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Abstract. We consider a one-dimensional continuous time random walk with transition rates depending on an underlying au-
tonomous simple symmetric exclusion process starting out of equilibrium. This model represents an example of a random walk in a
slowly non-uniform mixing dynamic random environment. Under a proper space–time rescaling in which the exclusion is speeded
up compared to the random walk, we prove a hydrodynamic limit theorem for the exclusion as seen by this walk and we derive an
ODE describing the macroscopic evolution of the walk. The main difficulty is the proof of a replacement lemma for the exclusion
as seen from the walk without explicit knowledge of its invariant measures. We further discuss how to obtain similar results for
several variants of this model.

Résumé. Nous considérons une marche aléatoire unidimensionnelle à temps continu, avec des taux des sauts dépendants d’un
processus d’exclusion autonome et hors équilibre. Ce modèle répresente un exemple de marche aléatoire en milieu aléatoire dyna-
mique, où le milieu n’a pas des bonnes proprietés de mélange. Sous la bonne échelle spatio-temporelle, où le processus d’exclusion
est accéléré de plus en plus par rapport à la marche, nous démonstrons un théorème de limite hydrodynamique pour le processus
d’exclusion vu par la marche aléatoire, et nous dérivons une EDO qui décrit l’évolution macroscopique de la marche. La difficulté
principale est la démonstration d’un lemme de remplacement pour le processus d’exclusion vu par la marche aléatoire, sans une
connaissance explicite de ses mesures invariantes. Nous discutons comment obtenir des résultats similaires pour des variantes du
modèle en question.
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1. Introduction

1.1. Model and motivation

Let Ω = {0,1}Z. Denote by η = {η(z); z ∈ Z} the elements of Ω . For η ∈ Ω and z ∈ Z, define ηz,z+1 ∈ Ω as

ηz,z+1(x) =
{

η(z + 1), x = z,
η(z), x = z + 1,
η(x), x �= z, z + 1,
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that is, ηz,z+1 is obtained from η by exchanging the occupation variables at z and z + 1. Fix α,β ≥ 0 and assume that
α + β > 0. Let {(ηt , xt ); t ≥ 0} be the Markov process on the state space Ω ×Z with generator given by

Lf (η, x) =
∑
z∈Z

[
f
(
ηz,z+1, x

)− f (η, x)
]+ ∑

y∈{±1}
cy

(
η(x)

)[
f (η, x + y) − f (η, x)

]
:=
∑
z∈Z

[
f
(
ηz,z+1, x

)− f (η, x)
]+ [β + (α − β)η(x)

][
f (η, x + 1) − f (η, x)

]
+ [α + (β − α)η(x)

][
f (η, x − 1) − f (η, x)

]
, (1.1)

for any local function f :Ω ×Z → R. We interpret the dynamics of the process {(ηt , xt ); t ≥ 0} as follows. Checking
the action of L over functions f which do not depend on x, we see that {ηt ; t ≥ 0} has a Markovian evolution, which
corresponds to the well-known simple symmetric exclusion process on Z. Conditioned on a realization of {ηt ; t ≥ 0},
the process {xt ; t ≥ 0} is a random walk that jumps to the left with rate β and to the right with rate α whenever there is
a particle at the current position of the random walk (i.e., η(xt ) = 1). When there is no particle at the current position
of the random walk (i.e., η(xt ) = 0), the rates are reversed: it jumps to the left with rate α and it jumps to the right with
rate β . We say that the simple exclusion process {ηt ; t ≥ 0} is a dynamical random environment and that {xt ; t ≥ 0} is
a random walk in such a dynamical random environment. Note that the fact the random walk has a local drift α − β

on occupied sites, and opposite drift β − α on vacant sites, creates trapping phenomena typical of random walks in
random environments. This random walk has a tendency to spend a long time around the interface between regions
with majority of particles and regions with majority of holes. As we will show, our proofs and results are still valid
for more general choices of the local drifts of the process {xt ; t ≥ 0}, see Remark 1.4 and Section 3.2 below.

Our main results are Theorem 1.2 and Theorem 1.3 below. Informally speaking, our results can be formulated as
follows. From the hydrodynamic limit theory for the exclusion process it is known that when time is rescaled by N2

and space is rescaled by 1/N , then the sequence of rescaled exclusion processes converges to the heat equation. We
will rescale the random walk driven by the exclusion process differently, namely by N in time and 1/N in space (see
(1.6) for the precise definition). Then we consider the joint sequence of rescaled random walk and rescaled exclusion
process and obtain an ODE governing the macroscopic evolution of the random walk limit, and a hydrodynamic limit
theorem for the exclusion as seen by this walker.

In Section 3 we will discuss how to derive the same results for several variants of this model. In order to derive
Theorem 1.3 we need to prove a so-called replacement lemma, Theorem 2.1, in the spirit of [10]. Unlike [10], we
do not have explicit knowledge of the invariant measures for the particle system given by the environment as seen
by the walker. The latter is a notoriously difficult problem in hydrodynamic limit theory. However, in our setting,
the Bernoulli product measures (which are invariant for the exclusion process) turn out to be close to being invariant
for the environment as seen by the walker under the mentioned rescaling. In fact, we show a crucial estimate in
Lemma 2.2, which will allow to control the entropy between the distribution of the evolved environment as seen by
the walker and the Bernoulli product measures. This estimate is enough to prove the mentioned replacement lemma,
Theorem 2.1. See the paragraph below Theorem 2.1 for further explanations.

In recent years, there has been much interest in the study of random walks in random environments. See, e.g.,
[13,14] and [3,5,7] for recent results, overviews and references in static and dynamic environments, respectively.
The aim is to understand the motion of a particle in a material presenting impurities which is of clear interest for
applied purposes. Despite of the increasing literature on the subject, several basic questions are still open even in one
dimension. The model we analyse in this paper has been introduced in [1] as a model of a random walk in a Markovian
autonomous environment with slow and non-uniform mixing properties due to the fact that space–time correlations in
the exclusion decay slowly and there is not a unique invariant measure. Almost no rigorous results are known in the
latter setting since the general techniques and results in the literature are suitable only for fast uniform mixing types
of environments.

From a phenomenological point of view, when considering fast uniform mixing type of environments (e.g., if
{ηt ; t ≥ 0} evolves according to an independent spin flips dynamics) trapping effects play a minor role. Indeed the
asymptotic behavior of {xt ; t ≥ 0} in such a setting is qualitatively equivalent to the one of a homogeneous random
walk, namely, ballisticity in the transient regime, diffusive scaling and exponential decay for large deviations. In [1],
the authors considered this model characterized by (1.1) showing sub-exponential cost for sub-linear displacement of
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{xt ; t ≥ 0}. In other words, despite of the dynamics of the environment, this model shows some slow-down phenomena
similar to a static random environment (see, e.g., [6] and [4]). When looking at fluctuations, as suggested by the
numerics in [3], non-diffusive behavior is also expected. Therefore slowly non-uniform mixing environments behave
very differently from fast uniform mixing ones.

