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Abstract. Our main result is a local limit law for the empirical spectral distribution of the anticommutator of independent Wigner
matrices, modeled on the local semicircle law. Our approach is to adapt some techniques from recent papers of Erdös–Yau–
Yin. We also use an algebraic description of the law of the anticommutator of free semicircular variables due to Nica–Speicher,
the linearization trick due to Haagerup–Schultz–Thorbjørnsen in a self-adjointness-preserving variant and the Schwinger–Dyson
equation. A by-product of our work is a relatively simple deterministic version of the local semicircle law.

Résumé. Notre principal résultat établit la loi limite locale pour la distribution spectrale empirique de l’anti-commutateur de
matrices de Wigner indépendantes dans l’esprit de la loi semi-circulaire locale. Notre approche adapte les techniques d’articles
récents par Erdös–Yau–Yin. Nous utilisons aussi une description algébrique de la loi de l’anti-commutateur pour des variables libres
due à Nica–Speicher, une variante de l’astuce de la linéarisation de Haagerup–Schultz–Thorbjørnsen et l’équation de Schwinger–
Dyson. Une conséquence de notre travail est une version déterministe assez simple de la loi semi-circulaire locale.
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1. Introduction and formulation of the main result

Our main result is a local limit law for the anticommutator of independent Wigner matrices, modeled on the local
semicircle law. The latter has emerged from the recent great progress in universality for Wigner matrices. Concerning
universality, without attempting to be comprehensive, we mention [6–9,20,21,24]. The paper [9] has especially influ-
enced us. We obtain our results by using on the one hand techniques derived from [9] and on the other hand techniques
derived from [11] and [12], most notably the linearization trick.

The self-adjointness-preserving variant of the linearization trick used here was introduced in [1]. (See also [2] and
[4] for slicker treatments.) It turns out to mesh well with “self-improving” estimates of the type characteristic of the
paper [9].

1.1. Setup for the main result

We formulate our main result forthwith. See Section 2 below for a table of notation.
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1.1.1. Random matrices
Fix constants α0 > 0 and α1 ≥ 1. Let N ≥ 2 be a integer. Let U,V ∈ MatN be random hermitian matrices with the
following properties:

sup
p∈[2,∞)

p−α0

(
N∨

i,j=1

∥∥U(i, j)
∥∥

p
∨

N∨
i,j=1

∥∥V (i, j)
∥∥

p

)
≤
√

α1

N
. (1)

The family
{
U(i, j),V (i, j)

}
1≤i≤j≤N

is independent. (2)

All entries of U and V have mean zero. (3)∥∥U(i, j)
∥∥

2 = ∥∥V (i, j)
∥∥

2 = 1√
N

for distinct i, j = 1, . . . ,N . (4)

(Here U(i, j) is the (i, j)-entry of U and ‖U(i, j)‖p = (E|U(i, j)|p)1/p . Also we write x ∨ y (resp., x ∧ y) for
the maximum (resp., minimum) of x and y.) This is a class of Wigner matrices similar to that considered in [9].
Condition (1) is merely a technically convenient way of imposing uniformly a tail bound of exponential type. (See
Proposition 8.1 below for the equivalence.)

1.1.2. Apparatus from free probability
(For background see [3], Chapter 5, [16,22].) Let u and v be freely independent semicircular noncommutative random
variables. Let μ{uv} denote the law of {uv} = uv + vu and let

m{uv}(z) =
∫

μ{uv}(dt)

t − z
for z ∈ h = {z ∈ C | 
z > 0} (5)

denote the Stieltjes transform of that law. Context permitting (most of the time) we will write briefly m = m{uv}(z).
Although m depends on z the notation does not show it. It was shown in [15], Eq. (1.15), as part of a general discussion
of commutators of free random variables that m satisfies the equation

zm3 − m2 − zm − 1 = 0. (6)

(Caution: Our sign convention for the Stieltjes transform is opposed to that of [15].) From (6) it follows that the
support of μ{uv} is the interval [−ζ, ζ ] where

ζ =
√

11 + 5
√

5

2
∼= 3.33. (7)

More precisely, it was shown in [15] that μ{uv} has a density with respect to Lebesgue measure, this density was
calculated explicitly, and the support [−ζ, ζ ] was thus verified. (See [15], Eq. (1.17).) The density will not be needed
here.

See [5] for a recent discussion and application of the law μ{uv} in another context.

1.1.3. The function h

For z ∈ h let

h = |z + ζ | ∧ |z − ζ | ∧ 1. (8)

The number 0 < h ≤ 1 depends on z but the notation does not show it.
Here is our main result.
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Theorem 1.1. Notation and assumptions are as above. (Also see Section 2 for general notation.) There exists a
random variable K ≥ 1 with the following two properties.

On the event
[[[U ]] ∨ [[V ]] ≤ 4

]
one has

N∨
i=1

∣∣({UV } − zIN

)−1
(i, i) − m{uv}(z)

∣∣≤ K√
Nh
z

for z ∈ h such that |�z| ∨ 
z ≤ 64 and K2/N ≤ h2
z. (9)

For every t > 0 one has Pr
(
K > t2α0+1

)≤ β0N
β1 exp(−β2t),

for positive constants β0 and β2 depending only on α0 and α1

and a positive absolute constant β1. (10)

(In particular, β0, β1 and β2 are independent of N .) The theorem is not so sharp as the sharpest available concerning
the local semicircle law. The novelty here, rather, is to have made inroads on the general problem of proving local
limit laws for polynomials in Wigner matrices. Looking forward, we have given some of our arguments in a general
setting when this could be done without making the paper significantly longer. (See Sections 4 and 6 below.) But
some arguments are quite ad hoc (see Section 5 below) and implicitly pose the problem of finding conceptual general
arguments with which to replace them.

One has delocalization of eigenvectors in our setup in the following sense.

Corollary 1.2. Evaluate {UV } and K at a sample point of the event [[[U ]] ∨ [[V ]] ≤ 4]. We still write {UV } and
K for these evaluations, respectively. Let λ be an eigenvalue of {UV } and let v be a corresponding unit-length
(right) eigenvector. Let ρ = K2/N and for simplicity assume that ρ < 1. Let σ ∈ [ρ,ρ1/3] be defined by the equation
ρ = h2
z|z=λ+iσ . Then we have

N∨
i=1

∣∣v(i)
∣∣≤ √

2σ . (11)

This result is roughly comparable to [9], Cor. 3.2. Figure 1 shows σ as a function of λ for ρ = 0.2,0.02,0.002,

0.0002. Note that in the bulk one simply has ρ = σ . However, the bound (11) is not optimal near the edge of the
spectrum and it is an open problem to optimize it.

Proof of Corollary 1.2. Let 32 ≥ λ1 ≥ · · · ≥ λN ≥ −32 be the eigenvalues of {UV } and let v1, . . . , vN be corre-
sponding unit-length eigenvectors. We have for i = 1, . . . ,N and z ∈ h the standard formula


({UV } − zIN)−1(i, i)


z
=

N∑
j=1

|vj (i)|2
|z − λj |2

which we will apply presently. We may assume that λ = λi0 and v = vi0 for a suitable index i0. Let z0 = λ + iσ and
h0 = h|z=z0 , noting that

|λ| ∨ σ = |�z0| ∨ 
z0 ≤ 64 and
K√

Nh0
z0
=√

h0 ≤ 1

by our assumption that [[U ]] ∨ [[V ]] ≤ 4 and simplifying assumption that ρ < 1. Thus we have

2 ≥ 1 + K√
Nh0
z0

≥ 
({UV } − z0IN

)−1
(i, i)

=
N∑

j=1

σ |vj (i)|2
(λj − λi0)

2 + σ 2
≥ |v(i)|2

σ
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Fig. 1. Closest permissible approach σ to the real axis as a function of λ for ρ = 0.2,0.02,0.002,0.0002.

by Theorem 1.1 and the uniform bound |m| < 1 from Proposition 5.1 below. �

1.2. Decay of Pr([[U ]] ∨ [[V ]] > 4)

The conditioning on the event [[[U ]]∨ [[V ]] ≤ 4] taking place in Theorem 1.1 is not costly. In the setup of the theorem,
one has

Pr
([[U ]] ∨ [[V ]] > 4

)≤ c0 exp
(−c1N

c2
)

for some positive constants c0, c1 and c2 depending only on α0 and α1. See, e.g., the argument presented immediately
after [3], Lemma 2.1.23. The lemma in question is a combinatorial lemma somewhat weaker than the classical result
of [10] and weaker still than the more refined results of [23]. We will not deal further here with the rate of decay of
Pr([[U ]] ∨ [[V ]] > 4) as N → ∞.

Our proof of Theorem 1.1 is structured overall by the following trivial remark.

Proposition 1.3. Let f1, f2, f3 :X → [0,∞) be continuous functions on a connected topological space X . Make the
following assumptions.

f1(x0) < f2(x0) for some x0 ∈X . (12)

f1(x) ≤ f2(x) ⇒ f1(x) ≤ f3(x) for all x ∈ X . (13)

f3(x) < f2(x) for all x ∈X . (14)

Then we have

f1(x) ≤ f3(x) for all x ∈ X . (15)

The proposition is a less technically demanding way to think about estimates in the self-improving style of [9].

Proof of Proposition 1.3. We have ∅ �= {f1 < f2} ⊂ {f1 ≤ f3} ⊂ {f1 < f2} by hypotheses (12), (13) and (14),
respectively. Since {f1 ≤ f3} is open, closed and nonempty, in fact {f1 ≤ f3} =X by connectedness of X . �
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1.3. Further comments on methods of proofs

1.3.1.
An explicit if somewhat involved description of the random variable K will be given later. Given this description, the
proof of property (10) turns out to be an exercise involving methods from the toolbox of [9]. Under more restrictive
hypotheses it is likely one could obtain stronger results using the Hanson–Wright inequality. For an illuminating
modern treatment of the latter see the recent article [17].

