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Abstract. We focus on the existence and characterization of the limit for a certain critical branching random walks in time–space
random environment in one dimension which was introduced by Birkner, Geiger and Kersting in (In Interacting Stochastic Systems
(2005) 269–291 Springer). Each particle performs simple random walk on Z and branching mechanism depends on the time–space
site. The limit of this measure-valued processes is characterized as the unique solution to the non-trivial martingale problem and
called super-Brownian motion in a random environment by Mytnik in (Ann. Probab. 24 (1996) 1953–1978).

Résumé. Nous étudions l’existence et la caractérisation de la limite de marches branchantes critiques dans un environnement
spatio-temporel aléatoire en dimension 1 introduit par Birkner, Geiger and Kersting dans (In Interacting Stochastic Systems (2005)
269–291 Springer). Chaque particule effectue une marche aléatoire simple sur Z et le mécanisme de branchement dépend du site
indexé par l’espace et le temps. La limite de ce processus à valeur mesure est caractérisée comme l’unique solution d’un problème
de martingale non-trivial et correspond au super mouvement Brownien en environnement aléatoire par Mytnik dans (Ann. Probab.
24 (1996) 1953–1978).

MSC: 60H15; 60J68; 60J80; 60K37
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We denote by (Ω,F ,P ) a probability space. Let N = {0,1,2, . . .}, N∗ = {1,2,3, . . .}, and Z = {0,±1,±2, . . .}. Let
Cx1,...,xp or C(x1, . . . , xp) be a non-random constant which depends only on the parameters x1, . . . , xp .

1. Introduction

Super-Brownian motion (SBM) is a measure-valued process which was introduced by Dawson and Watanabe inde-
pendently [4,30] and is obtained as the limit of (asymptotically) critical branching Brownian motions (or branching
random walks). There are many books for introduction of super-Brownian motion [6,10] and dealing with several
aspects of it [8,9,15,25]. Also, super-Brownian motion appears in physics and population genetics.

An example of the construction is the following, where we always treat Euclidean space as the space, Rd in this
paper. We assume that at time 0, there are N particles in Z

d as the 0th generation particle. Each of N particles
chooses independently of each other a nearest neighbor site uniformly, moves there at time 1, and then each particle
independently of each other either dies or splits into two particles with probability 1/2 (1st generation). The newly
produced particles in the nth generation perform in the same manner, that is each of them chooses independently of
each other a nearest neighbor site uniformly, moves there at time n + 1, and then each particle independently of each
other either dies or splits into 2 particles with probability 1/2.
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Let X
(N)
t (·) be the measure-valued Markov processes defined by

X
(N)
t (B) = �{particles in B

√
N at �tN�th generation at time tN}

N
,

where B ∈ B(Rd) are Borel sets in R
d and B

√
N = {x = y

√
N for y ∈ B}. Then, under some conditions, they con-

verge as N → ∞ to a measure-valued processes, super-Brownian motion. In particular, the limit, Xt , is characterized
as the unique solution to the martingale problem:⎧⎪⎪⎨

⎪⎪⎩
For all φ ∈ C2

b(R),

Zt (φ) := Xt(φ) − X0(φ) − ∫ t

0
1

2d
Xs(�φ)ds

is an FX
t -continuous square-integrable martingale

Z0(φ) = 0 and 〈Z(φ)〉t = ∫ t

0 Xs(φ
2)ds,

(1.1)

where ν(φ) = ∫
φ dν for any measure ν.

It is a well-known fact that one-dimensional super-Brownian motion is related to a stochastic heat equation [14,
26]. When d = 1, super-Brownian motion Xt(dx) is almost surely absolutely continuous with respect to the Lebesgue
measure and its density u(t, x) satisfies the following stochastic heat equation:

∂

∂t
u = 1

2
�u + √

uẆ(t, x),

where Ẇ (t, x) is time–space white noise. On the other hand, for d ≥ 2, Xt(·) is almost surely singular with respect to
the Lebesgue measure [7,16,23,24].

In this paper, we consider super-Brownian motion in a random environment, which was introduced in [19]. Mytnik
showed the existence and uniqueness of the scaling limit Xt(·) for a certain critical branching diffusion in a random
environment with some conditions. It is characterized as the unique solution to the martingale problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
For all φ ∈ C2

b(Rd),

Zt (φ) := Xt(φ) − X0(φ) − ∫ t

0
1
2Xs(�φ)ds

is an FX
t -continuous square-integrable martingale and

〈Z(φ)〉t = ∫ t

0 Xs(φ
2)ds + ∫ t

0

∫
Rd×Rd g(x, y)φ(x)φ(y)Xs(dx)Xs(dy)ds,

(1.2)

where g(·, ·) is bounded continuous function in a certain class. In this paper, we construct a super-Brownian motion in
a random environment as the limit of scaled branching random walks in a random environment, which is a solution to
(1.2) for the case where g(x, y) is replaced by δx,y and d = 1. The definition of such a martingale problem is formal.
The rigorous definition will be given later.

2. Branching random walks in a random environment

Before giving the system of the branching random walks in a random environment, we introduce the Ulam–Harris tree
T for labeling the particles. We set Tk = (N∗)k+1 for k ≥ 1. Then, the Ulam–Harris tree T is defined by T =⋃

k≥0 Tk .
We will give a name to each particle by using elements of T .

(i) When there are M particles at the 0th generation, we label them as 1,2, . . . ,M ∈ T0.
(ii) If the nth generation particle x = (x0, . . . , xn) ∈ Tn gives birth to kx particles, then we name them as

(x0, . . . , xn,1), . . . , (x0, . . . , xn, kx) ∈ Tn+1.

Thus, every particle in the branching systems has its own name in T . We define |x| by its generation, that is if x is an
element of Tk , then |x| = k. For convenience, we denote by |x∧ y | the generation of the closest common ancestor of
x and y . If x and y have no common ancestor, then we define |x ∧ y | = −∞. Also, we denote by y/x the last digit
of y when y is a child of x, that is

y/x=
{

ky , if x= (x0, . . . , xn) ∈ Tn, y = (x0, . . . , xn, ky ) ∈ Tn+1, for some n ∈ N,
∞, otherwise.
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Now, we give the definition of branching random walks in a random environment. In our case, a particle moves on
Z and the process evolves by the following rules:

(i) The initial particles are located at sites {xi ∈ 2Z: i = 1, . . . ,MN }.
(ii) Each particle located at site x at time n chooses a nearest neighbor site independently of each others with proba-

bility 1
2 and moves there at time n + 1. Then, it is replaced by k-children with probability q

(N)
n,x (k) independently

of each others,

where {{q(N)
n,x (k)}∞k=0: (n, x) ∈N×Z} are the offspring distributions assigned to each time–space site (n, x) which are

i.i.d. in (n, x). We denote by B
(N)
n and by B

(N)
n,x the total number of particles at time n and the local number of particles

at site x at time n. Also, we denote by m
(N,p)
n,x the pth moment of offsprings for offspring distribution {q(N)

n,x (k)}, that
is

m
(N,p)
n,x =

∞∑
k=0

kpq(N)
n,x (k).

This model is called branching random walks in a random environment (BRWRE) whose properties as measure-
valued processes are studied well for “supercritical” case [12,13]. Also, the continuous counterpart, branching Brow-
nian motions in a random environment was introduced by Shiozawa [28,29]. We know that the normalized random
measure weakly converges to Gaussian measure in probability in one phase, whereas the localization has occurred in
the other phase.

In this paper, we focus on the scaled measure-valued processes X
(N)
t associated to this branching random walks:

X
(N)
0 = 1

N

MN∑
i=0

δxi/N
1/2,

and

X
(N)
t = 1

N

B
(N)
tN∑

i=1

δxi(t)/N
1/2 , for t = 1

N
, . . . ,

�KN�
N

for each K > 0,

where xi(t) is the position of the ith particle at tN th generation. We remark that if we identify B
(N)
tN,x as the measure

B
(N)
tN,xδx , then X

(N)
t is represented as

X
(N)
t = 1

N

∑
x∈Z

B
(N)
tN,xδx/N1/2 for t = 1

N
, . . . ,

�KN�
N

.

Let MF (R) be the set of the finite measures on R with the topology of weak convergence. For convenience, we extend
this model to the càdlàg paths in MF (R) by

X
(N)
t = 1

N

∑
x∈Z

B
(N)
tN,xδx/N1/2, for t ≤ t < t + 1

N
,

where we define t for t and N by some positive number i
N

for i ∈ N satisfying i
N

≤ t < i+1
N

. Then, X
(N)
t ∈ MF (R)

for each t ∈ [0,K]. Let φ ∈ Bb(R), where Bb(R) is the set of the bounded Borel measurable functions on R. We
denote the product of ν ∈MF (R) and φ ∈ Bb(R) by ν(φ), that is

ν(φ) =
∫
R

φ(x)ν(dx).

To describe the main theorem, we introduce the following assumption on the environment:
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Assumption A.

E
[
m

(N,1)
0,0

]= E

[ ∞∑
k=0

kq(N)
n,x (k)

]
= 1, lim

N→∞E
[
m

(N,2)
0,0 − 1

]= γ > 0,

sup
N≥1

E
[
m

(N,4)
0,0

]
< ∞, lim

N→∞N1/2E
[(

m
(N,1)
0,0 − 1

)2]= β2,

sup
N≥1

N1/2E
[(

m
(N,1)
0,0 − 1

)4]
< ∞.

Example. The simplest example satisfying Assumption A is the case where q
(N)
n,x (0) = 1

2 − βξ(n,x)

2N1/4 , q
(N)
n,x (2) = 1

2 +
βξ(n,x)

2N1/4 for i.i.d. random variables {ξ(n, x): (n, x) ∈N×Z} such that P(ξ(n, x) = 1) = P(ξ(n, x) = −1) = 1
2 .

Theorem 2.1. We suppose that X
(N)
0 (·) ⇒ X0(·) in MF (R) and Assumption A. Then, the sequence of measure-valued

processes {X(N)· : N ∈N} converges to a continuous measure-valued process X· ∈ C([0,∞),MF (R)). Moreover, for
any t > 0, Xt(dx) is almost surely absolutely continuous with respect to the Lebesgue measure and its density u(t, x)

is the unique nonnegative solution to the following martingale problem:

⎧⎪⎪⎨
⎪⎪⎩

For all φ ∈ C2
b(R),

Zt (φ) = ∫
R

φ(x)u(t, x)dx − ∫
R

φ(x)X0(dx) − 1
2

∫ t

0

∫
R

�φ(x)u(s, x)dx ds

is an FX
t -continuous square-integrable martingale and

〈Z(φ)〉t = ∫ t

0

∫
R

φ2(x)(γ u(s, x) + 2β2u(s, x)2)dx ds.

(2.1)

Remark 1. We found in the Example after Assumption A that the fluctuation of the environment is mainly given by
(m

(N,1)
n,x − 1) and scaling factor is N−1/4. (It appears clearly in the Example after Assumption A.) This scaling factor

is different from N−1/2, the one in [19]. When the scaling factor is N−1/2, the limit is the usual super-Brownian
motion (1.1).

We roughly discuss how the scaling factor in our model is determined. For simplicity, we consider the model for
the case where the environment is the one given in the Example.

We scale the space by N−1/2. Then, the summation of the fluctuation of the first moment of offsprings in the segment

{k} × [x, y] is
∑

z∈[xN1/2,yN1/2]
βξ(k,z)

N1/4 . Since it is the summation of i.i.d. random variables of (y−x)N1/2

2 , the central

limit theorem holds and it weakly converges to a Gaussian random variable with distribution N(0,
β2(y−x)

2 ). Similar
argument holds for random variables other than Bernoulli random variables.

Remark 2. The martingale problem (2.1) is the rigorous definition of the martingale problem when g(x, y) is re-
placed by δx−y in (1.2). Also, the theorem implies the existence and the uniqueness of the nonnegative solution to the
stochastic heat equation

∂

∂t
u = 1

2
�u +

√
γ u + 2β2u2Ẇ , (2.2)

and limt→+0 u(t, x)dx = X0(dx) in MF (R), where Ẇ is time–space white noise. In [18], the existence of solutions
was proved for general SPDE containing (2.2) when the initial measure X0(dx) has a continuous density with rapidly
decreasing at infinity.

Also, there are a lot of papers on uniqueness of the stochastic heat equation ∂
∂t

u = 1
2�u + |u|αẆ . It is known that

weak uniqueness for nonnegative solutions holds for 1
2 ≤ α ≤ 1 [20] and pathwise uniqueness holds for 3

4 < α ≤ 1
[21]. However, uniqueness in law and pathwise uniqueness fails when solutions are allowed to take negative values
for α < 3

4 [17].
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3. Proof of Theorem 2.1

In this section, we will give a proof of Theorem 2.1. The proof is divided into three steps:

(i) tightness,
(ii) identification of the limit point processes,

(iii) weak uniqueness of the limit points.

In this section, we consider the following setting for simplicity.

Assumption B. The number of initial particles is N and all of them locates at the origin at time 0. Also, q
(N)
n,x (0) =

1
2 − βξ(n,x)

2N1/4 , q
(N)
n,x (2) = 1

2 + βξ(n,x)

2N1/4 for i.i.d. random variables {ξ(n, x): (n, x) ∈ N × Z} such that P(ξ(n, x) = 1) =
P(ξ(n, x) = −1) = 1

2 .

