.,

lim
t→+∞

ϕ(X
x1
t ,X

x2
t )

t
=
∫

cΔ
Rd×Rd

A(2)ϕ dμ < 0 a.s.

Hence, a.s., fθ (|Xx1
t −X

x2
t |2S )= ϕ(X

x1
t ,X

x2
t )

t→+∞−→−∞ a.s.
If limu→0+ fθ (u) >−∞, this yields a contradiction since fθ is increasing on R

∗+. Otherwise∣∣Xx1
t −X

x2
t

∣∣2
S

t→+∞−→ 0.

But applying again Birkhoff’s theorem, we obtain μ(dx1,dx2)-a.s.,∫
|y1 − y2|2S μ(dy1,dy2)= lim

t→+∞
1

t

∫ t

0

∣∣Xx1
t −X

x2
t

∣∣2
S

ds = 0 a.s.,

which contradicts the assumption μ(cΔRd×Rd )= 1. Consequently, for any extremal invariant distribution μ, we have
μ(ΔRd×Rd )= 1.

We can now prove claim (a): by Krein–Millman’s Theorem ISDS is the weak closure of the convex hull of its ex-
tremal distributions. Consequently, the diagonal ΔRd×Rd being a closed subset of Rd ×R

d , all invariant distributions
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of the duplicated system are supported by this diagonal. For any such invariant distribution μ, both its marginals are
invariant distributions for (SDE). If (SDE) had two distinct invariant distributions ν and ν′, we know from the Intro-
duction that IDSDS would contain at least a distribution μ for which the two marginals distributions are μ(· ×R

d)= ν

and μ(Rd × ·) = ν′ respectively. As a consequence, such a distribution μ could not by supported by the diagonal
ΔRd×Rd . Finally, ISDE is reduced to a singleton {ν} and IDSDS = {νΔ}.

STEP 3 (Claim (b): Proof of (3.7)): Under the additional assumption on θ of (b), we have limu→0+ fθ (u) >−∞
and thus, infu>0 fθ (u) >−∞ since fθ is increasing. Let x1, x2 ∈R

d . Using again that A(2)ϕ < 0 on cΔRd×Rd where
A(2)ϕ is given by (3.10). It follows that (fθ (|Xx1

t −X
x2
t |2S ))t≥0 is a lower-bounded P-supermartingale. Thus, it a.s.

converges toward L
x1,x2∞ ∈L1(P). Using again that fθ is increasing, it follows that |Xx1

t −X
x2
t |2S a.s. converges toward

a finite random variable �
x1,x2∞ = f−1

θ (L
x1,x2∞ ).

Now, using that for every x ∈R
d , ( 1

t

∫ t

0 Ps(x,dy)ds)t≥1 is tight, we derive that ( 1
t

∫ t

0 Qs((x1, x2), (dy1,dy2))ds)t≥1

is tight as well. Then the uniqueness of νΔ as an invariant distribution of Q implies that

1

t

∫ t

0
Qs

(
(x1, x2), (dy1,dy2)

)
ds

(Rd )�⇒ νΔ.

Now for every bounded continuous function g :Rd →R,

1

t

∫ t

0
Qs

(
g
(|y1 − y2|2S

))
(x1, x2)ds = 1

t

∫ t

0
Eg
(∣∣Xx1

s −Xx2
s

∣∣2
S

)
ds −→ Eg

(
�x1,x2∞

)
so that

Eg
(
�x1,x2∞

)= ∫ g
(|y1 − y2|2S

)
νΔ(dy1,dy2)= g(0). �

In assumption (ii) of the previous theorem, we see that the function (x, y) 	→ |(σ ∗(x) − σ ∗(y))S(x − y)| plays
an important role. In the sequel, we will obtain specific results when this function is not degenerated away from the
diagonal. Such type of assumption will be called strong or regular directional S-ellipticity assumption.

In the following proposition, we first show that when such an assumption is satisfied, claim (b) of the previous
theorem still holds without the tightness assumption on ( 1

t

∫ t

0 Ps(x,dy)ds)t≥1 (although it is not really restrictive in
our framework (see the fourth item of Remark 3.2)).

Proposition 3.2. If the function θ is (0,1]-valued and σ satisfies the following strong directional S-ellipticity as-
sumption away from the diagonal

∃α0 > 0,∀x, y ∈R
d ,

∣∣(σ ∗(x)− σ ∗(y)
)
S(x − y)

∣∣≥ α0|x − y|2, (3.13)

then the conclusion of claim (b) in the above proposition remains true without the tightness assumption on
( 1

t

∫ t

0 Ps(x,dy)ds)t≥1.

Proof. First, we recall that under the assumptions of (b), we recall that (fθ (|Xx1
t − X

x2
t |2S ))t≥0 is a lower-bounded

P-supermartingale thus convergent to an integrable random variable and that this implies that (|Xx1
t − X

x2
t |2S )t≥0 is

a.s. convergent to a finite random variable �
x1,x2∞ (since fθ is increasing). On the other hand, since −A(2)ϕ is positive

and fθ is lower-bounded, we also have that

fθ

(∣∣Xx1
t −X

x2
t

∣∣2
S

)− ∫ t

0
A(2)ϕ

(
Xx1

s ,Xx2
s

)
ds = ϕ(x1, x2)+Mt

is a lower bounded P-(local) martingale starting at a deterministic starting value, hence converging toward an inte-
grable random variable. Owing to the computations of (3.12) (which hold for every starting points x1, x2), (Mt)t≥0 is
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in fact an L2-convergent martingale. Thus, 〈M〉∞ <+∞ and taking advantage of the expression of this bracket (see
(3.12)) and to assumption (3.13), we derive that for every ε > 0∫ +∞

0
gθ

(∣∣Xx1
s −Xx2

s

∣∣2
S

)21{|Xx1
s −X

x2
s |2S≥ε} ds <+∞ a.s.

The function gθ is positive on (0,+∞) and non-decreasing since g′θ (u)= f ′θ (u)(1− θ(u))≥ 0. This implies that, for
every ε > 0,

lim inf
t→+∞ gθ

(∣∣Xx1
t −X

x2
t

∣∣2
S

)
1{|Xx1−Xx2 |2

S
≥ε} = 0 a.s.

Combined with the convergence of the squared norm this yields

∀ε > 0, gθ

(
�x1,x2∞

)
1{�x1,x2∞ ≥ε} = 0 a.s.

which finally implies �
x1,x2∞ = 0 a.s. �

3.3. Global criterions, NILS exponent

In this section and the following, we derive several corollaries of Theorem 3.1 illustrated by different examples.

Proposition 3.3. Let S ∈ S++(d,R). Assume [b]S,+ < +∞, σ is Lipschitz continuous and ISDS is non-empty and
weakly compact. Then,

(a) If assumption (ii) of Theorem 3.1 holds with some continuous functions θ : (0,+∞)→ R+ satisfying: there
exists ε0 > 0 such that θ(u) ≤ 1, u ∈ (0, ε0], then (SDE) (1.1) and its duplicated system have ν and νΔ as unique
invariant distributions respectively.

(b) If for every x ∈ R
d , ( 1

t

∫ t

0 Ps(x,dy)ds)t≥1 is tight and if Ψθ,S < 0 on Δc
Rd×Rd with a continuous function

θ : (0,+∞)→R+ satisfying: there exists κ > 1 and ε0 ∈ (0, e−κ/2) such that

∀u ∈ (0, ε0], θ(u)≤
(

1+ κ

logu

)
, (3.14)

then the duplicated system of (SDE) is pathwise confluent in the sense of Theorem 3.1(b). This condition is in partic-
ular satisfied if there exists ε0 > 0 and θ0 ∈ (0,1) such that

∀u ∈ (0, ε0], θ(u)≤ θ0.

Proof. Claim (a) is obvious. As for (b), one checks that
∫ 1

0 e
∫ 1
v (θ(w)/w)dw dv <+∞ as soon as lim infu→0+ log(u)×

(θ(u)− 1) > 1 and the result follows. �

Remark 3.3. The simplest case where the preceding result holds is obtained when θ ≡ 0. In this case, the weak
confluence condition, referred to as (S,0)-confluence in what follows, reads:

∀m ∈P�,

∫
Rd×Rd

(
b(x)− b(y)|x − y

)
S
+ 1

2

∥∥σ(x)− σ(y)
∥∥2

S
m(dx,dy) < 0 (3.15)

and claim (b) holds as soon as the integrated function is negative on cΔRd×Rd .

At this stage, it is important for practical applications to note that the constant function θ ≡ 1 satisfies the assump-
tion in (a) of the above proposition. This leads us to introduce an important quantity of interest for our purpose.
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Definition 3.1. The non-infinitesimal S-Lyapunov (NILS) exponent is a function on R
d ×R

d \ΔRd×Rd defined for
every x, y ∈R

d , x �= y, by

Λ
S
(x, y)= (b(x)− b(y)|x − y)

S

|x − y|2
S

+ 1

2

‖σ(x)− σ(y)‖2
S

|x − y|2
S

−
(∣∣∣∣ (σ ∗(x)− σ ∗(y))S(x − y)

|x − y|2
S

∣∣∣∣2).