1.3.2.
The main technical result of the paper by which means we prove (9) is a deterministic statement of a form perhaps
not seen before in connection with local limit laws. (See Theorem 7.1 below.) Its proof is a reworking of the idea of a
self-improving estimate – rather than marching by short steps toward the real axis, updating estimates at each step as
in [9], we get our result at once by using Proposition 1.3.

1.3.3.
We employ here generalized resolvent techniques from [1]. But we do so with significant simplifications, e.g., we do
not use two-variable generalized resolvents and Stieltjes transforms – rather, we just use the classical parameter z.

1.4. The deterministic local semicircle law

To facilitate comparison of our results to the literature on the local semicircle law, as well as to rehearse main ideas in
a simplified context, we include the Appendix in which we state and prove a semicircular analogue of Theorem 7.1,
which we call the deterministic local semicircle law. (See Theorem A.1 below.)

1.5. Outline of the paper

In Section 2 we provide a table of notation. In Section 3 we introduce the generalized resolvent formalism for anti-
commutators and we prove several identities and inequalities. In Section 4 we review the general Schwinger–Dyson
equation and present key examples of solutions. (See Propositions 4.1 and 4.2.) Then we analyze stability of a general
nondegenerate solution. (See Proposition 4.3.) In Section 5 we prove Proposition 4.2 and in passing pose a general
problem for the free probability theorists. (See Section 5.2 below.) In Section 6 we analyze a general matrix-valued
version of the self-consistent equation [9], Lemma 4.3. (See Proposition 6.1 below.) In Section 7 we do the main work
of proving (9). (See Theorem 7.1 below.) In Section 8 we finish the proof of Theorem 1.1 using methods of the type
discussed in [9], Appendix B. Finally, in the Appendix, we present the deterministic local semicircle law.

2. Table of notation

2.1. Basic notation

Let {xy} = xy + yx denote the anticommutator of x and y. We write i = √−1 (roman typeface). For real numbers x

and y, let x ∨y (resp., x ∧y) denote the maximum (resp., minimum) of x and y. For x ≥ 0, let x• = x ∨ 1. Let �z and

z denote the real and imaginary parts of a complex number z, respectively, and let z∗ denote the complex conjugate
of z. Let h = {z ∈ C | 
z > 0} denote the upper half-plane. For a C-valued random variable Z and p ∈ [1,∞), let
‖Z‖p = (E|Z|p)1/p and furthermore, let ‖Z‖∞ denote the essential supremum of |Z|.

2.2. Matrix notation

Let Matk×� denote the space of k-by-� matrices with entries in C. Let MatN = MatN×N . Let IN ∈ MatN denote
the N -by-N identity matrix. Context permitting, we may write 1 instead of IN . Given A ∈ Matk×�, let [[A]] denote
the largest singular value of A and let A∗ ∈ Mat�×k denote the transpose conjugate of A. For A ∈ MatN , let �A =
A+A∗

2 and 
A = A−A∗
2i . For A ∈ MatN , we write A > 0 (resp., A ≥ 0) if A is hermitian and positive definite (resp.,
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positive semidefinite). Given for ν = 1,2 a matrix A(ν) ∈ Matkν×�ν , recall that the Kronecker product A(1) ⊗ A(2) ∈
Matk1k2×�1�2 is defined by the rule

A(1) ⊗ A(2) =
⎡⎢⎣

...

· · · A(1)(i, j)A(2) · · ·
...

⎤⎥⎦ .

2.3. The matrix norms [[·]]p

Given a matrix A ∈ Matk×� with singular values μ1 ≥ μ2 ≥ · · · and p ∈ [1,∞), let [[A]]p = (
∑

i μ
p
i )1/p . Also let

[[A]] = [[A]]∞. Standard properties of the matrix norms [[·]]p are taken for granted, e.g., [[A]]2
2 = ∑

i,j |A(i, j)|2 =
trAA∗. Of particular importance is the Hölder inequality which asserts that [[AB]]r ≤ [[A]]p[[B]]q whenever 1

r
≤

1
p

+ 1
q

and the matrix product AB is defined. See [14] or [19] for background. Actually only p = 1,2,∞ will be
important.

2.4. Stieltjes transforms

In general, given a probability measure μ on the real line, we define its Stieltjes transform by the formula Sμ(z) =∫
μ(dt)
t−z

for z ∈ h. Note that with this sign convention we have 
Sμ(z) > 0 for 
z > 0. We also have a uniform bound
|S(z)| ≤ 1/
z.

2.5. Banach spaces

Banach spaces always have complex scalars. The norm in a Banach space V is denoted by [[·]]V or simply by [[·]]
when (usually) context permits. A unital Banach algebra A is one equipped with a unit 1A satisfying [[1A]] = 1.
Other notation may be used for the unit, e.g., In = 1Matn or 1 = 1A. We invariably equip Matn with unital Banach
algebra structure by means of the largest-singular-value norm. Let B(V) denote the space of bounded linear maps
from V to itself normed by the rule [[T ]]B(V) = supv∈BallV (0,1)[[T (v)]]V . Given v0 ∈ V and ε ≥ 0, let BallV (v0, ε) =
{v ∈ V | [[v − v0]]V ≤ ε} (a closed ball).

2.6. Inexplicit constants

These may be denoted by c, C, etc. and their values may change from context to context and even from line to line.
When recalling a previously defined constant we sometimes do so by referencing as a subscript the theorem, proposi-
tion, corollary, or lemma in which the constant was defined, e.g., c4.2 denotes the constant c from Proposition 4.2.

3. The generalized resolvent formalism for anticommutators

We enumerate the main objects of study and work out several relations among them. Our viewpoint and methods are
deterministic except in Section 3.4, where we pause to discuss the probabilistic motivations.

3.1. The main objects of study

3.1.1. Data
Arbitrarily fix hermitian matrices U,V ∈ MatN where N ≥ 2 and a point z ∈ h. These data remain fixed throughout
Section 3 and throughout calculations later to be undertaken in Section 7. We take (U,V, z) to be deterministic here
and in Section 7, except in Section 3.4 where we temporarily identify U and V with the random matrices figuring in
Theorem 1.1. The emphasis in Sections 3 and 7 will be on deterministic estimates with constants independent of N ,
U , V and z.
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3.1.2. The generalized resolvent R

Let

Λ =
[

z 0 0
0 −1 0
0 0 1

]
∈ Mat3, (16)

X =
⎡⎢⎣ 0 U−V√

2
−U−V√

2
U−V√

2
0 0

−U−V√
2

0 0

⎤⎥⎦ ∈ Mat3N and (17)

W =
⎡⎣ IN 0 0

−U+V√
2

IN 0
−U−V√

2
0 IN

⎤⎦ ∈ Mat3N . (18)

Note that Λ depends on z although the notation does not show it. Note that X is hermitian. Note that both X and W

depend on U and V although the notation does not show it. Note that

1 ≤ [[W ]] = [[
W−1]]= [[

W ∗]]= [[(
W ∗)−1]] and [[X]] ∨ [[W ]] ≤ 8

([[U ]] ∨ [[V ]] ∨ 1
)
. (19)

We have a factorization

W ∗(X − Λ ⊗ IN)W =
[

UV + V U − zIN 0 0
0 IN 0
0 0 −IN

]
. (20)

It follows that X − Λ ⊗ IN is invertible. Let

R = (X − Λ ⊗ IN)−1 = W

[
({UV } − zIN)−1 0 0

0 IN 0
0 0 −IN

]
W ∗, (21)

which we call the generalized resolvent for anticommutators. The matrix R depends on (U,V, z) but the notation does
not show it. Clearly, the dependence of R on (U,V, z) is continuous. Crucially, the resolvent of {UV } = UV + V U

appears as the upper left N -by-N block of R. For discussion of the self-adjoint linearization trick by which means
generalized resolvents such as R are contrived, see [1,2] or [4].

3.1.3. The matrix M

With m = m{uv}(z) as on line (5) above, let

M =
⎡⎣m 0 0

0 − 1
m−1 0

0 0 − 1
m+1

⎤⎦ ∈ Mat3 . (22)

Since 
m > 0, in fact M is well-defined and moreover invertible. Although M depends on z, the notation does not
show it. We remark that the function h defined on line (8) will be used often in conjunction with M .

3.1.4. The linear map Φ

Let Φ ∈ B(Mat3) be the (constant) linear map defined by the formula

Φ(A) = (e12 + e21)A(e12 + e21) + (e13 + e31)A(e13 + e31), (23)

where {eij }3
i,j=1 is the standard basis for Mat3 consisting of elementary matrices. A straightforward calculation shows

that the definition (23) can be rewritten

Φ

([
x1 x4 x6
x5 x2 x8
x7 x9 x3

])
=
[

x2 + x3 x5 x7
x4 x1 0
x6 0 x1

]
. (24)
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The peculiar numbering of matrix entries will be useful later. See Section 3.4 for probabilistic motivation for the
definition of Φ .

3.1.5. Specialized matrix notation
For i = 1, . . . ,N , let ei ∈ Mat1×N denote the ith row of IN , let ei = I3 ⊗ ei ∈ Mat3×3N , let êi ∈ Mat(N−1)×N denote
IN with the ith row deleted and let êi = I3 ⊗ êi ∈ Mat3(N−1)×3N .

3.1.6. Further objects associated with R

For i = 1, . . . ,N let

Gi = eiRe∗
i ∈ Mat3, G = 1

N

N∑
i=1

Gi ∈ Mat3,

Ri = (
êiXê∗

i − Λ ⊗ IN−1
)−1 ∈ Mat3(N−1),

Ĝi = 1

N

N∑
j=1

ej ê∗
i Ri êie∗

j ∈ Mat3,

Qi = eiXê∗
i Ri êiXe∗

i − eiXe∗
i − Φ(Ĝi) ∈ Mat3,

Ki = 1 ∨ [[Qi]]
(1/

√
N)(1 ∨ ([[Ri]]2/

√
N ))

∈ [1,∞) and K=
N∨

i=1

Ki .

All these objects depend on (U,V, z) but the notation does not show it. Clearly, dependence on (U,V, z) is contin-
uous. All of these objects have counterparts in the study of single Wigner matrices, as we explain in the Appendix.
Theorem 7.1 below will explain the role of the most complicated object, namely K. Ultimately we will define the
random variable K in Theorem 1.1 in terms of K.