Further rigorous results on this model have been derived in [2] where the authors considered the case where the
process {xt ; t ≥ 0} has still two different drifts on occupied and vacant sites of the exclusion but both local drifts in the
same direction. Under this latter assumption, traps do not play any role and standard diffusive scaling and exponential
decay of deviations from the typical behavior have been proven by means of a delicate renewal construction.

Unfortunately, the type of rescaling (see (1.6)) required in our Theorem 1.2 does not imply the law of large numbers
for the original random walk considered in [1,3]. In fact, to pass from a micro to a macroscopic scale, we need that
the space–time rescaling of the two processes {xt ; t ≥ 0} and {ηt ; t ≥ 0} are of the same order. In other words, under
our space–time rescaling in (1.6), the exclusion jumps much faster than the walk preventing “strong trapping effects.”
Nevertheless, on one hand, our results give a new contribution in the field of random walks in slowly non-uniform
mixing dynamic random environments. On the other hand, they strengthen the connection between random walks in
random environments and scaling limits of particle systems. In this respect, there is a wide literature on the problem
of the tagged particle in conservative particle systems, see [12] for a review on this subject. The tagged particle can
be also interpreted as a random walk in a random environment with two main differences with respect to our model:
walker and environment are mutually interacting, and the invariant measures of the environment as seen by the walker
are explicitly known. Our Theorem 1.3 is also of interest in itself within the hydrodynamic limit theory because of
this lack of knowledge for the invariant measures of the environment from the point of the walker. In the next section
we define this process before finally stating the results.

1.2. The environment as seen by the walker

Consider the process {ξt ; t ≥ 0} with values in Ω , defined by ξt (z) = ηt (z + xt ). The process {ξt ; t ≥ 0} is called the
environment as seen by the random walk. In other words, ξt = θxt η, where θz denotes the shift operator for z ∈ Z. It
turns out that the process {ξt ; t ≥ 0} is a Markov process. Its generator is given by

Lf (ξ) =
∑
z∈Z

[
f
(
ξz,z+1)− f (ξ)

]+ ∑
y∈{±1}

cy

(
ξ(0)

)[
f
(
θyξ

)− f (ξ)
]

(1.2)

for any local function f :Ω →R, with

c+1
(
ξ(0)

)= β + (α − β)ξ(0) and c−1
(
ξ(0)

)= α + (β − α)ξ(0). (1.3)

The dynamics of {ξt ; t ≥ 0} is the following. Particles move according to a simple symmetric exclusion process.
Superposed to this dynamics, the configuration of particles is shifted to the left or to the right with rates corresponding
to the jumps of the random walk {xt ; t ≥ 0}.
1.3. Main results: Scaling limits

In order to state our main results, we first introduce some notation and recall what is known in the literature as
the hydrodynamic limit for the simple symmetric exclusion process. Let u0 :R → [0,1] be a piecewise continuous
function and let n ∈ N be a scaling parameter. We define a probability measure μn in Ω by

μn
(
η(z1) = 1, . . . , η(z�) = 1

)=
�∏

i=1

u0(zi/n) (1.4)

for any set {z1, . . . , z�} ⊆ Z. We call the sequence of measures {μn}n∈N, the Bernoulli product measures associated
to the profile u0. Next, let us define the empirical measure {πn

t ; t ≥ 0} as the measure-valued process given by

πn
t (dx) = 1

n

∑
z∈Z

ηn
t (z)δz/n(dx),

where δz/n(dx) denotes the Dirac measure at z
n

∈R, and {ηn
t ; t ≥ 0} denotes the process {ηtn2; t ≥ 0}.
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The following result is known in the literature as the hydrodynamic limit of the simple symmetric exclusion process,
see, e.g., Theorem 2.1, Chapter 2 in [11].

Proposition 1.1 (Hydrodynamic equation for the simple exclusion). Let u0 :R → [0,1] be a piecewise continuous
function and let {μn}n∈N be the sequence of Bernoulli product measures associated to the profile u0 as in (1.4). Let
{ηn

t ; t ≥ 0} the process {ηtn2; t ≥ 0} with initial distribution μn. For any T ≥ 0, the sequence of measure-valued
processes {πn

t (dx); t ∈ [0, T ]}n∈N converges to {u(t, x)dx; t ∈ [0, T ]} in probability with respect to the J1-Skorohod
topology of the space of càdlàg paths D([0, T ];M+(R)), where {u(t, x); t ≥ 0, x ∈ R} is the solution of the Cauchy
problem{

∂tu(t, x) = (1/2)∂2
xxu(t, x), t ≥ 0, x ∈ R,

u(0, x) = u0(x), x ∈R.
(1.5)

Back to our model in (1.1), heuristically, it is easy to see that if the average density of particles is different from 1
2 ,

the random walk {xt ; t ≥ 0} moves ballistically, and therefore the diffusive scaling introduced above is not the right
one for {xt ; t ≥ 0}. A possible way to overcome this fact is to scale the exclusion process and the random walk in a
different way. One way to do this is to define the rescaled process {(ηn

t , xn
t ); t ≥ 0} as the Markov process generated

by the operator

Lnf (η, x) = n2
∑
z∈Z

[
f
(
ηz,z+1, x

)− f (η, x)
]

+ n
∑

y∈{±1}
cy

(
η(x)

)[
f (η, x + y) − f (η, x)

]
. (1.6)

Under such a rescaling the exclusion jumps faster than the random walk but the motion of the random walk and
of the particles in the exclusion occur at the same scale allowing for a macroscopic non-trivial description of their
evolution. We are finally in shape to state the first result concerning {xn

t ; t ≥ 0}.

Theorem 1.2 (Macroscopic evolution of the random walk). Let u0 :R→ [0,1] be a piecewise continuous function
and let {μn}n∈N be the sequence of Bernoulli product measures associated to the profile u0. Assume that there exists
a constant ρ ∈ (0,1) such that

sup
n

1

n

∑
x∈Z

∣∣∣∣u0

(
x

n

)
− ρ

∣∣∣∣2 < +∞. (1.7)

Fix xn
0 = 0 and T > 0. Let {ηn

t ; t ≥ 0} be the process {ηtn2; t ≥ 0} with initial distribution μn. Then, for all t ∈ [0, T ]:

lim
n→∞

xn
t

n
= f (t)

in probability, where {f (t); t ≥ 0} satisfies the ordinary differential equation{
f ′(t) = (β − α)(1 − 2u(t, f (t))),

f (0) = 0,
(1.8)

with u being the solution of (1.5).