Corollary 3.1. Assume b and σ are like in Proposition 3.3 and ISDE is non-empty and weakly compact.

(a) Negative Integrated NILS exponent: if

∀m ∈P�,

∫
Rd

Λ
S
(x, y)m(dx,dy) < 0, (3.16)

then (SDE) and its duplicated system have ν and νΔ as unique invariant distributions respectively.
(b) Negative NILS exponent bounded away from 0: If furthermore ( 1

t

∫ t

0 Ps(x,dy)ds)t≥1 is tight for every x ∈R
d

or σ satisfies (3.13) and if there exists c0 > 0 such that

∀x, y ∈R
d, x �= y, |x − y|2

S
≤ ε0 �⇒ Λ

S
(x, y)≤−c0 (3.17)

then the duplicated diffusion is pathwise confluent i.e.

∀x1, x2 ∈R
d , X

x1
t −X

x2
t −→ 0 a.s. as t →+∞.

Proof. (a) follows from claim (a) in the above proposition with θ ≡ 1 since uf ′θ (u) ≡ 1 on (0,+∞) so that
A(2)ϕ(x, y)= 2Λ

S
(x, y) in the proof of Theorem 3.1. (b) follows from claim (b) in the same proposition. �

Remark 3.4. � It is obvious that (3.16) is satisfied, i.e. the integrated NILS (INILS) exponent is negative for every
m ∈P�, as soon as the NILS exponent itself is negative on cΔRd×Rd . This pointwise negativity may appear as the only
checkable condition for practical applications, but so is not the case and we will see in the next subsections that we
can devise criterions when Λ

S
is not negative everywhere.

� Let us assume that ν is unique, that ν ⊗ ν ∈ P�
ν,ν (for instance, so is the case if ν is atomless) and that b and

σ are such that for all x �= y, for all t ≥ 0, P(Xx
t �= X

y
t ) = 1 (see the fourth item of Remark 3.2 for comments on

this topic). Then, for each t > 0, one easily checks that the probability measure μ
(0)
t defined in (1.4) belongs to P�

ν,ν .

Furthermore, if (3.16) holds, (μ
(0)
t )t≥1 converges weakly to νΔ since this family is weakly compact (see the first item

of Remark 3.2) and νΔ is its only possible limiting distribution. On the other hand, the function Λ
S

being continuous
and upper-bounded on cΔRd×Rd , can be extended on the diagonal into a lower semi-continuous (l.s.c.) function on
R

d ×R
d (with values in R∪{−∞}). Let Λ

S
denote its l.s.c. envelope. Temporarily assume that b and σ are Lipschitz

continuous so that Λ
S

is bounded. Then applying Fatou’s Lemma in distribution to Λ
S
, it follows from (3.16) that∫

Λ
S
(x, x)ν(dx)=

∫
Λ

S
(x, y)νΔ(dx,dy)≤ lim inf

t→+∞

∫
Λ

S
(x, y)μ

(0)
t (dx,dy)≤ 0. (3.18)

The interesting point is that the left-hand side of (3.18) is an integral with respect to ν and can be seen as a
necessary condition for the criterion (3.16). In fact the result still holds if [b]S,+ <+∞ mutatis mutandis and there
exists a continuous function � ∈ L1(ν) such that

∀x, y ∈R
d ×R

d , Λ−
S
(x, y)≤ �(x)+ �(y) (3.19)

(where, for a function f , f± =max(±f,0)).
Furthermore, when b and σ are continuously differentiable, one derives from a Laplace–Taylor expansion (integral

remainder) that Λ
S
(x, x) reads for every x ∈R

d :

Λ
S
(x, x)= 1

2
inf|u|
S
=1

(
u∗
(
SJb(x)+ J ∗b (x)S

)
u+ ∥∥(∇σ(x)|u)∥∥2

S
− 2
∣∣(∇σ ∗(x)Su|u)∣∣2). (3.20)
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Thus, (3.18) can be read as a checkable necessary condition for the criterion (3.16). We will come back on this
condition in Section 3.6.

� In (b), condition (3.17) can be replaced by the sharper: for all x, y ∈ R
d , Λ

S
(x, y) < 0 and there exists κ > 1

and ε0 ∈ (0, e−κ/2) such that for all x, y ∈R
d such that |x − y|S ≤ ε0, Λ

S
(x, y)≤ κ

log(|x−y|2
S
)
.

When the coefficients are smooth enough, the negativity of Λ
S

can be ensured by the following criterion:

Corollary 3.2 (Smooth coefficients). Assume the functions b and σ are continuously differentiable. Let Jb(x) =
[ ∂bi

∂xj
(x)]1≤i,j≤d denote the Jacobian of b at x and let ∇σ(x) = [ ∂σij

∂xk (x)]i,j,k denote the gradient of σ at x. If both

SJb + J ∗b S and ∇σ are Lipschitz continuous and if ∇σ is bounded then Λ
S
(x, y)≤−c0 on cΔRd×Rd if

sup
x∈Rd

sup
|u|

S
=1

(
u∗
(
SJb(x)+ J ∗b (x)S

)
u+ ∥∥(∇σ(x)|u)∥∥2

S
− 2
∣∣(∇σ ∗(x)Su|u)∣∣2)< 0,

where, for every v = (v1, . . . , vd) ∈R
d ,

(∇σ(x)|v)= [(∇σij (x)|v)]1≤i,j≤d
and ∇σ(x)v =

[
d∑

k=1

∂σij

∂xk

(x)vk

]
1≤i,j≤d

.

When S = Id , this may also be written

sup
x∈Rd

sup
|u|=1

(
u∗
((

Jb + J ∗b
)
(x)+

∑
i,j

(∇σij (x)
)⊗2 − 2

[(∇σij (x)|u)][(∇σ ∗ij (x)|u)])u

)
< 0.

The proof is again an easy consequence of the Laplace–Taylor formula. Computational details are left to the reader.

3.4. Applications and extensions

3.4.1. Localization around the diagonal
By local we mean that the confluence condition will be effective only in the neighbourhood of the diagonal ΔRd×Rd .
The price to pay is a regular directional ellipticity assumption on σ(x)− σ(y) in the direction S(x − y) away from
the diagonal.

Proposition 3.4. Assume [b]S,+ <+∞, σ is Lipschitz continuous and (SDE) admits at least one invariant distribu-
tion ν. If there exists ε0 > 0 such that⎧⎪⎨⎪⎩

(i) directional S-ellipticity: η0 := inf
{∣∣(σ ∗(x)− σ ∗(y)

)
S(x − y)

∣∣, |x − y|
S
≥ ε0

}
> 0,

(ii) locally negative INILS exponent: ∀m ∈P�,

∫
|x−y|

S
≤ε0

Λ
S
(x, y)m(dx,dy) < 0,

then (SDE) (1.1) and its duplicated system still have ν and νΔ as unique invariant distributions respectively.

Proof. Owing to (i), we have for every u ∈ (ε0,+∞):

sup
|x−y|

S
=u

(b(x)− b(y)|x − y)
S
+ (1/2)‖σ(x)− σ(y)‖2

S

|(σ ∗(x)− σ ∗(y))S(x − y)/|x − y|
S
|2 ≤

(
[b]+ + 1

2
[σ ]2Lip

)
u4

η2
0

.

For every ε′0 > ε0, let θε′0 : (0,+∞)→R+ denote the continuous function defined by

θε′0(u)=

⎧⎪⎨⎪⎩
([b]S,+ + 1

2 [σ ]2Lip)
u4

η2
0

if u ∈ (ε′0,∞),

1 if u ∈ (0, ε0],
1+ θε′0(ε

′
0)

t−ε0
ε′0−ε0

if u ∈ (ε0, ε
′
0).
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Since θε′0(u)= 1 in the neighbourhood of 0, assumption (i) of Theorem 3.1 is satisfied. For assumption (ii), one first
deduces from the construction and to the first assumption that,

∀ε′0 > ε0,∀x, y such that |x − y|S ≥ ε′0, Ψθε′0
,S(x, y)≤ 0.

Using that θε′0(u)= 1 on (0, ε0], it follows that for all m ∈P�,∫
Rd×Rd

f ′θ
(|x − y|2

S

)
Ψθε′0

,S(x, y)m(dx,dy)≤
∫
|x−y|S<ε′0

Λ
S
(x, y)m(dx,dy)+ I2

(
ε′0
)
,

where

I2
(
ε′0
)= ∫

ε0<|x−y|S<ε′0
f ′θ
(|x − y|2

S

)
Ψθε′0

,S(x, y)m(dx,dy).

Since the integrated function is bounded from above on {(x, y), ε0 < |x − y|< ε′0}, we deduce that

I2
(
ε′0
)≤Cm

(
ε0 < |x − y|S < ε′0

) ε′0→ε0−→ 0.

By the second assumption of this proposition, it follows that there exists ε′0 > ε0 such that∫
Rd×Rd

f ′θ
(|x − y|2

S

)
Ψθε′0

,S(x, y)m(dx,dy) < 0

so that assumption (ii) of Theorem 3.1 holds. This completes the proof. �

3.4.2. Local criterion on compact sets
As mentioned in Remark 3.3, Theorem 3.1 can be applied under the (S,0)-confluence condition (3.15). This condition
is in particular satisfied when

∀x, y ∈R
d, x �= y,

(
b(x)− b(y)|x − y

)
S
+ 1

2

∥∥σ(x)− σ(y)
∥∥2

S
< 0.