3.2. Basic relations

3.2.1. The Schwinger–Dyson equation
In Section 5.3.1 below it is proved that

I3 + M
(
Λ + Φ(M)

)= 0. (25)

This solution of the Schwinger–Dyson equation will be studied in Section 5 in great detail. The general equation will
be studied in Sections 4 and 6.

3.2.2. The linearization bound
The relation deserving emphasis as the starting point for the proof of Theorem 1.1 is the bound∣∣({UV } − zIN

)−1
(i, i) − m

∣∣≤ [[Gi − M]] for i = 1, . . . ,N . (26)

The latter holds because firstly, the resolvent of the anticommutator {UV } appears as the upper left N -by-N block of
the generalized resolvent R and secondly, we have m = M(1,1) by definition of M .

3.2.3. Finer relations between R and the resolvent of {UV } = UV + V U

Let

r =
[

({UV } − zIN)−1 0 0
0 0 0
0 0 0

]
∈ Mat3N, (27)
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which is just the resolvent of {UV } bordered by some zeros. Let

Λ0 = lim
z→0

Λ =
[0 0 0

0 −1 0
0 0 1

]
∈ Mat3 . (28)

Recall that by definition 
A = A−A∗
2i for A ∈ Matn. We have

R + Λ0 ⊗ IN = WrW ∗, dR

dz
= Wr2W ∗ and


R


z
= Wrr∗W ∗ = Wr∗rW ∗ (29)

as one can straightforwardly deduce from (21).

3.2.4. A finer a priori bound for Gi

We have

N∨
i=1

[[Gi + Λ0]] ≤ [[W ]]2


z
≤ 26([[U ]] ∨ [[V ]] ∨ 1)2


z
(30)

by combining (19), (29) and the standard resolvent bound [[r]] ≤ 1/
z.
We will apply the following well-known facts concerning Schur complements to derive further relations among the

objects associated with R.

Proposition 3.1. Let {1, . . . , n} = I
∐

J be a disjoint union decomposition. Let e (resp., ê) be the result of striking
rows indexed by J (resp., I ) from In. Let A ∈ Matn be a matrix such that both A and êAê∗ are invertible. Then eA−1e∗
is invertible and we have relations(

eA−1e∗)−1 = eAe∗ − eAê∗(êAê∗)−1êAe∗, (31)

A−1 = ê∗(êAê∗)−1ê + A−1e∗(eA−1e∗)−1eA−1. (32)

Proof. Write[
e
ê

]
A [ e∗ ê∗ ] =

[
a b

c d

]
and

[
e
ê

]
A−1 [ e∗ ê∗ ] =

[
p q

r s

]
,

noting that
[ e

ê

]
is a permutation matrix. By hypothesis

[
a
c

b
d

]
and d are invertible. Thus we have a factorization[

a b

c d

]
=
[

1 bd−1

0 1

][
a − bd−1c 0

0 d

][
1 0

d−1c 1

]
,

hence the Schur complement a − bd−1c is also invertible and we have[
a b

c d

]−1

=
[

0 0
0 d−1

]
+
[

1
−d−1c

](
a − bd−1c

)−1
[ 1 −bd−1 ] .

This already proves invertibility of eA−1e∗ and identity (31). It follows that[
p q

r s

]
=
[

0 0
0 d−1

]
+
[

p

r

]
p−1 [p q ] .

The latter identity after conjugation by [e∗ ê∗] on both sides becomes (32). �
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3.3. Further relations

We have seen that X − Λ ⊗ IN is invertible and for similar reasons ê∗
i (X − Λ ⊗ IN)êi is also invertible. Thus by

Proposition 3.1 we have that

Gi is invertible for i = 1, . . . ,N . (33)

Moreover, the identities (31) and (32) specialize in the present case to

−Qi = G−1
i + Λ + Φ(Ĝi) and (34)

R = ê∗
i Ri êi + Re∗

i G
−1
i eiR, (35)

respectively. From the latter identity we deduce a bound

N [[G − Ĝi]] ≤ N [[G − Ĝi]]1 ≤ [[
R − ê∗

i Ri êi

]]
1 ≤ [[

G−1
i

]][[
Re∗

i

]]
2[[eiR]]2 (36)

via the matrix Hölder inequality and the following lemma.

Lemma 3.2. For A ∈ Mat3N one has
∑N

i=1[[eiAe∗
i ]]1 ≤ [[A]]1.

Proof. It is well known that [[A]]1 = sup
∑N

i=1 |viAw∗
i | where the supremum is extended over orthonormal bases

{vi}Ni=1 and {wi}Ni=1 for Mat1×N . A suitable choice of {vi} and {wi} gives the desired inequality. �

3.4. Motivation for the definition of Φ

Suppose for the moment that U and V are random and satisfy (1), (2), (3) and (4). We claim that the random matrix
X has the following properties:

sup
p∈[2,∞)

p−α0

N∨
i,j=1

∥∥[[eiXej ]]
∥∥

p
< α2

for a constant α2 depending only on α0 and α1. (37)

The family {eiXej }1≤i≤j≤N is independent. (38)

EX = 0. (39)

EeiXe∗
jAe∗

kXei = δjkΦ(A)

for i, j, k = 1, . . . ,N s.t. i /∈ {j, k} and A ∈ Mat3. (40)

The first three claims are clear. We just prove the last. We have in any case

eiXe∗
j =

(
U − V√

2
(i, j)

)
(e12 + e21) +

(−U − V√
2

(i, j)

)
(e13 + e31)

by direct appeal to the definitions. Now by assumptions (2), (3) and (4), for any fixed distinct indices i, j = 1, . . . ,N ,
the two C-valued random variables U−V√

2
(i, j) and −U−V√

2
(i, j) form an orthonormal system. Formula (40) then fol-

lows by the definition of Φ . The claims are proved. It follows for i = 1, . . . ,N that

σ
(
êiXê∗

i

)
and σ(eiX) are independent, (41)

Ri and Ĝi are σ
(
êiXê∗

i

)
-measurable and (42)

E
(
Qi | êiXê∗

i

)= 0 a.s. (43)
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The system of relations (37)–(43) exhibits X as a Wigner-matrix-like array of 3-by-3 blocks and opens the way toward
an analysis of R by methods analogous to those used to study the resolvent of a Wigner matrix, especially those of
[9]. In particular, the motivation for the definition Φ is now clear: to achieve (40) and thus also (43) we are forced to
define Φ as we have.

We will consider the generalized resolvent formalism again in Section 7, after a long digression to consider the
Schwinger–Dyson equation from several angles.

4. Stability of a general form of the Schwinger–Dyson equation

For background see, e.g., [1,2], [3], Chapter 5, [13] or [16].

4.1. Basic definitions

4.1.1. The Schwinger–Dyson equation
Let S be a finite-dimensional unital Banach algebra. A triple

(Λ,M,Φ) ∈ S × S × B(S)

is said to satisfy the Schwinger–Dyson equation if

1S + (
Λ + Φ(M)

)
M = 0, (44)

in which case M is necessarily invertible. (In a finite-dimensional unital algebra existence of a left inverse implies
existence of a two-sided inverse.) We emphasize that in our (somewhat eccentric) usage, a solution of the Schwinger–
Dyson equation is not a function; rather, it is just a point in the space S × S × B(S).

4.1.2. Nondegeneracy
Now let (Λ,M,Φ) ∈ S × S × B(S) be any solution of the Schwinger–Dyson equation. If the linear map(

x �→ M−1x − Φ(x)M
) ∈ B(S) (45)

is invertible we say that (Λ,M,Φ) is nondegenerate in which case we let

κ = κΛ,M,Φ

denote the inverse of the linear map (45) and we also say with slight abuse of terminology that the quadruple

(Λ,M,Φ,κ) ∈ S × S × B(S) × B(S)

is a nondegenerate solution of the Schwinger–Dyson equation. If we need to emphasize the role of S we say that
(Λ,M,Φ,κ) is a solution defined over S but we omit the epithet when (usually) context permits.

4.1.3. The stability radius
Recall our notation x• = 1 ∨ x. Given a nondegenerate solution of the Schwinger–Dyson equation (Λ,M,Φ,κ) as
above, we call the quantity 1

8[[κ]]•[[Φ]]• the stability radius of (Λ,M,Φ,κ). The meaning of the stability radius will be
explained by Proposition 4.3 below.

The next proposition describes the class of nondegenerate solutions of the Schwinger–Dyson equation connected
with the (local) semicircle law.

Proposition 4.1. Fix z ∈ h and let m = 1
2π

∫ 2
−2

√
4−t2 dt
t−z

.

(i) One has


m > 0, z = −m − m−1 and |m| ≤ 1 ∧ 1


z
. (46)
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(ii) The quadruple(
z,m,1,

(
m−1 − m

)−1) (47)

is a nondegenerate solution of the Schwinger–Dyson equation defined over C.
(iii) The stability radius of the solution (47) satisfies the lower bound

1

8|(m−1 − m)−1|•|1|• ≥
√

1 ∧ |z − 2| ∧ |z + 2|
c

, (48)

where c is an absolute constant.

One could, say, take c4.1 = 8. But we prefer the inexplicit notation c4.1 for being more informative.

Proof of Proposition 4.1. (i) Well known. (ii) Taking S =C = B(S) in the general definition, it is clear that (z,m,1)

is a solution of the Schwinger–Dyson equation. Since the linear map (45) in the case of (z,m,1) becomes multipli-
cation by m−1 − m and the latter is not zero, we have κz,m,1 = (m−1 − m)−1 as claimed. (iii) The estimate follows
straightforwardly from the algebraic identity (m−1 − m)2 = z2 − 4. �

For our study of anticommutators the following more exotic examples of nondegenerate solutions of the
Schwinger–Dyson equation will be needed.