Note that by assuming (1.7), we do not restrict ourselves to the case where the exclusion starts from equilibrium,
namely, when the initial profile u0 is constantly equal to some fix density ρ. When restricting to this case for the
starting density profile, i.e., u0 ≡ ρ, Theorem 1.2 reduces to the statement that the random walk observes an averaged
homogeneous environment and travels with constant speed given by

f ′(t) = (β − α)(1 − 2ρ).
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In other words, when u0 ≡ ρ, it is like an homogeneous random walk jumping with probabilities β + ρ(α − β) and
α + ρ(β − α) to the right and to the left, respectively.

The proof of this theorem will be linked to the proof of the following theorem, which represents the hydrodynamic
limit of the environment as seen by the random walk. Let {ξn

t ; t ≥ 0} be the rescaled environment as seen by the walk
given by ξn

t (x) = ηn
t (x + xn

t ). Its generator Ln is given by

Lnf (ξ) = n2
∑
z∈Z

[
f
(
ξz,z+1)− f (ξ)

]+ n
∑

y∈{±1}
cy

(
ξ(0)

)[
f
(
θyξ

)− f (ξ)
]

=: n2Lexf (ξ) + nLrwf (ξ). (1.9)

Let {π̂n
t (dx); t ≥ 0} be the empirical measure associated to the process {ξn

t ; t ≥ 0}:

π̂n
t (dx) = 1

n

∑
z∈Z

ξn
t (z)δz/n(dx). (1.10)

We have the following:

Theorem 1.3 (Hydrodynamic equation for the environement as seen by the walker). Fix T ≥ 0, under
the assumptions of Theorem 1.2, the sequence of measure-valued processes {π̂n

t (dx); t ∈ [0, T ]}n∈N converges
to {û(t, x)dx; t ∈ [0, T ]} in probability with respect to the J1-Skorohod topology of D([0, T ];M+(R)), where
{û(t, x); t ≥ 0, x ∈ R} is the solution of the Cauchy problem{

∂t û(t, x) = (1/2)∂2
xx û(t, x) + (β − α)(1 − 2û(t,0))∂xû(t, x), t ≥ 0, x ∈ R,

û(0, x) = u0(x), x ∈R.
(1.11)

Theorem 1.3 says that the effect of the random walk on the macroscopic evolution of the process {ξn
t ; t ≥ 0} results

into a transport term. This term reflects the fact that microscopically every time the random walk jumps to the right,
the exclusion gets shifted to the left, and vice versa. The speed of this transport mechanism is the speed of the walker
that is dependent on û(t,0) = u(t, f (t)), which represents the density observed by {xn

t ; t ≥ 0}.
Let us further stress that Theorem 1.3 has its own interest within hydrodynamic theory of particle systems. In fact,

it provides the hydrodynamic equation for the process in (1.9) for which the invariant measures are not explicitly
known and which can be seen as a non-trivial perturbation of the exclusion process.

Remark 1.4 (More general jump rates). The results of this article remain true for rather arbitrary jump rates. The
particular choice of c±1 made in (1.3) allows us to keep the presentation and the proofs at a reasonable level of
technicality. In Section 3.2 we state our theorems in more generality and we show where and how the proof presented
in Section 2 has to be adapted.

Remark 1.5 (Beyond the macroscopic speed). In this paper we focus on the macroscopic speed of {xt ; t ≥ 0}. It is
natural to ask about fluctuations and large deviations for our model. It turns out that these two further questions are
very delicate due to the lack of knowledge of the equilibrium measures of the process ξt . In other words, we need a
finer control on the properties of the additive functional of the process in (2.2). We plan to address these questions in
future works. Another direction which we are currently working on are conservative systems of ballistic particles. In
such a setting the rescaling of the environment naturally matches the rescaling for the random walk.

The rest of the paper is organized as follows. Section 2 is devoted to the proof of Theorems 1.2 and 1.3. The proofs
are based on the so-called entropy method and it will be divided in the following three main steps. Step 1: In Section 2.1
we show that the analysis of the random walk can be reduced to the study of the additive functional

∫ t

0 (1−2ξn
s (0))ds,

and we prove Theorem 2.1, a so-called local replacement lemma. This theorem allows to approximate the additive
functional above in terms of the empirical measure in (1.10). Steps 2 and 3: Sections 2.2 and 2.3 deal with two
necessary topological issues to show a weak convergence result of the type of Theorem 1.3, namely, tightness of
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the sequence of considered processes, and the characterizations of the corresponding limiting points, respectively.
In Section 3, we discuss possible variants or generalizations of the model presented in Section 1.1, for which the
same techniques can be adapted. In particular in Section 3.1, we show how to derive the same type of results when
considering the so-called speed-change exclusion as a dynamic environment. While Sections 3.2 and 3.3 focus on
general jump rates for the random walk.

2. The entropy method

For ρ ∈ [0,1], let us denote by νρ the product Bernoulli measure of density ρ, that is, νρ is a probability measure in
Ω such that

νρ

(
η(z1) = 1, . . . , η(z�) = 1

)= ρ�

for any set {z1, . . . , z�} ⊆ Z. The measures νρ are invariant with respect to the evolution of the process {ηt ; t ≥ 0}. The
same is no longer true for the environment as seen by the walk, that is, the measures νρ are not left invariant by the
evolution of {ξt ; t ≥ 0}. In fact, if α > β , the process xt likes to be around the interface between regions with majority
of particles and regions with majority of holes. This fact is the main difficulty in order to prove Theorems 1.2 and 1.3.
As we will see, it turns out that the measure νρ is close to be invariant in some sense.

2.1. A local replacement lemma

Let {ξn
t ; t ≥ 0} be the rescaled environment as seen by the walk. For simplicity, we fix T > 0 and we consider the

evolution of the process ξn
t up to time T .

Let us fix some notation. Let D([0, T ];Ω) be the space of càdlàg trajectories from [0, T ] to Ω . Denote by P
n the

distribution in D([0, T ];Ω) of the process {ξn
t ; t ∈ [0, T ]} (with initial distribution μn) and by E

n the expectation
with respect to P

n. We denote by P
n
ρ the distribution of the process {ξn

t ; t ∈ [0, T ]} starting from the distribution νρ

and by E
n
ρ the expectation with respect to P

n
ρ . We will use the same notations for the process {(ηn

t , xn
t ); t ∈ [0, T ]}

with xn
0 = 0. Positive unspecified constants will be denoted by c.

