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Abstract. We construct the natural diffusion in the random geometry of planar Liouville quantum gravity. Formally, this is the
Brownian motion in a domain D of the complex plane for which the Riemannian metric tensor at a point z ∈ D is given by
exp(γ h(z)), appropriately normalised. Here h is an instance of the Gaussian free field on D and γ ∈ (0,2) is a parameter. We show
that the process is almost surely continuous and enjoys certain conformal invariance properties. We also estimate the Hausdorff
dimension of times that the diffusion spends in the thick points of the Gaussian free field, and show that it spends Lebesgue-almost
all its time in the set of γ -thick points, almost surely. Similar but deeper results have been independently and simultaneously proved
by Garban, Rhodes and Vargas.

Résumé. Nous construisons une diffusion naturelle associée ê la géométrie aléatoire de la gravité quantique de Liouville. For-
mellement, il s’agît d’un mouvement Brownien dans un domaine D du plan complexe, muni d’un tenseur de Riemann donné par
exp(γ h(z)), correctement renomalisé. Ici h est une réalisation du champ libre Gaussien sur D, et γ ∈]0,2[ est un paramètre. Il est
montré que ce processus est presque sûrement continu et possède certains propriétés d’invariance conforme. Une borne sur la di-
mension de Hausdorff des instants passés dans les points épais du champ libre Gaussien est obtenue, qui montre que cette diffusion
passe Lebesue-presque tout son temps dans les points γ -épais, presque sûrement. Des résultats semblables mais plus profonds ont
été indépendemment et simultanément obtenus par Garban, Rhodes et Vargas.
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1. Introduction

This paper is motivated by a recent series of works on planar Liouville quantum gravity and the so-called KPZ
relation (for Knizhnik, Polyakov and Zamolodchikov). The KPZ relation describes a way to relate geometric quantities
associated with Euclidean models of statistical physics to their formulation in a setup governed by a certain random
geometry, the so-called Liouville (critical) quantum gravity. This is a problem which has a long and distinguished
history and for which we refer the interested reader to the recent breakthrough paper of Duplantier and Sheffield [4]
and the excellent survey article by Garban [5].

A central problem in this area is the construction of a natural random metric in the plane, enjoying properties of
conformal invariance, such that a KPZ relation holds. By this we mean that given a set A in the plane, the Hausdorff
dimensions of A endowed either with the Euclidean metric or the random (quantum) metric are related by a determin-
istic transformation. Given these requirements, it is reasonably natural to look for or postulate that the local metric at
a point z can be written in the form (up to normalising factor) exp(γ h(z)), where h is a Gaussian free field and γ is a
parameter. Unfortunately, h is not a function but a random distribution, and the exponential of a distribution is not in
general well-defined.
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While making sense of this notion of random metric is still wide open, Duplantier and Sheffield, in the paper
mentioned above, were able to construct a random measure, called the quantum gravity measure, which intuitively
speaking corresponds to the volume measure of the metric. Remarkably, using this measure, they were able to de-
fine suitable notions of scaling dimensions for a set A and show that a KPZ relation holds, where the deterministic
transformation involves a quadratic polynomial.

The purpose of this paper is to show that a natural notion of diffusion also makes sense in this context. Roughly
speaking, one can summarise the main result by saying that, while we still do not know how to measure the distance
between two points z and w, it is possible to say how long it would take a Brownian motion to go from z to w. The
key idea is to note that, using conformal invariance of Brownian motion in two dimensions, it suffices to parametrise
the Brownian motion correctly.

Note. As I was preparing this paper, I learnt that Garban, Rhode and Vargas were working on a similar problem [6].
Their results are of a similar nature, though are more precise in some aspects.

1.1. Looking for the right object

What follows is an informal discussion which is aimed to explain where the definition comes from. By local metric
ρ(z) at a point z ∈ D, we mean that small segments of Euclidean length ε are in the Riemannian metric considered to
have distance ρ(z)ε at the first order when ε → 0.

Let U,D be two proper simply connected domains, and let f :U → D be a conformal isomorphism. We think of
U as being a (wild) domain endowed with the random geometry, and D a nice domain such as the unit disc, in which
we read this geometry. If (Wt , t ≥ 0) is a standard Brownian motion in U (i.e., stopped upon leaving U ), then we
simply wish to describe how (Wt , t ≥ 0) is parametrized by D. To do this, it suffices to consider Xt = f (Wt). By Itô’s
formula,

Zt = f (Wt) = B∫ t
0 |f ′(Ws)|2 ds

; (1)

and hence Z is a time-change of a Brownian motion (Bt , t ≥ 0) in D. This cannot directly be used as a definition as
the time-change still involves W and we only want to define the process Z in terms of B and the metric ρ(z) in D

derived from mapping the metric in U via f . Clearly, ρ(z) is simply equal to 1/|f ′(w)|2 = |g′(z)|2, where g = f −1

(see Figure 1).
The reader can then easily check that setting

Zt = B
(
μ−1

t

); where μt =
∫ t

0

∣∣g′(Bs)
∣∣2 ds, (2)

and μ−1
t := inf{s > 0: μs > t}, gives the same process as (1). The advantage of this way of writing Z is that it involves

only the standard Brownian motion (Bt , t ≥ 0) in the nice domain D and the local metric ρ(z) at any point z ∈ D,
which we assume to be given.

U

�
�

D

z

w
ε |f ′(w)|2ε

f

Fig. 1. Local metric and conformal map.
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1.2. Statements

We will thus use (2) as our definition. Fix a proper connected domain D ⊂C, and let h be an instance of the Gaussian
free field in D. (We use the Duplantier–Sheffield normalisation of the Green function.) Formally, h is a centered
Gaussian process indexed by the Sobolev space H 1

0 (D), which is the completion of C∞
K (D) with respect to the scalar

product

(f, g)∇ = 1

2π

∫
D

(∇f ) · (∇g).

Then h is a centered Gaussian process such that if (h,f )∇ is the value of the field at the function f ∈ H 1
0 (D), then

Cov
[
(h,f )∇ , (h, g)∇

] = (f, g)∇

by definition.
For z ∈ D and ε sufficiently small, we let hε(z) be the well-defined average of h over a circle of radius ε about z.

(We refer the reader to [13] for a proof that this is indeed well-defined and other general facts about the Gaussian free
field.) Then we define a process (Zε(t), t ≥ 0) as in (2). That is, let z ∈ U and let (Bt , t ≥ 0) be a planar Brownian
motion such that Z0 = z almost surely. We put

Zε(t) = B
(
μ−1

ε (t)
)
, where με(t) =

∫ t∧T

0
eγ hε(Bs)εγ 2/2 ds,

and μ−1
ε (t) = inf{s ≥ 0: με(s) > t}, T = inf{t ≥ 0: Bs /∈ D}.