One asset of this more stringent assumption is that it can be localized in two ways: first in the neighbourhood of
the diagonal like in the above local criterions, but also on compacts sets of Rd ×R

d . This naturally leads to a criterion
based on the differentials of b and σ when they exist.

Proposition 3.5 (Criterion on compact sets). (a) Let S ∈ S++(d,R) such that for every R > 0, there exists δR > 0
such that ∀x, y ∈ B|·|

S
(0;R),

0 < |x − y|
S
≤ δR �⇒ (

b(x)− b(y)|x − y
)

S
+ 1

2

∥∥σ(x)− σ(y)
∥∥2

S
< 0. (3.21)

Then the diffusion is asymptotically (S,0)-confluent.
(b) If b and σ are continuously differentiable, then (3.21) holds as soon as

(AC)diff ≡ ∀x ∈R
d, SJb(x)+ J ∗b (x)S +√S

∑
i,j

(∇σij (x)
)⊗2√

S < 0 in S(d,R).

Proof. (a) Let x, y ∈R
d such that x �= y. Set R =max(|x|

S
, |y|

S
) and

x0 = x, xi = x + i

N
(y − x), i = 1, . . . ,N − 1, xN = y,
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where |y − x|
S

< NδR . Then for every i ∈ {1, . . . ,N}, |xi |S ≤R and |xi − xi−1|S ≤ δR . Then

∥∥σ(x)− σ(y)
∥∥2

S
=
∥∥∥∥∥

N∑
i=1

σ(xi)− σ(xi−1)

∥∥∥∥∥
2

S

≤N

N∑
i=1

∥∥σ(xi)− σ(xi−1)
∥∥2

S

< −2N

N∑
i=1

(
b(xi)− b(xi−1)|xi − xi−1

)
S
=−2

N∑
i=1

(
b(xi)− b(xi−1)|y − x

)
S

< −2
(
b(y)− b(x)|y − x

)
S
.

(b) First, we prove the result when S = Id . We note that, for every continuously differentiable function g :Rd →R,
g(y)− g(x)= ∫ 1

0 (∇g(x + t (y − x))|y − x)dt = ∫ 1
0 (y − x)∗∇g(x + t (y − x))dt so that

(
b(y)− b(x)|y − x

)= ∫ 1

0
(y − x)∗Jb

(
x + t (y − x)

)
(y − x)dt =

∫ 1

0
(y − x)∗J ∗b

(
x + t (y − x)

)
(y − x)dt

and

∥∥σ(y)− σ(x)
∥∥2 =

d∑
i,j=1

(∫ 1

0

(∇σij

(
x + t (y − x)

)|y − x
)

dt

)2

.

By Schwarz’s Inequality and the fact that (u|v)2 = u∗v⊗2u, we deduce

(
b(y)− b(x)|y − x

)+ 1

2

∥∥σ(y)− σ(x)
∥∥2 ≤ 1

2

∫ 1

0

(
(y − x)∗

(
Jb + J ∗b

)(
x + t (y − x)

)
(y − x)

+ 1

2

∑
ij

(y − x)∗
(∇σij

(
x + t (y − x)

))⊗2
(y − x)

)
dt.

This completes the proof when S = Id . This extends to general matrix S ∈ S++(d,R) using that ‖σ(y)− σ(x)‖2
S
=

‖(√Sσ)(y)− (
√

Sσ)(x)‖2 and the fact that (Au)⊗2 =Au⊗2A∗ with A=√S. �

3.4.3. The case Λ
S
≤ 0

As mentioned before, the main field of applications of Corollary 3.1 seems to be the case Λ
S

< 0 out of the diagonal
ΔRd×Rd . In the two next sections, our objective is to state some results when this condition is not fulfilled. We begin
by a simple application of Corollary 3.1 where the NILS exponent is only non-positive and negative outside of a
compact set.

Proposition 3.6. Assume [b]S,+ <+∞, σ is Lipschitz continuous and (SDE) has a unique invariant distribution ν

whose support is not compact. Then, uniqueness for νΔ holds true as soon as

∀x, y ∈R
d, Λ

S
(x, y)≤ 0 and ∃R > 0 s.t. max

(|x|
S
, |y|

S

)
> R �⇒ Λ

S
(x, y) < 0. (3.22)

Proof. Since the support of ν is not compact, we have for every m ∈ P�
ν,ν : m({max(|x|

S
, |y|

S
) > R}) ≥ ν({|x|

S
>

R}) > 0. It follows from the assumption that

∀m ∈P�
ν,ν,

∫
Λ

S
(x, y)m(dx,dy)≤

∫
Λ

S
(x, y)1{max(|x|

S
,|y|

S
)>R}m(dx,dy) < 0

and we deduce the result from Corollary 3.1. �
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Remark 3.5. � In the particular case where σ is constant, condition (3.22) becomes a monotony condition on b

(decrease with respect to (·|·)
S

at infinity), namely:

∀x, y ∈R
d, x �= y

(
b(x)− b(y)|x − y

)
S
≤ 0, and ∃R > 0

s.t. max
(|x|

S
, |y|

S

)
> R �⇒ (

b(x)− b(y)|x − y
)
S

< 0.

This means that b is S-non-increasing on R
d , S-decreasing outside B|·|

S
(0;R)2. For instance, if b=−∇U , the above

assumption holds if U is convex and (only) strictly convex outside of a compact set.
� Note that when ∇U is only increasing outside B|·|

S
(0;R) but possibly with no specific monotony on B|·|

S
(0;R),

it is still possible to find some diffusion coefficients σ such that the SDE dXt = −∇U(Xt)dt + σ(Xt )dWt remains
weakly or pathwise confluent. We refer to the next subsection for models with such stochastically stabilizing diffusive
components.

� Finally, note that the above condition (3.22) can be also localized around the diagonal under the directional
S-ellipticity assumption. To be more precise, when ν is unique and its support is not compact, Proposition 3.6 still
holds if assumption (ii) is “localized” into:

(ii)loc ≡ for every x, y ∈R
d such that 0 < |x − y| ≤ ε0,ΛS

(x, y)≤ 0.

3.4.4. Λ
S

possibly positive on some areas of Rd ×R
d

In the continuity of the previous section, we try to explore some multidimensional settings where Λ
S

can be positive
in some parts of the space. More precisely, we focus here on gradient systems with constant noise whose potential U

is not convex in all the space (see [26] for other confluence results on this type of model with the “random attractor”
viewpoint). For such dynamical systems, we obtain a criterion below that we next apply to super-quadratic non-
convex potentials. Then, we will come back to this problem in Section 3.5.3 where we focus on the particular example
U(x)= (|x|2 − 1)2, case for which we are able to obtain a sharper result.

Proposition 3.7 (Gradient system). Let U :Rd →R+ be a locally Lipschitz, differentiable function satisfying

0 < lim inf|x|→+∞
U(x)

|x|γ < lim sup
|x|→+∞

U(x)

|x|γ <+∞ for a positive γ.

Then, the Brownian diffusion

dXx
t =−∇U

(
Xx

t

)
dt + σ dWt, Xx

0 = x,

where σ > 0 and W is a standard Brownian motion on R
d , satisfies a strong existence-uniqueness property with

unique invariant distribution νσ (dx)= Cσ e−2U(x)/σ 2
dx.

Furthermore assume that its NILS exponent satisfies

∀x, y ∈R
d, ΛId (x, y)≤ β − α

2

(|x|a + |y|a) where β ∈R, α, a > 0 (3.23)

then there exists σc > 0 such that, for every σ > σc, the related (DSDS) system (2-point motion) is weakly confluent.

Proof. The strong existence-uniqueness is classical background. The form of the invariant distribution νσ as well.
Then by Fatou’s Lemma and the asymptotic upper-bound, there exists A > 0 such that

lim inf
σ→+∞

∫
Rd

|u|ae−2U(σ 2/γ u)/σ 2
du≥

∫
Rd

|u|ae−A|u|γ du > 0.

On the other hand, note that∫
Rd

|x|ae−2U(x)/σ 2
dx = σd/2+2a/γ

∫
Rd

|u|ae−2U(σ 2/γ u)/σ 2
du.
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Owing to the asymptotic lower bound for U at infinity and the (reverse) Fatou’s Lemma, there exists a real number
B > 0 such that

lim sup
σ→+∞

∫
Rd

e−2U(σ 2/γ u)/σ 2
du≤

∫
Rd

e−B|u|γ du <+∞.