To consider the general model, it is almost enough to replace βξ(n,x)

N1/4 by m
(N,1)
n,x −1. We sometimes need to consider

{{q(N)
n,x (k)}k≥0: (n, x) ∈ N × Z}. Especially, γ appears in the same situation as the construction of the usual super-

Brownian motion, so the reader will not have any difficulties extending the proof to the more general case.
Before starting the proof, we will look at the X

(N)
t (φ). Since X

(N)
t are constant in t ∈ [t, t + 1

N
), it is enough to see

the difference between X
(N)
t and X

(N)
t+1/N ;

X
(N)
t+1/N (φ) − X

(N)
t (φ) = 1

N

∑
x∼t

(
φ

(
Yx

tN+1

N1/2

)
V x − φ

(
Yx

tN

N1/2

))
,

where x∼ t means that the particle x is the tN th generation, Yx
tN is the position of the particle x at time tN for x ∼ t ,

V x is the number of children of x and for simplicity, we omit N . We define Yx
tN+1 = Y

y
tN+1 for y which is a child

of x.
Also, we divide this summation into four parts:

(LHS)

= 1

N

∑
x∼t

φ

(
Yx

tN+1

N1/2

)(
V x − 1 − βξ(tN,Yx

tN )

N1/4

)

+ 1

N

∑
x∼t

φ

(
Yx

tN+1

N1/2

)
βξ(tN,Yx

tN )

N1/4

+ 1

N

∑
x∼t

(
φ

(
Yx

tN+1

N1/2

)
− φ

(
Yx

tN

N1/2

)
−
(

φ

(
Yx

tN + 1

N1/2

)
+ φ

(
Yx

tN − 1

N1/2

)
− 2φ

(
Yx

tN

N1/2

))/
2

)

+ 1

N

∑
x∼t

(
φ

(
Yx

tN + 1

N1/2

)
+ φ

(
Yx

tN − 1

N1/2

)
− 2φ

(
Yx

tN

N1/2

))/
2

= �M
(b,N)
t (φ) + �M

(e,N)
t (φ) + �M

(s,N)
t (φ)

+ 1

N

∑
x∼t

(
φ

(
Yx

tN + 1

N1/2

)
+ φ

(
Yx

tN − 1

N1/2

)
− 2φ

(
Yx

tN

N1/2

))/
2.

Thus, we have that

X
(N)
t (φ) − X

(N)
0 (φ) = (

M
(b,N)
t (φ) + M

(e,N)
t (φ) + M

(s,N)
t (φ)

)+
∫ t

0
X(N)

s

(
ANφ

)
ds, (3.1)
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where

M
(b,N)
t (φ) = 1

N

∑
s<t

∑
x∼s

φ

(
Yx

sN+1

N1/2

)(
V x − 1 − βξ(sN,Yx

sN )

N1/4

)
,

M
(e,N)
t (φ) = 1

N

∑
s<t

∑
x∼s

φ

(
Yx

sN+1

N1/2

)
βξ(sN,Yx

sN )

N1/4
,

M
(s,N)
t (φ) = 1

N

∑
s<t

∑
x∼s

(
φ

(
Yx

sN+1

N1/2

)
− φ

(
Yx

sN

N1/2

)
−
(

φ

(
Yx

sN + 1

N1/2

)
+ φ

(
Yx

sN − 1

N1/2

)
− 2φ

(
Yx

sN

N
1
2

))/
2

)
,

and AN :Bb(R) → Bb(R) is the following operator;

ANφ(x) =
(

φ

(
x + 1

N1/2

)
+ φ

(
x − 1

N1/2

)
− 2φ(x)

)/ 2

N
.

Actually, we have that

∫ t

0
X(N)

s

(
ANφ

)
ds =

∑
s<t

∑
x∼s

1

N
ANφ

(
Yx

sN

N1/2

)
.

Also, we remark that M
(b,N)
t (φ), M

(e,N)
t (φ), and M

(s,N)
t (φ) are F (N)

tN -martingales, where F (N)
n is the σ -algebra

σ
(
V x, Yx

k+1, ξ(k, x): |x| ≤ n − 1, k ≤ n − 1, x ∈ Z
)
,

where F (N)
0 = {∅,Ω}. Indeed, since Yx

n+1 are independent of V x and ξ(n, x),

E
[
M

(b,N)
t (φ) − M

(b,N)
t−1/N (φ)|F (N)

tN−1

]
= 1

N

∑
x∼t−1/N

E

[
φ

(
Yx

tN

N1/2

)∣∣∣F (N)
tN−1

]
E

[
V x − 1 −

βξ(tN − 1, Yx
tN−1)

N1/4

∣∣∣F (N)
tN−1

]

= 0,

E
[
M

(e,N)
t (φ) − M

(e,N)
t−1/N (φ)|F (N)

tN−1

]
= 1

N

∑
x∼t−1/N

E

[
φ

(
Yx

tN

N1/2

)∣∣∣F (N)
tN−1

]
E

[
βξ(tN − 1, Yx

tN−1)

N1/4

∣∣∣F (N)
tN−1

]

= 0,

and

E
[
M

(s,N)
t (φ) − M

(s,N)
t−1/N(φ)|F (N)

tN−1

]= 0,

almost surely.
Moreover, the decomposition (3.1) is very useful since the martingales M

(i,N)
t (φ) (i = b, e, s) are orthogonal to

each others. Indeed, we have that

E
[(

�M
(b,N)
t (φ)

)(
�M

(e,N)
t (φ)

)|F (N)
tN−1

]

= 1

N2

∑
x,x′∼t−1/N

(
E

[
φ

(
Yx

tN

N1/2

)
φ

(
Yx′

tN

N1/2

)∣∣∣F (N)
tN−1

]
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× E

[
E

[(
V x − 1 −

βξ(tN − 1, Yx
tN−1)

N1/4

)∣∣∣G(N)
tN−1

]
βξ(tN − 1, Yx′

tN−1)

N1/4

∣∣∣F (N)
tN−1

])
= 0,

where G(N)
n = F (N)

n ∨ σ(ξ(n, x): x ∈ Z) almost surely. Also, we can obtain by similar arguments that
E[(�M

(b,N)
t (φ))(�M

(s,N)
t (φ))|F (N)

tN−1] = E[(�M
(s,N)
t (φ))(�M

(e,N)
t (φ))|F (N)

tN−1] = 0 almost surely.

3.1. Tightness

In this subsection, we will prove the following lemma.

Lemma 3.1. The sequence {X(N)} is tight in D([0,∞),MF (R)), and each limit process is continuous.

To prove it, we will use the following theorem which reduces the problem to the tightness of real-valued process
[25], Theorem II.4.1.

Theorem 3.2. Assume that E is a Polish space. Let D0 be a separating class of Cb(E) containing 1. A sequence of
càdlàg MF (E)-valued processes {X(N): N ∈N} is C-relatively compact in D([0,∞),MF (E)) if and only if

(i) for every ε,T > 0, there is a compact set KT,ε in E such that

sup
N

P
(

sup
t≤T

X
(N)
t

(
Kc

T,ε

)
> ε

)
< ε,

(ii) and for all φ ∈ D0, {X(N)(φ): N ∈N} is C-relatively compact in D([0,∞),R).

Assumption. We choose C2
b(R) as D0, where C2

b(R) is the set of bounded continuous function on R with bounded
derivatives of order 1 and 2.

Hereafter, we will check the conditions (i) and (ii) of Theorem 3.2 for our case. In the beginning, we give the proof
of (ii) by using the following lemmas:

Lemma 3.3. For φ ∈ C2
b(R), supt≤K |M(s,N)

t (φ)| L2→ 0 as N → ∞ for all K > 0.

Lemma 3.4 (See [25], Lemma II 4.5). Let (M
(N)
t ,FN

t ) be discrete time martingales with M
(N)
0 = 0. Let 〈M(N)〉t =∑

0≤s<t E[(M(N)
s+1/N − M

(N)
s )2|FN

s ], and we extend M
(N)· and 〈M(N)〉· to [0,∞) as right continuous step functions.

If {〈M(N)〉·: N ∈N} is C-relatively compact in D([0,∞),R) and

sup
0≤t≤K

∣∣M(N)
t+1/N − M

(N)
t

∣∣ P→ 0 as N → ∞ for all K > 0, (3.2)

then M
(N)· is C-relatively compact in D([0,∞),R).

If, in addition,

{(
M

(N)
t

)2 + 〈
M(N)

〉
t
: N ∈ N

}
is uniformly integrable for all t,

then M
(Nk)·

w⇒ M· in D([0,∞),R) implies that M is a continuous L2-martingale and (M
(Nk)· , 〈M(Nk)〉·) w⇒

(M·, 〈M〉·) in D([0,∞),R)2.

Lemma 3.5. For any φ ∈ C2
b(R), the sequence C

(N)
t (φ) ≡ ∫ t

0 X
(N)
s (ANφ)ds is C-relatively compact in D([0,∞),R).
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When we can verify the conditions of Lemma 3.4 for M
(b,N)· (φ), and M

(e,N)· (φ), the sequence {X(N)· (φ): N ∈N}
is C-relatively compact in D([0,∞),R). Moreover, if we check the condition of (i) in Theorem 3.2, then the tightness
of {X(N)· : N ∈N} follows immediately.

Before starting the proof of the above lemmas, we prepare the following lemma. It tells us the mean of the measure
X

(N)
t is the same as the distribution of the scaled simple random walk.

Lemma 3.6. We define historical process by

H
(N)
t = 1

N

∑
x∼t

δYx
(·∧t)N

/N1/2 ∈MF

(
D
([0,∞),R

))
,

where Yx
s = Y

y
s for 0 ≤ s < |x∧ y | + 1, that is Yx

s is the position of the �sN�-generation’s ancestor of x.
If ψ :D([0,∞),R) → R≥0 is Borel, then for any t ≥ 0

E
[
H

(N)
t (ψ)

]= EY

[
ψ

(
Y(·∧t)N

N1/2

)]
, (3.3)

where Y· is the trajectory of simple random walk on Z. In particular, for all φ ∈ B+(R),

E
[
X

(N)
t (φ)

]= EY

[
φ

(
YtN

N1/2

)]
. (3.4)

Moreover, for all x, K > 0, we have that

P
(

sup
t≤K

X
(N)
t (1) ≥ x

)
≤ x−1. (3.5)

To prove this lemma, we introduce some notation. For x(·), y(·) ∈ D([0,∞),R) such that y(0) = 0,

(x/s/y)(t) =
{

x(t) if 0 ≤ t < s,
x(s) + y(t − s) if t ≥ s.

Then, (x/s/y)(·) ∈ D([0,∞),R).

Proof. (3.3) follows from the Markov property. Indeed, we have

E
[
H

(N)
t (ψ)

] = E

[
1

N

∑
y∼t

ψ

(
Y
y
(·∧t)N

N1/2

)]

= E

[
1

N

∑
x∼t−1/N

ψ

(
Yx

(·∧t)N

N1/2

)
E
[
V x|F (N)

tN−1

]]

= E

[
EZ1

[
1

N

∑
x∼t−1/N

ψ

(
(Yx

(·∧(t−1/N))N/tN/Z1)((· ∧ t)N)

N1/2

)]]
,

where Z1(·) is a random function independent of Yx·N such that Z1(s) = 0 for 0 ≤ s < 1, P(Z1(s) = 1 for s ≥ 1) =
P(Z1(s) = −1 for ≥ 1) = 1

2 . Iterating this,

E
[
H

(N)
t (ψ)

]
= E

[
EZ1,Z2

[
1

N

∑
x∼t−2/N

ψ

(
((Yx

(·∧t−2/N)N/tN − 2/Z2)/tN − 1/Z1)((· ∧ t)N)

N1/2

)]]

= EY

[
ψ

(
Y((·∧t)N)

N1/2

)]
,
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where Z2 is independent copy of Z1 and Y(·) is the trajectory of simple random walk. Also, (3.5) follows from the
fact that X

(N)
t (1) is an F (N)

tN -martingale, from the L1 inequality for nonnegative submartingales, and from (3.4). �

Proof of Lemma 3.5. We know X
(N)
0 (φ) = φ(0). Also, we have that for any K > 0

∣∣C(N)
t (φ) − C(N)

s (φ)
∣∣ ≤

∫ t

s

∣∣X(N)
u

(
ANφ

)∣∣du

≤ sup
u≤K

C(φ)X(N)
u (1)|t − s|, (3.6)

where we have used that the boundedness of ANφ. We can use the Arzela–Ascoli Theorem by (3.5) and (3.6) so
that {C(N)· (φ): N ∈N} are C-relatively compact sequences in D([0,∞),R). (See Corollary 3.7.3, Remark 3.7.4, and
Theorem 3.10.2 in [11].) �

Proof of Lemma 3.3. Let hN(y) = Ey[(φ( Y1
N1/2 ) − φ(

Y0
N1/2 ))2]. First, we remark that

φ

(
Yx

sN+1

N1/2

)
− φ

(
Yx

sN

N1/2

)
− 1

N
ANφ

(
Yx

sN

N1/2

)

are orthogonal for x �= x′ ∼ s. Since M
(s,N)
t (φ) is a martingale, we have that

E
[(

M
(s,N)
K (φ)

)2]
=

∑
s<K

E
[(

�M(s,N)
s (φ)

)2]

= 1

N2

∑
s<K

E

[∑
x∼s

E

[(
φ

(
Yx

sN+1

N1/2

)
− φ

(
Yx

sN

N1/2

)
− 1

N
ANφ

(
Yx

sN

N1/2

))2∣∣∣F (N)
sN

]]

≤ 2

N

∑
s<K

E

[
1

N

∑
x∼s

(
hN

(
Yx

sN

)+ 1

N2

∥∥ANφ
∥∥2
)]

≤ 2E

[∫ K

0

(
X(N)

s (hN) + ∥∥ANφ
∥∥2

∞N−2X(N)
s (1)

)
ds

]

≤ 2

(
EY

[∫ K

0

(
φ

(
YsN+1

N1/2

)
− φ

(
YsN

N1/2

))2

ds

]
+ K

N2
sup
N

∥∥ANφ
∥∥2

∞X
(N)
0 (1)

)

→ 0,

where we have used Lemma 3.6 and the fact that supN ‖ANφ‖∞ < ∞ for φ ∈ C2
b(R) and {X(N)

t (1): 0 ≤ t ≤ K} is a

martingale with respect to F (N)
tN in the last line. �

Next, we will check the conditions in Lemma 3.4 for M
(b,N)· (φ) and M

(e,N)· (φ), that is,

(1) {〈M(b,N)(φ)〉· + 〈M(e,N)(φ)〉·: N ∈ N} is C-relatively compact in D([0,∞),R),

(2) sup0≤t≤K |M(b,N)
t+1/N (φ) − M

(b,N)
t (φ) + M

(e,N)
t+1/N (φ) − M

(e,N)
t (φ)| P→ 0 as N → ∞ for all K > 0,

(3) {(M(b,N)
t (φ))2 + (M

(e,N)
t (φ))2 + 〈M(b,N)(φ)〉t + 〈M(e,N)(φ)〉t : N ∈ N} is uniformly integrable for all t .