Definition 1.1. The Liouville diffusion, if it exists, is the limit as ε → 0 of the process Zε .

Obviously, since B does not depend on ε, the issue of convergence of the process Zε reduces to that of the quantum
clock process (με(t), t ≤ T ).

Theorem 1.2. Assume 0 ≤ γ < 2. Then (Zε(t), t ≥ 0) converges almost surely along the dyadic sequence ε = 2−k as
k → ∞ to a random process (Z(t), t ≥ 0) which is almost surely continuous up to the hitting time of ∂D.

Remark 1.3. It can be seen from the proof that Z does not stay stuck anywhere almost surely, in the sense that μ−1(t)

is strictly increasing.

We now address conformal invariance properties. Let D,D̃ be two simply connected domains and let φ :D → D̃

be a conformal isomorphism (a bijective conformal map with conformal inverse).

Theorem 1.4. Let Q = γ
2 + 2

γ
and ψ = φ−1. Then we can write

φ(Bμ−1(t)) = B̃
μ̃−1

ψ (t)
,

where B̃ is a Brownian motion in D̃,

μ̃ψ(t) = lim
ε→0

∫ t

0
εγ 2/2eγ [h̃ε+Q log |ψ ′|](B̃s ) ds

and h̃ is the Gaussian free field in D̃.

In other words, mapping the Liouville diffusion Z(t) by the transformation φ, one obtains the corresponding
Liouville diffusion in D̃, except that the Gaussian free field h̃ in D̃ has been replaced by h̃ + Q log |ψ ′|. (This is
similar to Proposition 2.1 in Duplantier and Sheffield [4].)
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Finally, it is of interest to quantify how much time the Brownian motion spends at points for which the value of the
field h is unusually big. Consider the thick points of the Gaussian free field: for α > 0, let{

T −
α := {z ∈ D: lim infε→0

hε(z)
log(1/ε)

≤ α},
T +

α := {z ∈ D: lim supε→0
hε(z)

log(1/ε)
≥ α}. (3)

Hu, Miller and Peres [7, Theorem 1.2] proved that the Hausdorff dimension of Tα is a.s. (2 − α2/2) ∨ 0. (Note that
these authors were working with a slightly different normalisation of the Gaussian free field which differs by a factor
of

√
2π, and our α is

√
2a in the notations of that paper.)

Theorem 1.5. Let 0 < γ < 2 and let α > γ . Then almost surely,

dim
{
t : Z(t) ∈ T +

α

} ≤ 2 − α2/2

2 − αγ + γ 2/2
. (4)

The same result holds when α < γ and T −
α replaced with T +

α .

This upper bound is enough to deduce the following result:

Corollary 1.6. With probability one,

Leb
{
t : Z(t) /∈ T =

γ

} = 0,

where

T =
α =

{
z ∈ D: lim

ε→0

hε(z)

log(1/ε)
= α

}
.

By contrast, using the methods of Benjamini and Schramm [2] (see also Rhode and Vargas [12]) it is possible to
show the following analogue of the KPZ relation.

Proposition 1.7. Fix A ⊂ D a nonrandom Borel set and let d0 = dim(A) where dim refers to the (Euclidean) Haus-
droff dimension. Then almost surely,

dim{t : Zt ∈ A} = d, (5)

where d solves the equation d0 + d2γ 2/2 − d(2 + γ 2/2) = 0.

Recall that in the case where A = T ±
α , as mentionned above, the Hausdorff dimension is (2 −α2/2)∨ 0. Neverthe-

less, the formula in (5) does not match that from Theorem 1.5. This is of course because T ±
α depends very strongly on

the Gaussian free field. The difficulty in Theorem 1.5 is thus essentially to understand the effect on the clock process
of coming near a thick point, and hence to disentangle the separate effects linked on the one hand to the trajectory of
a standard Brownian motion and on the other hand to the frequency of those thick points.

2. Proof of Theorem 1.2: Convergence

For the rest of the paper, with a slight abuse of notation, we call (Bt , t ≥ 0) a Brownian motion stopped at time
T := Tr = inf{t > 0: dist(Bt , ∂D) ≤ r}. Here r > 0 is a small arbitrary number. We will still call

Zε(t) = B
(
μ−1

ε (t)
)
, where με(t) =

∫ t∧T

0
eγ hε(Bs)εγ 2/2 ds,

and μ−1
ε (t) = inf{s ≥ 0: με(s) > t}, T = Tr .
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In this section we prove that the clock process με(t) converges as ε → 0 to a limit (which might still be degenerate).
By Proposition 3.2 in [4],

Var
(
hε(z)

) = − log ε + log
(
R(z;D)

)
for all ε such that B(z, ε) ⊂ D, where R(z;D) is the conformal radius of z in D. That is, R(z;D) = 1/|φ′(z)|, where
φ :D → D is a conformal map such that φ(z) = 0. Note that for t ≤ T = Tr , there are two nonrandom constants c1, c2
such that

c1 ≤ R(Bt ;D) ≤ c2.

We will denote h̄ε(z) = γ hε(z) + (γ 2/2) log ε.

Proof. We start by pointing out a potential source of confusion. Note that for each fixed z ∈ D, the sequence αε(z) =
eγ hε(z)−(γ 2/2)Varhε(z) (viewed as a function of ε) forms a nonnegative martingale, in its own filtration. Hence by
Fubini’s theorem,

E

(∫ t

0
αε(Bs)ds

)
= t.

Nevertheless, the above does not imply that αε(t) is a martingale as a function of ε: this is because the martingale
property of αε(z) ceases to hold when the filtration contains all the information about (hε(w),w ∈ D).

Nevertheless, the random variables με(t) converge as ε → 0 almost surely to a limit. We now prove this statement.
In fact we only prove this along the subsequence ε = 2−k, k ≥ 1. With an abuse of notation we write μk for μ2−k and
hk for h2−k . Then it suffices to prove that |μk − μk+1| ≤ Crk for some r < 1 and C < ∞, almost surely. Assume
without loss of generality that t = 1 and let s ∈ [0,1]. Let Ss

k = [0,1] ∩ {s + 2−2kZ}, and let

Xk(s) = 1

22k

∑
t∈Ss

k

eh̄k(Bt )

and

Yk(s) = 1

22k

∑
t∈Ss

k

eh̄k+1(Bt ).

Note that μk = ∫ 1
0 Xk(s)ds and μk+1 = ∫ 1

0 Yk(s)ds so it suffices to prove that

∣∣Xk(s) − Yk(s)
∣∣ ≤ Crk (6)

for some C, r < 1 uniformly in s ∈ [0,1]. As in [4], we start with the case γ <
√

2 where an easy second moment
argument suffices. Let Ẽ(·) = E(·|σ(Bs, s ≤ t)). Then note that

Ẽ
(∣∣Xk(s) − Yk(s)

∣∣2) = 1

24k

∑
t,t ′∈Ss

k

Ẽ
[(

eh̄k(Bt ) − eh̄k+1(Bt )
)(

eh̄k(Bt ′ ) − eh̄k+1(Bt ′ )
)]

.