As a consequence lim infσ→+∞ νσ (|x|a)=+∞. For any distribution m ∈P(Rd×R
d) with marginal νσ and assigning

no weight to the diagonal, one has∫
Rd×Rd\Δ

Rd×Rd

ΛId(x, y)m(dx,dy)≤ β − ανσ

(|x|a)< 0

as soon as σ is large enough to ensure that νσ (|x|a)≥ β
α

. �

Remark 3.6. We may assume without loss of generality that arg minRd U = {U = 0} ⊂ {∇U = 0} so that νσ
R

d�⇒
ν0 = Unif({U = 0}) as σ → 0. Hence, from a practical point of view, the fact that the critical σc can be taken as 0
seems a reasonable conjecture if β − αν0(|x|a1{U(x)=0}) ≤ 0. Thus, in Section 3.5.3, we prove that it holds true for
the potential fonction U(x)= (|x|2 − 1)2.

Corollary 3.3. Assume that U :Rd → R+ is defined by U(x) = C|x|2p + ε(x) where p > 1, C > 0 and ε is a C1-
function such that ∇ε is Lipschitz continuous. Then, there exists σc > 0 such that, for every σ > σc, the (DSDS)

related to the gradient system dXt =−∇U(Xt)dt + σ dWt is weakly confluent.

Proof. Using that for every x ∈R
d (even if x = 0 with an obvious extension by continuity),

D2(|x|2p
)= 2p|x|2(p−1)

(
2(p− 1)

x⊗2

|x|2 + Id

)
≥ 2p|x|2(p−1)Id in S+(d,R),

we deduce that for every x �= y,

(∇(|x|2p)−∇(|y|2p)|x − y)

|x − y|2 ≥ 2p

∫ 1

0

∣∣y + t (x − y)
∣∣2(p−1) dt.

If p ≥ 2, we deduce from Jensen’s inequality that∫ 1

0

∣∣y + t (x − y)
∣∣2(p−1)

dt ≥
(∫ 1

0

∣∣y + t (x − y)
∣∣2 dt

)p−1

≥
(

1

6

(|x|2 + |y|2))p−1

≥
(

1

6

)p−1(|x|2(p−1) + |y|2(p−1)
)
,

where in the last inequality, we used again that p− 1≥ 1. It follows that

ΛId (x, y)≤ [ε]1 − αp

(|x|2(p−1) + |y|2(p−1)
)
,

where [ε]1 denotes the Lipschitz constant of ε and αp > 0. The previous result then applies in this case.
When p ∈ (1,2), we deduce from the elementary inequality ||u|ρ − |v|ρ | ≤ |u− v|ρ for 0 < ρ < 1 that∫ 1

0

∣∣y + t (x − y)
∣∣2(p−1) dt ≥ αp

(|x|2(p−1) + |y|2(p−1)
)

with αp > 0 and the result follows likewise. �
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3.5. Examples

3.5.1. An example of confluent diffusion with increasing drift
Assume that σ :Rd →M(d, d,R) is defined by σ(x) = x ⊗ λ+ σ 0 where σ 0 ∈M(d, d,R) and λ :Rd → R

d is a
bounded Lipschitz function (such that σ is Lipschitz too). If there exists ρ ∈ (0, 1

2 ) such that

lim sup
|x|→+∞

(b(x)|x)− ρ|x|2|λ(x)|2
(1+ |x|2)ρ+1/2

=−∞ (3.24)

then the diffusion (1.1) has at least one invariant distribution ν. Thus, if

[b]0+ = sup
x �=0

(b(x)− b(0)|x)

|x|2 �= +∞,

the above condition is satisfied as soon as

lim inf|x|→+∞
∣∣λ(x)

∣∣2 > 2[b]0+.

The key is to introduce the Lyapunov function V (x) = (a + |x|2)ρ+1/2. Using that ‖(σ − σ 0)(x)‖2 =
|(σ − σ 0)∗(x) x

|x| |2 = |λ(x)|2|x|2, we deduce that

1

2

∥∥σ(x)
∥∥2 −

(
ρ + 1

2

)∣∣∣∣σ ∗(x)
x

|x|
∣∣∣∣2 =−ρ

∣∣λ(x)
∣∣2|x|2 +O(1)

and it follows that lim sup|x|→+∞AV (x)=−∞ if (3.24) is fulfilled (where A denotes the infinitesimal generator of
(1.1)).

If the function λ is constant, the diffusion is asymptotically pathwise confluent (so that ν is unique for (1.1) and
the duplicated system has νΔ as unique invariant distribution) as soon as there exists ε0 > 0 satisfying

|x − y| ≤ ε0 �⇒ (
b(x)− b(y)|x − y

)− 1

2
|λ|2|x − y|2 < 0. (3.25)

This is a consequence of Proposition 3.4 applied with S = Id (the directional ellipticity assumption (i) is clearly true
since |(σ ∗(x)− σ ∗(y))(x− y)| = |λ| · |x− y|2). If b is smooth this condition is satisfied as soon as, for every x ∈R

d ,
1
2 (Jb + J ∗b )(x) < 1

2 |λ|2Id in S(d,R) (Jb(x) denotes the Jacobian matrix of b).

3.5.2. Baxendale’s model
Let Ξt = (Xt , Yt ) be the unique strong solution to the 2-dimensional SDE

dXt =
(

a − σ 2

2

)
Xt dt − (σYt − θ

X
)dWt,

dYt =
(

b− σ 2

2

)
Yt dt + (σXt + θ

Y
)dWt,

where W is scalar standard Brownian motion, a, b, σ are real numbers satisfying

ab < 0, a + b < 0, σ >

√
2ab

a + b
,

and θ
X

, θ
Y
∈R. When θ

X
= θ

Y
= 0, this system is known as Baxendale’s system (see e.g. [16]). Its stochastic stability

has been extensively investigated in connection with its Lyapunov exponent. Then set

λ= λ(σ )= b− a +√(b− a)2 + σ 4

σ 2
∈ (0,1) and α = σ 2 − (a + b)−

√
(a − b)2 + σ 4 > 0,
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and | · |λ = | · |S with S =Diag(1, λ). Itô’s Lemma implies

d|Ξt |2λ =
(−α|Ξt |2λ + θ

X
(θ

X
− 2σYt )+ λθ

Y
(θ

Y
+ 2σXt)

)
dt +Θ(Ξt)dWt,

where Θ(x,y)= 2((λ− 1)σxy + λθ
Y
x + θ

X
y). It is clear that there exists β ∈R+ such that∣∣θ

X
(θ

X
− 2σy)+ λθ

Y
(θ

Y
+ 2σx)

∣∣≤ β
(∣∣(x, y)

∣∣
λ
+ 1
)
.

Then using that |ξ |λ ≤ 1
2α
+ α

2 |ξ |2λ and setting β ′ = β + 1
2α

, we derive that

d|Ξt |2λ ≤ β ′ − α

2
|Ξt |2λ dt +Θ(Ξt)dWt,

where θ(ξ) ≤ C|ξ |λ. Hence, the function V (ξ)= |ξ |2λ is a Lyapunov function for the system since AV ≤ β ′ − α
2 V .

As a consequence there exists at least one invariant distribution ν for the system and any such distribution satisfies
ν(V )≤ 2β ′

α
.

At this stage we can compute the non-infinitesimal S-Lyapunov exponent of the duplicated system. Tedious al-
though elementary computations show that, for every ξ = (x, y), ξ ′ = (x′, y′) ∈R

2,

Λ
S

(
ξ, ξ ′

)=−α

2
− (λ− 1)2σ 2 (x − x′)2(y − y′)2

|ξ − ξ ′|4λ
< 0.

Remark 3.7. Adapting results from [2] obtained for diffusions on compact manifolds, one easily derive another type
of criterion for weak confluence. Namely, if the diffusion (Xx

t )t≥0 (1-point motion) has a unique invariant distribution

ν with support Rd and if Xx
t

L−→ ν as t →+∞ for every x ∈R
d and if no non-empty closed connected subset C of

R
d ×R

d \ΔRd×Rd is left stable by the 2-point motion (X
x1
t ,X

x2
t )t≥0 ((x1, x2) ∈C), then the 2-point motion is weakly

confluent with invariant distribution νΔ = ν ◦ (x 	→ (x, x))−1. However, although more intuitive this criterion seems
not to be tractable compared to the above criterions based on the NILS exponent.

3.5.3. An example of gradient system with a non-convex potential

Let U :Rd →R+ be defined by U(x)= (|x|2−1)2

4 , x ∈R
d . Applying Corollary 3.3 with p = 2 and ε(x)= 1

4 (1− 2x2),
one deduces that there exists σc > 0 such that for every σ > σc, the 2-point motion related to dXx

t =−∇U(Xx
t )dt +

σ dWt is weakly confluent. In fact, for this function, we obtain the weak confluence for every σ > 0.

Proposition 3.8. Let U :Rd →R+ be defined by U(x)= (|x|2−1)2

4 . Then, for every σ > 0, the (DSDS) related to the
Brownian diffusion dXx

t =−∇U(Xx
t )dt + σ dWt is weakly confluent.