As we verified that M(b,N)(φ) and M(e,N)(φ) are orthogonal, we have that〈
M(b,N)(φ) + M(e,N)(φ)

〉
· =

〈
M(b,N)(φ)

〉
· +

〈
M(e,N)(φ)

〉
·.
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Moreover, since under fixed environment {ξ(n, x): (n, x) ∈ N × Z}, V x and V y are independent for x �= y , we
have that

〈
M(b,N)(φ)

〉
t

=
∑
s<t

E
[(

M
(b,N)
s+1/N (φ) − M(b,N)

s (φ)
)2|F (N)

sN

]

= 1

N2

∑
s<t

∑
x∼s

E

[
φ

(
Yx

sN+1

N1/2

)2∣∣∣F (N)
sN

]
E

[(
V x − 1 − βξ(sN,Yx

sN )

N1/4

)2∣∣∣F (N)
sN

]

= 1

N2

∑
s<t

∑
x∼s

E

[((
φ

(
Yx

sN+1

N1/2

)
− φ

(
Yx

sN

N1/2

))
+ φ

(
Yx

sN

N1/2

))2∣∣∣F (N)
sN

](
1 − β2

N1/2

)

= 1

N

∑
s<t

X(N)
s

(
φ2)(1 − β2

N1/2

)
+ 1

N1/2

O(1)

N

∑
s<t

X(N)
s (1)

(
1 − β2

N1/2

)

=
∫ t

0
X(N)

s

(
φ2 + O(1)

N1/2

)
ds,

and

〈
M(e,N)(φ)

〉
t

=
∑
s<t

E
[(

M
(e,N)
s+1/N (φ) − M(e,N)

s (φ)
)2|F (N)

sN

]

= β2

N2

∑
s<t

∑
x,x̃∼t

E

[
φ

(
Yx

sN+1

N1/2

)
φ

(
Y x̃

sN+1

N1/2

)∣∣∣F (N)
sN

]1{Yx
sN = Y x̃

sN }
N1/2

= β2

N2

∑
s<t

∑
x,x̃∼t

(
φ

(
Yx

sN

N1/2

)2

+ O(1)

N1/2

)1{Yx
sN = Y x̃

sN }
N1/2

= 1

N
β2

∑
s<t

∑
x∈Z

(
φ

(
x

N1/2

)2

+ O(1)

N1/2

)
(B

(N)
sN,x)

2

N3/2

= β2
∫ t

0

∑
x∈Z

(
φ

(
x

N1/2

)2

+ O(1)

N1/2

)
(B

(N)
sN,x)

2

N3/2
ds,

where |O(1)| ≤ Cφ for a constant Cφ that depends only on φ.
Therefore, we have that

〈
M(b,N)(φ)

〉
t
+ 〈

M(e,N)(φ)
〉
t
− 〈

M(b,N)(φ)
〉
s
− 〈

M(e,N)(φ)
〉
s

≤ Cφ

(〈
M(b,N)(1)

〉
t
+ 〈

M(e,N)(1)
〉
t
− 〈

M(b,N)(1)
〉
s
− 〈

M(e,N)(1)
〉
s

)
= C

(〈
X(N)(1)

〉
t
− 〈

X(N)(1)
〉
s

)
, (3.7)

where we remark that {X(N)
t (1): 0 ≤ t} is a martingale with respect to F (N)

tN and M
(s,N)
t (1) = 0 for any 0 ≤ t < ∞.

We will prove C-relative compactness of (3.7) by showing the following lemma.
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Lemma 3.7. For any K > 0

sup
N

E
[(

X
(N)
K (1)

)2]
< ∞,

and for any ε > 0,

lim
δ→0

sup
N≥1

P
(

sup
0≤s≤K

(〈
X(N)(1)

〉
s+δ

− 〈
X(N)(1)

〉
s

)
> ε

)
= 0.

Proof. We remark that for each N , B
(N)
n is a martingale with respect to the filtration F (N)

n .
Let B

(i,N)
n be the total number of particles at time n which are the descendants from ith initial particle. Then, we

remark that for i �= j

E
[
B

(i,N)
�KN�B

(j,N)
�KN�

] = E
[
E
[
B

(i,N)
�KN�|H

]
E
[
B

(j,N)
�KN�|H

]]

= EY 1Y 2

[(
1 + β2

N1/2

)�{i≤�KN�:Y 1
i =Y 2

i }]
,

where H is the σ -algebra generated by {ξ(n, x): (n, x) ∈ N × Z}, and Y 1 and Y 2 are independent simple random
walks on Z starting from the origin.

On the other hand,

E
[(

B
(i,N)
�KN�

)2] = 1 +
�KN�−1∑

k=1

cEY 1Y 2

[(
1 + β2

N1/2

)�{k<i≤�KN�:Y 1
i =Y 2

i }
: Y 1

k = Y 2
k

]
+ c

≤ �KN�EY 1Y 2

[(
1 + β2

N1/2

)�{i≤�KN�:Y 1
i =Y 2

i }]
,

where c = 1 − 1
N1/2 < 1 [31], Lemma 2.3. Thus, we have that

E
[(

X
(N)
K (1)

)2] ≤ 1

N2

(
N(N − 1) + N�KN�)EY 1Y 2

[(
1 + β2

N1/2

)�{i≤�KN�:Y 1
i =Y 2

i }]

≤ C(K)EY 1Y 2

[(
1 + β2

N1/2

)�{i≤�KN�:Y 1
i =Y 2

i }]
.

Since EY 1Y 2 [(1 + β2

N1/2 )�{i≤�KN�:Y 1
i =Y 2

i }] is bounded (Lemma 4.1), we complete the proof of the first statement.
Now, we turn to the proof of the latter part of the statement. Let δ > 0. It follows from the above argument that

〈
X(N)(1)

〉
t
− 〈

X(N)(1)
〉
s

=
∫ t

s

(
X(N)

u (1) + β2
∑
x∈Z

(B
(N)
�uN�,x)2

N3/2

)
du.

We know that | ∫ t

s
X

(N)
u (1)du| ≤ (supu≤K X

(N)
u (1))|t − s| and Lemma 3.6 implies that this term converges in proba-

bility to 0 as |t − s| → 0 uniformly in 0 ≤ s ≤ t ≤ K . So, it is enough to show that for any ε > 0

lim
δ→0

sup
N≥1

P

(
sup

0≤s≤K

∫ s+δ

s

∑
x∈Z

(B
(N)
�uN�,x)2

N3/2
du > ε

)
= 0.
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We consider the segments I δ
k = [2kδ,2(k + 1)δ] for 0 ≤ k ≤ � K

2δ
�. Then, we have that

E

[(∫
I k
δ

∑
x∈Z

(B
(N)
�uN�,x)2

N3/2
du

)2]

= 1

N5
E

[2(k+1)δN∑
s=2kδN

2(k+1δN)∑
t=2kδN

∑
x,y∈Z

(
B

(N)
�sN�,x

)2(
B

(N)
�tN�,y

)2

]

≤ 1

N5

(2(k+1)δN∑
s=2kδN

∑
x∈Z

E
[(

B
(N)
�sN�,x

)4]1/2

)2

. (3.8)

Corollary 4.3 implies that

E
[(

B
(N)
�sN�,x

)4]

≤ (s ∨ 1)4N4EY 1Y 2Y 3Y 4

[(
1 + 7β2

N1/2

)�{1≤i≤sN :Ya
i =Yb

i ,a,b∈{1,2,3,4}}
: Ya�sN� = x, a ∈ {1,2,3,4}

]
, (3.9)

where we have used that for N large enough, E[(1 + βξ(0,0)

N1/4 )4] ≤ 1 + 7β2

N1/2 . Hölder’s inequality and Lemma 4.1 imply
that

(3.9) ≤ (s ∨ 1)4N4EY 1Y 2

[(
1 + 7β2

N1/2

)6�{1≤i≤sN :Y 1
i =Y 2

i }
: Y 1�sN� = Y 2�sN� = x

]

× PY 1

(
Y 1�sN� = x

)2

≤ C
(s ∨ 1)4N4

(sN ∨ 1)1/2
PY 1

(
Y 1�sN� = x

)3
.

Thus, the local limit theorem implies that

(3.8) ≤ C

N

(2(k+1)δN∑
s=2kδN

∑
x∈Z

(K ∨ 1)2

(sN ∨ 1)1/4

1

(sN ∨ 1)1/4
PY 1

(
Y 1�sN� = x

))2

≤ CK4

N

(√
2(k + 1)δN − √

2kδN
)2

.

Thus, we obtained that

P

(∫
I δ
k

∑
x∈Z

(B
(N)
�uN�,x)2

N3/2
du > ε

)
≤ CK4δ

ε2(
√

2(k + 1) + √
2k)2

.

Since for each 0 ≤ s ≤ K , there is some k such that [s, s + δ] ⊂ I δ
k ∪ I δ

k+1, we have that

sup
N≥1

P

(
sup

0≤s≤K

∫ s+δ

s

∑
x∈Z

(B
(N)
�uN�,x)2

N3/2
du > ε

)
≤ 2

K/δ∑
k=0

CK4δ

ε2(
√

2(k + 1) + √
2k)2

≤ 2
CK4δ log(K/δ)

ε2
→ 0 as δ → 0. �

Also, we prove the following lemmas to check the conditions (1)–(3).
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Lemma 3.8. For φ ∈ C2
b(R),

lim
N→∞E

[∑
t≤K

∣∣�M
(b,N)
t (φ) + �M

(e,N)
t (φ)

∣∣4]= 0 for all K > 0.

Lemma 3.9. For φ ∈ C2
b(R),

sup
N

E
[

sup
t≤K

∣∣M(b,N)
t (φ) + M

(e,N)
t (φ)

∣∣4]< ∞ for all K > 0,

and

E
[(〈

M(b,N)(φ) + M(e,N)(φ)
〉
K

)2]
< ∞ for all K > 0.

If we prove these lemmas, then we can verify the condition of Theorem 3.2(ii).

Proof of the C-relatively compactness of {X(N)· (φ): N ∈ N}. When we look at the process {X(N)· (φ)}, it is divided
into some processes, X

(N)
0 (φ), M

(b,N)· (φ), M
(e,N)· (φ), M

(b,N)· (φ), and C
(N)· (φ).

We know that M
(s,N)· (φ) and X

(N)
0 (φ) converges to constant by Assumptions and Lemma 3.3. C-relative compact-

ness of C
(N)· (φ) has been proved in Lemma 3.5.

Arzela–Ascoli’s theorem and Lemma 3.7 imply that {〈M(b,N)(φ) + M(e,N)(φ)〉·: N ∈ N} is C-relatively compact
in D([0,∞),R). Also, (3.2) follows from Lemma 3.8. The uniform integrability of {(M(b,N)

t (φ) + M
(e,N)
t (φ))2 +

〈M(b,N)(φ) + M(e,N)(φ)〉t } has been shown by Lemma 3.7 and Lemma 3.9. Thus, we have checked all conditions in

Lemma 3.4 so that {M(b,N)· (φ) + M
(e,N)· (φ), 〈M(b,N)(φ) + M(e,N)(φ)〉·} is C-relatively compact in D([0,∞),R).

Thus, {X(N)· (φ)} is C-relatively compact in D([0,∞),R) for each φ ∈ C2
b(R). �

To prove Lemma 3.8, we will use the following proposition (see [3]).

Proposition 3.10. Let φ :R≥0 → R≥0 is continuous, increasing, φ(0) = 0 and φ(2λ) ≤ c0φ(λ) for all
λ ≥ 0. (Mn,Fn) is a martingale, M∗

n = supk≤n |Mk|, 〈M〉n = ∑n
i=1 E[(Mk − Mk−1)

2|Fk−1] + E[M2
0 ], and d∗

n =
max1≤k≤n |Mk − Mk−1|. Then, there exists c = c(c0) such that

E
[
φ
(
M∗

n

)]≤ cE
[
φ
(〈M〉1/2

n

)+ φ
(
d∗
n

)]
.

Proof of Lemma 3.8. It is enough to show that

lim
N→∞E

[∑
t≤K

∣∣�M
(b,N)
t (φ)

∣∣4 + ∣∣�M
(e,N)
t (φ)

∣∣4]= 0 for all K > 0.

Conditional on G(N)
tN , �M

(b,N)
t (φ) is a sum of mean 0 independent random variables; W(b,x,N) := 1

N
φ(

Yx
tN+1

N1/2 )(V x −
1 − βξ(tN,Yx

tN )

N1/4 ). Applying Proposition 3.10 into
∑

x∼t W
(b,x,N), we have

E

[(
sup

i≤B
(N)
tN

i∑
k=1

W(b,xk,N)

)4∣∣∣G(N)
tN

]

≤ c

( ∑
i≤B

(N)
tN

(
C1(φ)(1 −O(N−1/2))

N2

)2

+
(

C2(φ)

N

)4)
,
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where xk is the kth particle at time tN . Thus,

E

[∑
t≤K

∣∣�M
(b,N)
t (φ)

∣∣4]

≤ c

(
C1(φ)2(1 −O(N−1/2))

N4
· (KN) · E[

NX
(N)
t (1)

]+ KN · C2(φ)4

N4

)
→ 0.

Next, we will prove that

lim
N→∞E

[∑
t≤K

∣∣�M
(e,N)
t (φ)

∣∣4]= 0 for all K > 0.

It is clear that for φ ∈ C2
b(R)

E
[∣∣�M

(e,N)
t (φ)

∣∣4]≤ C(φ)E

[ ∑
x,y∈Z

2
(B

(N)
tN,x)

2(B
(N)
tN,y)

2

N5

]
.

