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Abstract. If a functional in a nonparametric inverse problem can be estimated with parametric rate, then the minimax rate gives no
information about the ill-posedness of the problem. To have a more precise lower bound, we study semiparametric efficiency in the
sense of Hájek–Le Cam for functional estimation in regular indirect models. These are characterized as models that can be locally
approximated by a linear white noise model that is described by the generalized score operator. A convolution theorem for regular
indirect models is proved. This applies to a large class of statistical inverse problems, which is illustrated for the prototypical white
noise and deconvolution model. It is especially useful for nonlinear models. We discuss in detail a nonlinear model of deconvolution
type where a Lévy process is observed at low frequency, concluding an information bound for the estimation of linear functionals
of the jump measure.

Résumé. Si une fonctionnelle dans un problème inverse non-paramétrique peut être estimée à vitesse paramétrique, alors la vitesse
minimax ne donne aucune information sur le caractère mal posé du problème. Pour avoir une borne inférieure plus précise, nous
étudions l’efficacité semi-paramétrique dans le sens de Hájek–Le Cam pour l’estimation fonctionnelle dans des modèles indirects
réguliers. Ces derniers sont caractérisés comme modèles que l’on peut approcher localement par un modèle linéaire de bruit blanc
décrit par l’opérateur de score généralisé. Un théorème de convolution pour des modèles indirects réguliers est prouvé. Ceci
s’applique à une large classe de problèmes statistiques inverses, comme montré pour les modèles prototypes du bruit blanc et
de la déconvolution. Il est spécialement utile pour des modèles non-linéaires. Nous discutons en détails un modèle non-linéaire
de déconvolution où un processus de Lévy est observé à basse fréquence, en obtenant une borne d’information pour l’estimation
de fonctionnelles linéaires de la mesure de sauts.

MSC: 60G51; 60J75; 62B15; 62G20; 62M05

Keywords: Convolution theorem; Deconvolution; Lévy process; Nonlinear ill-posed inverse problem; Semiparametric efficiency; White noise
model

1. Introduction

Inverse problems are a key topic in applied mathematics, in particular models with noise in the data. Typically the
parameter which is the target of the statistical inference is not directly observable, but “hidden” by some operator.
While upper bounds, like convergence rates for nonparametric inverse problems, are mainly properties of the estima-
tors, lower bounds reveal the deeper information theoretic structure. Instead of the (infinite dimensional) parameter
itself, derived quantities are often the final object of interest. On the one hand, they might allow for inference with
parametric rate, circumventing typical problems in nonparametric estimation like the choice of the bandwidth, cf.
estimating the distribution function instead of the density. In this case minimax convergence rates give no information
about the ill-posedness of the problem and we need the much more precise information bounds. On the other hand,
many nonparametric statistical procedures rely on basis expansions and model selection strategies, see e.g. Cavalier
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et al. [7]. For these adaptive methods it is strictly necessary to assess the quality of the estimated coefficient in terms
of confidence.

While inverse problems appear in many different shapes in the literature, information bounds are studied only in a
few linear cases: Klaassen et al. [19,20] and Khoujmane et al. [18] considered the linear indirect regression model

Yi = (Kϑ)(Xi) + ξi, i = 1, . . . , n,

where the regression function depends on the unknown parameter ϑ via the linear operator K and (X1, Y1), . . . ,

(Xn,Yn) are observed in presence of the additional errors ξi . Van Rooij et al. [37] derived a convolution theorem
for linear indirect density estimation, where a sample of i.i.d. random variables Y1, . . . , Yn with distribution Kϑ is
observed. If more specifically

Yi = Xi + εi, i = 1, . . . , n,

where Xi has law ϑ and is corrupted by the noise variable εi , K is a convolution operator. Efficiency for this so called
deconvolution model was considered by Söhl and Trabs [31].

Using the polar decomposition or specific properties of the operators, all these studies are restricted to linear mod-
els. However, in many situations the operator K might not be linear, see e.g. Engl et al. [10] and Bissantz et al. [3].
Hence, new mathematical methods are necessary. The aim of the present paper is twofold: (a) to provide a convo-
lution theorem for general inverse problems that are regular in a well specified sense and (b) to study concrete and
prototypical examples of linear and nonlinear structure.