Proposition 4.2. For each z ∈ h the triple (Λ,M,Φ) defined in (16), (22) and (23), respectively, is a nondegenerate
solution of the Schwinger–Dyson equation defined over Mat3. (Recall that the matrices Λ and M depend on z but the
notation does not show it.) Furthermore, we have bounds

[[Λ]] ≤ 1 + |z|, [[Φ]] ≤ 8, [[M]] ≤ 2 and
[[
M + Λ0]]≤ 2

(
1 ∧ 1


z

)
, (49)

where Λ0 is as defined on line (28). Let κ = κΛ,M,Φ ∈ B(Mat3). (As do Λ and M , the linear map κ depends on z but
the notation does not show it.) Finally, the nondegenerate solution (Λ,M,Φ,κ) of the Schwinger–Dyson equation
has stability radius satisfying the lower bound

1

8[[κ]]•[[Φ]]• ≥
√

h

c
, (50)

where h is as defined on line (8) above and c ≥ 1 is an absolute constant.

The elementary but long and computationally intensive proof is postponed to Section 5. The constant c4.2 has a
crucial role to play in the proof of Theorem 1.1.

The main result of this section is the following.

Proposition 4.3. Let S be a finite-dimensional unital Banach algebra. Let

(Λ0,M0,Φ0, κ0)

be a nondegenerate solution of the Schwinger–Dyson equation defined over S . Fix G0 ∈ S and let

E0 = 1S + (
Λ0 + Φ0(G0)

)
G0 ∈ S.

We then have

[[G0 − M0]] ≤ 1

8[[κ0]]•[[Φ0]]• ⇒ [[G0 − M0]] ≤ 20[[κ0]]•[[Φ0]]•[[M0]]2•[[E0]]. (51)
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The proof takes up the rest of this section. Statement (51) provides the promised interpretation of the stability
radius. The proof is by a routine deployment of the Banach fixed point theorem, with care taken over making the
constants explicit. Our estimates are relatively crude; doubtless our approach could be refined.

4.2. Abbreviated terminology for the proof of Proposition 4.3

Until the end of the proof the linear map Φ0 ∈ B(S) is fixed. Accordingly, we drop reference to Φ0 in the terminology,
saying, e.g., that the triple (Λ1,M1, κ1) is a nondegenerate solution of the Schwinger–Dyson equation if the quadruple
(Λ1,M1,Φ0, κ1) is.

4.3. The deformation equation associated to a nondegenerate solution of the Schwinger–Dyson equation

As in the statement of Proposition 4.3, let

(Λ0,M0, κ0) ∈ S × S × B(S)

be a nondegenerate solution of the Schwinger–Dyson equation. We say that a pair (Θ,H) ∈ S × S satisfies the
deformation equation associated with the triple (Λ0,M0, κ0) if

H = κ0
(
ΘM0 + ΘH + Φ0(H)H

)
. (52)

Lemma 4.4. As in the statement of Proposition 4.3, let (Λ0,M0, κ0) be a nondegenerate solution of the Schwinger–
Dyson equation. Fix (Λ1,M1) ∈ S × S and write (Θ,H) = (Λ1 − Λ0,M1 − M0). Then the pair (Λ1,M1) is a
solution of the Schwinger–Dyson equation if and only if the pair (Θ,H) is a solution of the deformation equation (52)
associated with the triple (Λ0,M0, κ0).

Proof. We first prove the implication (⇒). We have

0 = 1 + (
Λ1 + Φ0(M1)

)
M1 = 1 + (

Λ0 + Θ + Φ0(M0 + H)
)
(M0 + H)

= 1 + (
Λ0 + Φ0(M0)

)
M0 + (

Θ + Φ0(H)
)
H

+ (
Θ + Φ0(H)

)
M0 + (

Λ0 + Φ0(M0)
)
H

= ΘH + ΘM0 + Φ0(H)H + Φ0(H)M0 − M−1
0 H

and hence

M−1
0 H − Φ0(H)M0 = ΘM0 + ΘH + Φ0(H)H.

Thus the deformation equation (52) holds. The steps of the preceding argument are reversible. Thus the converse (⇐)
also holds. �

Lemma 4.5. Again, as in the statement of Proposition 4.3, let (Λ0,M0, κ0) be a nondegenerate solution of the
Schwinger–Dyson equation. Fix constants ε and δ such that

0 ≤ ε ≤ 1

4[[κ0]]•[[Φ0]]• and 0 ≤ δ ≤ ε

4[[κ0]]•[[M0]]• .

Fix Λ ∈ BallS(Λ0, δ). (For the latter notation see Section 2.5.) Then there exists unique M ∈ BallS(M0, ε) such that
the pair (Λ,M) is a solution of the Schwinger–Dyson equation.

Proof. Let

Θ = Λ − Λ0 ∈ BallS(0, δ)
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and consider the quadratic mapping

Q := (
x �→ κ0

(
ΘM0 + Θx + Φ0(x)x

))
:S → S.

By Lemma 4.4, an element M ∈ S has the property that the pair (Λ,M) is a solution of the Schwinger–Dyson equation
if and only if the difference M −M0 is a fixed point of Q. Thus our task is transformed to that of proving the existence
of a unique fixed point of Q in BallS(0, ε). For achieving the latter goal the Banach fixed point theorem is the natural
tool.

We turn now to the analysis of Q restricted to BallS(0, ε). For x ∈ BallS(0, ε) we have[[
Q(x)

]] = [[
κ0
(
ΘM0 + Θx + Φ0(x)x

)]]
≤ [[κ0]][[M0]]δ + [[κ0]]δε + [[κ0]][[Φ0]]ε2 ≤ ε

4
+ ε

4
+ ε

4
≤ ε.

Thus we have

Q
(
BallS(0, ε)

)⊂ BallS(0, ε). (53)

For x1, x2 ∈ BallS(0, ε) we have[[
Q(x1) − Q(x2)

]]
= [[

κ0
(
ΘM0 + Θx1 + Φ0(x1)x1

)− κ0
(
ΘM0 + Θx2 + Φ0(x2)x2

)]]
≤ [[κ0]]

[[
Θ(x1 − x2) + Φ0(x1 − x2)x1 + Φ0(x2)(x1 − x2)

]]
≤ ([[κ0]]δ + [[κ0]][[Φ0]]ε + [[κ0]][[Φ0]]ε

)[[x1 − x2]]

≤
(

1

4
+ 1

4
+ 1

4

)
[[x1 − x2]] = 3

4
[[x1 − x2]].

Thus we have

x1, x2 ∈ BallS(0, ε) ⇒ [[
Q(x1) − Q(x2)

]]≤ 3

4
[[x1 − x2]]. (54)

By (53) and (54) the map Q induces a contraction mapping of the complete metric space BallS(0, ε) to itself. By the
Banach fixed point theorem Q indeed has a unique fixed point in BallS(0, ε). �

4.4. Proof of Proposition 4.3

We may assume that

[[E0]] ≤ 1

64[[κ0]]2•[[M0]]2•[[Φ0]]2•
, (55)

since otherwise (51) already holds and there is nothing to prove. Now by the hypothesis of (51) we have [[G0]] ≤
2[[M0]]• and furthermore by (55) we have [[E0]] ≤ 1

2 . Thus Λ0 + Φ0(G0) is invertible and its inverse satisfies the
bound[[(

Λ0 + Φ0(G0)
)−1]]≤ 2[[G0]] ≤ 4[[M0]]•. (56)

Let

M = −(Λ0 + Φ0(G0)
)−1 and Λ = Λ0 + Φ0(G0 − M).
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The pair (Λ,M) is a solution of the Schwinger–Dyson equation because

1 + (
Λ + Φ0(M)

)
M = 1 + (

Λ0 + Φ0(G0 − M) + Φ0(M)
)
M

= 1 + (
Λ0 + Φ0(G0)

)
M = 1 − 1 = 0.

By (56) and the definitions we have

[[G0 − M]] = [[
G0 + (

Λ0 + Φ0(G0)
)−1]]

= [[(
Λ + Φ0(G0)

)−1
E0
]]≤ 4[[M0]]•[[E0]]. (57)

By hypothesis of (51) along with (55) and (57) we have

[[M − M0]] ≤ [[G0 − M]] + [[G0 − M0]]
≤ 4[[M0]]•[[E0]] + 1

8[[κ0]]•[[Φ0]]• ≤ 1

4[[κ0]]•[[Φ0]]• .

By (55) and (57) we also have

[[Λ − Λ0]] = [[
Φ0(G0 − M)

]]≤ 4[[Φ0]]•[[M0]]•[[E0]] ≤ 1

16[[κ0]]2•[[M0]]•[[Φ0]]• . (58)

Applying Lemma 4.5 in the case

(δ, ε) =
(

1

16[[κ0]]2•[[M0]]•[[Φ0]]• ,
1

4[[κ0]]•[[Φ0]]•
)

,

we conclude that M is the unique element of BallS(M0,
1

4[[κ0]]•[[Φ0]]• ) such that (Λ,M) is a solution of the Schwinger–
Dyson equation. By applying Lemma 4.5 again in the case

(δ, ε) = ([[Λ − Λ0]],4[[κ0]]•[[M0]]•[[Λ − Λ0]]
)

we find that in fact

[[M − M0]] ≤ 4[[κ0]]•[[M0]]•[[Λ − Λ0]].
Thus by (57) and (58) we have

[[G0 − M0]] ≤ [[G0 − M]] + [[M − M0]]
≤ 4[[M0]]•[[E0]] + (

4[[κ0]]•[[M0]]•
)(

4[[M0]]•[[Φ0]]•
)[[E0]],

which suffices to prove (51).

5. Proof of Proposition 4.2

The plan of proof is as follows. We first state a result about equation (6). (See Proposition 5.1 below.) We then use this
result to derive Proposition 4.2. Finally we prove Proposition 5.1. The only tool we use here is high school algebra.