Proof. Elementary computations show that, for every x, y ∈R
d ,

ΛId (x, y)= 1− 1

2

((|x|2 + |y|2)+ (x + y|x − y)2

|x − y|2
)
≤ 1− 1

2

(|x|2 + |y|2)
so that for every m ∈P�

ν,ν ,∫
ΛId (x, y)m(dx,dy) < 1− 1

2

(∫
|x|2νσ (dx)+

∫
|y|2νσ (dy)

)
= 1

Zσ

∫ (
1− |x|2)e−2U(x)/σ 2

dx (3.26)

with Zσ =
∫
Rd e−2U(x)/σ 2

dx. By Corollary 3.1(a), it is now enough to prove that∫
Rd

(
1− |x|2)e−2U(x)/σ 2

(dx) < 0.
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Thanks to a change of variable,∫
Rd

(
1− |x|2)e−2U(x)/σ 2

dx =Vol(Sd−1)

∫ +∞

0

(
1− r2)rd−1e−(r2−1)2/(2σ 2) dr,

where Vol(Sd−1) denotes the hyper-volume of the d − 1-dimensional Euclidean ball. When d = 2, it follows that∫ +∞

0

(
1− r2)re−(r2−1)2/(2σ 2) dr = σ 2

2

[
e−(r2−1)2/(2σ 2)

]+∞
0 = σ 2e−1/σ 2

2
< 0.

When d > 2, note that (1− r2)rd−1 ≤ (1− r2)r for every r ∈ [0,+∞) so that∫ +∞

0

(
1− r2)rd−1e−(r2−1)2/(2σ 2) dr =

∫ +∞

0

(
1− r2)re−(r2−1)2/(2σ 2) dr < 0.

This completes the proof. �

3.6. Weak confluence: Toward an optimal transport viewpoint

As a conclusion of this first part of the paper, let us note that when ν is unique, the question of the negativity of the
Integrated NILS exponent on the set of probabilities m ∈ P�

ν,ν is connected with an optimal transport problem (see
e.g. [27] for a background on this topic).

Let us be more precise. Assume that Λ
S

satisfies (3.19) and let Λ̄
S

:Rd×R
d →R denote its upper semi-continuous

(u.s.c.) envelope. If [b]S,+ < +∞ and σ is Lipschitz continuous, Λ̄
S

is [−∞,Cb,σ ]-valued where Cb,σ is a real
constant (note that when b and σ are continuously differentiable, the extension on the diagonal has an explicit form
obtained by replacing the infimum by a supremum in (3.20)). If we slightly strengthen our criterion (3.16) – negativity
of the INILS exponent on P�

ν,ν – by also asking that
∫
Rd Λ̄

S
(x, x)ν(dx) < 01 and if we denote by Pν,ν(R

d × R
d)

the (convex) set of distributions on R
d × R

d with marginals ν on R
d , one checks that the more stringent resulting

criterion reads

∀m ∈Pν,ν

(
R

d ×R
d
)
,

∫
Rd×Rd

Λ̄
S
(x, y)m(dx,dy) < 0.

Owing to the weak compactness of Pν,ν(R
d ×R

d) and to the (weak) u.s.c. of the mapping

m 	→
∫
Rd×Rd

Λ̄
S
(x, y)m(dx,dy),

the above criterion is equivalent to

max

{∫
Rd×Rd

Λ̄
S
(x, y)m(dx,dy),m ∈Pν,ν

(
R

d ×R
d
)}

< 0.

Thanks to the Kantorovich duality Theorem and the symmetry of Λ̄
S
, this criterion is in turn equivalent to

inf

{∫
Rd

ϕ dν,ϕ ∈L1(ν), ϕ(x)+ ϕ(y)≥ Λ̄
S
(x, y), (x, y) ∈R

d ×R
d

}
< 0.

Note that this last formulation of the problem is well-posed since it only involves the marginal invariant distribution ν.
For instance, it could be the starting point to devising numerical methods for testing the weak confluence of the
diffusion.

Note that the argument derived from (3.26) can be viewed as a duality-type argument applied with ϕ(x)= 1
2 (1−

|x|2) and, more generally, so is the case for the criterion (3.23) in Proposition 3.7.

1To be compared to the necessary condition (3.18).
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4. Application to the Richardson–Romberg extrapolation for the approximation of invariant distributions

As an application, we investigate in this section the Richardson–Romberg (RR) extrapolation for the approximation of
invariant measures. Roughly speaking, the aim of a RR method is generally to improve the order of convergence of an
algorithm based on an discretization scheme by canceling the first order error term induced by the time discretization
of the underlying process. However, to be efficient, such a method must be implemented with a control of its variance.
We will see that in this context, this control is strongly linked to the uniqueness of the invariant distribution of the
duplicated diffusion.

4.1. Setting and background

4.1.1. Recursive computation of the invariant distribution of a diffusion: The original procedure
Following [18] and a series of papers cited in the Introduction, we consider here a sequence of empirical measures
(ν

η
n(ω,dx))n≥1 built as follows: let (γn)n≥1 denote a non-increasing sequence of positive step parameters satisfying

γn
n→+∞−→ 0 and Γn =

n∑
k=1

γk
n→+∞−→+∞.

We denote by (X̄n)n≥0 the Euler scheme with step sequence (γn)n≥1 defined by X̄0 = x ∈R
d and

X̄n+1 = X̄n + γn+1b(X̄n)+√γn+1σ(X̄n)Un+1,

where (Un)n≥1 is a sequence of i.i.d. centered R
q -valued random vectors such that ΣU1 = Iq defined on a probability

space (Ω,A,P). The sequence of weighted empirical measures (νn(ω,dx))n≥1 is then defined for every n≥ 1, by

νη
n(ω,f )= 1

Hn

n∑
k=1

ηkδX̄k−1(ω),

where δa denotes the Dirac mass at a ∈ R
d and (ηk)k≥1 is a sequence of positive weights such that Hn =∑n

k=1 ηk
n→+∞−→+∞. For the sake of simplicity, we assume in the sequel that

U1 ∼N (0, Iq) and ηk = γk

and we refer to a future work for a more general setting. Note that ηk = γk is a genuine case, since it is the natural
discretization of the occupation measure 1

t

∫ t

0 δXs ds. For this sequence, we recall in Proposition 4.1 below in a syn-
thesized form the main convergence results (including rates) of the sequence (ν

η
n(ω,dx)) to the invariant distribution

ν of (Xt ). In this way, we introduce two assumptions:
(Sa): (a > 0) There exists a positive C2-function V :Rd →R with

lim|x|→+∞V (x)=+∞, |∇V |2 ≤ CV and sup
x∈Rd

∥∥D2V (x)
∥∥<+∞

such that there exist some positive constants Cb , β and α such that:

(i) |b|2 ≤CbV
a , Tr(σσ ∗)(x)= o(V a(x)) as |x| →+∞;

(ii) (∇V |b)≤ β − αV a .

This Lyapunov-type assumption is sufficient to ensure the long-time stability of the Euler scheme (in a sense made
precise below) as soon as a ∈ (0,1]. Note that the convergence can be obtained under a less restrictive mean-reverting
assumption including the case a = 0 (see [23]). The second assumption below is fundamental to establish the rate of
convergence of (ν

η
n(ω,f )) to ν(f ) for a fixed smooth enough function f :Rd → R: we assume that f has a smooth

solution to the Poisson equation (see [24] for results on this topic).



1588 V. Lemaire, G. Pagès and F. Panloup

(C(f,k)): There exists a Ck-function g
f

:Rd → R solution to f − ν(f ) = Ag
f

such that f , g
f

and its partial
derivatives up to k are dominated by V r (r ≥ 0): |f | ≤ CV r and for every α = (α1, . . . , αd) ∈ N

d with |α| := α1 +
· · · + αd ∈ {0, . . . , k}, |∂ |α|

x
α1
i1

,...,x
αd
id

g
f
| ≤ CV r .

Before recalling the results on (νn(ω,dx)), let us introduce the following notations:

∀r ∈N, Γ (r)
n =

n∑
k=1

γ r
k

and for a smooth enough function h :Rd →R and an integer r ≥ 2, we write:

D(r)h(x)y1 ⊗ · · · ⊗ yr =
∑

(i1,...,ir )∈{1,...,d}r
∂r
xi1 ,...,xir

h(x)y
i1
1 · · ·yir

r .

Proposition 4.1. Assume (Sa) holds for an a ∈ (0,1]. Then,

(i) For every r > 0, supn≥1 νn(ω,V r) <+∞ a.s. In particular, (νn(ω,dx))n≥1 is a.s. tight.
(ii) Every weak limit of (νn(ω,dx))n≥1 is an invariant distribution for (Xt )t≥0. Furthermore, if (SDE) has a unique

invariant distribution, say ν, then ν
η
n(ω,f )

n→+∞−→ ν(f ) a.s. for every ν-a.s. continuous function f such that
|f | ≤CV r for an r > 0.

(iii) (Rate of convergence): Assume that ν is unique and let f :Rd →R be a function satisfying (C(f,5)). Then,

• If Γ
(2)
n√
Γn

n→+∞−→ 0,

√
Γn

(
νn(ω,f )− ν(f )

) (R)�⇒N
(

0;
∫
Rd

∣∣σ ∗∇g
f

∣∣2 dν

)
as n→+∞.