A canonical probabilistic and nonlinear inverse problem is the following. Let Yi be compound Poisson distributed

Yi ∼ e−λ
∞∑

k=0

λk

k! ϑ
∗k

with intensity λ > 0 and jump distribution ϑ , writing ϑ∗k for the k-fold convolution of the measure ϑ . The distribution
of Yi is a convolution exponential and therefore not linear in ϑ . If Yi is more generally an increment of a Lévy process
(Lt )t≥0, inference on the characteristic triplet of the Lévy process is a nonlinear problem since the dependence of the
probability distribution of the marginals on the Lévy triplet is determined by the characteristic exponent, see the review
by Reiß [29]. At the same time this model is of practical importance since Lévy processes are the main building blocks
for mathematical modeling of stochastic processes. In the related context of diffusion processes, efficient estimation
was recently studied by Clément et al. [8].

In view of the equivalence results by Brown and Low [4] and Nussbaum [28], the prototype of an inverse problem
is to estimate ϑ ∈ Θ ⊆ X, or derived parameters, from observations yε,ϑ in the white noise model

yε,ϑ = K(ϑ) + εẆ for a continuous operator K :X ⊇ Θ → Y, (1.1)

where X and Y are Hilbert spaces and εẆ denotes white noise on Y with noise level ε > 0. For a review of estimation
results in this model we refer to Cavalier [6] and references therein. Studying minimax convergence rates when K

is linear, Goldenshluger and Pereverzev [13,14] have shown that the parametric rate ε can be achieved for linear
functionals of ϑ whose smoothness is not smaller than the ill-posedness of the operator K .

Inspired by the results by van der Vaart [34], we restate the classical local asymptotic normality (LAN) theory in
a way that is appropriate to capture the inverse structure of the above mentioned models. Here, the linear white noise
model (1.1) serves as the local limit experiment in the sense of Le Cam [22]. This leads to the notion of regular indirect
models, meaning that the white noise model is the locally linear weak approximation of the statistical experiment. The
asymptotic linear structure is described by the so called generalized score operator. We derive a version of the Hájek–
Le Cam convolution theorem for the estimation of derived parameters for regular inverse problems. The tangent set is
determined by the range of the generalized score operator and the efficient influence function is given by the Moore–
Penrose pseudoinverse of the adjoint score operator. Although we focus on linear functionals in the examples, the
theory applies to any parameter which is differentiable in a pathwise sense.

We show that the white noise model with a (possibly) nonlinear operator, the deconvolution model as well as
the Lévy model are regular indirect models and thus the convolution theorem applies. In many cases estimators are
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known that have the optimal limit distribution and consequently the information bound is sharp. The analysis of Lévy
processes is most challenging and the second half of this article is devoted to this model. Here, the proofs rely on
estimates of the distance of infinitely divisible distributions by Liese [23] and the Fourier multiplier approach which
was introduced by Nickl and Reiß [27].

We will put some stress on the Lévy model for three reasons: First, it is an important paradigm for nonlinear
problems in indirect density estimation. Second, to understand from an efficiency perspective the auto-deconvolution
structure of the Lévy model which was first reported by Belomestny and Reiß [1]. Third, to answer a conjecture by
Nickl and Reiß [27]. Based on low frequency observations of a Lévy process, they have constructed an estimator for
the (generalized) distribution function of the jump measure ν and proved asymptotic normality when the parametric
rate can be attained. The natural question is whether this estimator is efficient in the Hájek–Le Cam sense. Since
Buchmann and Grübel [5] have constructed for a finite and known jump activity a decompounding estimator with
smaller asymptotic variance, an information bound is of particular interest. With the general convolution theorem at
hand, we can prove that both estimators are indeed efficient and thus prior knowledge of the jump intensity simplifies
the statistical problem significantly. Concerning the information bound in the deconvolution setting, we can relax the
assumptions on the functionals and the admissible error densities by van Rooij et al. [37] and the assumptions on the
smoothness and decay behavior of the densities of Xi and εi by Söhl and Trabs [31] substantially. In fact, our abstract
approach leads to natural assumptions in the explicit models.