Let t, t ′ ∈ Ss
k and assume that |Bt − Bt ′ | > 2−k . Then conditionally on hk(Bt ) and hk(Bt ′), the random variables

hk+1(Bt ) and hk+1(Bt ′) are independent Gaussian random variables with mean hk(Bt ) (resp. hk(Bt ′)) and variance
log 2. Thus, in that case,

Ẽ
[(

eh̄k(Bt ) − eh̄k+1(Bt )
)(

eh̄k(Bt ′ ) − eh̄k+1(Bt ′ )
)|hk(Bt ), hk(Bt ′)

] = Ẽ
[
eh̄k(Bt ) − eh̄k+1(Bt )|hk(Bt ), hk(Bt ′)

]
× Ẽ

[
eh̄k(Bt ′ ) − eh̄k+1(Bt ′ )|hk(Bt ), hk(Bt ′)

]
.
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Now, observe that h̄k+1(Bt ) = h̄k(Bt ) + γX − (γ 2/2) log 2 where X is a centred Gaussian random variable with
variance log 2, which is independent from B̃, hk(Bt ), hk(Bt ′). Hence

Ẽ
[
eh̄k(Bt ) − eh̄k+1(Bt )|hk(Bt ), hk(Bt ′)

] = eh̄k(Bt )
[
1 − e−(γ 2/2) log 2Ẽ

(
eγX

)] = 0.

Of course the same also holds once we uncondition on hk(Bt ), hk(Bt ′). It follows by Cauchy–Schwarz’s inequality
that

Ẽ
(∣∣Xk(s) − Yk(s)

∣∣2) = 1

24k

∑
t,t ′∈Ss

k

1|Bt−Bt ′ |≤2−k Ẽ
[(

eh̄k(Bt ) − eh̄k+1(Bt )
)(

eh̄k(Bt ′ ) − eh̄k+1(Bt ′ )
)]

≤ 1

24k

∑
t,t ′∈Ss

k

1|Bt−Bt ′ |≤2−k

√
Ẽ

[(
eh̄k(Bt ) − eh̄k+1(Bt )

)2]
Ẽ

[(
eh̄k(Bt ′ ) − eh̄k+1(Bt ′ )

)2]

= C

24k

∑
t,t ′∈Ss

k

1|Bt−Bt ′ |≤2−kE
[(

eh̄k(z) − eh̄k+1(z)
)2]

, (7)

where z is any point in D such that dist(z, ∂D) ≥ r . To compute the expectation in the sum, we condition on hk(z)

and get, letting ε = 2−k ,

E
[(

eh̄k(z) − eh̄k+1(z)
)2] ≤ E

(
e2h̄k(z)

) = εγ 2
E

(
e2γ hk(z)

)
≤ Cεγ 2−4γ 2/2 = Cε−γ 2

.

Therefore,

Ẽ
(∣∣Xk(s) − Yk(s)

∣∣2) ≤ Cε4ε−γ 2 ∑
t,t ′∈Ss

k

1|Bt−Bt ′ |≤2−k . (8)

We will need the following lemma on two-dimensional Brownian motion:

Lemma 2.1. There exists C = C(ω) depending only on the realisation of B , such that, uniformly in s ∈ [0,1]:∑
t,t ′∈Ss

k

1|Bt−Bt ′ |≤2−k ≤ C22kk4,

almost surely.

Proof. Key to the proof will be a result of Dembo, Peres, Rosen and Zeitouni [3]. Let μ denote the occupation
measure of Brownian motion at time 1. Then Theorem 1.2 of [3] states that

lim
δ→0

sup
x∈R2

μ(D(x, δ))

δ2(log(1/δ))2
= 2 (9)

almost surely. In particular, there exists M(ω) such that μ(D(x, δ)) ≤ M(ω)δ2(log(1/δ))2.
Let A denote the event where there is some t ∈ [0,1] such that∑

t ′∈St
k

1|Bt−Bt ′ |≤2−k > Ck4,

where C = C(ω) is chosen suitably. By Lévy’s modulus of continuity theorem, we know that

sup
|s−t |≤2−2k

|Bs − Bt | ≤ δ := c2−k
√

k
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almost surely for some universal c > 0 and for all k sufficiently large. On the event A, we can thus find x = Bt where
μ(D(x, δ)) ≥ Ck42−2k for k sufficiently large. But note that δ2(log(1/δ))2 ≤ c2−2kk3 for some nonrandom c > 0.
Hence choosing C(ω) = cM(ω) we see from (9) that P(A) = 0, as desired. �

Plugging the estimate of Lemma 2.1 into (8), we get

Ẽ
(∣∣Xk(s) − Yk(s)

∣∣2) ≤ Cε4−γ 2−2(log 1/ε)4,

which proves (6) at least if γ <
√

2.
To prove (6) in the general case (γ < 2), we introduce the set

S̃s
k = {

t ∈ Ss
k : hε(Bt ) < −α log

(
ε/R(Bt ;D)

)}
,

where α > γ is a fixed parameter which will be chosen close enough to γ later on, and R(z;D) denotes the conformal
radius at the point z ∈ D. We let T s

k = Ss
k \ S̃s

k . Then we have

Xk(s) = 1

22k

∑
t∈T s

k

eh̄k(Bt ) + 1

22k

∑
t∈S̃s

k

eh̄k(Bt ).

It is easy to show that the first is negligible. If Q̃ denotes the law of the exponential tilting of P̃ by eγ hk(Bt ), i.e.,

dQ̃

dP̃
(ω) = eγ hk(Bt )

Ẽ(eγ hk(Bt ))
,

then letting σ 2 = − log(ε/R(Bt ;D)),

Q̃
(
hk(Bt ) ∈ dx

) = e−x2/(2σ 2)eγ x dx/
√

2πσ 2∫
e−x2/(2σ 2)eγ x dx/

√
2πσ 2

= e−(x−m)2/(2σ 2) dx√
2πσ 2

, (10)

where m = γ σ 2, and hence the law of hK(Bt ) under Q̃ is N (m,σ 2). Thus

Ẽ
(
1t∈T s

k
eh̄k(Bt )

) = εγ 2/2Q̃
(
hk(Bt ) > ασ 2) × Ẽ

(
eγ hk(Bt )

)
≤ εγ 2/2 exp

(
−1

2
(α − γ )2σ 2

)
R(Bt ;D)γ

2/2,

where the bound above is obtained by using standard bounds on the normal tail distribution. This decays exponentially
fast with k uniformly in t ≤ T .