5.1. Key estimates involving equation (6)

Let

ω =
√√

5 − 2
∼= 0.4858682712, (59)
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which is the unique positive root of the polynomial

m4 + 4m2 − 1 = (m − ω)(m + ω)(m − i/ω)(m + i/ω). (60)

Repeating (7) for the reader’s convenience, let

ζ =
√

11 + 5
√

5

2
∼= 3.330190676, (61)

which is the unique positive root of the polynomial

z4 − 11z2 − 1 = (z − ζ )(z + ζ )(z − i/ζ )(z + i/ζ ). (62)

It can be shown that the system of equations

zm3 − m2 − zm − 1 = 0,

∂

∂m
(zm3 − m2 − zm − 1) = 0 (63)

has exactly four complex solutions, namely

(z,m) = (−ζ,ω), (ζ,−ω), (−i/ζ, i/ω), (i/ζ,−i/ω). (64)

(We omit the proof of this fact since we do not actually use it in the sequel.) These four points in C
2 are where the

Implicit Function Theorem fails to yield locally a solution m = m(z) of (6) depending analytically on z. Thus the
numbers ζ and ω are not pulled out of thin air; rather, they naturally call attention to themselves in connection with
the geometry of the plane algebraic curve (6).

Our main technical result in this section, by means of which we will prove Proposition 4.2, is the following.

Proposition 5.1. If z ∈ h and m = m{uv}(z), then

|m| ≤ 1 ∧ 1


z
, (65)

|�m| ≤ ω <
1

2
and (66)

∣∣m2 − ω2
∣∣≥ √

h

c
, (67)

where c ≥ 1 is an absolute constant and h is the quantity on line (8).

The proof of the proposition takes up the rest of this section after we have made the application to the proof of
Proposition 4.2.

5.2. Remark

The recent paper [18] sheds light on the more delicate properties of the laws of self-adjoint polynomials in free
semicircular variables, including lack of atoms and algebraicity of Stieltjes transforms. It is an open problem to refine
this theory to yield a general analogue of Proposition 4.2. Such an analogue would make it possible to prove a local
limit law for self-adjoint polynomials in Wigner matrices. We consciously overkill the proofs of Propositions 4.2
and 5.1 here in the hope that some among the details could provide clues for the theory (partly algebraic geometry
and partly operator theory) we would like to have.

5.3. Proof of Proposition 4.2 with Proposition 5.1 granted

We break the proof down into several steps.
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5.3.1. Proof that (Λ,M,Φ) solves the Schwinger–Dyson equation
Since m = m{uv}(z) the pair (z,m) satisfies equation (6). Note that equation (6) can be rewritten as

z = m2 + 1

m3 − m
= 1

m − 1
+ 1

m + 1
− 1

m
. (68)

Recall that

Λ =
[

z 0 0
0 −1 0
0 0 1

]
and M =

⎡⎣m 0 0
0 − 1

m−1 0

0 0 − 1
m+1

⎤⎦ .

Using (24) to calculate the action of Φ and also exploiting (68), we have

Φ(M) =
[− 1

m−1 − 1
m+1 0 0

0 m 0
0 0 m

]
and

Λ + Φ(M) =
[− 1

m
0 0

0 m − 1 0
0 0 m + 1

]
= −M−1.

Thus (Λ,M,Φ) is indeed a solution of the Schwinger–Dyson equation.

5.3.2. Proof of the bounds (49)
The first bound is clear. The second bound is proved as follows:[[

Φ(A)
]]≤ ([[e12 + e21]]2 + [[e13 + e31]]2)[[A]] ≤ 8[[A]].

The third and fourth bounds are equivalent to the statements

|m| ∨
∣∣∣∣ 1

m − 1

∣∣∣∣∨ ∣∣∣∣ 1

m − 1

∣∣∣∣≤ 2 and |m| ∨
∣∣∣∣ m

m − 1

∣∣∣∣∨ ∣∣∣∣ m

m + 1

∣∣∣∣≤ 2

(
1 ∧ 1


z

)
,

respectively. Both bounds follow easily from (65) and (66).

5.3.3. Proof of nondegeneracy
Abusing notation since we haven’t yet proved invertibility, let κ−1 denote the linear map (45). Then, making use of
formula (24) again, we have

κ−1

([
x1 x4 x6
x5 x2 x8
x7 x9 x3

])
=
[1/m 0 0

0 −(m − 1) 0
0 0 −(m + 1)

][
x1 x4 x6
x5 x2 x8
x7 x9 x3

]

−
[

x2 + x3 x5 x7
x4 x1 0
x6 0 x1

]⎡⎣m 0 0
0 − 1

m−1 0

0 0 − 1
m+1

⎤⎦ .

With respect to the basis for Mat3 dual to the peculiar numbering of matrix entries in (24), the matrix for κ−1 is block
diagonal with diagonal blocks⎡⎣1/m −m −m

1
m−1 −(m − 1) 0

1
m+1 0 −(m + 1)

⎤⎦ ,

[
1/m 1

m−1−m −(m − 1)

]
,

(69)[
1/m 1

m+1−m −(m + 1)

]
,

[−(m − 1) 0
0 −(m + 1)

]
,
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respectively. The determinants of these blocks are

− m4 + 4m2 − 1

m(m − 1)(m + 1)
,

2m − 1

m(m − 1)
,− 2m + 1

m(m + 1)
, (m − 1)(m + 1), (70)

respectively. By (65) and (66) and the lower bound 
m > 0, the determinants on the list (70) are finite and nonzero. It
follows that (Λ,M,Φ) is nondegenerate and hence κ is well-defined.

5.3.4. Proof of the bound (50)
The inverses of the diagonal blocks on the list (69) are[−(m2 − 1)2m m2(m2 − 1)(m + 1) m2(m2 − 1)(m − 1)

−(m + 1)2m (2m + 1)(m − 1) m2(m + 1)

−(m − 1)2m m2(m − 1) −(2m − 1)(m + 1)

]
(m4 + 4m2 − 1)

,[−(m − 1)2m −m

m2(m − 1) m − 1

]
2m − 1

,

[
(m + 1)2m m

−m2(m + 1) −(m + 1)

]
2m + 1

,[− 1
m−1 0

0 − 1
m+1

]
,

respectively. By (65) and (66) along with the factorization (60), the entries of the matrices above are bounded
in absolute value by c1/|m2 − ω2|. It follows by Proposition 5.2 appearing immediately after this proof that
[[κ]] ≤ c2/|m2 − ω2|. Finally, the bound (50) follows via (67). The proof of Proposition 4.2 is now complete modulo
Propositions 5.1 and 5.2.

Proposition 5.2. Let ψ ∈ B(Matn) be any linear map. Let {eij }ni,j=1 be the standard basis of Matn consisting of
elementary matrices. Write

ψ(ei2j2) =
∑
i1,j1

ψ(i1, j1, i2, j2)ei1j1

for scalars ψ(i1, j1, i2, j2). Then

[[ψ]] ≤ √
n

∑
i1,j1,i2,j2

∣∣ψ(i1, j1, i2, j2)
∣∣.

We omit the routine proof.

5.4. Algebraic identities

We prepare for the proof of Proposition 5.1 by deriving a certain algebraic identity. Let a and t be independent
(commuting) algebraic variables. The following polynomial congruences hold modulo a4 + 4a2 − 1 and were derived
with the help of a computer algebra system:

t4 − 11t2 − 1
∣∣
t=(3a3+13a)/2 ≡ 0, (71)(

3a3 + 13a

2

)(
a3 + a

2

)
≡ 1, (72)

(
t3 − t

)±
(

a3 + a

2

)(
t2 + 1

)≡
(

t ± a3 + 5a

2

)
(t ∓ a)2. (73)
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In particular, the numerical identities

ζ = 3ω3 + 13ω

2
and

1

ζ
= ω3 + ω

2

follow from (71) and (72), respectively. Let

ρ = ω3 + 5ω

2
∼= 1.272019648.

Now let z ∈ h and m = m{uv}(z) as in Proposition 5.1, then substitute (t, a) = (m,ω) in (73) and finally take the
product over the two choices of signs. We thus obtain the identity(

1 − z2/ζ 2)(m3 − m
)2 = (

m2 − ρ2)(m2 − ω2)2.
Taking absolute values on both sides and then square roots we obtain the relation

1

|m2 − ω2| = |m2 − ρ2|1/2

|m2 − 1|
1

|m|
ζ

|z2 − ζ 2|1/2
(74)

after some rearrangement.

5.5. The quadrant-lifting diagram

We continue preparation for the proof of Proposition 5.1. We introduce a visual aid to explain the geometry of equation
(6). Let m = u + iv with u and v real. Then for m3 − m �= 0 we have formulas

� m2 + 1

m3 − m
= u((u2 + v2)2 − 4v2 − 1)

|m3 − m|2 , (75)


 m2 + 1

m3 − m
= −v((u2 + v2)2 + 4u2 − 1)

|m3 − m|2 . (76)

It follows that{
m ∈ C \ {−1,0,1}

∣∣∣� m2 + 1

m3 − m
= 0

}
∪ {−1,1} =

{
±(√√1 + 4t2 − t2 + it

) ∣∣∣ |t | ≤ 1

ω

}
∪ iR, (77){

m ∈ C \ {−1,0,1}
∣∣∣ 
 m2 + 1

m3 − m
= 0

}
∪ {0} = {±(t + i

√√
1 − 4t2 − t2

) ∣∣ |t | ≤ ω
}∪R. (78)

By plotting the sets (77) and (78) in the complex plane and also keeping track of the signs of � m2+1
m3−m

and 
 m2+1
m3−m

we

obtain Figure 2 in which each of the twelve regions is labeled by the quadrant of the complex plane to which it is sent

by the map m �→ m2+1
m3−m

. Accordingly, we call this figure the quadrant lifting diagram associated with equation (6).

5.6. Proof of Proposition 5.1

Since z,m ∈ h and (z,m) satisfies (6), a glance at the quadrant lifting diagram reveals that m belongs to the set in the
complex plane bounded below by the interval [−ω,ω] and above by the contour

t �→ t + i

√√
1 − 4t2 − t2 for |t | ≤ ω.
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Fig. 2. The quadrant lifting diagram.

This observation overkills the proof that |m| ≤ 1 and |�m| ≤ ω. We already have |m| ≤ 1/
z because m is the value
at z of a Stieltjes transform. Thus the bounds (65) and (66) hold. It remains only to prove the bound (67). Bounding
the right side of (74) by means of (65) and (66) we find that

1

|m2 − ω2| ≤ c1

|m|√|z2 − ζ 2| .