Then, it follows from Corollary 4.3 and a similar argument in the proof of Lemma 3.7 that

E[(B(N)
tN,x)

2(B
(N)
tN,y)

2]
N5

≤ C(t ∨ 1)4

N
EY 1Y 2Y 3Y 4

[(
1 + 7β2

N1/2

)�{1≤i≤tN :Ya
i =Yb

i ,a,b∈{1,2,3,4}}
: Y 1

tN = Y 2
tN = x,Y 3

tN = Yb
tN = y

]

≤ C(t ∨ 1)4

N

∏
a,b∈{1,2,3,4},a �=b

EY 1Y 2Y 3Y 4

[(
1 + 7β2

N1/2

)6�{1≤i≤tN :Ya
i =Yb

i }
: Y 1

tN = Y 2
tN = x,Y 3

tN = Yb
tN = y

]1/6

≤ C(t ∨ 1)4

N
√

tN
PY 1

(
Y 1

tN = x
)
PY 1

(
Y 1

tN = y
)(

PY 1

(
Y 1

tN = x
)∧ PY 1

(
Y 1

tN = y
))

.

Thus, we have that

E
[∣∣�M

(e,N)
t (φ)

∣∣4]≤ C(φ)(K ∨ 1)4
∑
t≤K

1

N · tN → 0,

as N → ∞. �

Proof of Lemma 3.9. We apply Proposition 3.10 into martingale M
(b,N)
t (φ) + M

(e,N)
t (φ). Then, we have that

E
[

sup
t≤K

(
M

(b,N)
t (φ) + M

(e,N)
t (φ)

)4
]

≤ c(φ)

(
E
[(〈

M(b,N)(1)
〉
K

+ 〈
M(e,N)(1)

〉
K

)2]

+
∑
t≤K

(∣∣�M
(b,N)
t (1)

∣∣4 + ∣∣�M
(e,N)
t (1)

∣∣4)).

The second term in the right hand side goes to 0 as N → ∞ by Lemma 3.8. The first term is bounded above by

CE

[ ∑
s,t≤K

(
X

(N)
s (1)X

(N)
t (1)

N2
+ β4

∑
x,y∈Z

(B
(N)
tN,x)

2

N5/2

(B
(N)
sN,y)

2

N5/2

)]
.
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Since X
(N)
t (1) is a martingale, E[X(N)

s (1)X
(N)
t (1)] = E[X(N)

s (1)X
(N)
s (1)] for s ≤ t . Thus,

E

[ ∑
s,t≤K

X
(N)
s (1)X

(N)
t (1)

N2

]
≤ K2E

[(
X

(N)
K (1)

)2]

is bounded in N for all K by Lemma 3.7.
Also, we know that from the proof of Lemma 3.7 that

∑
s,t≤K

E

[ ∑
x,y∈Z

(B
(N)
sN,x)

2(B
(N)
tN,y)

2

N5

]
≤ CK4

N
(
√

KN)2 < ∞.

�

In the end of this subsection, we complete the proof of the tightness by checking the condition (i) in Theorem 3.2.
The proof follows the one in [25], p. 155.

Check for (i) in Theorem 3.2. Let ε,T > 0 and η(ε) > 0 (η will be chosen later). Let K0 ⊂ D([0,∞),R) be
a compact set such that supN P (

Y·N
N1/2 ∈ Kc

0) < η. Let KT = {yt , yt−: t ≤ T ,y ∈ K0}. Then, KT is compact in R.
Clearly,

sup
N

P

(
YNt

N1/2
∈ Kc

T for some t ≤ T

)
< η.

Let

R
(N)
t = H

(N)
t

(
y: y(s) ∈ Kc

T for some s ≤ t
)

= 1

N

∑
x∼t

sup
s≤t

1Kc
T

(
Yx

sN

N1/2

)
.

First, we will claim that R
(N)
t is an F (N)

tN -submartingale. Clearly, R
(N)· is constant on [t, t + 1

N
). So, it is enough to

show that

E
[
R

(N)
t+1/N − R

(N)
t |F (N)

tN

]≥ 0 a.s. (3.10)

We have

R
(N)
t+1/N − R

(N)
t = 1

N

∑
x∼t

sup
s≤t+1/N

1Kc
T

(
Yx

sN

N1/2

)
V x − sup

s≤t
1Kc

T

(
Yx

sN

N1/2

)

≥ 1

N

∑
x∼t

(
V x − 1

)
sup
s≤t

1Kc
T

(
Yx

sN

N1/2

)
.

The conditional expectation of the last term with respect to F (N)
tN is equal to 0. Thus, (3.10) is proved. Now we apply

L1-inequality for submartingale into R
(N)· so that

P
(

sup
s≤T

X(N)
s

(
Kc

T

)
> ε

)
≤ P

(
sup
t≤T

R
(N)
t > ε

)

≤ ε−1E
[
R

(N)
T

]
≤ ε−1P

(
YsN

N1/2
∈ Kc

T , for some s ≤ T

)
≤ ε

by taking η(ε) = ε2. �
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3.2. Identification of the limit point processes

From the lemmas in Section 3.1, we know that for φ ∈ C2
b(R), each term of

Z
(N)
t (φ) = X

(N)
t (φ) − φ(0) −

∫ t

0
X(N)

s

(
ANφ

)
ds,

and 〈
Z(N)(φ)

〉
t
= 〈

M(b,N)(φ)
〉
t
+ 〈

M(e,N)(φ)
〉
t
+ 〈

M(s,N)(φ)
〉
t

are C-relatively compact in D([0,∞),R) and we found from Lemma 3.4 that the limit point processes satisfy⎧⎪⎨
⎪⎩

Zt(φ) = Xt(φ) − φ(0) − ∫ t

0
1
2Xs(�φ)ds

is an FX
t -continuous square integrable martingale and

〈Z(φ)〉t = ∫ t

0 Xs(φ
2)ds + M

(e)
t (φ),

(3.11)

where M
(e)
t (φ) is a limit point of M

(e,N)
t (φ). Therefore, we need to identify M

(e)
t (φ).

We will prove that

M
(e)
t (φ) = 2β2

∫ t

0

∫
R

φ2(y)u(s, y)2 dy ds, (3.12)

where u(t, x) is the density of Xt with respect to the Lebesgue measure, that is Xt(dx) = u(t, x)dx. We can find this
equation by the following rough argument.

First, we give an approximation of X
(N)
t by some measure-valued processes which have densities. For (t, y) ∈

R≥0 ×R, we define u(N)(t, y) by

u(N)(t, y) = B
(N)
tN,x

2
√

N
for t ≤ t < t + 1

N
and y ∈

[
x − 1

N1/2
,
x + 1

N1/2

)
, x ∈ Z,

where x is an integer which particles can reach at time tN , that is x satisfies tN − x ∈ 2Z. Actually, integrating

u(N)(t, y) over [ x−1
N1/2 , x+1

N1/2 ) for each x ∈ Z, they coincide with
B

(N)
tN,x

N
. Thus, we can regard u(N)(t, y) as an approxi-

mation of X
(N)· .

Also, 〈M(e,N)(φ)〉t can be rewritten as

〈
M(e,N)(φ)

〉
t
=
∫ t

0

∑
x∈Z

φ

(
x

N1/2

)2 β2(B
(N)
�sN�,x)2

N3/2
ds

= 2β2(1 +O
(
N−1/2))∫ t

0

∫
y∈R

φ(y)2u(N)(s, y)2 dy ds.

Therefore, we can conjecture that the limit point M
(e)
t (φ) is

2β2
∫ t

0

∫
y∈R

φ2(y)u(s, y)2 dy ds

if u(N) ⇒ u for some u(s, y) in some sense. In the following, we will check that (3.12) is true.
We denote by X̃

(N)
t new measure-valued processes associated to u(N)(·, ·), that is for φ ∈ C2

b(R),

X̃
(N)
t (φ) =

∫
R

φ(x)u(N)(t, x)dx.
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Then, it is clear that for any φ ∈ C2
b(R) and for any K > 0

lim sup
N→∞

E
[

sup
t<K

∣∣X̃(N)
t (φ) − X

(N)
t (φ)

∣∣]= 0.

Thus, {X̃(N)· : N ∈ N} is C-relative compact in D([0,∞),MF (R)) and there are subsequences which weakly con-
verges to X·, where X· is the one given in (3.11).

We will prove the following lemmas:

Lemma 3.11. Let X· be a limit point of the sequence {X(N)· : N ∈ N}. Then, the measure-valued process {Xt(·): 0 ≤
t < ∞} is almost surely absolutely continuous for all t > 0, that is there exists an adapted continuous function-valued
process {ut : t > 0} such that

Xt(dx) = ut (x)dx, for all t > 0,P -a.s.

Define a sequence of measure-valued processes {μ(N)· (dx): N ∈N} by

μ
(N)
t (dx) = 2β2

∫ t

0

(
u(N)(s, x)

)2
dx ds.

Lemma 3.12. For any ε > 0 and for any T > 0, there exists a compact set Kε,T ⊂R such that

sup
N

P
(

sup
t≤T

μ
(N)
t

((
Kε,T

)c)
> ε

)
< ε.

By using Lemma 3.11 and Lemma 3.12, we can identify the limit point processes as follows:

Identification of the limit point processes. We will verify that if X
(Nk)· (dx) ⇒ u(·, x)dx as Nk → ∞, then

μ
(Nk)
t (dx) ⇒

(
2β2

∫ t

0
u(s, x)2 ds

)
dx. (3.13)

Actually, {(μ(N)
t (·))t∈[0,∞): N ∈ N} are C-relatively compact in D([0,∞),MF (R)) if the conditions in Theo-

rem 3.2 are satisfied. However, we have already checked them in the proof of the tightness of {X(N)· : N ∈ N} and
Lemma 3.12. Thus, for any φ ∈ C2

b(R),

μ
(Nk)
t (φ) ⇒ μt(φ) for subsequences Nk → ∞.

Also, we may consider this convergence is almost surely by Skorohod representation theorem, that is

lim
k→∞μ

(Nk)
t (φ) = μt(φ), a.s. (3.14)

Let GN(B,m) be the distributions of u(N)(t, x) for B ∈ B(R≥0 ×R) and m ∈ [0,∞), that is

GN(B,m) = ∣∣{(t, x) ∈ B: u(N)(t, x) ≤ m
}∣∣,

where | · | represents the Lebesgue measure on R≥0 ×R. Especially,

GN

([0, t] ×R,m
)= 2

N3/2
�
{
(n, x): n ≤ {

0, . . . , �tN�}, x ∈ Z,Bn,x ≤ 2m
√

N
}
.

Then, the convergence of u
(N)
t (·) in (3.14) is equivalent to the convergence of the distributions GN(·, ·).
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Let μ
(M,N)
t (·) be the truncated measure of μ

(N)
t (·) for M > 0, that is

μ
(M,N)
t (dx) =

(
2β2

∫ t

0

(
u(N)(s, x) ∧ M

)2 ds

)
dx.

Then, it is clear that for any bounded function φ ∈ C2
b,+(R)

∫ t

0

∫
R

φ(x)
(
u(N)(s, x) ∧ M

)2 dx ds

= 2
∫ t

0

∫
R

∫ M

0
φ(x)m2GN(ds dx dm)

+ 2
∫ t

0

∫
R

∫ ∞

M

1{u(N)(s,x)>M}φ(x)M2GN(ds dx dm).

The last term converges to 0 in probability as N → ∞ and then M → ∞. Indeed, we have that

0 ≤
∫ t

0

∫
R

∫ ∞

M

1
{
u(N)(s, x) > M

}
φ(x)M2GN(ds dx dm)

≤ C(φ)
(B

(N)
n,x )2

N5/2
�
{
(n, x): n ≤ {

0, . . . , �tN�}, x ∈ Z,Bn,x ≥ 2M
√

N
}
,

and the last term converges to 0 in probability by Lemma 3.9. Also, as Nk → ∞ ∫ t

0

∫
R

∫M

0 φ(x)m2GNk
(ds dx dm)

converges almost surely to∫ t

0

∫
R

∫ M

0
φ(x)m2G(ds dx dm) =

∫ t

0

∫
R

φ(x)u(s, x)21
{
u(t, x) ≤ M

}
dx ds,

where G(·, ·, ·) is the distribution of u(t, x). Thus, we have that for any φ ∈ C2
b,+(R)

∫ t

0

∫
R

φ(x)u(s, x)2 dx ds = lim
M→∞ lim

Nk→∞

∫ t

0

∫
R

∫ M

0
φ(x)m2GNk

(ds dx dm)

≤ lim
M→∞ lim

Nk→∞

∫ t

0

∫
R

φ(x)
(
u(Nk)(t, x) ∧ M

)2 dx ds

≤ μt(φ), a.s.