Likewise, by conditioning on h̄k(Bt ), we get that

Ẽ
1

22k

∑
t∈T s

k

eh̄k+1(Bt ) ≤ CẼ
1

22k

∑
t∈T s

k

eh̄k(Bt ),

where C < ∞ depends only on γ , and thus this tends to 0 exponentially fast.
Define now X̃k(s) = 1

22k

∑
t∈S̃s

k
eh̄k(Bt ) and Ỹk(s) = 1

22k

∑
t∈S̃s

k
eh̄k+1(Bt ). We wish to bound E((X̃k(s) − Ỹk(s))

2).
Applying the same reasoning as in (7) shows that

E
((

X̃k(s) − Ỹk(s)
)2) ≤ C

24k

∑
t,t ′∈S̃s

k

1|Bt−Bt ′ |≤2−k

√
E

(
e2h̄k(Bt )

)
E

(
e2h̄k(Bt ′ )

)
.

Now when t ∈ S̃s
k , using the same reasoning as in (10) but with tilting proportional to e2γ hk(Bt ) instead

E
(
1
t∈S̃s

k
e2h̄k(Bt )

) = εγ 2
Q

(
X < ασ 2)E(

e2γ hk(Bt )
)
,
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where X ∼N (2γ σ 2, σ 2). We may if we wish assume that α < 2γ , so

Q
(
X < ασ 2) ≤ exp

(
−1

2
(2γ − α)2σ 2

)
≤ C exp

(
1

2
(2γ − α)2 log ε

)
.

Thus using Lemma 2.1 again,

E
((

X̃k(s) − Ỹk(s)
)2) ≤ Cε4 × (

ε−2 log(1/ε)4) × εγ 2+(2γ−α)2/2ε−4γ 2/2

≤ C(log 1/ε)4ε2+(2γ−α)2/2−γ 2
.

Choosing α arbitrarily close to γ we find that the exponent of ε is arbitrarily close to 2 − γ 2/2 which is positive since
γ < 2. Thus we can find α close enough to γ such that the exponent is positive, in which case (6) follows.

As discussed at the beginning of the section, this implies almost sure convergence of με(t) to a limit μ(t) (which
might still be identically zero at this stage). �

3. Proof of Theorem 1.2: Nondegeneracy

Let r > 0 and let Tr = inf{t ≥ 0: dist(Bt , ∂U) ≤ r}.
We will first show that

Pz

{
lim
ε→0

∫ Tr

0
eγ hε(Bs)εγ 2/2 ds > 0

}
> 0.

It suffices to show that the integral is bounded in Lq for some q > 1. Our strategy is inspired by work of Bacry and
Muzy [1] on multifractal random measures. Since the proof can appear a bit convoluted, we start by explaining what
lies behind it. Essentially, the qth moment of the integral can be understood as the sum of two terms: one diagonal
term which gives the sum of the local contribution of the field at each point, and a cross-diagonal term which evaluates
how these various bits interact with one another. Consider a square S in the domain and such that z ∈ S. The strategy
will be to slice the square into many squares of sidelength 2−m, where m will be a large but finite number. The key
part of the estimate is to show that the sum of the contributions inside each smaller square is small. To achieve this,
we use a scaling argument, as the Gaussian free field in a small square can be thought of as a general ‘background’
height plus an independent Gaussian free field in the square.

Without loss of generality, we will assume that z ∈ S = (0,1)2 the unit square, and D contains the square S′, where
S′ is the square centered on S whose sidelength is 3 (i.e., S′ = (−1,2)2). Then it will suffice to check that∫ τ

0
eγ hε(Bs)εγ 2/2 ds is bounded in Lq ,

where τ = inf{t ≥ 0: Bt /∈ S}. We will in fact show the slightly stronger statement that

∫ T

0
eγ hε(Bs)εγ 2/21{Bs∈S} ds is bounded in Lq , (11)

where T = inf{t ≥ 0: Bt /∈ S′}.

3.1. Auxiliary field

Fix a bounded continuous function φ : [0,∞) → [0,∞) which is a bounded positive definite function and such that
φ(x) = 0 if x ≥ 1. For instance, we choose φ(x) = √

(1 − |x|)+, see [10] and the discussion in Example 2.3 in [11].
Define an auxiliary centered Gaussian random field (Xε(x))x∈Rd by specifying its covariance

cε(x, y) := E
(
Xε(x)Xε(y)

) = log+
(

8

|x − y| ∨ ε

)
+ φ

( |y − x|
ε

)
.
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Define also the normalized field to be X̄ε(x) = γXε(x) − (γ 2/2)σε , with σε = cε(0,0) = log(8/ε) + 1, so that
E(eX̄ε(x)) = 1. Because we have assumed that S′ ⊂ D, it is easy to check that the covariance structure of X̄ε and
γ hε are very close: more precisely, there are constants a and b, independent of ε, such that

cε(x, y) − a ≤ E
(
γ hε(x)γ hε(y)

) ≤ cε(x, y) + b (12)

for all x, y ∈ S′. Condition for a moment on the trajectory of the Brownian path (Bs, s ≤ T ), and let Ẽ denote
the corresponding conditional expectation. Define a measure με to be the (random) Borel measure on [0, T ] whose
density with respect to Lebesgue measure is eγ hε(Bs)εγ 2/21{Bs∈S}, s ∈ [0, T ]. Let I = {s ∈ [0, T ]: Bs ∈ S}. Note that
conditionally given B , the process (hε(Bs))s∈I is a centered Gaussian process indexed by I with covariance function
ηε(Bs,Bt ), where ηε(x, y) is the covariance function of the (unconditional) Gaussian field (hε(x))x∈D . By Theorem 2
of Kahane [8], we deduce from the right-hand side of (12) that

Ẽ
[(

με(0, T )
)q] ≤ Ẽ

[(∫ T

0
eYε(s)−(1/2)Ẽ(Yε(s))

2
1{Bs∈S} ds

)q]
, (13)

where for s ∈ I , Yε(s) is a Gaussian centered field with covariance cε(Bs,Bt ) + b. Thus Yε(s) may be realized as
Yε(s) = X̄ε(Bs)+W , where W is a fixed independent centered normal random variable of variance b. We deduce that

Ẽ
[(

με(0, T )
)q] ≤ Ẽ

(
eqW−qb/2)Ẽ[(∫ T

0
eX̄ε(Bs)1{Bs∈S} ds

)q]

= eq(q−1)b/2Ẽ

[(∫ T

0
eX̄ε(Bs)1{Bs∈S} ds

)q]
.