We can recover the position xn
t of the random walk in dynamical random environment looking at the signed number

of shifts of the process {ξn
t ; t ≥ 0} up to time t . Since the number of shifts is a compound Poisson process, we can

write

xn
t

n
= M̃n

t + (β − α)

∫ t

0

(
1 − 2ξn

s (0)
)

ds, (2.1)

where M̃n
t is a martingale of quadratic variation 〈M̃n

t 〉 = (α+β)t
n

. In particular, supt≤T |M̃n
t | converges to 0 in proba-

bility as n → ∞ for any T ≥ 0. Therefore, in order to obtain a law of large numbers for the process {xn
t ; t ≥ 0} it is

enough to obtain a law of large numbers for the integral∫ t

0

(
1 − 2ξn

s (0)
)

ds. (2.2)

What we will first prove is the following theorem.

Theorem 2.1 (Local replacement lemma). Under the assumptions of Theorem 1.3,1

lim
ε→0

lim sup
n→∞

E
n

[∣∣∣∣∣
∫ t

0

(
ξn
s (0) − 1

εn

εn∑
z=1

ξn
s (z)

)
ds

∣∣∣∣∣
]

= 0. (2.3)

1Here and below, for ε > 0 and n ∈ N, we use εn indistinctly for the real number εn and for its integer part εn�.
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This theorem is called local replacement lemma since allows to “replace” the local function ξn
s (0) by the spatial

average in (2.3) which can be rewritten in terms of the empirical measure π̂n
s ∈M+(R) in (1.10) as

1

εn

εn∑
z=1

ξn
s (z) =

∫
ε−11(0,ε](x)π̂n

s (dx).

Such a replacement is a crucial step into the proof of the hydrodynamic limit of general diffusive particle systems
and in fact, we will use it in the final argument of Section 2.3 to get our main theorems. Let us remark that a similar
statement is proved in [10] in the context of a zero-range process as seen by a tagged particle. It turns out that the
process considered in [10] has an invariant measure of product form, and by this reason the proof does not applies
straightforwardly to our model. We will see below that an estimate on the Dirichlet form (see Lemma 2.2 below) is all
that we need in order to adapt the proof of [10] to our setting and prove Theorem 2.1. The motivation for estimating
the Dirichlet form is the following. When a Markov chain has a unique invariant measure, the (relative) entropy of the
distribution of the chain with respect to the invariant measure is decreasing and vanishing in time. The speed at which
the entropy decreases can be controlled by the Dirichlet form associated to the invariant measure. The same is true for
general Markov processes, although the entropy with respect to some invariant measure may not go to zero, it is still
decreasing, and the speed is still controlled by the associated Dirichlet form. For the process {ξt ; t ≥ 0}, the measure
νρ is not invariant, and therefore the entropy with respect to νρ is not necessarily decreasing. This reflects on the fact
that 〈√f ,Ln

√
f 〉 may not be negative. However, in our model the entropy does not grow too much. In fact, under the

assumptions of Theorem 1.2, as we show at the beginning of the proof of Theorem 2.1 below, the entropy between
μn and νρ is of order n. According to the entropy method introduced in [9], this entropy bound should be enough in
order to prove the replacement lemma, and this is what we do next. We first introduce the Dirichlet form and prove
the mentioned estimate in Lemma 2.2, then by using this estimate we prove Theorem 2.1.

Fix ρ ∈ (0,1), which we assume to be the one in the assumptions of Theorem 1.2. Let f :Ω → R be a density with
respect to νρ , that is, f (η) ≥ 0 for every η ∈ Ω and

∫
f dνρ = 1. We define the Dirichlet form of f associated to Lex

(see (1.9)) with respect to νρ as

D(f ) = 1

2

∑
z∈Z

∫ (√
f
(
ηz,z+1

)−√f (η)
)2

νρ(dη). (2.4)

Let us denote by 〈·, ·〉 the inner product in L2(νρ). It is standard to check that

D(f ) = 〈√f ,−Lex
√

f
〉
. (2.5)

We now show a crucial bound on 〈√f ,Ln

√
f 〉.

Lemma 2.2 (Dirichlet form estimate). For any density f :Ω →R with respect to νρ ,

〈√f ,Ln

√
f 〉 ≤ −n2D(f ) + 2n|α − β|.

Proof. As in equation (1.9), we can split Ln into two parts: n2Lex, which is the resclaed part of the generator corre-
sponding to jumps of the particles, and nLrw, which corresponds to rescaled jumps of the random walk. By (2.5), the
part of the generator corresponding to jumps of the particles satisfies 〈√f ,n2Lex√f 〉 = −n2D(f ). Therefore, we
just need to prove that〈√

f ,Lrw
√

f
〉≤ 2|α − β|

for any density f . Notice that 〈√f ,
√

f 〉 = 1 and notice that also 〈√θ1f ,
√

θ1f 〉 = 1. This last identity follows from
the invariance of the measure νρ under spatial shifts. By the same reason, 〈√θ−1f ,

√
θ−1f 〉 = 1. By the Cauchy–

Schwarz inequality,〈√
f ,

√
θ1f

〉≤ 1

2

(〈√f ,
√

f 〉 + 〈√θ1f ,

√
θ1f

〉)= 1.
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Therefore,

〈√
f ,
(
β + (α − β)ξ(0)

)(√
θ1f −√f

)〉
≤ max

{
β + (α − β)ξ(0)

}〈√
f ,

√
θ1f

〉
− min

{
β + (α − β)ξ(0)

}〈√f ,
√

f 〉
≤ max

{
β + (α − β)ξ(0)

}− min
{
β + (α − β)ξ(0)

}
≤ |α − β|.

The same reasoning allows to bound the other term in 〈√f ,Lrw√
f 〉, see (1.9), which ends the proof of the lemma.

�

We are now in shape to prove Theorem 2.1, using Lemma 2.2.

Proof of Theorem 2.1. Let us denote by H(μ|ν) the entropy between two given measures. First we observe that
H(Pn|Pn

ρ) = H(μn|νρ) ≤ cn. The first equality is an easy general fact about Markov chains. The second inequality
follows from the structure of the measures μn and νρ and the assumption in (1.7). By the entropy inequality, see
Proposition 8.1 in [11], for any function V :Ω → R and any γ > 0,

E
n

[∣∣∣∣∫ t

0
V
(
ξn
s

)
ds

∣∣∣∣]≤ H(Pn|Pn
ρ)

γ n
+ 1

γ n
logEn

ρ

[
eγ n|∫ t

0 V (ξn
s )ds|]. (2.6)

The first term on the right-hand side of (2.6) is then bounded by c
γ

. Using the estimate e|a| ≤ ea + e−a , we can get rid

of the absolute value on the second term of the right-hand side of (2.6), at the cost of estimating two expectations, one
involving V and another involving −V . Therefore, it suffices to show that

lim
γ→∞ lim sup

ε→0
lim sup
n→∞

1

γ n
logEn

ρ

[
eγ n

∫ t
0 V (ξn

s )ds
]= 0, (2.7)

where

V (ξ) = ±
(

ξ(0) − 1

εn

εn∑
z=1

ξ(z)

)
.