Also, we know that for bounded function φ ∈ C2
b,+(R), for any t > 0 and for any ε > 0

lim
M→∞ sup

N

P

(∣∣∣∣
∫ t

0

∫
R

φ(x)
((

u(N)(s, x)
)2 − (

u(N)(s, x) ∧ M
)2)dx ds

∣∣∣∣> ε

)

≤ lim
M→∞ sup

N

P

(∣∣∣∣
∫ t

0

∫
R

∫ ∞

M

φ(x)m2GN(ds dx dm)

∣∣∣∣> ε

)

= 0,

by Lemma 3.9. Thus, for any bounded function φ ∈ C2
b,+(R)

μt (φ) = lim
Nk→∞ 2β2

∫ t

0

∫
R

φ(x)
(
u(Nk)(t, x)

)2 dx ds

≤ 2β2
∫ t

0

∫
R

φ(x)u(t, x)2 dx ds, in probability.
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This is true for φ ∈ C2
b(R). Thus, we have proved (3.13). �

Proof of Lemma 3.12. First, we remark that M
(e,N)
t (φ) is an F (N)

tN -martingale even if φ(x) = 1K(x) for Borel
measurable set K . Then,

〈
M(e,N)

(
Kc

)〉
t
= 1

N

∑
s<t

∑
x∈KcN1/2

(βB
(N)
sN,x)

2

N3/2
= 2β2(1 +O

(
N−1/2))μt

(
Kc

)

is an increasing process. Thus, we have that

P
(

sup
t≤T

μt

(
Kc

)
> ε

)
≤ P

(
3 sup

t≤T

〈
M(e,N)

(
Kc

)〉
t
> ε

)

≤ ε−1E

[
3

N

∑
s<T

∑
x∈KcN1/2

(βB
(N)
sN,x)

2

N3/2

]

≤ ε−1C
∑
s<T

∑
x∈KcN1/2

β2(s ∨ 1)2

N
√

s
PY (YsN = x)

≤ ε−1Cβ2
√

T
(

sup
s<T

PY

(
YsN ∈ KcN1/2))

≤ ε,

by taking K as a compact set in R such that Cβ2
√

K sups<T PY (YsN ∈ KcN1/2) ≤ ε2, where we have used Lemma 4.1
in the third inequality. �

In the rest of this subsection, we will prove Lemma 3.11.
For ψ ∈ C

1,2
b ([0,∞) ×R,R), we define

X
(N)
t (ψt ) =

∑
x∼t

ψ

(
t,

Yx
tN

N1/2

)/
N, (3.15)

where ψt(x) = ψ(t, x). Also, we have the following equation

X
(N)
t+1/N (ψt+1/N) − X

(N)
t (ψt )

=
∑
x∼t

(
ψ

(
t + 1

N
,
Yx

tN+1

N1/2

)/
N

)(
V x − 1 − βξ(tN,Yx

tN )

N1/4

)

+
∑
x∼t

(
ψ

(
t + 1

N
,
Yx

tN+1

N1/2

)/
N

)
βξ(tN,Yx

tN )

N1/4

+
∑
x∼t

(
2ψ

(
t + 1

N
,
Yx

tN+1

N1/2

)
− ψ

(
t + 1

N
,
Yx

tN + 1

N1/2

)
− ψ

(
t + 1/N,

Yx
tN − 1

N1/2

))/
(2N)

+
∑
x∼t

(
ψ

(
t + 1

N
,
Yx

tN + 1

N1/2

)
+ ψ

(
t + 1

N
,
Yx

tN − 1

N1/2

)
− 2ψ

(
t,

Yx
tN

N1/2

))/
(2N)

=: �M
(b,N)
t+1/N (ψt+1/N) + �M

(e,N)
t+1/N(ψt+1/N )

+ �M
(s,N)
t+1/N (ψt+1/N ) + �C

(N)
t+1/N(ψt+1/N ).
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For i = b, e, s, M
(i,N)
t (ψt ) which are the sums of �M

(i,N)
t (ψt ) up to t are martingales with respect to F (N)

tN as well

as M
(i,N)· (φ) are.

We take ψ as the shift of 1√
2πt

exp(− x2

2t
);

ψx
t (y) = 1√

2πt
exp

(
− (y − x)2

2t

)
.

Then, we have that for ε, ε′ > 0 and t ≥ η > 0

E
[(

X
(N)
t

(
ψx

ε

)− X
(N)
t

(
ψx

ε′
))2]

≤
∑
s≤t

E
[(

�M(b,N)
s

(
ψx

t+ε−s − ψx
t+ε′−s

))2] (Mb)

+
∑
s≤t

E
[(

�M(e,N)
s

(
ψx

t+ε−s − ψx
t+ε′−s

))2] (Me)

+
∑
s≤t

E
[(

�M(s,N)
s

(
ψx

t+ε−s − ψx
t+ε′−s

))2]
(Ms)

+ E

[(∑
s≤t

�C(N)
s

(
ψx

t+ε−s − ψx
t+ε′−s

))2]
(C)

+ (
ψx

t+ε(0) − ψx
t+ε′(0)

)2 (Initial term)

+ E

[(∑
x∼t

(
ψx

ε − ψx
t+ε−t − ψx

ε′ + ψx
t+ε′−t

)( Yx
tN

N1/2

)/
(2

√
N)

)2]
. (Error term)

We will prove that

lim
ε,ε′→0

sup
x∈R,t≥η

E
[(

Xt

(
ψx

ε

)− Xt

(
ψx

ε′
))2]= 0, for any η > 0. (3.16)

Then, we have that

Xt

(
ψx

ε

)= X0
(
ψx

t+ε

)+ M̃t

(
ψx

t+ε−·
)

(3.17)

for a certain continuous L2-bounded martingale M̃t (ψ
x
t+ε−·), where the martingale property of M̃t (ψ

x
t+ε−·) is obtained

by the same argument as the proof of Lemma 3.1. Also, we take L2-limit in (3.17) as ε → 0 and choose εn → 0 so
that for any t and x ∈ R,

lim
n→∞Xt

(
ψx

εn

)= X0
(
ψx

t

)+ M̃t

(
ψx

t−·
)

a.s. and in L2. (3.18)

We define u(t, x) = lim infεn→0 Xt(ψ
x
εn

) for all t > 0, x ∈ R. Standard differential theory shows that for each t > 0
with probability 1,

Xt(dx) = u(t, x)dx + Xs
t (dx),

where Xs
t is a random measure such that Xs

t (dx) ⊥ dx. Also, (3.18) implies that

E

[∫
R

u(t, x)dx

]
=
∫
R

X0
(
ψx

t

)
dx = 1 = E

[
Xt(1)

]
.
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Thus, E[Xs
t (1)] = 0 and

Xt(dx) = u(t, x)dx, a.s. for all t > 0.

If we show that there exists of a continuous version of u, then we can complete the proof. First, we will prove
(3.16).

Clearly, for fixed ε > 0, supy |ψx
ε (y) − ψx

t+ε−t (y)| ≤ C(ε)
N

. So (Error term) is bounded above by

E

[(
X

(N)
t

(
C(ε) + C(ε′)

N

))2]
→ 0, as N → ∞.

Also,

(Initial term) ≤ (
ε − ε′)2(

(t + ε) ∧ (
t + ε′))−3

,

where we have used [25], Lemma III 4.5(a), that is for 0 ≤ δ ≤ p,∣∣ψx
t+ε(y) − ψx

t (y)
∣∣p ≤ (

εt−3/2)δ((ψx
t+ε(y)

)p−δ + (
ψx

t (y)
)p−δ) (3.19)

for all x, y ∈R, t > 0, and ε > 0.

Lemma 3.13. For ε, ε′ > 0 and t ≥ η > 0,

lim
N→∞E

[(∑
s≤t

�C(N)
s

(
ψx

t+ε−s − ψx
t+ε′−s

))2]
= 0.

Proof.

�C(N)
s

(
ψx

t+ε−s

)
=
∑
x∼s

(
ψx

t+ε−s−1/N

(
Yx

tN + 1

N1/2

)
+ ψx

t+ε−s−1/N

(
Yx

tN − 1

N1/2

)
− ψx

t+ε−s

(
Yx

tN + 1

N1/2

)
− ψx

t+ε−s

(
Yx

tN − 1

N1/2

))
/
(2N)

+
∑
x∼s

(
ψx

t+ε−s

(
Yx

tN + 1

N1/2

)
+ ψx

t+ε−s

(
Yx

tN − 1

N1/2

)
− 2ψx

t+ε−s

(
Yx

tN

N1/2

))/
(2N)

≤
∑
x∼s

1

N2

(
∂ψx(t + ε − s, Yx

sN/N1/2)

∂s

∣∣∣∣
s=s

+O
(
N−1/2))

+
∑
x∼s

1

N2

(
∂2ψx(t + ε − s, y)

2 ∂y2

∣∣∣∣
y=Yx

sN /N1/2
+O

(
N−1/2)).

Since ∂ψx(t+ε−s,y)
∂s

+ ∂2ψx(t+ε−s,y)
2∂y2 = 0, the last equation is bounded above by

∣∣�C(N)
s

(
ψx

t+ε−s

)∣∣≤ C(ε,η)
X

(N)
s (1)

N3/2
.

Thus,

E

[(∑
s≤t

�C(N)
s

(
ψx

t+ε−s − ψx
t+ε′−s

))2]
≤ E

[(
C(ε,η) + C

(
ε′, η

))2
sup
s≤t

(
X

(N)
s (1)

N1/2

)2]

→ 0 as N → ∞.
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Indeed, for each N , X
(N)
s (1) is a martingale so that by L2-maximum inequality and by Lemma 3.7,

sup
N

E
[
sup
s≤t

(
X(N)

s (1)
)2
]

≤ 4 sup
N

E
[〈
X(N)(1)

〉
t

]
< ∞. �

Thus, we have by Fatou’s lemma that

E
[(

Xt

(
ψx

ε

)− Xt

(
ψx

ε′
))2]

≤ (
ε − ε′)2(

t + ε ∧ ε′)−3
X0(1)2 + lim

N→∞
(
(Mb) + (Me) + (Ms)

)
.

Hereafter, we will see the right hand side.

Lemma 3.14. Suppose ε > ε′ > 0, t ≥ η > 0, and 0 < δ < 1
2 . Then, for any x ∈R

lim
N→∞

(Mb) ≤ Cδ

(
ε − ε′)δ(t + ε′)−δ

.

Proof. By Lemma 3.6, we have that for ε > ε′ > 0, for t ≥ η > 0, and for 0 < δ < 1
2

(Mb)

=
(

1 − 1

N1/2

)
E

[∑
s≤t

∑
z∈Z

((
ψx

t+ε−s

(
z

N1/2

)
− ψx

t+ε′−s

(
z

N1/2

))2/
N2

)
B

(N)
sN,z

]

≤ EY

[∑
s≤t

(
ψx

t+ε−s

(
YsN

N1/2

)
− ψx

t+ε′−s

(
YsN

N1/2

))2/
N

]
,

and it follows from (3.19) that

≤
∫ t

0
EY

[(
ε − ε′

(t + ε′ − s)3/2

)δ((
ψx

t+ε−s

(
YsN

N1/2

))2−δ

+
(

ψx
t+ε′−s

(
YsN

N1/2

))2−δ)]
ds.

Thus, we have from the invariance principle that

lim
N→∞

(Mb)

≤
∫ t

0

∫
R

(
ε − ε′

(t + ε′ − s)3/2

)δ((
ψx

t+ε−s(y)
)2−δ + (

ψx
t+ε′−s(y)

)2−δ)
ψ0

s (y)dy ds

≤ (
ε − ε′)δ ∫ t

0

(
t + ε′ − s

)−3δ/2
(2 − δ)−1/2

(
(t + ε − s)(δ−1)/2

(
2 − δ

t + ε + (1 − δ)s

)1/2)
ds

+ (
ε − ε′)δ ∫ t

0

(
t + ε′ − s

)−3δ/2
(2 − δ)−1/2

((
t + ε′ − s

)(δ−1)/2
(

2 − δ

t + ε′ + (1 − δ)s

)1/2)
ds

≤ Cδ

(
ε − ε′)δ(t + ε′)−1/2

∫ t

0

(
t + ε′ − s

)−1/2−δ ds ≤ Cδ

(
ε − ε′)δ(t + ε′)−1/2(

t + ε′)1/2−δ
,

where we have used the fact that
∫
R

ψx
s (y)ψ0

t (y)dy = ψ0
t+s(x) in the second inequality. �

Lemma 3.15. For all x ∈R, ε > ε′ > 0, and t ≥ η > 0, we have

lim
N→∞(Ms) = 0.
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Proof. The proof is the same as the proof of Lemma 3.5. �

Lemma 3.16. Suppose ε > ε′ > 0, t ≥ η > 0, and 0 < δ < 1
2 . Then, for any x ∈R

lim
N→∞

(Me) ≤ C(δ)β2(t ∨ 1)2(t + ε′)−1/2−δ(
ε − ε′)δ.

Proof. By Lemma 4.2, we have that

(Me) ≤ β2E

[∑
s≤t

∑
z∈Z

((
ψx

t+ε−s

(
z

N1/2

)
− ψx

t+ε′−s

(
z

N1/2

))2/
N

)
(B

(N)
sN,z)

2

N3/2

]

≤ β2
∑
s≤t

∑
z∈Z

C(s ∨ 1)2

N
√

s

(
ψx

t+ε−s

(
z

N1/2

)
− ψx

t+ε′−s

(
z

N1/2

))2

P(YsN = z)

≤ Cβ2(t ∨ 1)2
∫ t

0

∑
z∈Z

1√
s

(
ψx

t+ε−s

(
z

N1/2

)
− ψx

t+ε′−s

(
z

N1/2

))2

P(YsN = z)ds,

where we have used Lemma 4.1 in the third inequality. Let 0 < η′ < t . Then, we obtain by a similar argument in the
proof of Lemma 3.14 that

lim
N→∞

(Me) ≤ Cβ2(t ∨ 1)2
(∫ t

η′

∫
R

1√
s

(
ψx

t+ε−s(y) − ψx
t+ε′−s(y)

)2
ψ0

s (y)dy ds

+
∫ η′

0

supy(ψ
x
t+ε−s(y) − ψx

t+ε′−s
(y))2

√
s

ds

)

≤ Cβ2(t ∨ 1)2
∫ t

η′

∫
R

(
ε − ε′

(t + ε′ − s)3/2

)δ((
ψx

t+ε−s(y)
)2−δ + (

ψx
t+ε′−s(y)

)2−δ)ψ0
s (y)√

s
dy ds

+ Cβ2(t ∨ 1)2
∫ η′

0

(
ε − ε′

(t + ε′ − s)3/2

)δ

s−1/2((t + ε − s)(2−δ)/2 + (
t + ε′ − s

)(2−δ)/2)ds

≤ C(δ)β2 (t ∨ 1)2

(t + ε′)1/2

(
ε − ε′)δ ∫ t+ε′

0
s−1/2(t + ε′ − s

)−1/2−δ ds

+ C(δ)β2(t ∨ 1)2(ε − ε′)δ ∫ η′

0
s−1/2 (t + ε′ − s)(2−δ)/2 + (t + ε − s)(2−δ)/2

(t + ε′ − s)δ
ds

≤ C(δ)β2(t ∨ 1)2(ε − ε′)δ((t + ε′)−1/2−δ
B

(
1

2
,

1

2
− δ

)
+ η′1/2(t + ε)(2−δ)/2(t + ε′ − η′)−δ

)
.

Since η′ > 0 is arbitrary, we have that

lim
Nk→∞

(Me) ≤ C(δ)β2(t ∨ 1)2(t + ε′)−1/2−δ(
ε − ε′)δ.

�

Thus, we showed (3.16). In the rest of this subsection, we will prove the existence of a continuous version ũ(t, x)

of u(t, x) for all (t, x) ∈ (0,∞) ×R. Let X̃t (dx) = ũ(t, x)dx. Then, we have that

Xt = X̃t a.s. for each t > 0.