Taking expectations,

E
[(

με(0, T )
)q] ≤ eq(q−1)b/2E

[(∫ T

0
eX̄ε(Bs)1{Bs∈S} ds

)q]
. (14)

Reasoning similarly with the left-hand side of (12) gives us

E
[(

με(0, T )
)q] ≥ e−q(q−1)a/2E

[(∫ T

0
eX̄ε(Bs)1{Bs∈S} ds

)q]
. (15)

The crucial observation about Xε (and the reason why we introduce it) is that it enjoys an exact scaling relation, as
follows:

Lemma 3.1. For λ < 1,

(
Xλε(λx)

)
x∈B(0,4)

=d

(
Ωλ + Xε(x)

)
x∈B(0,4)

,

where Ωλ is an independent centered Gaussian random variable with variance log(1/λ).

Proof. One easily checks that for all x, y ∈ R2 such that ‖x − y‖ ≤ 8, cλε(λx,λy) = log(1/λ) + cε(x, y). �

3.2. Moments of order q > 1

Therefore, fix 1 < q < 2 and consider for z ∈ S = [0,1]2 the unit square,

fε(z) = Ez

[(∫ T

0
eX̄ε(Bs)1{Bs∈S} ds

)q]
, (16)
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where as before, T = inf{t ≥ 0: Bt /∈ S′}, and S′ = [−1,2]2 ⊂ B(0,4). We let Mε = supz∈S fε(z). Our goal will be to
show that

Mε is uniformly bounded in ε for some choice of q > 1. (17)

The strategy for the proof of (17) will be the following. We fix m ≥ 1, which we will choose suitably large (but
fixed) at some point. We split the square S into a checkerboard pattern of squares Si , each of which has sidelength
2−m. By Minkowski’s inequality, it suffices to show that

∑
i∈I

∫ T

0
eX̄ε(Bs)1{Bs∈Si } ds

is uniformly bounded in Lq , where (Si)i∈I is a maximal subset of squares such that |z − w| > 2−m for z ∈ Si,w ∈ Sj

and i �= j ∈ I . In words, we have retained “every other subsquare” in I . Note that there are at most |I | ≤ 4m such
subsquares.

Since q < 2, the function x �→ xq/2 is concave. Being equal to 0 at x = 0, it is therefore subadditive. Hence letting
di = ∫ T

0 eX̄ε(Bs)1{Bs∈Si } ds,

Ez

[(∑
i∈I

∫ T

0
eX̄ε(Bs)1{Bs∈Si } ds

)q]
≤ Ez

[(∑
i∈I

d
q/2
i

)2]
=

∑
i∈I

Ez

(
d

q
i

) +
∑
i �=j

Ez

(
d

q/2
i d

q/2
j

)
.

We treat separately the diagonal terms and the nondiagonal ones. We start by the diagonal terms.

Lemma 3.2. There exists C independent of m,q and ε such that∑
i∈I

Ez

(
d

q
i

) ≤ Cm2m(ζ(q)+2)Mε2m,

where

ζ(q) := q2 γ 2

2
− q

(
2 + γ 2

2

)
. (18)

Proof. Let Ui = inf{t ≥ 0: Bt ∈ Si} and let Ti = inf{t ≥ Ui : Bs /∈ S′
i}, where S′

i is the square centered on Si containing
the 8 adjacent dyadic squares of same size as Si . Let Ni denote the number of times that the path of the Brownian
motion returns to Si after having touched the boundary of S′

i , before T .
Then applying the Markov property at each such return, we get

max
z∈S

Ez

(
d

q
i

) ≤ C max
w∈Si

Ew

(
β

q
i

)
Ez(Ni), (19)

where

βi =
∫ Ti

0
eX̄ε(Bs)1{Bs∈Si } ds.

(Note that by the strong Markov property, (19) holds even when z /∈ Si , as before the first hitting time of Si the
contribution to the integral in di is zero.) Now, a simple martingale argument shows that for some constant C > 0,

Ez(Ni) ≤ C log
(
2m

)
,

uniformly in z ∈ S and i ∈ I .
We now use the scaling properties of both B and Xε (i.e., Lemma 3.1) to estimate the diagonal terms. Let λ = 1/2m,

and write 2mBs = B̃s22m , where B̃ is a planar Brownian motion starting from w̃ = 2mw. Let S̃i = 2mSi , S̃′
i = 2mS′

i ,



Diffusion in Liouville quantum gravity 957

and let T̃i = 22mTi = inf{t ≥ 0: B̃t /∈ S̃′
i}. Note that we have S′ ⊂ B(0,4). Hence for w ∈ Si , performing a change of

variables u = 22ms,

Ew

(
β

q
i

) = Ew

[(∫ Ti

0
1{2mBs∈2mSi }eγΩλ+γXε2m(2mBs)εγ 2/2 ds

)q]

= E
(
eqγΩλ

)
Ew̃

[(∫ Ti

0
1{B̃22ms

∈S̃i }e
γXε2m(B̃22ms

)εγ 2/2 ds

)q]

≤ Ceq2γ 2 log(2m)/22−2qm−qmγ 2/2Ew̃

[(∫ T̃i

0
1{B̃u∈S̃i }e

γXε2m(B̃u)
(
2mε

)γ 2/2 du

)q]

≤ C2m(q2γ 2/2−q(2+γ 2/2))M2mε = C2mζ(q)M2mε (20)

for a constant C that does not depend on m,q or ε.
Since there are at most |I | = 4m terms, we deduce that the contribution of the diagonal terms is at most∑

i∈I

Ez

(
d

q
i

) ≤ Cm2m(ζ(q)+2)Mε2m,

where ζ(q) is defined in (18). This finishes the proof of Lemma 3.2. �

3.3. Interaction term

We now look at the cross-diagonal terms.

Lemma 3.3. There exists Cm,q which may depend on m and q but not ε, such that

∑
i �=j

Ez

(
d

q/2
i d

q/2
j

) ≤ Cm,q.

Proof. Since q/2 ≤ 1, by Hölder’s inequality,

Ez

(
d

q/2
i d

q/2
j

) ≤ Ez(didj )
q/2.

Now, let Ẽ denote the conditional expectation given (Bs, s ≤ T ). Then by Fubini’s theorem

Ẽ(didj ) =
∫ T

0

∫ T

0
Ẽ

(
exp

(
X̄ε(Bs) + X̄ε(Bt )

))
1{Bs∈Si ,Bt∈Sj } ds dt

=
∫ T

0

∫ T

0
(ε/8)γ

2
exp

(−2γ 2 log(ε/8) + 2γ 2 log+ 8/(ε ∨ |Bs − Bt |)
2

)
1{Bs∈Si ,Bt∈Sj } ds dt

≤
∫ T

0

∫ T

0

(
8

|Bs − Bt |
)γ 2

1{Bs∈Si ,Bt∈Sj } ds dt

≤ (
8 · 2m

)γ 2
T 2.