• If Γ
(2)
n√
Γn

n→+∞−→ β̃ ∈ (0,+∞],
�
√

Γ n(νn(ω,f )− ν(f ))
(R)�⇒N (β̃m

(1)
g
f
; ∫

Rd |σ ∗∇g
f
|2 dν) as n→+∞ if β̃ ∈ (0,+∞),

� Γn

Γ
(2)
n

(νn(ω,f )− ν(f ))
a.s.−→m

(1)
g
f

as n→+∞ if β̃ =+∞ where m
(1)
g
f
= ∫

Rd ϕ1 dν with

ϕ1(x)= 1

2
D2g

f
(x)b(x)⊗2 + 1

2
E
[
D3g

f
(x)b(x)

(
σ(x)U1

)⊗2]+ 1

24
E
[
D4g

f
(x)
(
σ(x)U1

)⊗4]
. (4.1)

The first two claims (i) and (ii) of the propostition follow from [19] whereas (iii) is derived from [18] (see Theo-
rem 10).

POLYNOMIAL STEP: Applying (iii) to polynomial steps of the form γn = Cn−μ, μ ∈ (0,1], we observe that the
optimal (weak) rate is n−1/3 and is attained for μ= 1/3. Then

β̃ =√6C3/2 and
√

Γn ∼
√

3C/2n1/3

so that

n1/3(νn(ω,f )− ν(f )
) (R)�⇒N

(
2Cm(1)

g
f
; 2

3C

∫
Rd

∣∣σ ∗∇g
f

∣∣2 dν

)
.

This corresponds to the case where the rate of convergence of the underlying diffusion toward its steady regime (
√

Γn

corresponding to
√

t in the continuous time setting, see [4] for the Central Limit Theorem (CLT) for the diffusion
itself) and the discretization error are of the same order.

Remark 4.1. From a practical point of view it seems clear that a balance should be made between the asymptotic
bias and the asymptotic variance to specify the constant C. Under slightly more stringent assumptions we prove that
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the L2-norm of the error νn(ω,f )− ν(f ) satisfies

∥∥νn(ω,f )− ν(f )
∥∥

L2 ∼ n−1/3

√
4C2

(
m

(1)
g
f

)2 + 2

3C

∫
Rd

∣∣σ ∗∇g
f

∣∣2 dν.

An optimization with respect to C gives the optimal choice C = (
12
∫
Rd |σ ∗∇g

f
|2 dν

(m
(1)
g
f

)2
)1/3.

4.1.2. The Richardson–Romberg extrapolated algorithm

When the step (γn)n≥1 decreases to 0 fast enough so that Γ
(2)
n√
Γn

n→+∞−→ β̃ ∈ (0,+∞), (νn(ω,f ))n≥1 converges toward

the invariant distribution ν at the same rate as the empirical measure 1
t

∫ t

0 f (Xs)ds of the underlying diffusion. In
both cases the resulting error satisfies a CLT at the rate

√
Γn and

√
t respectively) with the same asymptotic variance

when the solution gf to Poisson equation Agf =−f is regular enough.

When γn goes to 0 too slowly ( Γ
(2)
n√
Γn

n→+∞−→+∞), the discretization error becomes prominent. This error takes the

form of the bias m
(1)
gf

defined by the above equation (4.1). This bias is the counterpart in the long run framework of
the first order term in the expansion of the weak error when dealing with the discretization scheme (Euler) on a finite
horizon (see [25]). In order to kill this term, we will call upon an RR extrapolation which amounts to combining in
an appropriate way the occupation measures related to two (Euler) schemes where the step of the second scheme is
half of that of the first one. This idea has been first investigated in [20] where two sequences (γn)n≥1 and (γn/2)n≥1
are considered as step sequences. Both schemes are implemented with the same Gaussian white noise. Doing so does
kill the bias and, as an important consequence, extends the range of validity of the CLT at rate

√
Γn to larger steps,

namely up to steps satisfying Γ
(3)
n√
Γn

n→+∞−→ β̃ ∈ (0,+∞). This condition reads in a polynomial setting for the steps

μ≥ 1
5 . When μ= 1

5 , one obtains a biased CLT, this time at rate n2/5.
However, as often with RR extrapolation, this choice of step did not allow for a control of the asymptotic variance

(which is no longer
∫
Rd |σ ∗∇g

f
|2 dν). Thus, the explosion of the variance may annihilate the bias reduction in the

evaluation of a quadratic error. To overcome/get rid of this important drawback a consistent RR extrapolation can be
devised (see [25] and, more recently, [22] where this consistent approach is extensively investigated). By consistent,
we mean that the Gaussian white noises in both involved discretization schemes are simulated in such a way that they
derive form the same underlying standard Brownian motion. Our aim in this section is two fold: first propose a new
discretization step to take full advantage of the consistent Brownian increments used in both schemes, then prove that
when the duplicated system has νΔ as unique invariant distribution, the optimal choice for the Brownian increments,
among all possible (constant) correlations structures ρ, is definitely the consistent one which corresponds to ρ = Iq .
Then the rates are as above but with the same variance as in the non-extrapolated algorithm. These conclusions are
contained in Theorem 4.1 and Proposition 4.2 that follows. We do not prove Theorem 4.1 in this paper. This proof
will be detailed in a more general work (in progress) on the RR extrapolation for invariant distribution computation
including the case of non-Gaussian increments and with considerations on multistep RR extrapolation. Note however
that a proof is also available in an extended version of this paper [21].

As mentioned above, the starting idea is to introduce a second Euler scheme with half step. This half step sequence
(γ̃n)n≥1 is defined in a consistent way by

∀n≥ 1, γ̃2n−1 = γ̃2n = γn

2

so that in “absolute time” we have Γ̃2n = Γn. As concerns the white noise of both schemes, our aim is to make
them consistent in the above (absolute time) scale and (possibly) correlated (with correlation matrix ρ satisfying
Iq − ρ∗ρ ∈ S+(q,R)). For the sake of simplicity, we only consider the Gaussian case.

Let (W,W(ρ)) be a couple of Brownian Motions defined as in (1.2). We set

Un = WΓn −WΓn−1√
γn

and Zn =
W

(ρ)

Γ̃n
−W

(ρ)

Γ̃n−1√
γ̃n

,
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where Γ̃n =∑n
k=1 γ̃k (so that Γ̃2n = Γn). In the sequel, we will then consider the original Euler scheme (X̄n)n≥0 built

with the above sequence (Un)n≥0 and a second one with step γ̃n denoted by (Ȳ
(ρ)
n )n≥0 and defined by:

Ȳ
(ρ)
n+1 = Ȳ (ρ)

n + γ̃n+1b
(
Ȳ (ρ)

n

)+√γ̃n+1σ
(
Ȳ (ρ)

n

)
Z

(ρ)
n+1, n≥ 1, Ȳ

(ρ)
0 = y.

The duplicated Euler scheme (X̄n, Ȳ
(ρ)
2n ) is then an Euler scheme at time Γn of the duplicated diffusion (Xt ,X

(ρ)
t )t≥0.

We denote (ν
(ρ)
n (ω,dx))n≥1 the sequence of empirical measures with weight sequence (γ̃n)n≥1 related to

(Ȳ
(ρ)
n (ω))n≥1. The empirical measure (ν̄

η,(ρ)
n (ω,dx))n≥1 associated to the Richardson–Romberg extrapolation is de-

fined by

ν(ρ)
n (ω,f )= 1

Γn

n∑
k=1

γk

2

(
f
(
Ȳ

(ρ)

2(k−1)(ω)
)+ f

(
Ȳ

(ρ)
2k−1(ω)

))
,

ν̄(ρ)
n (ω,f )= (2ν(ρ)

n − νn(ω,f )
)

= 1

Γn

n∑
k=1

γk

(
f
(
Ȳ

(ρ)

2(k−1)(ω)
)+ f

(
Ȳ

(ρ)
2k−1(ω)

)− f
(
X̄k(ω)

))
.

Under the assumptions of Proposition 4.1, it is clear that ν̄
(ρ)
n (ω,dx)

n→+∞−→ ν(dx) a.s.
Thus, in the next section, we propose to evaluate the effects of the Richardson–Romberg extrapolation on the rate

of convergence of the procedure and to explain why the uniqueness of the invariant distribution of the duplicated
diffusion plays an important role in this problem.

4.2. Rate of convergence of the extrapolated procedure

We set (D3gi,·,·)di=1 = D2(∇·)g in order that the notation Tr(σ ∗D2(∇·)gσ ) stands for the vector of Rd defined by
Tr(σ ∗D2(∇·)gσ )= (Tr(σ ∗D2(∂xi

g)σ ))di=1. For a fixed matrix ρ, the main result about the RR extrapolation is Theo-
rem 4.1 below. At this stage, we do not discuss the choice of the correlation ρ in this result. This point is tackled in
Proposition 4.2 in which we will see that the optimal choice to reduce the asymptotic variance is attained with ρ = Iq

as soon as νΔ is the unique invariant distribution of the associated duplicated diffusion. This emphasizes the impor-
tance of the question of the uniqueness of the invariant distribution in this pathologic case studied in the previous part
of the paper.