For any φ ∈ C2
b(R), X̃t (φ) is continuous on (0,∞) a.s. by the dominated convergence theorem and the continuity of

ũ. Therefore,

X̃t (φ) = Xt(φ), for any t > 0 a.s.
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and hence

Xt(dx) = X̃t (dx) = ũ(t, x)dx for any t > 0 a.s.

Thus, we will complete the proof of Lemma 3.11.
To prove the existence of a continuous version of u(t, x), we will use the following lemma:

Lemma 3.17 ([25], Lemma III.4.4). Let I : (t0,∞) ×R → R be a process on (Ω,F ,P ) such that for some p > 1,
a, b > 2, for any T > t0, there is a c = c(T ) so that

E
[∣∣I (t, x) − I

(
t ′, x′)∣∣p]≤ c(T )

[∣∣t − t ′
∣∣a + ∣∣x − x′∣∣b],

for all t, t ′ ∈ (t0, T ], x, x′ ∈ [−T ,T ]. Then, I has a continuous version.

Proof of the existence of a continuous version of u. From (3.17) and (3.18) we have that for t0 > 0

Xt0

(
ψx

t−t0

)= X0
(
ψx

t

)+ M̃t0

(
ψx

t−·
)

and

u(t, x) = Xt0

(
ψx

t−t0

)+ M̃t

(
ψx

t−·
)− M̃t0

(
ψx

t−·
)
.

Let I (t, x) = M̃t (ψ
x
t−·) − M̃t0(ψ

x
t−·). Since Xt0(ψ

x
t−t0

) is continuous in (t0,∞) × R, we will prove the existence
of a continuous version of I . Let 0 < t0 < t ≤ t ′ ≤ T , x, x′ ∈ R. Let p ≥ 2 be an integer. Then, it follows from the
Burkholder–Davis–Gundy inequality, (3.17) and Fatou’s lemma that

E
[∣∣I (t, x) − I

(
t ′, x′)∣∣2p]

≤ lim
ε→0

lim
N→∞

C(p,γ )E

[( ∑
t0≤s≤t ′

∑
z∈Z

(
ψx

t−s+ε

(
z

N1/2

)
− ψx′

t ′−s+ε

(
z

N1/2

))2 B
(N)
sN,z

N2

)p]

+ lim
ε→0

lim
N→∞

C(p,β)E

[( ∑
t0≤s≤t ′

∑
z∈Z

(
ψx

t−s+ε

(
z

N1/2

)
− ψx′

t ′−s+ε

(
z

N1/2

))2 (B
(N)
sN,z)

2

N3/2

)p]
,

where we define ψx
t = 0 if t ≤ 0. By Hölder’s inequality,

E

[( ∑
t0≤s≤t ′

∑
z∈Z

(
ψx

t−s+ε

(
z

N1/2

)
− ψx′

t ′−s+ε

(
z

N1/2

))2 B
(N)
sN,z

N2

)p]

≤
( ∑

t0≤s≤t ′

∑
z∈Z

(
ψx

t−s+ε

(
z

N1/2

)
− ψx′

t ′−s+ε

(
z

N1/2

))2 E[(B(N)
sN,z)

p]1/p

N2

)p

.

Lemma 4.1 and Corollary 4.3 yield that for any 0 < δ < 1
2

lim
ε→0

lim
N→∞

(RHS) ≤
(∫ t ′

t0

∫
R

C(T ,p)√
s

(
ψx

t−s(z) − ψx′
t ′−s(z)

)2 dz ds

)p

≤
(∫ t ′

0

∫
R

C(T ,p, t0)
(
ψx

t−s(z) − ψx′
t ′−s(z)

)2 dz ds

)p

≤ C(T ,p, t0)
(∣∣t − t ′

∣∣+ c(δ)T 1/2−δ
∣∣x − x′∣∣δ)p,
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where we have used Lemma III.4.5(b) in [25] in the last line. Similarly, we can prove that

lim
ε→0

lim
N→∞

E

[( ∑
t0≤s≤t ′

∑
z∈Z

(
ψx

t−s+ε

(
z

N1/2

)
− ψx′

t ′−s+ε

(
z

N1/2

))2 (B
(N)
sN,z)

2

N3/2

)p]

≤ C(T , t0)
(∣∣t − t ′

∣∣+ c(δ)T 1/2−δ
∣∣x − x′∣∣δ)p.

Thus, we have checked the condition of Lemma 3.17 so that there exists a continuous version of u(t, x) of I and
u(t, x) on (t0,∞) ×R for all t0 > 0. Therefore, we have completed the proof of Lemma 3.11. �

3.3. Weak uniqueness of the limit point processes

In Sections 3.1 and 3.2, we verified the existence of the limit point processes X of {X(N)
t : t ≥ 0} and gave an iden-

tification of them. In the end of this section, we will prove the weak uniqueness of the limit point process X and the
weak convergence of X(N) to X.

The main idea is to prove the existence of the “exponential dual process” {Yt : t ≥ 0}, which is C+
b (R)-valued

process independent of X satisfying

Y0(x) = φ(x), E
[
exp

(−〈Xt,φ〉)]= E
[
exp

(−〈X0, Yt 〉
)]

(3.20)

for each φ ∈ C(R), where 〈ν,φ〉 = ∫
R

φ(x)ν(dx) for ν ∈ MF (R) and φ ∈ Cb(R) [11], Theorem 4.4.2. The reader
should be careful not to confuse the notation of quadratic variation of martingale. Also, we will identify v ∈ L1+(R)

as a finite measure on R by v(x)dx.
We introduce a set of functions on R, rapidly decreasing continuous functions:

Crap(R) =
{
g ∈ Cb(R): |g|p = sup

x
ep|x|∣∣g(x)

∣∣< ∞, for all p > 0
}
.

Since it is clear that the closure of C+
rap(R), where the topology is bounded convergence pointwise, is the set of

nonnegative bounded measurable functions, uniqueness for one-dimensional distributions follows by showing (3.20)
for all φ ∈ C+

rap(R) from Lemma II.5.9 in [25]. Then, we will find from [11], Corollary 4.4.3, that uniqueness of the
distributions for the process {Xt(·): t ≥ 0} holds.

In our case, the dual process is a solution to the local martingale problem:⎧⎪⎪⎨
⎪⎪⎩

For all ϕ ∈ C2
b(R),

Z̃t (ϕ) = 〈Yt , ϕ〉 − 〈Y0, ϕ〉 + γ
2

∫ t

0 〈Y 2
s , ϕ〉ds − ∫ t

0 〈Ys,
1
2�ϕ〉ds

is an FY
t -continuous square-integrable local martingale and

〈Z̃(ϕ)〉t = 2β2
∫ t

0 〈Y 2
s , ϕ2〉ds.

(3.21)

A solution to such a martingale problem is a solution to the nonlinear stochastic heat equation:

Y0(x) = φ(x),
∂

∂t
Yt (x) = 1

2
�Yt(x) − γ

2
Yt (x)2 + √

2|β|Yt (x)Ẇ (t, x). (3.22)

The existence of nonnegative solutions to (3.22) for the case where Y0 ∈ C+
rap(R) follows from [27] by using Dawson’s

Girsanov theorem [5]. Indeed, the existence and the uniqueness of nonnegative solutions to

Ỹ0(x) = φ(x),
∂

∂t
Ỹt (x) = 1

2
�Ỹt (x) + √

2|β|Ỹt (x)
˙̃
W(t, x)

is already known, where W̃ is a time–space white noise independent of X [1,27]. We denote by PỸ
the law of Ỹ . Let

PY be the probability measure with Radon–Nikodym derivatives

dPY

dP
Ỹ

∣∣∣∣
F Ỹ

t

= exp

(
γ

2
√

2|β|
∫ t

0

∫
R

Ỹs(y)W̃ (ds,dy) − γ 2

16β2

∫ t

0

∫
R

Ỹ 2
s (y)dy ds

)
.
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Then, under PY , Ỹ satisfies (3.21) and Ỹ is also a C+
rap(R)-valued process. Thus, we constructed a solution to (3.21).

Especially, we remark that the solutions to (3.22) satisfy for t ≥ 0

Yt (x) =
∫
R

ψx
t (y)φ(y)dy − γ

2

∫ t

0

∫
R

ψx
t−s(y)Y 2

s (y)dy ds

+ √
2|β|

∫ t

0

∫
R

ψx
t−s(y)Ys(y)W̃ (ds,dy), (3.23)

where ψx
t (y) = 1√

2πt
exp(− (y−x)2

2t
) for t > 0 and x ∈ R. We will see that solutions to (3.22) satisfy (3.20).

Before starting the proof of the uniqueness, we will look at some estimates of Y .

Lemma 3.18. Let φ ∈ C+
rap(R). Let ({Yt }t≥0,FY , {FY

t }t≥0,PY ) be a nonnegative solution to (3.22). Then, we have
that

EY

[∫
R

Yt (x)dx

]
≤
∫
R

φ(x)dx, (3.24)

and

EY

[∫ t

0

∫
R

Y
p
s (x)dx ds

]
< ∞, (3.25)

for all 0 ≤ t < ∞ and p ≥ 1. In particular, Z̃t (ϕ) in (3.21) is a martingale.

Proof. (3.24) is clear from (3.23). Let 0 ≤ t ≤ T . Also, we have that

Y
p
t (x) ≤ C(p,β)

{(∫
R

ψx
t (y)φ(y)dy

)p

+
∣∣∣∣
∫ t

0

∫
R

ψx
t−s(y)Ys(y)W̃ (ds,dy)

∣∣∣∣
p}

.

We define

T (�) = inf
{
t ≥ 0: sup

x
e|x|∣∣Yt (x)

∣∣> �
}
.

We remark that T (�) → ∞ PY -a.s. as � → ∞ since Yt ∈ C+
rap(R) for all t ≥ 0 PY -a.s. Then, we have by Hölder’s

inequality and the Burkholder–Davis–Gundy inequality that

EY

[
Y

p
t (x): t ≤ T (�)

]
≤ C(p,β)EY

[(∫
R

ψx
t (y)φ(y)dy

)p

+
(∫ t

0

∫
R

1
{
t ≤ T (�)

}(
ψx

t−s(y)
)2

Y 2
s (y)dy ds

)p/2]

≤ C(p,β)

(∫
R

ψx
t (y)φ(y)dy

)p

+ EY

[(∫ t

0

∫
R

1
{
t ≤ T (�)

}(
ψx

t−s(y)
)2

Y
p
s (y)dy ds

)p/2(∫ t

0

∫
R

(
ψx

t−s(y)
)2 dy ds

)p/2−1]

≤ C(p,β)

(∫
R

ψx
t (y)φ(y)dy

)p

+ C(p,β)t(p−2)/4
∫ t

0

∫
R

(t − s)−1/2ψx
t−s(y)EY

[
Y

p
s (y): t ≤ T (�)

]
dy ds,
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where we have used that p2
s (x) ≤ Cs−1/2ps(x) and

∫ t

0

∫
R

p2
s (x)dx ds ≤ Ct1/2. Integrating on x over R and letting

ν(s, t, �,p) = ∫
R

EY [Yp
s (x): t ≤ T (�)]dx, then ν(s, t, �,p) < ∞ by definition and we have that

ν(t, t, �,p) ≤ C(p,β,T )

(
1 +

∫ t

0
(t − s)−1/2ν(s, t, �,p)ds

)
,

where we have used supt≤T

∫
R
(
∫
R

ψx
t (y)φ(y)dy)p dx < ∞. It follows from Lemma 4.1 in [18] that

ν(t, t, �,p) ≤ C(p,β,T ,Y0) exp
(
C(p,β,T ,Y0)t

1/2) for t ≤ T .

Since the right hand side does not depend on �, it follows from the monotone convergence theorem that∫
R

EY

[
Y

p
t (x)

]
dx ≤ C(p,β,T ,Y0)

and ∫ T

0

∫
R

EY

[
Y

p
t (x)

]
dx dt ≤ C(p,β,T ,Y0)T .

Also, E[〈Z̃(ϕ)t 〉] < ∞ implies that Z̃t (ϕ) is a martingale. �

Proof of the uniqueness. Let X be a solution to the martingale problem (2.1) and we denote by Xt(x) its density.
Let Y be a solution to the martingale problem (3.21) constructed on the same probability space as X and independent
of each other.

We denote by νt (x) = ∫
R

ψx
t (y)ν(dy) for (t, x) ∈ (0,∞) ×R and for ν ∈ MF (R). We remark that νt ∈ C∞

b,+(R)

for t > 0.
Let

f (μ, s,φ, t) = exp
(−〈

μ,φT −t−s
〉)

for μ ∈ MF (R),φ ∈ C+
rap(R), and 0 ≤ s, t < T such that s + t < T .

Since Xt is assumed to satisfy (2.1), we have by Itô’s lemma that for 0 ≤ s < T − t

f (Xs, s, Yt , t) − exp
(−〈

X0, Y
T −t
t

〉)
− 1

2

∫ s

0
exp

(−〈
Xu,Y

T −t−u
t

〉){〈
γXu + 2β2X2

u,
(
YT −t−u

t

)2〉}
du

is an FX
s -martingale. Similarly, we have that for 0 ≤ t < T − s

f (Xs, s, Yt , t) − exp
(−〈

Xs,Y
T −s
0

〉)
−
∫ t

0
exp

(−〈
Xs,Y

T −u−s
u

〉){〈1

2
γXT −u−s

s , (Yu)
2
〉}

du

−
∫ t

0
exp

(−〈
Xs,Y

T −u−s
u

〉){〈
β2(XT −u−s

s

)2
, (Yu)

2〉}du

is an FY
t -martingale. Let F(s, t) = E[f (Xs, s, Yt , t)]. Then, we have that

F(s, t)

= F(0, t) + E

[
1

2

∫ s

0
exp

(−〈
Xu,Y

T −t−u
t

〉){〈
γXu + 2β2X2

u,
(
YT −t−u

t

)2〉}du

]
= F(s,0)

+ E

[∫ t

0
exp

(−〈
Xs,Y

T −s−u
u

〉){〈1

2
γXT −u−s

s + β2(XT −u−s
s

)2
, (Yu)

2
〉}

du

]
.
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Therefore, it follows from Lemma 4.17 in [19] that for any 0 ≤ t < T

F(0, t) − F(t,0)

=
∫ t

0
E

[
γ

2
exp

(−〈
Xs,Y

T −t
t−s

〉){〈
Xs,

(
Y 2

t−s

)T −t − (
YT −t

t−s

)2〉}]ds

+
∫ t

0
E
[
β2 exp

(−〈
Xs,Y

T −t
t−s

〉){〈(
XT −t

s

)2
, Y 2

t−s

〉− 〈
X2

s ,
(
YT −t

t−s

)2〉}]ds.