This paper is organized as follows: Starting with the linear white noise model, we develop our general results in
Section 2. These are illustrated in the deconvolution setup in Section 3. The theory will be applied to the Lévy model
in Section 4. While the previous sections are restricted to R

d -valued functionals, we discuss the extension to general
derived parameters in Section 5. More technical proofs are postponed to Section 6.

2. Regular indirect models

2.1. Linear white noise model

To understand the probabilistic structure of general inverse problems, we start with studying the abstract linear white
noise model (1.1), where X and Y are separable real Hilbert spaces with scalar products 〈•, •〉X and 〈•, •〉Y , respec-
tively, and K :X → Y is a linear and bounded operator. To avoid identifiability problems, we additionally assume that
K is injective. That is we observe for some unknown ϑ ∈ X

〈yε,ϑ , ϕ〉Y = 〈Kϑ,ϕ〉Y + εẆ (ϕ) for all ϕ ∈ Y,

where (Ẇ (ϕ))ϕ∈Y is an iso-normal Gaussian process with mean zero and covariance structure E[Ẇ (ϕ1)Ẇ (ϕ2)] =
〈ϕ1, ϕ2〉Y for ϕ1, ϕ2 ∈ Y . The law μ of the white noise Ẇ is defined as symmetric (zero mean) Gaussian measure on
(E,B(E)) for a separable Banach space E in which Y can be continuously embedded and where B(E) denotes the
Borel σ -algebra on E. In other words Ẇ is an isometry from Y into L2(E,B(E),μ). For the construction of the so
called abstract Wiener space we refer to Kuo [21], Theorem 4.1, Lemma 4.7. We denote the law of yε,ϑ by Pε,ϑ .

Basically, the linear white noise model is a Gaussian shift experiment where the parameter is hidden behind the
operator K . The inverse problem is to estimate a derived parameter χ(ϑ) from the observation yε,ϑ when ε → 0. First,
let us focus on a linear functional χ(ϑ) = 〈ζ,ϑ〉X for some ζ ∈ X. Typically, K is injective but admits no continuous
inverse, leading to an ill-posed problem, cf. Goldenshluger and Pereverzev [13,14] or Cavalier [6] for a recent review
of nonparametric estimation.

Following the classical semiparametric approach, we study parametric submodels by perturbing the parameter ϑ in
directions b ∈ X. For any b ∈ X we consider the submodel t �→ Pε,ϑt generated by the path [0,1)  t → ϑt := ϑ + tb.
The behavior of the submodel along this path is described by the following lemma.

Lemma 2.1. Let Pε,x denote the law of yε,x = K(x)+ εẆ on (E,B(E)) for x ∈ X, and an operator K :X → Y with
K(0) = 0, then for all ϑ ∈ X

dPε,x

dPε,ϑ

(yε,ϑ ) = exp

(
Ẇ

(
K(x) − K(ϑ)

ε

)
− 1

2ε2

∥∥K(x) − K(ϑ)
∥∥2

Y

)
Pε,ϑ -a.s.
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The proof of this lemma relies on the Cameron–Martin formula for Gaussian measures on Banach spaces [9],
Proposition 2.24, and is postponed to Section 6.1. Linearity of K yields ε−1(K(ϑε) − K(ϑ)) = Kb and thus by
Lemma 2.1

log
dPε,ϑε

dPε,ϑ

(yε,ϑ ) = Ẇ (Kb) − 1

2
‖Kb‖2

Y Pε,ϑ -a.s. (2.1)

and therefore model (1.1) with linear operator K satisfies the classical LAN condition (even without local and asymp-
totic) with parameter h = Kb ∈ ranK . To find an information bound for the derived parameter χ(ϑ) = 〈ζ,ϑ〉X , we
express it in terms of η = Kϑ by

ψ(η) := 〈
ζ,K−1η

〉
X

= χ(ϑ).