Using (65), (66) and (68) we deduce a bound

1

|m| ≤ |z| + 2

1 − ω
≤ c2

(
1 + |z|).

We have finally a bound

1 + |z|√|z2 − ζ 2| ≤ c3√
1 ∧ |z − ζ | ∧ |z + ζ | .

Combining displayed lines above we obtain the desired bound (67). The proof of Proposition 5.1 is complete. (Thus
also the proof of Proposition 4.2 is complete.) �

6. A general matrix-valued self-consistent equation

We prove a technical result similar in intent to [9], Lemma 4.3, if superficially different in form. (See Proposition 6.1
below.) The result is an elaboration and refinement of Proposition 4.3. Our methods here are deterministic and alge-
braic.

6.1. Setup for the technical result

Fix a finite-dimensional unital Banach algebra S . Fix a nondegenerate solution

(Λ0,M0,Φ0, κ0)

of the Schwinger–Dyson equation defined over S for which (recall) 1
8[[κ0]]•[[Φ0]]• is by definition the stability radius.

Fix a family

{Gi, Ĝi}Ni=1
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of elements of S where all the Gi are invertible. (It is not necessary to assume that the Ĝi are invertible.) Consider
the statistic

E =
N∨

i=1

[[G−1
i + Λ0 + Φ0(Ĝi)]]

[[Ĝi]]1/2•
∨

N∨
i=1

√√√√ [[Ĝi − (1/N)
∑N

i=1 Gi]]
[[Gi]]•[[G−1

i ]] ,

which is a gauge of error in this situation. The idea to emphasize the statistic E clearly derives from [9], Lemma 4.3,
and the related constellation of identities and estimates. The following is the main result of this section.

Proposition 6.1. Notation and assumptions are as above. We have

N∨
i=1

[[Gi − M0]] ≤ 1

8[[κ0]]•[[Φ0]]• ⇒
N∨

i=1

[[Gi − M0]] ≤ 214(1 + [[M0]]
)7([[Φ0]]• ∨ [[Λ0]]•

)4[[κ0]]•E. (79)

Proof. Let

G =
N∨

i=1

[[Gi]]•, G = 1

N

N∑
i=1

Gi and E = 1 + (
Λ0 + Φ0(G)

)
G.

Also to abbreviate notation let

M = 1 + [[M0]] and F = [[Φ0]]• ∨ [[Λ0]]•.
We temporarily assume that

[[E]] ∨
N∨

i=1

[[Gi − G]] ≤ 28G5F3E. (80)

Presently we will explain how to lift this assumption. By the hypothesis of (79) we have [[G−M0]] ≤ 1
8[[κ0]]•[[Φ0]]• and

hence G ≤M. Thus by (51) and (80) we have

N∨
i=1

[[Gi − M0]] ≤ [[G − M0]] +
N∨

i=1

[[Gi − G]]

≤ 20[[κ0]]•[[Φ0]]•[[M0]]2•[[E]] + 28G5F3E

≤ (
25[[κ0]]•FM2 + 1

)
28M5F3E ≤ 214M7F4[[κ0]]•E,

i.e., the conclusion of (79) holds.
It remains now only to prove (80). We will not need the hypothesis of (79) for that purpose. We may assume that

E2 ≤ E ≤ 1

26G3F2
≤ 1 (81)

because the left side of (80) is trivially bounded by 22G2F.
We first bound [[G − Ĝi]]. We calculate as follows.[[

G−1
i

]] ≤ [[
G−1

i + Λ0 + Φ0(Ĝi)
]]+ F+ F[[Ĝi]]

≤ E[[Ĝi]]1/2• + 2F[[Ĝi]]• ≤ 4F[[Ĝi]]•
≤ 4F[[G]]• + 4F[[G − Ĝi]] ≤ 4GF+ 4FE2[[Gi]]•

[[
G−1

i

]]
≤ 4GF+ 4GFE

[[
G−1

i

]]
.
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Since 4GFE ≤ 1
2 by (81) and hence [[G−1

i ]] ≤ 8GF we have

[[G − Ĝi]] ≤ E2[[Gi]]•
[[
G−1

i

]]≤ 8G2FE. (82)

We next bound [[E]]. We calculate as follows.[[
G−1

i + Λ0 + Φ0(G)
]] ≤ E[[Ĝi]]1/2• + F[[G − Ĝi]]

≤ E[[G]]1/2• +E[[G − Ĝi]]1/2 + F[[G − Ĝi]]
≤ E[[G]]1/2• +E2 + [[G − Ĝi]] + F[[G − Ĝi]]
≤ 2G1/2E+ 2F[[G − Ĝi]]
≤ 2G1/2E+ 16G2F2E ≤ 25G2F2E.

We used the arithmetic-geometric mean inequality at the third step above and (82) at the penultimate step. We conclude
that

[[E]] ≤
N∨

i=1

[[
1 + (

Λ0 + Φ0(G)
)
Gi

]]≤ 25G3F2E. (83)

Finally we bound [[G − Gi]]. By (81), the left side of (83) is bounded by 1
2 . Thus Λ0 + Φ0(G) is invertible and we

have [[(Λ0 + Φ0(G))−1]] ≤ 2[[G]]. In turn we have by (83) that[[(
Λ0 + Φ0(G)

)−1 + G
]]∨ [[(Λ0 + Φ0(G)

)−1 + Gi

]]≤ 26G4F2E

and hence

N∨
i=1

[[G − Gi]] ≤ 27G4F2E. (84)

The bound (80) follows now from (83) and (84). The proof of Proposition 6.1 is complete. �

7. Analysis of the generalized resolvent

We return to the deterministic setting of Section 3 exclusive of Section 3.4. We continue the analysis of objects related
to the generalized resolvent R.

Here is our main result in Section 7.

Theorem 7.1. Notation and assumptions are as set forth in Section 3. Consider the compact rectangle

R =
{
z ∈ h

∣∣∣ |�z| ≤ τ and
1

N
≤ 
z ≤ τ

}
, (85)

where τ ≥ 1 is an absolute constant. We write K(z) to show z-dependence, it being understood that U and V are held
fixed as z varies. Let

K = θ sup
z∈R

K(z) < ∞,

where θ ≥ 1 is another absolute constant. Let h be as defined on line (8). Consider also the compact (possibly empty)
set

X =
{
z ∈R

∣∣∣ K2

N
≤ h2
z

}
.
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Then we have

[[U ]] ∨ [[V ]] ≤ 4 and z ∈X ⇒
N∨

i=1

[[Gi − M]] ≤ K√
Nh
z

(86)

provided that τ is sufficiently large and θ is sufficiently large depending on τ .

The proof will be completed in Section 7.2 after some preparation.

7.1. An a priori bound

We have in general a bound

N∨
i=1

[[Gi − M]] ≤ 27([[U ]] ∨ [[V ]] ∨ 1)2


z
(87)

obtained by combining (19), (30) and (49). We emphasize that the hypothesis of (86) is not used here. Use of the
bound (87) in this paper turns out to be precisely the technical innovation that permits us to avoid the cumbersome
two-variable resolvent apparatus of [1].

The next result meshes the self-adjoint linearization trick with the self-improving sort of estimate exploited in [9].

Proposition 7.2. For i = 1, . . . ,N we have

[[G − Ĝi]] ≤ 16[[W ]]2 (
z)•
N
z

[[Gi]]•
[[
G−1

i

]]
and (88)

[[
G−1

i + Λ + Φ(Ĝi)
]]≤ 4K[[W ]]

√
(
z)•
N
z

[[Ĝi]]1/2• . (89)

We emphasize that the hypothesis of (86) is not used here.

Proof of Proposition 7.2. By (19), (29) and the matrix Hölder inequality, we have

tr

Gi


z
= tr ei


R


z
e∗
i = [[eiWr]]2

2 ≥ [[eiWrW ∗]]2
2

[[W ∗]]2
= [[ei (R + Λ0 ⊗ IN)]]2

2

[[W ]]2

and similarly

tr

Gi


z
≥ [[(R + Λ0 ⊗ IN)e∗

i ]]2
2

[[W ]]2
.

It follows that

√
2 + [[W ]]

√
tr


Gi


z
≥ [[eiR]]2 ∨ [[Re∗

i

]]
2.

It follows in turn by using the convexity bound 2(x2 + y2) ≥ (x + y)2 that

16[[W ]]2 (
z)•

z

[[Gi]]• ≥ 4 + 2[[W ]]2 tr

Gi


z
≥ [[eiR]]2

2 ∨ [[Re∗
i

]]2
2, hence (90)

16[[W ]]2 (
z)•

z

[[G]]• ≥ 4 + 2[[W ]]2 tr

G


z
≥ [[R]]2

2

N
, similarly
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16[[W ]]2 (
z)•

z

[[Ĝi]]• ≥ 4 + 2[[W ]]2 tr

Ĝi


z
≥ [[Ri]]2

2

N
and hence

4[[W ]]
√

(
z)•
N
z

[[Ĝi]]1/2• ≥ 1√
N

(
1 ∨ [[Ri]]2√

N

)
. (91)

Statements (36) and (90) prove (88). Statements (34) and (91) along with the definition of K prove (89). �

The following key result combines Propositions 4.2, 6.1 and 7.2.

Proposition 7.3. We have

N∨
i=1

[[Gi − M]] ≤
√

h

c4.2
⇒

N∨
i=1

[[Gi − M]] ≤ C(1 + |z|)5[[W ]]√
Nh
z

K, (92)

where C is an absolute constant.

We emphasize that the hypothesis of (86) is not used here.

Proof of Proposition 7.3. Proposition 6.1 specialized to the present setup is the assertion that

N∨
i=1

[[Gi − M]] ≤ 1

8[[κ]]•[[Φ]]•

⇒
N∨

i=1

[[Gi − M]] ≤ 214(1 + [[M]])7([[Φ]]• ∨ [[Λ]]•
)4[[κ]]•E,

where the quantity E satisfies

E ≤ 4K[[W ]]
√

(
z)•
N
z

by Proposition 7.2 and the definition of K. We obtain (92) after simplifying by means of Proposition 4.2. �

7.2. Proof of Theorem 7.1

Whereas above we abstained from using the hypothesis of (86), we now enforce it throughout the remainder of the
argument.