The dominated convergence theorem shows that the left hand side converges to F(0, T ) − F(T ,0) as t ↗ T . By
showing that the right hand converges to 0 as t ↗ T , we will prove (3.20).

∣∣(RHS )
∣∣ ≤

∫ t

0
E

[〈
γ

2
Xs,

∣∣(Y 2
t−s

)T −t − Y 2
t−s

∣∣〉]ds (3.26)

+
∫ t

0
β2E

[〈∣∣(XT −t
s

)2 − X2
s

∣∣, Y 2
t−s

〉]
ds (3.27)

+
∫ t

0
E

[〈
γ

2
Xs + β2X2

s ,
∣∣(YT −t

t−s

)2 − Y 2
t−s

∣∣〉]. (3.28)

Hölder’s inequality yields

∫ t

0
E
[〈
Xs,

∣∣(Y 2
t−s

)T −t − Y 2
t−s

∣∣〉]ds

≤
(∫ t

0

∫
R

EX

[
Xs(y)

] ∫
R

EY

[(
Yt−s(x + y) − Yt−s(y)

)2]
ψT −t (x)dx dy ds

)1/2

×
(∫ t

0

∫
R

EX

[
Xs(y)

] ∫
R

EY

[(
Yt−s(x + y) + Yt−s(y)

)2]
ψT −t (x)dx dy ds

)1/2

.

Also, (3.23) and the Burkholder–Davis–Gundy inequality imply that

EY

[(
Yt−s(x + y) ± Yt−s(y)

)2]
≤ C(γ,β)

(
a±

1 (t − s, x, y) + a±
2 (t − s, x, y) + a±

3 (t − s, x, y)
)
,

where

a±
1 (t, x, y) =

(∫
R

ψt(z)
(
Y0(x + y + z) ± Y0(y + z)

)
dz

)2

,

a±
2 (t, x, y) = EY

[(∫ t

0

∫
R

(
ψt−u(x + y + z) ± ψt−u(y + z)

)
Yu(z)

2 dz du

)2]
,

a±
3 (t, x, y) = EY

[(∫ t

0

∫
R

(
ψt−u(x + y + z) ± ψt−u(y + z)

)2
Yu(z)

2 dz du

)]
.

It follows from Hölder’s inequality

A±
1 (t − s, y) =

∫
R

a±
1 (t − s, x, y)ψT −t (x)dx

≤
∫
R

∫
R

ψt−s(z)
(
Y0(x + y + z) ± Y0(y + z)

)2
ψT −t (x)dx dz.
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Since Y0 ∈ C+
rap(R),

∫
R
(Y0(x + y + z) − Y0(y + z))2ψT −t (x)dx → 0 for any y, z ∈ R as t ↗ T . Thus, A−

1 (t − s, y)

converges to 0 for any y ∈ R as t ↗ T and bounded above by A+
1 (t − s, y) ≤ 4 supx∈R Y0(x) on 0 ≤ s ≤ t ≤ T . The

dominated convergence theorem implies that∫ t

0

∫
R

EX

[
Xs(y)

]
A−

1 (t − s, y)dy ds → 0, as t ↗ T

and ∫ t

0

∫
R

EX

[
Xs(y)

]
A+

1 (t − s, y)dy ds ≤ C(T ), t ≤ T ,

where we have used the fact that Xt(1) is a square-integrable martingale, the Burkholder–Davis–Gundy inequality,
and (2.1).

Also, we have from Lemma 3.18 that

A+
2 (t − s, y) =

∫
R

a+
2 (t − s, x, y)ψT −t (x)dx

≤
∫ t−s

0

∫
R

∫
R

(
ψ

x+y
t−s−u(z) + ψ

y
t−s−u(z)

)2
ψT −t (x)dx dz du

∫ t−s

0

∫
R

EY

[
Yu(z)

4]dz du

≤ C(T ,Y0, γ,β)

and

A−
2 (t − s, y) =

∫
R

a−
2 (t − s, x, y)ψT −t (x)dx

≤
∫ t−s

0

∫
R

∫
R

(
ψ

x+y
t−s−u(z) − ψ

y
t−s−u(z)

)2
ψT −t (x)dx dz du

∫ t−s

0

∫
R

EY

[
Yu(z)

4]dz du

≤ C(T ,Y0, γ,β)(
√

T + t − 2s − √
2t − 2s − √

T − t).

Since Xt(1) is a square-integrable martingale, we obtain by the Burkholder–Davis–Gundy inequality and the domi-
nated convergence theorem that∫ t

0

∫
R

EX

[
Xs(y)

]
A−

2 (t − s, y)dy ds → 0 as t ↗ T

and ∫ t

0

∫
R

EX

[
Xs(y)

]
A+

2 (t − s, y)dy ds ≤ C(T ), t ≤ T .

Similarly,∫ t−s

0

∫
R

a−
3 (t − s, x, y)ψT −t (x)dx du

=
∫ t−s

0

∫
R

∫
R

(
ψ

x+y
t−s−u(z) − ψ

y
t−s−u(z)

)2
E
[
Y 2

u (z)
]
ψT −t (x)dx dz du

≤
∫
R

(∫ t−s

0

∫
R

(
ψ

x+y
t−s−u(z) − ψ

y
t−s−u(z)

)2 dz dr

)1/2

×
(∫ t−s

0

∫
R

(
ψ

x+y
t−s−u(z) − ψ

y
t−s−u(z)

)2
E
[
Y 2

r (z)
]

dz du

)1/2

ψT −t (x)dx
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≤ C

∫
R

|x|1/2
(∫ t−s

0

∫
R

(
ψ

x+y
t−s−u(z)

8/3 + ψ
y
t−s−u(z)

8/3)dz du

)3/8

×
(∫ t−s

0

∫
R

E
[
Y 8

r (z)
]

dz du

)1/8

ψT −t (x)dx

≤ C(Y0, T ,β, γ )|T − t |1/4

and ∫ t−s

0

∫
R

∫
R

(
ψ

x+y
t−s−u(z) + ψ

y
t−s−u(z)

)2
E
[
Y 2

u (z)
]
ψT −t (x)dx dz du

≤ C(Y0, T ,β, γ ).

Thus, we have that∫ t

0

∫
R

EX

[
Xs(y)

] ∫
R

a−
3 (t − s, x, y)ψT −t (x)dx dy ds → 0 as t ↗ T

and ∫ t

0

∫
R

EX

[
Xs(y)

] ∫
R

a+
3 (t − s, x, y)ψT −t (x)dx dy ds < ∞, t ≤ T .

Therefore, we have proved that∫ t

0
E

[〈
γ

2
Xs,

∣∣(Y 2
t−s

)T −t − Y 2
t−s

∣∣〉]ds → 0, as t ↗ T .

By a similar argument, we can prove that∫ t

0
E

[〈
γ

2
Xs + β2X2

s ,
∣∣(YT −t

t−s

)2 − Y 2
t−s

∣∣〉]ds → 0, as t ↗ T .

Thus, we found that (3.26) and (3.28) converges to 0 as t ↗ T .
Finally, we will show that

(3.27) =
∫ t

0
E
[〈∣∣(XT −t

s

)2 − X2
s

∣∣, Y 2
t−s

〉]
ds → 0, as t ↗ T . (3.29)

By Hölder’s inequality, we have that∫ t

0
E
[〈∣∣(XT −t

s

)2 − X2
s

∣∣, Y 2
t−s

〉]
ds

≤
(∫ t

0

∫
R

EX

[(
XT −t

s (y) − Xs(y)
)2]

EY

[
Y 2

t−s(y)
]

dy ds

)1/2

×
(∫ t

0

∫
R

EX

[(
XT −t

s (y) + Xs(y)
)2]

EY

[
Y 2

t−s(y)
]

dy ds

)1/2

.

(2.1) and the Burkholder–Davis–Gundy inequality imply that

EX

[(
XT −t

s (y) ± Xs(y)
)2]

≤ C
(
XT −t+s

0 (y) ± Xs
0(y)

)2

+ CEX

[∫ s

0

(
γ

2
Xu(x) + β2X2

u(x)

)(
ψ

y
T −t+s−u(x) ± ψ

y
s−u(x)

)2 dx du

]
.
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Then, we have that∫ t

0

∫
R

EX

[(
XT −t

s (y) ± Xs(y)
)2]

EY

[
Y 2

t−s(y)
]

dy ds

≤ C

∫ t

0

∫
R

(
XT −t+s

0 (y) ± Xs
0(y)

)2
EY

[
Y 2

t−s(y)
]

dy ds

+ C

∫ t

0

∫ s

0

∫
R

∫
R

EY

[
Y 2

t−s(y)
](

ψ
y
T −t+s−u(x) ± ψ

y
s−u(x)

)2

×
(

EX

[
γ

2
Xu(x) + β2X2

u(x)

])
dx dudy ds.

It follows from Hölder’s inequality that∫ t

0

∫
R

(
XT −t+s

0 (y) ± Xs
0(y)

)2
EY

[
Y 2

t−s(y)
]

dy ds

=
∫ t

0

∫
R

(∫
R

ψ
y
T −t+s(x) ± ψ

y
s (x)X0(dx)

)2

EY

[
Y 2

t−s(y)
]

dy ds

≤ CX0(1)

∫
R

(∫ t

0

∫
R

(
ψ

y
T −t+s(x) ± ψ

y
s (x)

)2
dy ds

)1/2

×
(∫ t

0

∫
R

((
ψ

y
T −t+s(x)

)8/3 + (
ψ

y
s (x)

)8/3)dy ds

)3/8(∫ t

0

∫
R

E
[
Y 2

t−s(y)
]4 dy ds

)1/8

X0(dx).

It is easy to see that∫ t

0

∫
R

(
ψ

y
T −t+s(x) + ψ

y
s (x)

)2 dy ds ≤ C
√

T ,

∫ t

0

∫
R

(
ψ

y
T −t−s(x) − ψ

y
s (x)

)2 dy ds ≤ C
(√

2T + √
2t − 2

√
T + t − (2 − √

2)
√

T − t
)

and ∫ t

0

∫
R

((
ψ

y
T −t+s(x)

)8/3 + (
ψ

y
s (x)

)8/3)dy ds ≤ CT 1/6.

With (3.25),∫ t

0

∫
R

(
XT −t+s

0 (y) − Xs
0(y)

)2
EY

[
Y 2

t−s(y)
]

dy ds → 0, as t ↗ T (3.30)

and ∫ t

0

∫
R

(
XT −t+s

0 (y) + Xs
0(y)

)2
EY

[
Y 2

t−s(y)
]

dy ds ≤ C(T ), t ≤ T . (3.31)

By Fubini’s theorem,∫ t

0

∫ s

0

∫
R

∫
R

EY

[
Y 2

t−s(y)
](

ψ
y
T −t+s−u(x) ± ψ

y
s−u(x)

)2

×
(

EX

[
γ

2
Xu(x) + β2X2

u(x)

])
dx dudy ds
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=
∫ t

0

∫
R

(
EX

[
γ

2
Xu(x) + β2X2

u(x)

])

×
∫ t

u

∫
R

EY

[
Y 2

t−s(y)
](

ψ
y
T −t+s−u(x) ± ψ

y
s−u(x)

)2 dy ds dx du.

By a similar argument to (3.30) and (3.31),

∫ t

u

∫
R

EY

[
Y 2

t−s(y)
](

ψ
y
T −t+s−u(x) + ψ

y
s−u(x)

)2
dy ds ≤ C(T ), t ≤ T ,

∫ t

u

∫
R

EY

[
Y 2

t−s(y)
](

ψ
y
T −t+s−u(x) − ψ

y
s−u(x)

)2 dy ds → 0, for all u ≤ t as t ↗ T .

Thus, we have from the dominated convergence theorem and the square-integrability of Xt(1) that

∫ t

0

∫ s

0

∫
R

∫
R

EY

[
Y 2

t−s(y)
](

ψ
y
T −t+s−u(x) − ψ

y
s−u(x)

)2

×
(

EX

[
γ

2
Xu(x) + β2X2

u(x)

])
dx dudy ds → 0, as t ↗ T

and

∫ t

0

∫ s

0

∫
R

∫
R

EY

[
Y 2

t−s(y)
](

ψ
y
T −t+s−u(x) + ψ

y
s−u(x)

)2

×
(

EX

[
γ

2
Xu(x) + β2X2

u(x)

])
dx dudy ds ≤ C(T ).

Therefore, we have shown (3.29) and completed the proof of the uniqueness of solutions to the martingale problem
(2.1). �

4. Proof of some facts

This section is devoted to the proof of some lemmas used in Section 3.

Lemma 4.1. For any β > 0 and K > 0, we have that

sup
N

EY 1Y 2

[(
1 + β2

N1/2

)�{1≤i≤�KN�:Y 1
i =Y 2

i }]
< ∞,

where Y 1
n , Y 2

n are independent simple random walks on Z. Also,

EY 1Y 2

[(
1 + β2

N1/2

)�{1≤i≤�KN�:Y 1
i =Y 2

i }
: Y 1�KN� = x,Y 2�KN� = y

]

≤ C

K1/2N1/2
M
(�KN�, x, y

)
,

where M(n,x, y) = PY 1(Y 1
n = x) ∧ PY 1(Y 1

n = y) for x, y ∈ Z and n ∈N.
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Proof. First, we remark that

EY 1Y 2

[(
1 + β2

N1/2

)�{1≤i≤�KN�:Y 1
i =Y 2

i }]

= EY 1Y 2

[�KN�∏
k=1

(
1 + β2

N1/2
1
{
Y 1

k = Y 2
k

})]

=
∞∑

k=0

β2k

Nk/2

∑
i∈Dk(�KN�)

∑
x∈Zk

PY 1Y 2

(
Y 1

ij
= Y 2

ij
= xj , for 1 ≤ j ≤ k

)

=
∞∑

k=0

β2k

Nk/2

∑
i∈Dk(�KN�)

∑
x∈Zk

PY (Yij = xj , for 1 ≤ j ≤ k)2, (4.1)

where Dk(�KN�) is the set defined by

Dk(n) = {
i = (ij )

k
j=1 ∈ N

k: 1 ≤ i1 < · · · < ik ≤ n
}
,

and the summation for k > �KN� is equal to 0. By the local limit theorem∑
i∈Dk(�KN�)

∑
x∈Zk

PY (Yij = xj , for 1 ≤ j ≤ k)2

≤ Ck
∑

i∈Dk(�KN�)

∑
x∈Zk

k∏
j=1

PY (Yij −ij−1 = xj − xj−1)√
ij − ij−1

≤ Ck
∑

i∈Dk(�KN�)

k∏
j=1

1√
ij − ij−1

.