By Feynman–Kac formula, we can express the expectation in (2.7) in terms of the semigroup associated to the operator
Ln + γ nV . After some computations based on spectral theory (see Lemma A.1.7.2 in [11]), we can obtain the bound

1

γ n
logEn

ρ

[
eγ n

∫ t
0 V (ξn

s )ds
]≤ t sup

f

{
〈V,f 〉 + 1

γ n
〈√f ,Ln

√
f 〉
}
,

where the supremum is taken over all the densities f with respect to νρ . By Lemma 2.2, the supremum above is
bounded by

2t |α − β|
γ

+ t sup
f

{
〈V,f 〉 − n

γ
D(f )

}
.

Therefore, in order to prove the theorem, we only need to prove that

lim
γ→∞ lim sup

ε→0
lim sup
n→∞

sup
f

{
〈V,f 〉 − n

γ
D(f )

}
= 0. (2.8)
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Notice that

ξ(0) − 1

εn

εn∑
z=1

ξ(z) =
εn∑

z=1

εn − z + 1

εn

(
ξ(z − 1) − ξ(z)

)
.

We first estimate 〈ξ(z − 1) − ξ(z), f 〉. Performing the change of variables ξ → ξz,z+1, we see that

〈
ξ(z − 1) − ξ(z), f

〉= ∫ ξ(z)
(
f
(
ξz,z+1)− f (ξ)

)
νρ(dξ).

Let us define

Dz(f ) =
∫ (√

f
(
ξz,z+1

)−√f (ξ)
)2

νρ(dξ),

in such a way that D(f ) = 1
2

∑
z Dz(f ). Writing

f
(
ξz,z+1)− f (ξ) = {√f

(
ξz,z+1

)−√f (ξ)
}{√

f
(
ξz,z+1

)+√f (ξ)
}
,

using the Young inequality and the fact that
∫

f dνρ = 1 and 0 ≤ ξ(z) ≤ 1, we see that

〈
ξ(z − 1) − ξ(z), f

〉≤ 1

2λz

Dz(f ) + 2λz

for any λz > 0. Choosing

λz = γ

n

εn − z + 1

εn
,

we obtain

〈V,f 〉 − n

γ
D(f ) ≤ 2γ

ε2n3

εn∑
z=1

(εn − z + 1)2 ≤ cγ ε

for any density f , which gives (2.8) and concludes the theorem. �

2.2. Tightness

The proof of a theorem like Theorem 1.3 is usually performed following the classical three-steps procedure to prove
weak convergence of probability measures in Polish spaces. The first step is to prove tightness of the corresponding
sequence of distributions with respect to some properly chosen topology. The second step is to prove that any limit
point (they exists due to tightness and Prohorov’s Theorem) satisfies a convenient set of properties. The third step is to
prove that there exists at most one probability measure on the corresponding Polish space satisfying those properties.
Then, an abstract topology result, namely that any relatively compact set with a unique limit point is a converging se-
quence shows that the sequence of distributions converges in distribution with respect to the already chosen topology.
In the case of the hydrodynamic limit stated in Theorem 1.3, convergence in probability is readily obtained, since the
limit is non-random. In this section we show the first of these steps: the tightness. Before entering into the details, we
do a small detour to explain the choice of topology and some facts associated to this choice.

Let B(R) denote the family of Borel sets of R, that is, the smallest σ -algebra formed by subsets of R containing all
the open sets of R. We say that a measure π(dx) defined in R is non-negative if π(A) ≥ 0 for any A ∈ B(R). We say
that the measure π(dx) is a Radon measure if −∞ < π(K) < +∞ for any compact set K ⊆R. The empirical measure
{π̂n

t (dx); t ∈ [0, T ]}, is a random, non-negative, Radon measure. Let us denote by M+(R) the set of non-negative,
Radon measures in R. The weak topology in M+(R) is defined in the following way. Let Cc(R) denote the set of
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functions f :R → R which are continuous and of bounded support. We say that a sequence {πn;n ∈ N} in M+(R)

converges to a measure π ∈M+(R) if for any f ∈ Cc(R),

lim
n→∞

∫
f dπn =

∫
f dπ.

The space M+(R) turns out to be a Polish space with respect to the weak topology. In fact, there exists a sequence
{f�;� ∈N} of functions in Cc(R) such that the distance d: M+(R) ×M+(R) defined by

d
(
π,π ′)=

∑
�∈N

1

2�
min

{∣∣∣∣∫ f� d
(
π − π ′)∣∣∣∣,1

}
is a metric for the weak topology in M+(R). We can assume that the functions {f�;� ∈N} are infinitely differentiable.
We refer the reader to Section 4 of [11] for the latter statement as well as for the following topological considerations.
In order to simplify the notation, we will write π(f ) = ∫

f dπ for π ∈ M+(R) and f ∈ Cc(R). Let us consider the
following topology in Cc(R). We say that the sequence {fn;n ∈ N} of functions in Cc(R) converges to f ∈ Cc(R) if
two things happen:

(i) there exists a compact K such that the support of fn is contained in K for any n ∈N,
(ii) limn→∞ supx∈R |fn(x) − f (x)| = 0.

It turns out that M+(R) is the dual of Cc(R) with respect to this topology, and moreover, the weak topology in
M+(R) is the weak-∗ topology of M+(R) associated to this duality. This fact provides us with a very simple tightness
criterion for measure-valued processes:

Proposition 2.3. Let {πn
t (dx); t ∈ [0, T ]}n∈N be a sequence of measure-valued processes with trajectories in the

space D([0, T ];M+(R)). The sequence of processes {πn
t (dx); t ∈ [0, T ]}n∈N is tight with respect to the J1-Skorohod

topology of D([0, T ];M+(R)) if and only if the sequence of real-valued processes {πn
t (f�); t ∈ [0, T ]}n∈N is tight

with respect to the J1-Skorohod topology of D([0, T ];R) for any � ∈ N. If, for any � ∈ N, any limit point of
{πn

t (f�); t ∈ [0, T ]}n∈N is supported on the space C([0, T ];R) of continuous functions, then any limit point of
{πn

t (dx); t ∈ [0, T ]}n∈N is supported on the space C([0, T ];M+(R)).

Roughly speaking, this proposition is saying that the verification of tightness for measure-valued processes can be
reduced to the verification of tightness for real-valued processes. This property holds true for any dual of a Polish
space equipped with the weak-∗ topology. For a proof of this proposition in the context of measure-valued processes,
see Section 4 of [11]. The proof can be easily adapted to any dual of a Polish space.