Hence, taking expectations, Ez(didj ) ≤ Cm,qEz(T
2) ≤ Cm,q . Taking the (q/2)th power, and summing over i �= j , we

get Lemma 3.3. �

Putting together these two lemmas, we immediately obtain

Mε ≤ Cm2m(ζ(q)+2)M2mε + Cm,q. (21)
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The key fact is that the exponent 2 + ζ(q) may be chosen to be negative for some q > 1. Indeed, note that ζ(1) =
γ 2/2 − 2 − γ 2/2 = −2, and ζ ′(1) = (γ 2/2) − 2 < 0 if and only if γ 2 < 4 i.e. γ < 2. Since this is the assumption of
the theorem, we deduce ζ ′(1) < 0 and hence it is possible to choose q > 1 such that 2 + ζ(q) < 0.

Since 2 + ζ(q) < 0, we can choose m sufficiently large that Cm2m(2+ζ(q)) < 1/2, and so obtain that

Mε ≤ 1

2
M2mε + Cm,q.

Taking the supremum over ε > ε0, we get

sup
ε>ε0

Mε ≤ 1

2
sup

ε>2mε0

Mε + Cm,q

≤ 1

2
sup
ε>ε0

Mε + Cm,q

and hence

sup
ε>ε0

Mε ≤ 2Cm,q.

This proves (17), and therefore (11). Thus α(Tr) > 0 with positive probability.

3.4. Continuity

Let με denote the random Borel measure on R obtained by

με

(
(s, t]) =

∫ t

s

eγ hε(Bu)1{u<T }εγ 2/2 du.

Then by the first part of the argument, με converges to a measure μ and we have just shown that με(0, T ) is bounded
in Lq for some q > 1, hence is uniformly integrable. Thus E(μ(0, T )) = E(

∫ T

0 R(Bt ;D)γ
2/2 dt) > 0 and thus μ is

positive at least with positive probability. We now check that this probability must in fact be equal to one.
Let Di be the disc of radius 2−m−1 having the same centre as the square Si . Let D′

i be the (open) disc of radius
2 · 2−m having the same centre as Di . Let σi = inf{t ≥ 0: Bt ∈ Di} and τi = inf{t ≥ 0: Bt /∈ D′

i}. Recall the subset
I introduced earlier, which is a maximal subset of {1, . . . ,22m} such that the D′

i are pairwise disjoint. Note however
each D′

i is tangent to four other discs D′
j (except near the boundary of S). Define the event

Gi =
{∫ τi

σi

dμ(t) > 0

}
.

Note that if just one of the Gi hold, then μ(0, T ) > 0. We will in fact show that many Gi occur with high probability.
Let Zm = ∑

i∈I 1Gi
.

Using the Markov property of the Gaussian free field (see e.g. the statement of Proposition 2.3 in [7]), we see that
conditionally given the values of h|U where U = S \ ⋃

i∈I D′
i , we can write on each of the Di, i ∈ I ,

h = hU + hi, (22)

where hU is a.s. a harmonic function on
⋃

i∈I D′
i and hi are independent Gaussian free field with zero boundary

condition on ∂D′
i . Then note that the event Gi is unchanged if we replace h by hi in the definition of μ(t). In

other words, Gi is a function of hi and of the Brownian path (Bt , σi ≤ t ≤ τi) only. By rotational invariance of hi ,
and independence of the paths (Bt , σi ≤ t ≤ τi) up to rotations around the centre of D′

i , we deduce that for each
i1, . . . , ik ∈ I ,

Pz(Gi1 ∩ · · · ∩ Gik |σi1 < ∞, . . . , σik < ∞) =
k∏

j=1

Pz(Gij |σij < ∞).
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In other words, the Gi are conditionally independent given {i: σi < ∞}. Moreover, Pz(Gi |σi > 0) = p, where p > 0
does not depend on i, nor on m by an easy scale-invariance argument, and p > 0 because Ez(μ[0, T ]) > 0.

Putting these pieces together, we find that Zm has the same distribution as

Zm =
∑
i∈I

ξi1{σi<∞}, (23)

where ξi are i.i.d. Bernoulli random variable with parameter p > 0.

Lemma 3.4. Assume that z is the centre of S and let Nm = ∑
i 1{σi<∞}. Then Nm → ∞ almost surely as m → ∞.

Proof. Let σ ′
i = inf{t ≥ 0: Bt ∈ D′

i} then N ′ = ∑
i∈I 1{σ ′

i <∞}. Note that we necessarily have N ′ ≥ 2m−1 almost

surely. This is because the diameter of the {Bt ,0 ≤ t ≤ T } is bounded by above 2−m+1N ′ but is also at least equal
to 1. Now, it is easy to see that for each new disc D′

i which is visited, there is a probability at least 1/2 to visit Di ,
independently for all i such that σ ′

i < ∞. Hence Nm → ∞ almost surely. �

Putting together (23) and Lemma 3.4 we deduce that

Pz(Zm > 0) → 1

as m → ∞. In particular, P(μ(0, T ) > 0) = 1. Now, recall that T = inf{t ≥ 0: Bt /∈ S}, and S = [0,1]2 and we have
assumed without loss of generality S ⊂ U . The same holds with S replaced by any square containing z and which
is a subset of U . Hence if T m = inf{t ≥ 0: Bt /∈ [−2−m,2−m]2}, we also deduce that μ[0, T m] > 0 almost surely.
Since T m → 0 almost surely, this implies μ(0, t) > 0 almost surely for all t ≤ T0 = inf{t ≥ 0: Bt /∈ U}. Applying the
Markov property, it follows from this that, almost surely, for all rationals s < t < T0,

μ
(
(s, t]) > 0.

Hence, since μ is nondecreasing, this is also true for all times s < t < T0 simultaneously.
Therefore t �→ μ−1(t) is continuous with probability one, and so t �→ Z(t) = Bμ−1(t) is also continuous with

probability one.

Remark 3.5. It is also easy to see from the proof that μ−1(t) is a.s. increasing, and hence Z does not “stay stuck”
anywhere. This argument is identical to that used in [6]. Indeed applying Kahane’s convexity inequality as in (13) and
scaling exactly as in (20), we see that

Ez

[
μ(0, t)q

] ≤ Ct−ζ(q)/2

and hence if Ax(s, u) is the event that t �→ μ(0, t) has a jump greater than x in the interval [s, u)

Pz

(
Ax(0,1)

) ≤
n∑

j=1

Pz

(
Ax

(
j/n, (j + 1)/n

))

≤ cnx−qnζ(q)/2

by Chebyshev’s inequality. But recall that ζ(q) + 2 < 0 for some q > 1. Hence n1+ζ(q)/2 → 0 and Pz(Ax(0,1)) = 0
and the result follows, since x is arbitrary.