Thus, we have that

(4.1) ≤
∞∑

k=0

β2kCk

Nk

∑
i∈Dk(�KN�)

k∏
j=1

1√
ij /N − ij−1/N

. (4.2)

Since 1√
t−s

is decreasing in t ∈ (s,∞), it follows that

1

Nk

k∏
j=1

1√
ij /N − ij−1/N

≤
k∏

i=1

∫ ij /N

ij−1/N

dtj√
tj − ij−1/N

,

and

(4.2) ≤
∞∑

k=0

β2kCk
∑

i∈Dk(�KN�)

∫ ik/N

ik−1/N

· · ·
∫ i1/N

0

k∏
j=1

(
1√

tj − ij−1/N

)
dt

≤
∞∑

k=0

β2kCk

∫
0<t1<···<tk<K

k∏
j=1

1√
tj − tj−1

dt

=
∞∑

k=0

β2kCk(πK)k/2

Γ (k/2 + 1)
.
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Since Γ (k
2 + 1) is increase faster than ak for any a > 1, the summation is finite for any β .

Also, a similar argument does hold so that

EY 1Y 2

[(
1 + β2

N1/2

)�{1≤i≤�KN�:Y 1
i =Y 2

i }
: Y 1�KN� = x,Y 2�KN� = y

]

=
∞∑

k=1

β2(k−1)

N(k−1)/2

∑
i∈Dk−1(�KN�−1)

∑
x∈Zk−1

(
PY (Yij = xj , for 1 ≤ j ≤ k − 1, Y�KN� = x)

× PY (Yij = xj , for 1 ≤ j ≤ k − 1, Y�KN� = y)
)

+
∞∑

k=1

β2k

Nk/2

∑
i∈Dk−1(�KN�−1)

∑
x∈Zk−1

(
PY (Yij = xj , for 1 ≤ j ≤ k − 1, Y�KN� = x)

× PY (Yij = xj , for 1 ≤ j ≤ k − 1, Y�KN� = y)
)

≤
∞∑

k=1

2Ck β2(k−1)

N(k−1)/2

∑
i∈Dk−1(�KN�−1)

(
k−1∏
j=1

1√
ij − ij−1

)
M(�KN�, x, y)√�KN� − ik−1

≤
∞∑

k=1

Ckβ2(k−1)

N1/2

M(�KN�, x, y)

Nk−1

∑
i∈Dk−1(�KN�−1)

k−1∏
j−1

1√
ij /N − ij−1/N

1√
K − ik−1/N

. (4.3)

By the integration by parts, we have that

∫ ik−1/N

ik−2/N

1√
tk−1 − ik−2/N

√
K − tk−1

dtk−1 =
[

2

√
tk−1 − ik−2/N√

K − tk−1

]ik−1/N

ik−2/N

+ positive term

≥ 2

√
ik−1/N − ik−2/N√

K − ik−1/N

≥ 2

N

1√
ik−1/N − ik−2/N

√
K − ik−1/N

.

Also, we know that

∑
i∈Dk−1(�KN�−1)

(
k−2∏
j=1

∫ ij /N

ij−1/N

1√
tj − ij /N

dtj

)(∫ ik−1/N

ik−2/N

1√
tk−1 − ik−2/N

√
K − tk−1

dtk−1

)

≤
∫

0<t1<···<tk−1<K

k−1∏
j=1

(
1√

tj − tj−1

)
1√

K − tk−1
dt

≤ πk/2K(k−1)/2

K1/2Γ ((k − 1)/2)
.

Thus, we have that

(4.3)

≤ PY (Y 1�KN� = x) ∧ PY (Y 1�KN� = y)

(KN)1/2

∞∑
k=1

Ckβ2(k−1)K(k−1)/2

Γ ((k − 1)/2)
.

Since the summation is finite for any β ∈ R, the statement holds. �
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The next lemma gives us an upper bound of pth moment of Bn for branching random walks in a random environ-
ment.

Lemma 4.2. If E[m(p)
n,x] = K < ∞ for p ∈ N and E[m(1)

n,x] = 1, then

E
[
B

p
n

]≤ C(p,K)np−1EY 1···Yp

[
E
[(

m
(1)
0,0

)p]�{1≤i≤n:Ya
i =Yb

i ,a �=b∈{1,...,p}}]
and

E

[
p∏

i=1

Bn,xi

]

≤ C(p,K)np−1EY 1···Yp

[
E
[(

m
(1)
0,0

)p]�{1≤i≤n:Ya
i =Yb

i ,a �=b∈{1,...,p}}: Y i
n = xi for 1 ≤ i ≤ p

]
.

Before starting a proof, we give another representation of Bn. Let {V x
n,x : x ∈ T , (n, x) ∈ N × Z

d} be N-valued
random variables with P(V x

n,x = k|ω) = qn,x(k). Let {Xx
n,x : x ∈ T , (n, x) ∈ N × Z

d} be i.i.d. random variables with

P(Xx
n,x = e) = 1

2d
for e = ±ej , j = 1, . . . , d where ej are unit vector on Z

d . V x
n,x denotes the number of offsprings

of x if x locates at x at time n and Xx
n,x denotes the step of x if it locates at x at time n.

We consider the event {particle y exists and locates at site y at time |y | = n} and its indicator function

By
n,y = 1{particle y exists and locates at site y at time |y | = n}.

Then, it is clear that

Bx
0,x = δx,x =

{
1 if x = 0 and x = 1,
0 otherwise,

By
n,y =

∑
x

Bx
n−1,x1

{
Xx

n−1,x = y − x,V x
n−1,x ≥ y/x≥ 1

}

=
∑
0→y

∑
1→y

n−1∏
i=0

1
{
X
yi

i,yi
= yi+1 − yi,V

yi

i,yi
≥ yi+1/yi ≥ 1

}
,

and

Bn,y =
∑
y

∑
0→y

∑
1→y

n−1∏
i=0

1
{
X
yi

i,yi
= yi+1 − yi,V

yi

i,yi
≥ yi+1/yi ≥ 1

}
.

We introduce new Markov chain Y = (Y,Y) on Z
d × T which are determined by

Y0 = 0, Y0 = 1 ∈ T0,

PYY(Yn+1 = y,Yn+1 = y |Yn = x,Yn = x) =
{

1
2d

∑
k≥y/x q(k) if |y − x| = 1,y/x< ∞,

0 otherwise,

where q(k) = E[qn,x(k)]. Let A
x,y
n,x,y = 1{Xx

n,x = y − x,V x ≥ y/x}. Then, we have the following representation of
Bn,y [22]:

Bn,y = EYY

[
n−1∏
i=0

A
Yi ,Yi+1
i,Yi ,Yi+1

E[AYi ,Yi+1
i,Yi ,Yi+1

]
: Yn = y

]
,
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and also

E

[
p∏

i=1

Bn,xi

]
= EY1···Yp

[
n−1∏
i=0

E

[ ∏p

j=1 A
Y

j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1∏p

j=1 E[AY
j
i ,Y

j+1
i+1

i,Y
j
i ,Y

j
i+1

]

]
: Y i

n = xi for 1 ≤ i ≤ p

]
,

E
[
B

p
n

]= EY1···Yp

[
n−1∏
i=0

E

[ ∏p

j=1 A
Y

j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1∏p

j=1 E[AY
j
i ,Y

j+1
i+1

i,Y
j
i ,Y

j
i+1

]

]]
,

where Yi = (Y i,Yi ) are independent copies of Y = (Y,Y).

Proof of Lemma 4.2. We remark the following facts:

(i) If y �= y′, then A
x,y
i,x,yA

x,y ′
i,x,y′ = 0 almost surely. Especially, for {Yj

i : i = 0, . . . , n} and {Yj ′
i : i = 0, . . . , n}, if there

exists an i such that Yj
i = Yj ′

i and Y
j

i+1 �= Y
j ′
i+1, then

n−1∏
i=0

E

[ ∏p

j=1 A
Y

j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1∏p

j=1 E[AY
j
i ,Y

j+1
i+1

i,Y
j
i ,Y

j
i+1

]

]
= 0,

almost surely.

(ii) If y/x= k, y ′/x= �, and k ≤ �, then A
x,y
i,x,yA

x,y ′
i,x,y = A

x,y ′
i,x,y almost surely.

(iii) If {xj : j = 1, . . . , p} are different from each other and yj /xj = kj , then E[∏p

j=1 A
xj ,yj

i,xj ,yj ] = ( 1
2d

)p
∑

s1≥k1
· · ·∑

sp≥kp
E[∏p

j=1 qi,xj (sj )].
Thus, the possible cases are the followings:

E

[
EY1···Yp

[ ∏p

j=1 A
Y

j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1∏p

j=1 E[AY
j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1

]

∣∣∣Y j
i = xj ,Y

j
i = xj for j = 1, . . . p

]]

=
⎧⎨
⎩

1 xj are different from each others,
E[∏p

j=1 m
(1)

i,xj ] if xj are different from each others,
(A),

where (A) is the other case described as below.
We divide the set {1, . . . , p} into the disjoint union such that

{1, . . . , p} =
jp∐

k=j1

Ik, (4.4)
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Fig. 1. When p = 5, I (0) = {1,2,3,4,5}. In this figure, I (1,1) = {1,3,4}, I (1,2) = {2,5}, I (2,1) = {1,4}, I (2,2) = {3}, and I (2,3) = {2,5}.

where Ik = {j ∈ {1, . . . , p}: xj = xk} and j1, . . . , jp is the set of index of equivalence class Ik . For yj /xj = kj , we
set Kj�

= min{kj : j ∈ Ij�
}. Then, we have that

E

[
EY1···Yp

[ ∏p

j=1 A
Y

j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1∏p

j=1 E[AY
j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1

]
1
{
Y

j

i+1 = yj for j = 1, . . . , p
}∣∣∣Y j

i = xj ,Y
j
i = xj for j = 1, . . . , p

]]

= E

[ jp∏
�=j1

(∑
k≥K�

qi,x�(k)

)]
.

By the above argument, we find that Y1, . . . ,YP evolves according the following steps:

(i) First, the set process {S(m): m = 0, . . . , n} starts from the set I (0) = {1, . . . , p} until time i(1), and then it
splits into some sets I (1,1), . . . , I (1,k(1)). (i(1) is the last time when Yj

i coincide and I (1,1), . . . , I (1,k(1)) are the

equivalence class defined in (4.4) for Yj

i(1)+1
.)

(ii) When the set process S(m) = {I (�,1), . . . , I (�,k(�))}, it jumps to the new sets {I (�+1,1), . . . , I (�+1,k(�+1))} where
each I (�+1,r) is a partition of some set of I (�,1), . . . , I (�,k(�)) at some time i(�+1). (Y(j), j ∈ I (�,s) for each

s = 1, . . . , k(�) coincides until time i(�+1) and Y
j

i(�+1)+1
�=Y

j ′
i(�+1)+1

for some j, j ′ ∈ I (�,k) for some k.)
(iii) If S(m) = {{1}, . . . , {p}}, then S(m) = S(m′) for m′ ≥ m. (See Figure 1 for example.)

First, we remark that the combination of i(1), . . . , i(p−1) (it may stops for less steps) are at most npth order. Also,

E

[
EY1···Yp,S

[ ∏p

j=1 A
Y

j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1∏p

j=1 E[AY
j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1

]
1
{
i(�) = i

}∣∣∣Y j
i = xj ,Y

j
i = xj for j = 1, . . . , p

]]

≤ C(p)K,

and

E

[
EY1···Yp,S

[ ∏p

j=1 A
Y

j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1∏p

j=1 E[AY
j
i ,Y

j
i+1

i,Y
j
i ,Y

j
i+1

]
1
{
i(�) �= i, for � = 1, . . . , p

}∣∣∣Y j
i = xj ,Y

j
i = xj for j = 1, . . . , p

]]

≤
∏
k∈K

E
[
(mi,xk )

�{j :xj =xk}]≤
∏
k∈K

E
[
(mi,xk )

p
]�{j :xj =xk}/p ≤ E

[
(mi,xk )

p
]1{xj =xk, for some j �=k}

,



1288 M. Nakashima

where K be the set of index for equivalence class {j : xj = xk}.
Thus, we have that

E
[
BP

n

]≤ C(p,K)np−1EY1···Yp

[
E
[
(mn,x)

p
]�{i≤n:Y j

i =Y
j ′
i for j �=j ′∈{1,...,p}}]

.

The latter part of Lemma 4.2 can be proved by the same argument. �

Corollary 4.3. Under the same assumption in Lemma 4.2,

E

[
q∏

j=1

pj∏
i=1

B
(j)
n,x(j,i)

]

≤ C(p,K)n
(
∑q

j=1 pj −q)

× E(Yj,i )

[
E
[
(m0,0)

∑q
j=1 pj

]�{k≤n:Y j1,i1
k =Y

j2,i2
k , for (j1,i1)�=(j2,i2)∈{(j,i):j=1,...,q,i=1,...,pj }}: Y

(j,i)
n = xj,i

]
,

where B
(j)
n,x is the number of particles from initial particle j at site x at time n.

Proof. If we regard i(1) = −1 and S(0) = {{1, . . . , p1}, . . . , {∑q−1
j=1 pj + 1, . . . ,

∑q

j=1 pj }}, then S(m) stops at

{{1}, . . . , {∑q

j=1 pj }} at most
∑q

j=1 pj − q jumps. �
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