Now we are in position to state the tightness results for the random walk and the environment as viewed by the
walk:

Theorem 2.4. The sequence of processes {π̂n
t ; t ∈ [0, T ]}n∈N is tight with respect to the J1-Skorohod topology of

D([0, T ];M+(R)). Moreover, any limit point of {π̂n
t ; t ∈ [0, T ]}n∈N is supported on the set C([0, T ];M+(R)) of

continuous trajectories. The sequence of real-valued processes {n−1xn
t ; t ∈ [0, T ]}n∈N is tight with respect to the

J1-Skorohod topology of D([0, T ];R). Moreover, any limit point of {n−1xn
t ; t ∈ [0, T ]}n∈N is supported on the set

C([0, T ];R).

Proof. Let us recall Dynkin’s formula for a function of a Markov process: for any local function F :Ω → R, the
process

F
(
ξn
t

)− F
(
ξn

0

)− ∫ t

0
LnF

(
ξn
s

)
ds

is a mean-zero martingale. The quadratic variation of this martingale can also be computed in terms of the generator
Ln and it is given by∫ t

0
LnF

(
ξn
s

)2 − 2F
(
ξn
s

)
LnF

(
ξn
s

)
ds =

∫ t

0

[
Ln

(
F − F

(
ξn
s

))2](
ξn
s

)
ds.
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Let f ∈ Cc(R) be a smooth function. Let us define the discrete gradient(s) and discrete Laplacian of f by

�nf

(
x

n

)
= n2

[
f

(
x + 1

n

)
+ f

(
x − 1

n

)
− 2f

(
x

n

)]
,

∇n−f

(
x

n

)
= n

[
f

(
x

n

)
− f

(
x − 1

n

)]
,

∇n+f

(
x

n

)
= n

[
f

(
x + 1

n

)
− f

(
x

n

)]
.

Taking F(ξn
t ) = π̂n

t (f ), we see that

Mn
t (f ) = π̂n

t (f ) − π̂n
0 (f ) −

∫ t

0

{
π̂n

s (�nf ) − (β − α)
(
1 − 2ξn

s (0)
)
π̂n

s

(∇n−f
)

− 1

n

[
α + (β − α)ξn

s (0)
]
π̂n

s (�nf )

}
ds

is a martingale. Note that the last term comes from the difference between ∇n+f − ∇n−f . Its quadratic variation is

〈
Mn

t (f )
〉 = 1

n

∫ t

0

1

n

∑
x∈Z

(
ξn
s (x) − ξn

s (x − 1)
)2(∇n−f

(
x

n

))2

+ α + β

n

∫ t

0

(
π̂n

s

(∇n−f
))2 ds + En,

where En is a lower order term which captures the influence of ∇n+f − ∇n−f and is given by

1

n

∫ t

0

(
βξn

s (0) + α
(
1 − ξn

s (0)
))[(

π̂n
s

(∇n+f
))2 − (π̂n

s

(∇n−f
))2]ds.

Notice that the occupation variables can only assume the values 0,1. Since f is infinitely differentiable and of compact
support, there exists a constant C(f ) > 0 such that

∣∣〈Mn
t (f )

〉∣∣≤ C(f )t

n

for any t ∈ [0, T ] and any n ∈N. Note that En[Mn
t (f )2] = E

n[〈Mn
t (f )〉]. Therefore, by Doob’s inequality we have

P
n
[

sup
0≤t≤T

∣∣Mn
t (f )

∣∣≥ ε
]

≤ 4C(f )T

ε2n

for any n ∈ N. We conclude that the process {Mn
t (f ); t ≥ 0} converges to 0 in probability (and therefore in distribution)

with respect to the uniform topology in D([0, T ];R). Notice that π̂n
0 (f ) = πn

0 (f ). Therefore, by hypothesis π̂n
0 (f )

converges in probability (and in distribution) to
∫

u0(x)f (x)dx. These two convergences reduce the proof of tightness
of {π̂n

t (f ); t ∈ [0, T ]} to the proof of tightness of the integral term

In
t (f ) =

∫ t

0

{
π̂n

s (�nf ) − (β − α)
(
1 − 2ξn

s (0)
)
π̂n

s

(∇n−f
)}

ds.

But, using again the boundedness of ξn
s (0),

∣∣In
t (f ) − In

s (f )
∣∣≤ |t − s|

n

∑
x∈Z

(∣∣∣∣�nf

(
x

n

)∣∣∣∣+ ∣∣∣∣∇n−f

(
x

n

)∣∣∣∣),
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and by the smoothness of f we conclude that the sequence of processes {In
t ; t ∈ [0, T ]}n∈N is uniformly Lips-

chitz (uniformly in n and t ), and in particular it is tight with respect to the uniform topology of C([0, T ];R). This
proves two things: first, the sequence {π̂n

t (f ); t ∈ [0, T ]}n∈N is tight; and second, every limit point of {π̂n
t (f ); t ∈

[0, T ]}n∈N is supported on continuous trajectories. By Proposition 2.3, the sequence of measure-valued processes
{π̂n

t ; t ∈ [0, T ]}n∈N is tight with respect to the J1-Skorohod topology on D([0, T ];M+(R)) and any limit point is
supported on continuous trajectories.

Now we turn into the proof of tightness of the sequence { xn
t

n
; t ∈ [0, T ]}. This is actually simpler. In fact, the process

M̃n
t := xn

t

n
− (β − α)

∫ t

0

(
1 − 2ξn

s (0)
)

ds

is a martingale of quadratic variation (α+β)t
n

. As above, by Doob’s inequality the martingale converges to 0 in proba-
bility with respect to the uniform topology on D([0, T ];R). Again as above, the integral term is uniformly Lipschitz,

both in t and n. In fact, the Lipschitz constant is bounded above by |β − α|. Therefore, { xn
t

n
; t ∈ [0, T ]} is tight with

respect to the J1-Skorohod topology on D([0, T ];R) and any limit point is supported on continuous trajectories. In
fact, we can say a little bit more about the limit points: they are supported on Lipschitz functions of Lipschitz constant
bounded by |β − α|. �

2.3. Characterization of limit points: Proofs of Theorems 1.2 and 1.3

We are now ready to finish our proofs. We first observe that a vector of random processes is tight if and

only if each coordinate is tight. Therefore, by Theorem 2.4, the triple {(πn
t , π̂n

t ,
xn
t

n
); t ∈ [0, T ]}n∈N is tight. Let

{(u(t, x)dx, ût (dx), f (t)); t ∈ [0, T ]} be a limit point of the triple and let n′ be the subsequence of n for which
the triple converges to that limit point. Remind that we already know that u(t, x)dx is the solution of the heat equa-
tion, and in particular it is deterministic, but in principle f (t) and ût (dx) may be random. A first observation is that
ût (dx) has a density with respect to Lebesgue measure. This is an easy consequence of the boundedness of ξn

s . In fact,
for any closed, non-empty interval A ⊆R, π̂n

t (1A) ≤ |A|+ 1
n

, where |A| denotes the Lebesgue measure of A and 1· is
the usual characteristic function. Therefore, ût (dx) = û(t, x)dx for some random function {û(t, x); t ∈ [0, T ], x ∈ R},
bounded between 0 and 1. Another observation is that {f (t); t ∈ [0, T ]} is Lipschitz, with Lipschitz constant bounded

above by |β −α|. For any fixed n ∈ N, the measure π̂n
t is the shift of πn

t by xn
t

n
. Since shifting by a continuous function

is a continuous operation on the space M+(R), this relation is also satisfied by the limiting processes. Therefore, we
have the relation û(t, x) = u(t, x + f (t)) for any t ∈ [0, T ] and any x ∈ R.

Next, recall that the sum involved in equation (2.3) is equal to π̂n
s (ε−11(0,ε]). Since the step function ε−11(0,ε] is

not a continuous function, we cannot say that π̂n
s (ε−11(0,ε]) converges. However, since the limiting measure û(s, x)dx

has a density and the step function ε−11(0,ε] is a.s. continuous, we have that

lim
n→∞ π̂n

s

(
ε−11(0,ε]

)= ε−1
∫ ε

0
û(s, x)dx.

On the other hand, by (2.1),∫ t

0

(
1 − 2ξn

s (0)
)

ds = 1

β − α

(
xn
t

n
− M̃n

t

)
,

which converges to (β−α)−1f (t). Replacing these two limits into (2.3), and using the identity û(t, x) = u(t, x+f (t))

we obtain the relation

lim
ε→0

E

[∣∣∣∣f (t) − β − α

ε

∫ t

0

∫ ε

0

(
1 − 2u

(
s, x + f (s)

))
dx ds

∣∣∣∣]= 0.

Since f is uniformly Lipschitz and u is smooth, the limit as ε → 0 of the integral above is equal to

(β − α)

∫ t

0

(
1 − 2u

(
s, f (s)

))
ds.
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We conclude that {f (t); t ∈ [0, T ]} satisfies the integral equation

f (t) = (β − α)

∫ t

0

(
1 − 2u

(
s, f (s)

))
ds,

which is nothing but the integral version of (1.8). Since this equation has a unique solution, we conclude that f is
deterministic and uniquely defined. This ends the proof of Theorem 1.2. Theorem 1.3 follows from the argument, after
recalling that û(t, x) = u(t, x + f (t)) for all x ∈ R, in particular x = 0.

3. Generalizations

In this section, we present some generalizations of Theorems 1.2 and 1.3. One possibility is to extend the results for
other underlying dynamics. This is the content of Section 3.1. A second one is to consider different transitions for the
random walk. In Sections 3.2 and 3.3 we discuss how to generalize Theorems 1.2 and 1.3 for random walks with more
general jump rates and with macroscopic jumps, respectively.

3.1. The speed-change exclusion process

An example of underlying dynamics for which we can extend our results in a straightforward way is the so-called
speed-change exclusion process, or stochastic lattice gas at infinite temperature. In this dynamics, exchanges of parti-
cles between sites z and z+ 1 are performed at rate cz(η) = c0(θ

−zη), where c0(η) is a strictly positive, local function
which does not depend on the values of η(0) and η(1). More precisely, let c0 :Ω → R be a local, positive function.
Notice that positivity plus locality imply that there exists a constant ε0 > 0 such that ε0 ≤ c0(η) ≤ ε−1

0 for any η ∈ Ω .
The generator of the speed-change simple exclusion process acts on local functions f :Ω → R as

Lscf (η) =
∑
z∈Z

cz(η)
{
f
(
ηz,z+1)− f (η)

}
, (3.1)

where cz(η) = c0(θ
−zη). The stochastic evolution can be described as follows. At rate cz(η) the occupation variables

η(z), η(z + 1) are exchanged, and this rate depends on the occupation of the neighbors of z, z + 1 up to some finite
distance R. Such dependency gives raise to a non-linearity in the hydrodynamic limit. For this model, under the
assumptions of Proposition 1.1, the statement holds true with a Cauchy problem of the form{

∂tu(t, x) = (1/2)∂2
xx�(u(t, x)), t ≥ 0, x ∈ R,

u(0, x) = u0(x), x ∈R,

where �(ρ) is given in general by a variational formula (see Section 7 of [11] for more details).
A choice which is very popular in the literature is cx(η) = 1 + a(η(x − 1) + η(x + 2)) for some a > − 1

2 . For this
particular choice, the model turns out to be gradient, see, e.g., [8], and �(ρ) = ρ + aρ2.

The generator of the environment as seen by the walker xt can be written as L̃n = n2Lsc + nLrw, with Lsc as in
equation (3.1). We have the following version of Lemma 2.2:

Lemma 3.1. For any density f :Ω →R,

〈√f ,Ln

√
f 〉 ≤ −n2

ε0
D(f ) + 2n|α − β|.

Keeping this lemma in mind, the proof of the replacement lemma, Theorem 2.1, can be repeated for the speed-
change exclusion process. Mutatis mutandis, the rest of the proofs is the same, as well the conclusions in the Theo-
rem 1.2 and the Theorem 1.3.
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3.2. Random walks with more general jump rates

For simplicity, the random walk we defined in Section 1.1 looks only at the state of the exclusion process at its current
position. However, our result holds for a more general choice of the transition rates. Let γz :Ω → [0,∞), z ∈ Z, be a
collection of local functions prescribing the jump rates of the random walk, i.e.,

Lf (η, x) =
∑
z∈Z

[
f
(
ηz,z+1, x

)− f (η, x)
]+∑

z∈Z
γz

(
θ−xη

)[
f (η, x + z) − f (η, x)

]
. (3.2)

Note that the setting discussed in the bulk of the paper corresponds to γ+1(η) = β + (α − β)η(0), γ−1(η) = α + (β −
α)η(0), and γz(η) = 0 else.