7.2.1. Setup for application of Proposition 1.3
In the triple (U,V, z) we hold U and V fixed subject to the condition [[U ]] ∨ [[V ]] ≤ 4. We allow z to vary but we
constrain it to the space X ⊂ h. On the space X we consider the three continuous functions

f1 =
N∨

i=1

[[Gi − M]], f2 =
√

h

c4.2
and f3 = K

c4.2
√

Nh
z
.

The rest of the proof is a matter of checking hypotheses in Proposition 1.3. The process of checking naturally dictates
choices for the absolute constants τ and θ .
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7.2.2. X is connected if not empty

Let ρ = K2

N
. If ρ > τ then for z ∈ X we have 1 ≤ τ < ρ ≤ h2
z = 
z, in contradiction to the definition of R, and

hence X is empty. Assume that ρ ≤ τ hereafter. Then the set X contains the top side of R, i.e., the horizontal line
segment {x + iτ | −τ ≤ x ≤ τ }. Furthermore, since the function h2
z is monotone increasing on vertical line segments
in R, each point of X is connected to the top side of R by a vertical line segment contained in X . Thus X is indeed
connected if nonempty.

7.2.3. Checking hypothesis (12)
Consider the statement

N∨
i=1

[[Gi − M]]
∣∣∣
z=iτ

≤ 211


z

∣∣∣
z=iτ

= 211

τ
<

1

c4.2
=

√
h

c4.2

∣∣∣
z=iτ

. (93)

The first inequality holds by (87). The third inequality can be made to hold by choosing τ large enough. So now we
fix τ ≥ 1 large enough to make the statement (93) hold. Then hypothesis (12) of Proposition 1.3 is verified.

7.2.4. Checking hypothesis (13)
We next choose θ so that

θ ≥ 2c4.2C7.3(1 + 2τ)525 ≥ 2c4.2C7.3(1 + 2τ)5[[W ]],
where the second inequality holds by (19). Then by Proposition 7.3 we have

N∨
i=1

[[Gi − M]] ≤
√

h

c4.2
⇒

N∨
i=1

[[Gi − M]] ≤ K

2c4.2
√

Nh
z
.

With θ thus fixed, hypothesis (13) of Proposition 1.3 is verified.

7.2.5. Checking hypothesis (14)
Finally we have

K

2c4.2
√

Nh
z
≤

√
h

2c4.2
<

√
h

c4.2

by definition of X . Thus hypothesis (14) of Proposition 1.3 is verified. The conclusion (15) of Proposition 1.3 is then
the same as the conclusion (86) of Theorem 7.1. The proof of Theorem 7.1 is complete.

The following technical result is needed in Section 8 for construction of the random variable K figuring in Theo-
rem 1.1.

Proposition 7.4. For i = 1, . . . ,N and distinct z1, z2 ∈ h we have

[[U ]] ∨ [[V ]] ≤ 4 and (
z1) ∧ (
z2) ≥ 1

N
⇒ |Ki (z1) −Ki (z2)|

|z1 − z2| ≤ cN7/2, (94)

where c is an absolute constant.

Proof. Temporarily we write R(z), r(z), Ri(z) and Qi(z) to show z-dependence with U and V held fixed. Consider
the functions

f,g : {z ∈ h | 
z ≥ 1/N} → [0,∞)

given by the formulas

f (z) = √
N ∨ [[Ri(z)

]]
2 and g(z) = N

[[
Qi(z)

]]
.
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Our task is to estimate the Lipschitz constant of 1 ∨ g
f

. It is enough to estimate the Lipschitz constant of g
f

. Let

C = 1 + [[Φ]] + [[X]] + [[X]]2 + 3[[W ]]2.

By (19), under the assumption [[U ]]∨ [[V ]] ≤ 4, the quantity C is bounded by an absolute constant. Thus it will suffice
to bound the Lipschitz constant of g

f
by a polynomial in C times N7/2.

By the first of the identities on line (29) and the standard resolvent bound [[r(z)]] ≤ 1/
z we have for 
z ≥ 1/N

that [[
R(z)

]]≤ 2 + [[W ]]2[[r(z)]]≤ 3[[W ]]2N ≤ CN, similarly
[[
Ri(z)

]]≤ CN

and hence[[
Qi(z)

]]≤ ([[X]]2 + [[Φ]])[[Ri(z)
]]+ [[X]] ≤ C2N.

Thus g is bounded by C2N2. Obviously f is lower-bounded by
√

N .
By the second of the identities on line (29), for distinct z1, z2 ∈ h such that 
z1 ∧ 
z2 ≥ 1/N , we have

[[R(z1) − R(z2)]]
|z1 − z2| ≤ N2[[W ]]2 ≤ CN2 and similarly

[[Ri(z1) − Ri(z2)]]
|z1 − z2| ≤ CN2.

It follows that

[[Ri(z1) − Ri(z2)]]2

|z1 − z2| ≤ CN5/2.

It follows in turn that the Lipschitz constant of f is bounded by CN5/2. It also follows that

[[Qi(z1) − Qi(z2)]]
|z1 − z2| ≤ ([[X]]2 + [[Φ]])CN2 ≤ C2N2.

Thus the Lipschitz constant of g is bounded by C2N3.
Using the identity

g(z1)

f (z1)
− g(z2)

f (z2)
= g(z1) − g(z2)

f (z1)
+ g(z2)

f (z2) − f (z1)

f (z1)f (z2)

we deduce that

|g(z1)/f (z1) − g(z2)/f (z2)|
|z1 − z2| ≤ C2N3

√
N

+ (C2N2)(CN5/2)

N
≤ 2C3N7/2,

which finishes the proof. �

8. Proof of Theorem 1.1

8.1. Construction of K

We fix absolute constants τ ≥ 64 and θ ≥ 1 once and for all so that the conclusion (86) of Theorem 7.1 holds. We work
simultaneously in the settings of Theorem 1.1 and Theorem 7.1. In particular, U and V are now random. Let R be the
rectangle (85). By Proposition 7.4 we know that conditioned on [[U ]]∨[[V ]] ≤ 4 the quantity Ki (z) depends Lipschitz-
continuously on z ∈R with Lipschitz constant bounded by cN7/2. Recall also that Ki is by definition bounded below
by 1. Thus for suitable absolute constants β1 and β3 and a suitable net R0 ⊂R of at most β3N

β1−1 points we have

2
∨

z0∈R0

N∨
i=1

Ki (z0) = 2
∨

z0∈R0

K(z0) ≥ sup
z∈R

K(z) (95)



A local limit law for anticommutators 835

conditioned on [[U ]] ∨ [[V ]] ≤ 4. We define K to equal the left side of (95) multiplied by θ . It follows immediately
from (26) and (86) that the random variable K ≥ 1 thus defined has the desired property (9). It remains only to prove
that K has property (10). The latter task is a matter of revisiting the topic of [9], Appendix B. We will handle the
details a bit differently than in the cited reference, basing our proof instead on a classical result from [25].

8.2. Remark

In the proof of the local semicircle law [9], Thm. 3.1, the Lipschitz continuity of the various functions in play is
frequently invoked while marching toward the real axis. It might have seemed we were trying to avoid such consid-
erations here by using Proposition 1.3. Certainly we have avoided their use in a dynamical way. But ultimately our
reworking of the method of [9] has merely displaced the use of Lipschitz continuity to the phase of the argument
presented here in Section 8 in which we construct K.

We begin the proof that K has property (10) by recalling the relationship between moment bounds of the form (1)
and exponentially light tails.

Proposition 8.1. Fix constants α, c > 0 and C ≥ 1. Let Z be a nonnegative random variable.

(i) If supp∈[2,∞) p
−α‖Z‖p ≤ c, then Pr(Z > tα) ≤ exp(α(2 − t

c1/αe
)) for t > 0.

(ii) If Pr(Z > tα) ≤ Ce−t/c1/α
for t > 0, then supp∈[1,∞) p

−α‖Z‖p ≤ cC(α + 1)α .

Proof. (i) In the Markov bound Pr(Z > tα) ≤ ‖Z‖p
p

tαp ≤ (
c1/αp

t
)αp we substitute p = t

c1/αe
if t

c1/αe
≥ 2 and simplify.

(ii) For the Γ -function Γ (s) = ∫∞
0 xs−1e−xdx one has a functional equation sΓ (s) = Γ (s + 1), a bound Γ (s) ≤ 1

for 1 ≤ s ≤ 2 and (hence) an elementary inequality Γ (1 + s) ≤ (1 + s)s for s ≥ 0. For p ≥ 1 we then have

EZp = αp

∫ ∞

0
Pr
(
Z > tα

)
tαp−1 dt ≤ αpC

∫ ∞

0
e−t/c1/α

tαp−1 dt ≤ cpC(pα + 1)pα

and thus p−α‖Z‖p ≤ cC1/p(α + 1/p)α for p ≥ 1. �

We next recall a classical result. Let Θ(s) = 2s/2√
π

Γ (s+1
2 ) for s ≥ 0.

Theorem 8.2 (Whittle [25]). Let Y1, . . . , Yn be independent real random variables in L2 and of mean zero. Fix
p ∈ [2,∞). Let v ∈R

n be a real vector. Let B ∈ Matn be a matrix with real entries. If
∨n

i=1 ‖Yi‖p < ∞, then∥∥∥∥∥
n∑

i=1

v(i)Yi

∥∥∥∥∥
p

≤ 2Θ(p)1/p

(
n∑

i=1

v(i)2‖Yi‖2
p

)1/2

. (96)

Furthermore, if
∨n

i=1 ‖Yi‖2p < ∞, then∥∥∥∥∥
N∑

i,j=1

B(i, j)
(
YiYj − E[YiYj ]

)∥∥∥∥∥
p

≤ 23Θ(p)1/pΘ(2p)1/(2p)

(
N∑

i,j=1

B(i, j)2‖Yi‖2
2p‖Yj‖2

2p

)1/2

. (97)

We hasten to point out that one has an elementary bound

sup
s≥2

Θ(s)1/s

√
s

≤ 1. (98)

Thus the estimates (96) and (97) can be simplified nicely.
From Proposition 8.1 and Theorem 8.2 we then get the following tail-bound.
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Proposition 8.3. Fix constants γ0 > 0 and γ1 ≥ 1. Fix a positive integer k. Let Y0, . . . , Y2N ∈ Matk have L2 random
entries of mean zero. Assume that the family{

σ(Y0)
}∪ {σ(Yi, Yi+N)

}N
i=1

of σ -fields is independent. Assume that

sup
p≥2

p−γ0

2N∨
i=0

∥∥[[Yi]]
∥∥

p
≤
√

γ1

N
.