4. Conformal invariance

Naturally, the Gaussian free field is conformally invariant as a random distribution. However, its regularisation hε is
not, and so it is better to consider a different approximation of the Gaussian free field. Fix f1, . . . an orthonormal basis
of H 1

0 (D), say by considering normalised eigenvectors of −� with Dirichlet boundary conditions on ∂D.
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Let hn(z) = ∑n
i=1 Xifi , where Xi are i.i.d. standard normal random variables, and note that we can think of hn as

the orthogonal projection of h, which is formally the infinite sum
∑∞

i=1 Xifi , onto Span(f1, . . . , fn).
Define

μn
([0, t]) =

∫ t

0
1{t<T }eγ hn(Bt )−(γ 2/2)Varhn(Bt )+(γ 2/2) logR(Bt ;D) dt. (24)

The following proposition shows that approximating h by hn does not change the limiting diffusion.

Proposition 4.1. Almost surely for all t ≥ 0,

μn
([0, t]) → μ

([0, t])
as n → ∞.

Proof. Define hε
n(z) to be the average of hn(w) on a circle of radius ε about z. Then for each fixed ε > 0, the sequence

eγ hn
ε (z)−(γ 2/2)Varhn

ε (z) forms a nonnegative martingale with respect to n, and the filtration Hn = σ(hi,1 ≤ i ≤ n). The
limit as n → ∞ is naturally eγ hε(z)−(γ 2/2)Varhε(z), which also has expectation equal to 1. Thus the martingale is
uniformly integrable and we have

E
(
με

([0, t])|Hn

) =
∫ t

0
1{t<T }eγ hn

ε (Bt )−(γ 2/2)Varhn
ε (Bt )+(γ 2/2) logR(Bt ;D) dt.

Thus letting ε → 0, since hn and Var(hn) are continuous,

lim
ε→0

E
(
με

([0, t])|Hn

) = μn[0, t].

But by Fatou’s lemma,

E
(
μ

([0, t])|Hn

) = E
(
lim infμε

([0, t])|Hn

) ≤ lim inf
ε→0

E
(
με

([0, t])|hn
) = μn[0, t].

Hence, for all t , and all n, almost surely,

E
(
μ

([0, t])|Hn

) ≤ μn

([0, t]).
But taking expectations, the left-hand side is equal to E

∫ t

0 1{t<T }(logR(Bt ;D))(γ
2/2) dt as με is uniformly integrable,

and the right-hand side is also equal to the same value. Since these two random variables are almost surely ordered
and have the same expectation, they are almost surely equal.

We deduce

E
(
μ

([0, t])|Hn

) = μn
([0, t]).

By the martingale convergence, we deduce that μn([0, t]) → μ([0, t]) as n → ∞, almost surely. �

Now, let φ :D → D̃ be a conformal transformation and let ψ = φ−1. Then writing f̃n = fn ◦ ψ , we see that f̃n

forms an orthonormal basis of H 1
0 (D̃) (this is because (·, ·)∇ is conformally invariant). Thus let h̃n = hn ◦ ψ , which

is the projection of the Gaussian free field h ◦ ψ onto Span(f̃1, . . . , f̃n). Let μn = μn and μ−1
n be the inverse function

of μn. Now by conformal invariance of ordinary Brownian motion,

φ(Bt ) = B̃∫ t
0 |φ′(Bs)|2 ds

,

where B̃ is a killed Brownian motion in D̃. Thus

φ(B
μ−1

n (t)
) = B̃σn(t) =: Z̃n(t),
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where, by definition, σn(t) = ∫ μ−1
n (t)

0 |φ′(Bs)|2 ds. By the chain rule, if z̃ = Z̃n(t) and z = B
μ−1

n (t)
,

σ ′
n(t) = d

dt
μ−1

n (t)
∣∣φ′(B

μ−1
n (t)

)
∣∣2

= 1

eγ hn(z)−(γ 2/2)Varhn(z)+(γ 2/2) logR(z;D)|ψ ′(z̃)|2 .

Observe that logR(z̃; D̃) = logR(z,D) + log |φ′(z)| and hence

σ ′
n(t) = 1

eγ (h̃n(z̃)+Q log |ψ ′(z̃)|)−(γ 2/2)Var h̃n(z̃)+(γ 2/2) logR(z̃;D̃)
, (25)

where Q = γ /2 + 2/γ . Thus define a field in D̃ by h̃ψ (w) = h ◦ ψ + Q log |ψ ′| and let

μ̃n
ψ(t) =

∫ t

0
1{s<T̃ }e

γ h̃n
ψ (B̃s )−(γ 2/2)Var h̃n

ψ (B̃s )+(γ 2/2) logR(B̃s ;D̃) ds,

where T̃ = inf{t ≥ 0: B̃t /∈ D̃}. Then a computation similar to (25) shows that μ(T ) = limn→∞ μn(T ) = μ̃ψ(T̃ ) and
the right-hand side in (25) is simply the derivative of μ̃n

ψ(t)−1. Hence we have proved, after taking limits as n → ∞,

(
φ(Zt ), t < μ(T )

) = (
B̃

μ̃−1
ψ (t)

, t < μ̃ψ(T̃ )
)
.

5. Proof of Theorem 1.5

We focus on the case 2 > α > γ and consider the set {t : Zt ∈ T +
α } (the other case is identical). To ease the proof we

will drop the superscript + from this notation and hence call Tα := T +
α in this proof. Let d = (2 − α2/2)/(2 − αγ +

γ 2/2) so we wish to prove that dim{t : Zt ∈ Tα} = d almost surely. Note that since α > γ we have d < 1; so we may
choose η > 0 such that q = d(1 + η) < 1. Since α < 2, we have that 2 − α2/2 > 0 and we may choose δ and ε > 0
small enough that η(2 − α2/2) − αδ − 2ε > 0. Then set

K = 2

η(2 − α2/2) − αδ − 2ε

and choose rn = n−K a sequence of scales. Let tnj = jr2+2ε
n , 1 ≤ j ≤ r−2−2ε

n form a partition of [0,1] into intervals
of size r2+2ε

n .
If tnj is the closest element of the net to t , then

∣∣B(t) − B(tnj )
∣∣ ≤ C

√
r2+2ε
n log

(
1/r2+2ε

n

)
by Lévy’s result on the uniform modulus of continuity of Brownian motion [9]. Hence applying Proposition 2.1 in
[7], for all ζ > 0 and ξ ∈ (0,1/2),

∣∣hrn

(
B(t)

) − hrn

(
B(tnj )

)∣∣ ≤ MCξ(log 1/rn)
ζ
[
√

r2+2ε
n log(1/r2+2ε

n )]ξ
r
ξ+ξε
n

≤ MCξ(2 + 2ε)ξ/2(log 1/rn)
ζ+ξ/2

≤ δ log(1/rn) (26)

for n sufficiently large, provided that ζ + ξ/2 < 1 (which we may assume if we wish). This motivates the following
definition

In = {
j : hrn

(
B(tnj )

) ≥ (α − δ) log(1/rn)
}
.
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The interest of introducing this set then comes from the fact that, by (26), if Bt ∈ Tα then we can find arbitrarily large
n such that t ∈ [tnj − r2

n, tnj + r2
n] for some j ∈ In. More precisely, recall the inverse clock function t �→ μ−1(t)

where with a slight abuse of notation we identify μ(t) and μ([0, t]). Consider the image of [tnj − r2
n, tnj + r2

n] by
t �→ μ−1(t). These are also intervals, which we denote by [anj , bnj ]. Let

JN =
⋃
n≥N

{[anj , bnj ], j ∈ In

}
.