Since K−1 is typically not continuous, ψ will not be continuous along the path t �→ Kϑt = η + tKb without further
assumptions. Supposing however ζ ∈ ranK�, where ranK� denotes the range of the adjoint operator K�, continuity
and linearity of ψ follows from

ψ(η) = 〈
K�y,K−1η

〉
X

= 〈y,η〉Y for any y ∈ (
K�

)−1({ζ }).
In fact, we will see below that the condition ζ ∈ ranK� is equivalent to the regularity of ψ . If K� is not injective there
are many solutions y of the equation K�y = ζ . The unique solution with minimal norm is given by the Moore–Penrose
pseudoinverse(

K�
)†

ζ := (
K�|(kerK�)⊥

)−1
(ζ ) = Π(kerK�)⊥

(
K�

)−1({ζ }) for ζ ∈ ranK�, (2.2)

where Π(kerK�)⊥ denotes the orthogonal projection onto the orthogonal complement (kerK�)⊥ of the kernel of K�,
cf. [10], Definition 2.2 and Proposition 2.3, for the definition and fundamental properties of the pseudoinverse.

Given the regularity of the parameter, an LAN version of the Hájek–Le Cam convolution theorem (see [36], Theo-
rem 3.11.2) yields that the variance of any regular estimator is bounded from below by∥∥ΠranK

(
K�

)−1({ζ })∥∥2
Y

= ∥∥(K�
)†

ζ
∥∥2

Y
if ζ ∈ ranK�, (2.3)

since the closure of the range of K satisfies ranK = (kerK�)⊥.

Remark 2.2. Suppose that the operator K is injective and compact and denote the domain of K by domK . Then K

is adapted to the Hilbert scale (dom(K�K)−α)α≥0 generated by (K�K)−1 and its degree of ill-posedness is α = 1/2
(cf. [25]). According to [13], the parameter χ(ϑ) = 〈ζ,ϑ〉X can be estimated with parametric rate ε if and only
if ϑ ∈ ran((K�K)1/2). Noting that ranK� = ran((K�K)1/2) (see [10], Proposition 2.18), we recover the condition
ζ ∈ ranK�. Since the existence of a regular estimator implies in particular that χ(ϑ) can be estimated with rate ε,
this condition is natural for stating a convolution theorem.

Remark 2.3. The information bound in (2.3) is sharp. Usually, regularization methods are necessary to construct es-
timators in ill-posed problems because K† is unbounded and the observation yε,ϑ may not be in its domain. Assuming
ζ ∈ ranK�, we can however define the estimator χ̂(ϑ) := 〈(K�)†ζ, yε,ϑ 〉Y which satisfies

χ̂(ϑ) − χ(ζ ) = 〈(
K†)�ζ,Kϑ

〉
Y

− 〈ζ,ϑ〉X + εẆ
((

K†)�ζ )
= 〈

ζ,
(
K†K − Id

)
ϑ
〉
X

+ εẆ
((

K†)�ζ ) ∼N
(
0, ε2

∥∥(K†)�ζ∥∥2
Y

)
,

where we used K†K = Π(kerK)⊥ = Id because K is assumed to be injective. Therefore, the estimator χ̂ (ϑ) is efficient.

If the operator K in model (1.1) is nonlinear, the situation is more involved and a naive approach may fail as
the following example illustrates. We define the Fourier transform of a function f ∈ L1(R) ∪ L2(R) as Ff (u) :=∫

eiuxf (x)dx.
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Example 2.4. For a given ϑ ∈ Θ := {f ∈ L2(R)|f ≥ 0} ⊆ X := L2(R) consider the linear differential equation in f

f ′ = −f + ϑ2 with lim
t→−∞f (t) = 0, (2.4)

which has the explicit solution fϑ(t) := ∫ t

−∞ e−(t−s)ϑ2(s)ds. The inverse problem is to estimate a linear functional

χ(ϑ) = 〈ϑ, ζ 〉X, ζ ∈ X, given an observation of the solution fϑ ∈ Y := L2(R) of the previous equation corrupted by
white noise. Since (2.4) is equivalent to F [ϑ2] =F[f +f ′] = (1− iu)Ff , the operator K :Θ → L2(R), which maps
ϑ to the solution fϑ , can be written as

K(ϑ) =F−1[(1 − iu)−1F
[
ϑ2](u)

]
.