In the general case described in (3.2), by assuming that
∑

z∈Z supη γ̃z(η) < ∞, the hydrodynamic limit of Theo-
rem 1.3 still holds with û(t, x) being the solution of{

∂t û(t, x) = (1/2)∂2
xx û(t, x) + γ (û(t,0))∂xû(t, x), t ≥ 0, x ∈ R,

û(0, x) = u0(x), x ∈R,

where γ (ρ) = νρ(
∑

z zγz).
In fact, with V = (ξ(0) − 1

εn

∑εn
x=1 ξ(x)) replaced by Vεn =∑z zγz(ξ) − γ ( 1

εn

∑εn
x=1 ξ(x)) the proofs generalize

to this setting except for equation (2.8). Here a more sophisticated argument is necessary. The proof follows from the
arguments in [10]. Since the reference [10] is quite technical, we try to be more specific. The proof of (2.8) follows
the celebrated one-block, two-blocks scheme introduced by [9]. The one-block estimate reduces to prove that

lim
γ→∞ lim sup

�→∞
lim sup
n→∞

sup
f

{
〈V�,f 〉 − n

γ
D(f )

}
= 0.

This is equivalent to the estimation of equation (6.2) in [10]. The two-blocks estimate reduces to prove that

lim
γ→∞ lim sup

�→∞
lim sup

ε→0
lim sup
n→∞

sup
f,x

{
〈V�,x, f 〉 − n

γ
D(f )

}
= 0,

where

V�,x(ξ) = γ

(
1

�

�∑
y=1

ξ(y)

)
− γ

(
1

�

x+�∑
y=x+1

ξ(y)

)

and the supremum is over densities f :Ω → R and over 2� + 1 ≤ x ≤ εn. This is basically what is proven in
Lemma 6.5 of [10]. The rest of the proof follows like in the proof of Proposition 6.1 of [10].

Remark 3.2. One of the main assumptions in [10] is a sharp lower bound on the spectral gap of the dynamics
restricted to a finite box, which is well-known for the exclusion process.

3.3. Random walks with macroscopic jumps

For the hydrodynamic limit as presented to hold it is necessary that the rates of the random walk are properly rescaled.
It is however possible to introduce rare large-scale jumps. Rescaling (3.2), we get

Lnf (η, x) = n2
∑
z∈Z

[
f
(
ηz,z+1, x

)− f (η, x)
]+ n

∑
z∈Z

γz

(
θ−xη

)[
f (η, x + z) − f (η, x)

]
.

We can introduce long range jumps by adding a third term:

Lnf (η, x) = n2
∑
z∈Z

[
f
(
ηz,z+1, x

)− f (η, x)
]+ n

∑
z∈Z

γz

(
θ−xη

)[
f (η, x + z) − f (η, x)

]
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+
∑
z∈Z

γ̃z

(
θ−xη

)[
f (η, x + nz) − f (η, x)

]
, (3.3)

with ∑
z∈Z

sup
η

γ̃z(η) < ∞. (3.4)

Note how the jump rates γ̃z :Ω → [0,∞), z ∈ Z, are not rescaled in time, but the corresponding jumps are of or-
der n. This leads to randomness in the hydrodynamic limit, where the random walk xn

t converges to a space–time
inhomogeneous random walk xt on R with drift, characterized by the generator

Lrw
t f (x) =

∑
z∈Z

γ̃z

(
u(t, x)

)[
f (x + z) − f (x)

]+ γ
(
u(t, x)

)
f ′(x),

(3.5)
γ̃z(ρ) = νρ(γ̃z).

The idea of the proof is rather straightforward, using the hydrodynamic limit without long-range jumps. We now give
the main lines of this proof.

Let τn be the time of the first macroscopic jump and zn the jump size over n, i.e.,

xn
τn = xn

τn− + nzn.

The time τn is distributed according to the first arrival of any of the Poisson point processes {Nn
z : z ∈ Z} on [0,∞)

with intensity measure {In
z : z ∈ Z} given by

In
z

([a, b])=
∫ b

a

γ̃z

(
ξn
t

)
dt.

From the hydrodynamic limit without the macroscopic jumps, we know that Nn
z converges to the limiting Poisson

point process Nz with intensity measures

Iz

([a, b])=
∫ b

a

γ̃z

(
û(t,0)

)
dt.

In Lemma 3.3 below, we prove that for t ∈ [0, τn], xn
t converges to xt , t ∈ [0, τ ], where xt is the random walk

described by the generator Lrw
t in (3.5), and τ is the first macroscopic jump time, corresponding to the first arrival of

the Poisson point processes {Nz: z ∈ Z}.
Finally, the result follows by iterating the same argument for the other macroscopic jumps after the first.

Lemma 3.3. Define Xn
[0,τn] := {xn

t : t ∈ [0, τ n]} and X[0,τ ] := {xt : t ∈ [0, τ ]}. Then,

Xn
[0,τn] converges in distribution to X[0,τ ],

as n goes to infinity.

Proof. The idea is to couple the Poisson point processes {Nz: z ∈ Z} and {Nn
z : z ∈ Z}. For z ∈ Z, let N̄z := (N̄z(t))t≥0

a Poisson process with rate ‖γ̃z‖∞. For t ≥ 0, consider the time-changed process

Mn
z (t) := N̄z

(∫ t

0

γ̃z(ξ
n
s )

‖γ̃z‖∞
ds

)
. (3.6)

Note that the jump times of this process have the same distribution as Nn
z . Similarly, consider the time-changed process

Mz(t) := N̄z

(∫ t

0

γ̃z(û(s,0))

‖γ̃z‖∞
ds

)
, (3.7)
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and note that its jump times have the same distribution as Nz. Hence, we can assume that there is a coupling under
which the jump times of Nn

z and Nz are given by the jump times of (3.6) and (3.7), respectively.
Note now that by definition, τn and τ are the first time that any of the processes {Mn

z : z ∈ Z} and {Mz: z ∈ Z}
have a jump, respectively. Since the time-change in (3.6) converges to the one in (3.7), τn converges to τ when
conditioning on the realization of {N̄z: z ∈ Z}. Moreover, due to (3.4), the jump events of {N̄z: z ∈ Z} are well-
separated, consequently, the same holds true for the index zn of the first jump. Therefore, by the hydrodynamic limit
without macroscopic jumps, xn

[0,τn] converges to x[0,τ ], and xn
τn − xn

τn− = nzn converges to z := xτ − xτ−.
It remains to show that the jump rates of xt match those given in (3.5). Observe that on the event that τ ≥ t , for

arbitrary ε > 0, the probability of the occurrence of a jump of size z before time t + ε is given by

P
(
Mz(t + ε) − Mz(t) ≥ 1

) = P
(
Mz(t + ε) − Mz(t) = 1

)+ o(ε)

= 1 − exp
∫ t+ε

t

γ̃z

(
û(s,0)

)
ds + o(ε) =

∫ t+ε

t

γ̃z

(
û(s,0)

)
ds + o(ε).

Moreover, for s < τ , û(s,0) = u(s, xs). Therefore xn
[0,τn] indeed converges to x[0,τ ] with xt given by (3.5). �
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