Let

Y = [Y1 · · · YN ] ∈ Matk×kN and Ŷ = [YN+1 · · · Y2N ] ∈ Matk×kN .

Let B ∈ MatkN be any constant matrix. Then for every t > 0 we have

Pr

( [[YBŶ ∗ − Y0 − E(YBŶ ∗)]]
(γ1/

√
N )(1 ∨ ([[B]]2/

√
N ))

> t2γ0+1
)

≤ γ2e−γ3t

for constants γ2 ≥ 1 and γ3 > 0 depending only on γ0 and k.

Proof. By Proposition 8.1 it is enough to prove that

sup
p≥2

p−(1+2γ0)
∥∥[[YBŶ ∗ − Y0 − E

(
YBŶ ∗)]]∥∥

p
≤ γ4γ1√

N

(
1 ∨ [[B]]2√

N

)
, (99)

where γ4 ≥ 1 is a constant depending only on γ0 and k. Without loss of generality we may assume that Y0 = 0, B has
real entries and that the random matrices Yi have real entries. We may then in turn assume that k = 1. By (96) we may
assume that every diagonal entry of B vanishes. We may also obviously assume that N ≥ 2. Now let I ⊂ {1, . . . ,N}
be any subset of cardinality �N

2 � and let I c denote the complement of I . Let

BI (i, j) = B(i, j)1i∈I 1j∈I c ,

thus defining a matrix BI ∈ MatN supported on the set

I × I c ⊂ {1, . . . ,N}2.

Let

ỸI (i) =
{

Yi if i ∈ I ,
Yi+N if i ∈ I c.

Note that the entries of ỸI are independent. Note also that

YBI Ŷ
∗ = ỸIBI Ỹ

∗
I .

Thus we have

sup
p≥2

p−(1+2γ0)
∥∥[[YBI Ŷ

∗ − E
(
YBI Ŷ

∗)]]∥∥
p

≤ γ1γ4

4

[[BI ]]2

N
≤ γ1γ4

4

[[B]]2

N
(100)

by Theorem 8.2 and the upper bound (98). Now the average of BI over I equals qB for some constant q ≥ 1
4 . Thus,

averaging over I on the left side of (100) and using Jensen’s inequality, we obtain (99). �
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8.3. End of the proof

Proposition 8.3 and the summary of properties of the random matrix X in Section 3.4 together provide us with
constants β2 ≥ 1 and β4 > 0 depending only on α0 and α1 such that for i = 1, . . . ,N and any z0 ∈ h we have a
conditional tail bound

Pr
(
2θKi (z0) > t1/(2α0+1)

∣∣ êiXê∗
i

)≥ β4 exp(−β2t) a.s.

uniform in z0. The latter combined with the evident union bound over β3N
β1 events yields (10) with β0 = β3β4. The

proof of Theorem 1.1 is complete.

Appendix: The deterministic local semicircle law

We state and prove the semicircular analogue of Theorem 7.1. The proof will apply Propositions 1.3, 3.1, 4.1 and 6.1
above, none of which have anything specifically to do with anticommutators.

A.1. Setup for the result

A.1.1. Basic data
Fix a hermitian matrix X ∈ MatN and a point z ∈ h arbitrarily.

A.1.2. Specialized matrix notation
Let ei denote the ith row of IN and let êi denote the result of deleting the ith row of IN .

A.1.3. Functions of z

For i = 1, . . . ,N let

R = (X − zIN)−1 ∈ MatN, Gi = eiRe∗
i = R(i, i) ∈ h,

G = 1

N
trR = 1

N

N∑
i=1

Gi,

Ri = (
êiXê∗

i − zIN−1
)−1 ∈ MatN−1, Ĝi = 1

N
trRi ∈ h,

Qi = eiXê∗
i Ri êiXe∗

i − X(i, i) − Ĝi ∈C,

Ki = 1 ∨ |Qi |
(1/

√
N)(1 ∨ ([[Ri]]2/

√
N ))

∈ [1,∞), K=
N∨

i=1

Ki .

All these objects depend on (X, z) but the notation does not show it. We will write K(z) to show z-dependence, it
being understood that X is held fixed as z varies. Also let

m = 1

2π

∫ 2

−2

√
4 − t2 dt

t − z
∈ h and h = 1 ∧ |z + 2| ∧ |z − 2| > 0.

Both m and h depend on z but the notation does not show it.
Here then is the deterministic local semicircle law.

Theorem A.1. Notation and assumptions are as above. Let τ ≥ 1 and θ ≥ 1 be absolute constants. Consider the
rectangle

R=
{
z ∈ h

∣∣∣ |�z| ≤ τ and
1

N
≤ 
z ≤ τ

}
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and let

K = θ sup
z∈R

K(z) < ∞.

Consider also the closed (possibly empty) set

X =
{
z ∈R

∣∣∣ K2

N
≤ h2
z

}
.

Then we have

z ∈X ⇒
N∨

i=1

|Gi − m| ≤ K√
Nh
z

(101)

provided that τ is large enough and θ is large enough depending on τ .

We follow the outline of the proof of Theorem 7.1, finishing up in Appendix A.3 below. The hypothesis of (101) is
not used until Appendix A.3.

A.2. An a priori bound

Clearly we have

N∨
i=1

|Gi − m| ≤ 2


z
. (102)

Proposition A.2. We have

|G − Ĝi | ≤ (
z)•
N
z

|Gi |•|Gi |−1, (103)

∣∣G−1
i + z + Ĝi

∣∣≤ K

√
(
z)•
N
z

|Ĝi |1/2• . (104)

Proof. Since


R


z
= RR∗ = R∗R,

we have


Gi


z
= [[eiR]]2

2 = [[Rei]]2
2 and similarly (105)


Ĝi


z
= [[Ri]]2

2

N
. (106)

By Proposition 3.1 we have

Qi = −G−1
i − z − Ĝi and (107)

R = ê∗
i Ri êi + Re∗

i G
−1
i eiR. (108)

By (105), (108) and Cauchy–Schwarz we have

|G − Ĝi | = 1

N
| trR − trRi | ≤ [[Re∗

i ]]2[[eiR]]2

N |Gi | ≤ 1

N
z
,
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which is enough to prove (103). By (106), (107) and the definition of K we have

∣∣G−1
i + z + Ĝi

∣∣≤ K√
N

(
1 ∨ [[Ri]]2√

N

)
≤ K√

N

(
1 ∨

√

Ĝi


z

)
,

which is enough to prove (104). �

Proposition A.3. We have

N∨
i=1

|Gi − m| ≤
√

h

c4.1
⇒

N∨
i=1

|Gi − m| ≤ C(1 + |z|)5K√
Nh
z

, (109)

where C is an absolute constant.

Proof. Let κ = (m−1 − m)−1. By Proposition 4.1 the quadruple (z,m,1, κ) is a nondegenerate solution of the

Schwinger–Dyson equation defined over C and furthermore |m| < 1. By Proposition A.2 we have E ≤
√

(
z)•
N
z

K.
Thus we have

N∨
i=1

|Gi − m| ≤ 1

8|κ|• ⇒
N∨

i=1

|Gi − m| ≤ 221|z|4•
√

(
z)•K√
N
z

|κ|•

by substituting into Proposition 6.1. We then obtain (109) via (48). �

A.3. Proof of Theorem A.1

The hypothesis of (101) will be enforced now until the end of the proof.

A.3.1. Setup for application of Proposition 1.3
We hold X fixed now. We allow z to vary but constrain z to the space X ⊂ h. On the space X we consider the three
continuous functions

f1 =
N∨

i=1

|Gi − m|, f2 =
√

h

c4.1
and f3 = K

2c4.1
√

Nh
z
.

It remains only to check hypotheses in Proposition 1.3. The process of checking will dictate the choices of τ and θ .

A.3.2. X is connected if nonempty
(Here one simply repeats Section 7.2.2 verbatim.)

A.3.3. Checking hypothesis (12)
Consider the statement

N∨
i=1

|Gi − m|
∣∣∣
z=iτ

≤ 2


z

∣∣∣
z=iτ

= 2

τ
<

1

c4.1
=

√
h

c4.1

∣∣∣
z=iτ

. (110)

The first inequality holds by (102). The third inequality holds for τ large enough. Now fix τ ≥ 1 to make (110) hold.
Then hypothesis (12) of Proposition 1.3 holds.
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A.3.4. Checking hypothesis (13)
Choose θ so that

θ ≥ 2c4.1CA.3(1 + 2τ)5.

Then we have

N∨
i=1

|Gi − m| ≤
√

h

c4.1
⇒

N∨
i=1

|Gi − m| ≤ K

2c4.1
√

Nh
z

by Proposition A.3. Thus hypothesis (13) of Proposition 1.3 holds.

A.3.5. Checking hypothesis (14)
We have

z ∈X ⇒ K

2c4.1
√

Nh
z
≤

√
h

2c4.1
<

√
h

c4.1

by definition of X . Thus hypothesis (14) of Proposition 1.3 holds. The conclusion (15) of Proposition 1.3 and conclu-
sion (101) of Theorem A.1 are then the same. The proof of Theorem A.1 is complete.

A.4. Remark

By studying the generalized resolvent[−zIp X

X∗ −Iq

]−1

(X ∈ Matp×q)

one can obtain a similar deterministic local Marcenko–Pastur law.
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