Theorem 4.1. Assume (Sa) holds for an a ∈ (0,1]. Assume that (Xt ,X
(ρ)
t )t≥0 admits a unique invariant distribution

μ(ρ) (with marginals ν). Let f :Rd → R be a function satisfying (C(f,7)) and such that ϕ1 defined by (4.1) satisfies
(C(ϕ1,5)) with a solution to the Poisson equation denoted by gϕ1 . Then,

• If Γ
(3)
n√
Γn

n→+∞−→ 0,√
Γn

(
ν(ρ)
n (ω,f )− ν(f )

) n→+∞�⇒ N
(
0; σ̂ 2

ρ

)
,

where

σ̂ 2
ρ = 5

∫
Rd

∣∣σ ∗∇g
f

∣∣2 dν − 4
∫
Rd×Rd

((
σ ∗∇g

f

)
(x)|ρ(σ ∗∇g

f

)
(y)
)
μ(ρ)(dx,dy). (4.2)

• If Γ
(3)
n√
Γn

n→+∞−→ β̃ ∈ (0,+∞], then

√
Γ n

(
ν(ρ)
n (ω,f )− ν(f )

) (R)�⇒N
(
β̃m(2)

g
f
; σ̂ 2

ρ

)
as n→+∞ if β̃ ∈ (0,+∞),

Γn

Γ
(3)
n

(
ν(ρ)
n (ω,f )− ν(f )

) P−→m(2)
g
f

as n→+∞ if β̃ =+∞,
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Fig. 1. Structure of the convergence rate: crude (continuous line) vs RR extrapolation with consistent increments (dotted line).

where m
(2)
g
f
= 1

2 (mgϕ1
+ ∫

Rd ϕ2 dν) with

ϕ2(x)=
6∑

k=3

C
2(k−3)
k

k! E
[
Dkg

f
(x)b(x)⊗(6−k)

(
σ(x)U1

)⊗2(k−3)]
. (4.3)

Remark 4.2 (Polynomial steps). Let γn = Cn−μ, μ ∈ (0,1]. If μ > 1
3 , Γ

(3)
n → Γ

(3)∞ < +∞ so that Γ
(3)
n√
Γn
→ 0 as

n→+∞. If μ < 1
3 , Γ

(3)
n√
Γn
 n(1−5μ)/2 (and if μ= 1

3 , Γ
(3)
n√
Γn
 logn√

n
). Consequently

Γ
(3)
n√
Γn

→ 0 ⇐⇒ μ >
1

5
,

Γ
(3)
n√
Γn

→+∞ ⇐⇒ μ <
1

5
and

Γ
(3)
n√
Γn

→ β̃ ∈ (0,+∞) ⇐⇒ μ= 1

5
.

When μ= 1
5 , β̃ = C5/2

√
5 and

√
Γn ∼

√
5C
2 n2/5.

As a consequence, if γn = ηn = Cn−1/5,

n2/5(ν(ρ)
n (ω,f )− ν(f )

) (R)�⇒N
(

2C2m(2)
g ;

4

5

σ̂ 2
ρ

C

)
.

We switch from a weak rate n1/3 to n2/5 i.e. a “gain” of n1/15 (see Fig. 1). The second noticeable fact is that the bias
is now significantly more sensitive to the constant C than in the standard setting. If we minimize the L2-norm of the
error ν

(ρ)
n (ω,f )−ν(f ) we obtain the optimal choice of C as a function of both bias and standard deviation, precisely

C = (
σ̂ 2

ρ

20(m
(2)
q )2

)1/5.

4.2.1. Optimal choice of ρ and uniqueness of μ(Id)

Proposition 4.2. Let ρ be an admissible correlation matrix i.e. such that ρ∗ρ ≤ Iq . Assume that the duplicated
diffusion (X,X(ρ)) has a unique invariant distribution μ(ρ) (so that if ρ = Iq , μ(Iq) = νΔ).
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(a) σ̂ 2
ρ ≥

∫
Rd |σ ∗∇g|2 dν.

(b) If ρ = 0 then σ̂ 2
ρ = 5

∫
Rd |σ ∗∇g|2 dν.

(c) If ρ = Iq , σ̂ 2
ρ =

∫
Rd |σ ∗∇g|2 dν.

Proof. Claims (b) and (c) being obvious thanks to (4.2), we only prove (a). Keeping in mind that both marginals
μ(ρ)(Rd × dy) and μ(ρ)(dx ×R

d) are equal to ν, one derives thanks to Schwarz’s Inequality (once on R
d and once

on L2(μ)) from the expression (4.2) of the asymptotic variance σ̂ 2
ρ that

σ̂ 2
ρ ≥ 5

∫
Rd

∣∣σ ∗∇g
∣∣2 dν − 4

[∫
Rd×Rd

∣∣σ ∗∇g
∣∣2(x)μ(ρ)(dx,dy)

]1/2[∫
Rd×Rd

∣∣ρσ ∗∇g
∣∣2(y)μ(ρ)(dx,dy)

]1/2

= 5
∫
Rd

∣∣σ ∗∇g
∣∣2 dν − 4

[∫
Rd

∣∣σ ∗∇g
∣∣2(x)ν(dx)

]1/2[∫
Rd

∣∣ρσ ∗∇g
∣∣2(y)ν(dy)

]1/2

≥ 5
∫
Rd

∣∣σ ∗∇g
∣∣2 dν − 4

∫
Rd

∣∣σ ∗∇g
∣∣2 dν =

∫
Rd

∣∣σ ∗∇g
∣∣2 dν,

where we used in the last inequality that |ρu|2 ≤ |u|2.
The previous result says that the structural asymptotic variance of the RR estimator is always greater than that of

the standard estimator but can be equal if the Brownian motions are equal. This condition is in fact almost necessary.
Actually, thanks to the Pythagorean identity,

σ 2
ρ = 5

∫
Rd

∣∣σ ∗∇g
∣∣2 dν + 2

∫
Rd×Rd

∣∣σ ∗∇g(x)− ρσ ∗∇g(y)
∣∣2μ(ρ)(dx,dy)

− 2
∫
Rd×Rd

∣∣σ ∗∇g(x)
∣∣2ν(dx)− 2

∫
Rd×Rd

∣∣ρσ ∗∇g(y)
∣∣2ν(dy).

Then, since ρ∗ρ ≤ Iq , a necessary condition to obtain σ 2
ρ =

∫
Rd |σ ∗∇g|2 dν is

∣∣ρσ ∗∇g(y)
∣∣= ∣∣σ ∗∇g(y)

∣∣ ν(dy)-a.e.

When ρ∗ρ < Iq , this equality cannot hold except if σ ∗∇g(y)= 0 ν(dy)-a.e. �

Appendix A: Hypo-ellipticity of the correlated duplicated system

It is a well-known fact that, for a Markov process, the strong Feller property combined with some irreducibility of the
transitions implies uniqueness of the invariant distribution (see e.g. [8], Theorem 4.2.1). For a diffusion process with
smooth coefficients, such properties hold if it satisfies the hypoelliptic Hörmander assumption (see [12,13]) and if the
deterministic system related to the stochastic differential system (written in the Stratanovich sense) is controllable. In
fact, both properties can be transferred from the original SDE to the duplicated system so that its invariant distribution
is also unique. The main result of this section is Proposition A.1. Before, we need to introduce some Hörmander-type
notations. First, written in a Stratonovich way, X is a solution to

dXt =A0(Xt )dt +
q∑

j=1

Aj(Xt ) ◦ dW
j
t , (A.1)
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where A0, . . . ,Aq are vectors fields on R
d defined by:2

A0(x)=
d∑

i=1

[
bi(x)− 1

2

∑
l,j

σl,j (x)∂xj
σi,l(x)

]
∂xi

and for every j ∈ {1, . . . , q}:

Aj(x)=
d∑

i=1

σi,j (x)∂xi
.

For the sake of simplicity, we assume that b and σ are C∞ on R
d with bounded derivatives. We will also assume the

following Hörmander condition at each point: there exists N ∈N
∗ such that ∀x ∈R

d ,

dim
(
Span

{
A1(x),A2(x), . . . ,Aq(x), L.B. of length ≤N of the Aj(x)’s,0≤ j ≤ q

})= d, (A.2)

where “L.B.” stands for Lie Brackets. The above assumptions imply that for every t > 0 and x ∈R
d , Pt (x, ·) admits a

density pt(x, ·) w.r.t. the Lebesgue measure and that (x, y) 	→ pt(x, y) is C∞ on R
d ×R

d (see e.g. [6], Theorem 2.9).
In particular, x 	→ Pt(x, ·) is a strong Feller semi-group. Assume also that the control system (associated with (A.1))

ẋ(u) =A0
(
x(u)
)+ q∑

j=1

Aq

(
x(u)
)
uj , (A.3)

is approximatively-controllable:

There exists T > 0 such that for every ε > 0, x1, x2 ∈ R
d , there exists u ∈ L2([0, T ],Rd) such that

(x(u)(t)) solution to (A.3) satisfies x(0)= x1 and |x(T )− x2| ≤ ε.
(A.4)

Under assumptions (A.2) and (A.4), the diffusion has a unique invariant distribution ν. Actually, the controllability
assumption combined with the Support Theorem implies that for every non-empty open set O , for every x ∈ R

d ,
PT (x,O) > 0. The semi-group (Pt ) is then irreducible. Owing to the strong Feller property, it follows classically that
(Pt ) admits a unique invariant distribution (see e.g. [8], Proposition 4.1.1. and Theorem 4.2.1).