Note that K is well defined because ‖(1 − i•)−1F[ϑ2]‖L2 ≤ ‖(1 − i•)−1‖L2(R)‖ϑ‖2
L2(R)

. We see immediately that K

is nonlinear and injective on Θ . Due to the derivative in (2.4), ϑ does not depend continuously on the data fϑ and
thus the problem is ill-posed.

Following the strategy of the linear model, we introduce the direct parameter η = K(ϑ) and write ψ(η) =
〈ζ,K−1(η)〉X = χ(ϑ). Note that ψ is nonlinear in η. To study pathwise continuity of ψ , we consider the path
[0,1)  t �→ ηt = η + th with direction h = K(b), b ∈ Θ . Note that ηt ∈ ranK since(

ηt + η′
t

)1/2 = (
η + η′ + t

(
h + h′))1/2 = (

ϑ2 + tb2)1/2 ∈ Θ.

For some intermediate point ξ ∈ [0, t] the mean value theorem yields

t−1(ψ(ηt ) − ψ(η)
) = t−1〈K−1(ηt ) − K−1(η), ζ

〉
X

=
〈

1

2

(
η + η′)−1/2(

h + h′), ζ 〉
X

− t

〈
1

4

(
ηξ + η′

ξ

)−3/2(
h + h′)2

, ζ

〉
X

. (2.5)

The first term is the linearization ψ̇η(h) = 1
2 〈(η + η′)−1/2(h + h′), ζ 〉X = 1

2 〈ϑ−1b2, ζ 〉X where we have to impose
suitable conditions on ζ first to compensate the potentially nonintegrable singularities of ϑ−1 and second to ensure
continuity in h. But even if these conditions are satisfied, pathwise continuity of ψ may fail because the integrability
problems in the remainder in (2.5) are more serious because b4 is not integrable for every b ∈ X and the singularities
of (ϑ2 + ξb2)−3/2 are more restrictive.

What went wrong in Example 2.4? Regularity of the parameter ψ depends on two properties: (i) the choice of ζ and
(ii) the directions and paths along which we want to show the regularity. In particular the second point has to capture
the inverse structure of the problem. The approach in the following section provides a solution to both problems. It
gives a clear condition on ζ and it determines appropriate perturbations of the parameter, described by the tangent
space.

2.2. Local linear weak approximation

Turning to a much more general model, the following definition will ensure that it behaves locally like the model (1.1)
with a linear operator. Let Θ be a parameter set such that for any ϑ ∈ Θ there is a tangent set Θ̇ϑ that is a subset of
a Hilbert space with scalar product 〈•, •〉ϑ such that any element b ∈ Θ̇ϑ is associated to a path [0, τ )  t �→ ϑt ∈ Θ

starting at ϑ and for some τ > 0. For the sake of brevity we suppress the dependence of the path on b in the notation.

In the following Yn
Pn�⇒ Y denotes weak convergence of the law of Yn under the measure Pn to the law of Y for

random variables Y1, Y2, . . . and Y .

Definition 2.5. The sequence of statistical experiments (Xn,An,Pn,ϑ : ϑ ∈ Θ) is called a locally regular indirect
model at ϑ ∈ Θ with respect to the tangent set Θ̇ϑ if there are a Hilbert space (Hϑ, 〈•, •〉H ) and a continuous linear
operator

Aϑ : lin Θ̇ϑ → Hϑ
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such that for some rate rn ↓ 0 and for every b ∈ Θ̇ϑ with associated path t �→ ϑt there are random variables
(Gn(h))h∈ranAϑ satisfying

log
dPn,ϑrn

dPn,ϑ

= Gn(Aϑb) − 1

2
‖Aϑb‖2

H and

(2.6)(
Gn(h1), . . . ,Gn(hk)

) Pn,ϑ�⇒ (
G(h1), . . . ,G(hk)

)
for all k ∈ N, h1, . . . , hk ∈ ranAϑ

for a centered Gaussian process (G(h))h∈ranAϑ with covariance E[G(h1)G(h2)] = 〈h1, h2〉H . The operator Aϑ is
called generalized score operator.

In the sequel we will use the notation

Pn := {Pn,ϑ |ϑ ∈ Θ}.