Hence a consequence of (26) is that for all N ≥ 1, JN covers {t : Zt ∈ Tα}.
Now, it is plain that

E
(|In|

) = r−2−2ε
n P

(
hrn(z) ≥ (α − δ) log(1/rn)

) ∼ r
−2+(α−δ)2/2−2ε+o(1)
n ,

and thus

E
(|In|

) ≤ r
−2+α2/2−δα−2ε+o(1)
n . (27)

We now estimate the diameter of these intervals. We first need the following lemma:

Lemma 5.1. Let ε < r and z,w ∈ D such that B(z, r) ∪ B(w, r) ⊂ D.Then

Cov
(
hε(w),hr(z)

) ≤ log(1/r) + C + oε(1), (28)

where C depends only on max(dist(z, ∂D),dist(w, ∂D)) and oε(1) → 0 as ε → 0 and r is fixed.

Proof. It is obvious that the result is true for w = z; and intuitively hr(z) and hw(ε) are most highly correlated when
r = z. By definition (see e.g. Proposition 3.2 in [4]), the left-hand side in (28) is equal to (ξ z

ε , ξw
r )∇ , where

ξz
r (·) = − log

(|z − ·| ∨ r
) + φ̄z(·),

where φ̄z is harmonic in D and is equal to − log |z − ·| on ∂D. Let φz
r (·) = − log |z − ·| ∨ r . Note that ∇ξz

r = 0 in
B(z, r) and ∇ξw

ε = 0 in B(w,ε). By Green’s identity, and since ξz
r is harmonic outside of B(z, r) ∪ B(z, ε),

1

2π

∫
D

∇ξz
r · ∇ξw

ε = 1

2π

∫
∂(B(0,r)∪B(w,ε))

ξw
ε ∇ξz

r · ndσ + 1

2π

∫
∂D

ξw
ε ∇ξz

r · ndσ,

where n is the nomal unit vector. Now, the second integral is clearly O(1), and the contribution coming from φ̄z
r is

also easily shown to be O(1) so it suffices to show that∫
∂B(z,r)

ξw
ε ∇φz

r · ndσ +
∫

∂B(w,ε)

ξw
ε ∇φz

r · ndσ ≤ 2π log(1/r) + O(1). (29)

Obviously, on ∂B(z, r), ∇φz
r ·n = 1/r . Assume for ease of computations (without loss of generality) that z = 0. Hence

the first integral on the left-hand side of (29) is equal to∫ 2π

0
− log

∣∣reiθ − w
∣∣dθ = 2π log(1/r) −

∫ 2π

0
log

∣∣∣∣eiθ − w

r

∣∣∣∣dθ.

The second term in the right-hand side is uniformly bounded when |w| ≤ 2r and negative for |w| ≥ 2r .
On the other hand, the second integral in (29) is bounded by (1/r)2πε log(1/ε) = oε(1), so the result follows. �

Lemma 5.2. Let 1 ≤ j ≤ r−2−2ε
n . Given that j ∈ In, for all q ≤ 1,

E
(
Diam

([anj , bnj ]
)q |j ∈ In

) ≤ Cr
q(2−γα+γ 2/2)+on(1)
n ,

where on(1) → 0 as n → ∞.



Diffusion in Liouville quantum gravity 963

Proof. By Jensen’s inequality it suffices to prove the result for q = 1. Note that Diam([anj , bnj ]) = μ([tnj − r2
n, tnj +

r2
n]). Hence, by uniform integrability of με ,

E
(
Diam

([anj , bnj ]
)|j ∈ In

) = lim
ε→0

E
(
με

[
tnj − r2

n, tnj + r2
n

]|j ∈ In

)
.

Denote r = rn. Note that by conditioning on B and letting Btnj = z and j ∈ In, we get

Ẽ
(
με

[
tnj − r2, tnj + r2]|j ∈ In

) = Ẽ

(∫ tnj +r2

tnj −r2
eγ hε(Bs)+(γ 2/2) log ε|j ∈ In

)
ds

=
∫ tnj +r2

tnj −r2
dsẼ

[
eγ hε(Bs)+(γ 2/2) log ε|hr(z) > α log(1/r)

]
.

Now note that

E
[
eγ hε(Bs)+(γ 2/2) log ε|hr(z) > α log(1/r)

] = P̃
(
hr(z) > α log(1/r)

)−1
Q

(
hr(z) > α log(1/r)

)
, (30)

where dQ/dP̃ = eγ hε(z)+(γ 2/2) log ε . Under Q, it is easy to check that hr(z) is normal with mean γ c where c =
Cov(hr(z), hε(Bs)), and variance σ 2 = log(1/r) + O(1). Therefore, using Lemma 5.1,

Q
(
hr(z) > α log(1/r)

) = Q
(
N

(
0, σ 2) > α log(1/r) − γ c

)
≤ exp

(
−1

2
(α − γ )2 log(1/r) + C + oε(1)

)

= Cr−(α−γ )2/2(1 + oε(1)
)
.

Observing that P̃(hr(z) > α log(1/r)) = rα2/2+or (1) where or (1) → 0 as r → 0 and does not depend on ε, and plug-
ging in (30) this gives

E
[
eγ hε(Bs)+(γ 2/2) log ε|hr(z) > α log(1/r)

] ≤ Crα2/2+or (1)r−(α−γ )2/2(1 + oε(1)
)

= Cr−αγ+γ 2/2+or (1)
(
1 + oε(1)

)
.

Integrating over s ∈ [tnj − r2, tnj + r2] and taking expectations, we obtain

E
(
με

([
tnj − r2

n, tnj + r2
n

])|j ∈ In

) ≤ Cr
2−γα+γ 2/2+on(1)
n

(
1 + oε(1)

)
,

from which the result follows after letting ε → 0. �

Now, recall that we have chosen q = d(1 + η) < 1, by assumption on η. By Lemma 5.2, and due to our choice of
K ,

E

(∑
n≥N

∑
j∈In

Diam
([anj , bnj ]

)q
)

= O

(∑
n≥N

r
η(2−α2/2)−αδ−2ε+o(1)
n

)

= O

(∑
n≥N

n−2+o(1)

)
.

This proves that the Hausdorff q-dimension of {t : Zt ∈ Tα} is 0, almost surely. Since η > 0 is arbitrary, this proves
the result.
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