Furthermore, ν is absolutely continuous with respect to the Lebesgue measure on R
d and its topological support

is Rd (since for every open set O of Rd , ν(O)= ∫ PT (x,0)ν(dx) > 0). Let us now consider the duplicated diffusion

(Xt ,X
(ρ)
t ). Setting Z

(ρ)
t = (Xt ,X

(ρ)
t ) and using the preceding notations, (1.3) can be written:

dZ
(ρ)
t = Ã0

(
Z

(ρ)
t

)
dt +

q∑
j=1

Ãj

(
Z

(ρ)
t

)
dW

j
t +

q∑
j=1

Ãd+j

(
Z

(ρ)
t

)
dW̃

j
t ,

where Ã0(z) = (A0(x),A0(y))T (with A0(y) =∑d
i=1[bi(y) − 1

2

∑
l,j σl,j (y)∂yj

σi,l(y)]∂yi
and z = (x, y)), W̃ is a

d-dimensional Brownian Motion independent of W such that W(ρ) = ρ∗W + (Iq − ρ∗ρ)1/2W̃ and for every j ∈
{1, . . . , q},

Ãj (z)=Aj(x)+A
(ρ)
j (y) and Ãq+j (z)=A

((Iq−ρ∗ρ)1/2)

j (y), (A.5)

where for a for a q × q matrix B , A
(B)
j (y)=∑d

i=1(σ (y)B)i,j ∂yi
. Then, the following property holds.

Proposition A.1. Let ρ ∈Mq,q(R) such that ρ∗ρ < Iq . Assume that b and σ are C∞ on R
d with bounded deriva-

tives. Assume (A.2) and (A.4). Then, uniqueness holds for the invariant distribution ν(ρ) of the duplicated diffusion
(Xt ,X

(ρ)
t ). Furthermore, if ν(ρ) exists, then ν(ρ) has a density p(ρ) (w.r.t. λ2d ) which is a.s. positive.

2With a standard abuse of notation, we identify the vectors fields and the associated differential operators.
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Proof. First, let us check the Hörmander conditions for (Xt ,X
(ρ)
t )t≥0. Setting S = (Iq − ρ∗ρ)1/2, standard computa-

tions yield

∀j ∈ {1, . . . , q}, Ãq+j (z)=
q∑

l=1

Sl,jAl(y).

Since S is invertible, we deduce that {Al(y), l = 1, . . . , q} belongs to Span{Ãq+j (z), j = 1, . . . , q}. Similarly, check-
ing that for every j ∈ {1, . . . , q},

[
Ã0(z), Ãq+j (z)

]= [A0(y),A
(S)
j (y)

]= q∑
l=1

Sl,j

[
A0(y),Al(y)

]
one deduces from the invertibility of S that {[A0(y),Al(y)], l = 1, . . . , q} is included in Span{[Ã0(z), Ãq+j (z)], j =
1, . . . , q}. Owing to (A.2), it follows that Span{∂y1 , . . . , ∂yd

} is included in

V = Span
{
Ã1(z), Ã2(z), . . . , Ãq(z),Lie Brackets of length≤N of the Ãj (z)’s,0≤ j ≤ q

}
.

Now, let us show that Span{∂x1 , . . . , ∂xd
} is included in V . Since Span{∂y1 , . . . , ∂yd

} is included in V , it is clear that

for every x ∈R
d , Aj(x)=A

(ρ)
j (y)− Ãj (z) also belongs to V . Since[

Ã0(z), Ãj (z)
]= [A0(x),Aj (x)

]+ [A0(y),A
(ρ)
j (y)

]
,

[A0(x),Aj (x)] has the same property. Using again (A.2), we deduce that Span{∂x1 , . . . , ∂xd
} is included in V and thus

that dim(V )= 2d . As a consequence, for every z ∈ R
d ×R

d and t > 0, Q
(ρ)
t (z, ·) admits a density qt (z, ·) w.r.t. λ2d

such that (z, z′) 	→ qt (z, z
′) is C∞ on R

d ×R
d ×R

d ×R
d .

In order to obtain uniqueness for the invariant distribution, it remains to show that there exists T > 0 such that
for every z ∈ R

d × R
d , for every non-empty open set O of R

d × R
d , QT (z,O) > 0. Owing to (A.4), it is clear

that for every z1 = (x1, y1) and z2 = (x2, y2), for every ε > 0, there exist u and ũ ∈ L2([0, T ],Rd) such that
z(t)= (x(u)(t), x(̃u)(t)), where x(u) and x(̃u) are solutions to (A.3) starting from x1 and y1, satisfies |z(T )− z2| ≤ ε.
Furthermore, since S is invertible, we can assume that ũ = ρu + Sω with ω ∈ L2([0, T ],Rd). Then, the support
Theorem can be applied to obtain that for every z1, z2, ε QT (z1,B(z2,

ε
2 ) > 0 and thus to conclude that for every

z ∈R
d ×R

d and every non-empty open set O , QT (z,O) > 0. �

Appendix B: Additional proofs about the two-dimensional counterexample

Proof of (3.3). For the sake of completeness, we show that rt → 1 a.s. as soon as r0 > 0. First, note that uniqueness
holds for the solution of the SDE (3.1) since the coefficients are Lipschitz continuous. In particular, (r1

t ) defined a.s.
by r1

t = 1 for every t ≥ 0 is the unique solution starting from r0 = 1. Owing to the strong Markov property, this
implies that if τ 1 := inf{t ≥ 0, rt = 1}, then rt = 1 on {τ ≤ t}. The same property holds at 0. We deduce that (rt )t≥0
lives in [1,+∞) if r0 > 1 and in [0,1] if r0 ∈ [0,1]. Moreover, if r0 > 1, we have d(rt − 1)=−(rt − 1)(dt + ϑ dWt)

so that

rt − 1= e−(1+ϑ2/2)t+ϑWt .

It follows that limt→+∞ rt = 1 since limt→+∞ Wt

t
= 0 a.s. Now, if r0 ∈ [0,1], we have

drt = rt (1− rt )(dt + ϑ dWt).

Thus, (rt ) is a [0,1]-valued submartingale. In particular, rt converges a.s. to a [0,1]-valued random variable r∞. Since

∀t ≥ 0, E[rt ] = r0 +E

(∫ t

0
rs(1− rs)ds

)
,
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it follows that E[∫ +∞0 rs(1 − rs)ds] which in turn implies that
∫ +∞

0 rs(1 − rs)ds < +∞ a.s. As a consequence
lim inft→+∞ rt (1− rt )= 0 a.s. The process (rt ) being a.s. convergent to r∞, it follows that r∞ ∈ {0,1} a.s. It remains
to prove that P(r∞ = 0)= 0. Denote by p the scale function of (rt ) null at r = 1/2. For every r ∈ (0,1),

p(r)=
∫ r

1/2
e−
∫ ξ

1/2 2/(ϑ2u(1−u))du dξ =
∫ r

1/2

(
1− ξ

ξ

)2/ϑ2

dξ.

As a consequence, if ϑ ∈ (0,
√

2], limr→+∞ p(r)=+∞. This means that 0 is a repulsive point and that, as a conse-
quence (see e.g. [15], Lemma 6.1, p. 228),

∀b ∈ (0,1), P

(
lim

a→0+
τa < τb

)
:= lim

a→0+
P(τa < τb)= 0,

where τa = inf{t ≥ 0 | rt = a}, y ∈ [0,1]. We deduce that P(r∞ = 0)= 0. This completes the proof. �

Proof of (3.4). We want to prove that μ is invariant for (Xx
t ,Xx′

t ) if and only if μ can be represented by (3.4).
First, since the unique invariant distribution of (Xx

t ) is λS1 , it is clear that μ = L(eiΘ0 , ei(Θ0+V0)) where Θ0 has
uniform distribution on [0,2π] and V0 is a random variable with values in [0,2π). One can check that if V0 is
independent of Θ0, μ is invariant. Thus, it remains to prove that it is a necessary condition or equivalently that
K(θ,dv) := L(eiV0 |eiΘ0 = eiθ ) does not depend on θ . Denote by (eiΘt , ei(Θt+Vt )) the (stationary) duplicated diffusion
starting from (eiΘ0 , ei(Θ0+V0)). Since μ is invariant, we have for every t ≥ 0

L
(
eiVt |eiΘt = eiθ )=K(θ,dv)

but thanks to the construction, for every t ≥ 0, Θt =Θ0 +Wt and Vt = V0 (the angular difference between the two
coordinates does not change) so that

L
(
eiVt |eiΘt = eiθ )= ∫ K

(
θ ′,dv

)
ρt

(
θ,dθ ′

)
,

where ρt (θ,dθ ′) = L(ei(θ+Wt )). But ρt (θ,dθ ′) converges weakly to λS1 when t → +∞. From the two previous
equations it follows that K(θ,dv) does not depend on θ since ∀θ ≥ 0, K(θ,dv)= ∫ K(θ ′,dv)λS1(dθ ′). �
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