The statistical interpretation of this regularity becomes clear by comparing it to the likelihood ratio (2.1) in the linear
white noise model. Condition (2.6) means that locally at ϑ the model (Pn,ϑrn

) converges to a limit experiment which
is a linear inverse problem (1.1) in white noise with operator K = Aϑ on the Hilbert space Hϑ and with noise level
εn = rn. In other words at ϑ , the model converges weakly to the linear inverse problem in the sense of Le Cam [22].
Therefore, the classical white noise model (1.1) serves as a locally linear weak approximation of the general model
Pn. The difference to the classical theory is that the limit experiment is not a direct Gaussian shift experiment, but
an indirect Gaussian shift, preserving the inverse structure of the problem. In that sense property (2.6) generalizes the
classical local asymptotic normality, which corresponds to the identity operator Aϑ = Id, to local asymptotic indirect
normality (LAIN).

The derived parameter χ :Θ → R
d , which is the aim of the statistical inference, should then be regular in the

following sense.

Definition 2.6. The function χ :Θ �→ R
d, d ∈ N, is pathwise differentiable at ϑ ∈ Θ with respect to the tangent

set Θ̇ϑ if there is a continuous linear operator χ̇ϑ : lin Θ̇ϑ → R
d such that for every b ∈ Θ̇ϑ with associated path

[0, τ )  t �→ ϑt ∈ Θ it holds

1

t

(
χ(ϑt ) − χ(ϑ)

) → χ̇ϑb as t ↓ 0.

By the Riesz representation theorem we can write χ̇ϑb = 〈χ̃ϑ , b〉ϑ for all b ∈ Θ̇ϑ and some gradient χ̃ϑ ∈ linΘ̇ϑ .
Recall that the sequence of parameter functions ψn :Pn →R

d given by ψn(Pn,ϑ ) = χ(ϑ) is called regular at ϑ relative
to AϑΘ̇ϑ if for any h ∈ AϑΘ̇ϑ and any submodel t �→ Pn,ϑt satisfying (2.6) with h = Aϑb for some b ∈ Θ̇ϑ , it holds

ψn(Pn,ϑrn
) − ψn(Pn,ϑ )

rn
→ ψ̇ϑ (h) (2.7)

for some continuous linear map ψ̇ϑ :H → R
d . Again the Riesz representation theorem determines a unique ψ̃ϑ ∈

ranAϑ = linAϑΘ̇ϑ such that ψ̇ϑ (h) = 〈ψ̃ϑ , h〉H for all h ∈ ranAϑ . ψ̃ϑ is called efficient influence function in the
classical semiparametric theory. As the last ingredient we recall that a sequence of estimators Tn :Xn → R

d is called
regular at ϑ with respect to the rate rn and relative to the directions Θ̇ϑ if there is a limit distribution L on the Borel
measurable space (Rd ,B(Rd)) such that

1

rn

(
Tn − χ(ϑrn)

) Pn,ϑrn�⇒ L

for every b ∈ Θ̇ϑ and any corresponding submodel t �→ Pn,ϑt . We recall the definition (2.2) of the Moore–Penrose
pseudoinverse K† of an operator K on its range and obtain the following convolution theorem.
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Theorem 2.7. Let (Xn,An,Pn,ϑ : ϑ ∈ Θ) be a locally regular indirect model at ϑ ∈ Θ and χ :Θ → R
d be pathwise

differentiable at ϑ with respect to Θ̇ϑ . Then the sequence ψn :Pn → R
d is regular at ϑ relative to Θ̇ϑ if and only if

each coordinate function of χ̃ϑ = (χ̃
(1)
ϑ , . . . , χ̃

(d)
ϑ ) is contained in the range of the adjoint score operator A�

ϑ :H →
linΘ̇ϑ .

In this case the efficient influence function is given by ψ̃ϑ = (A�
ϑ)†χ̃ϑ = ((A�

ϑ)†χ̃
(1)
ϑ , . . . , (A�

ϑ)†χ̃
(d)
ϑ ) and for any

regular estimator sequence Tn :Xn → R
d the limit distribution satisfies L =N (0,Σ) ∗ M for some Borel probability

distribution M and covariance matrix Σ ∈ R
d×d with

Σk,l = 〈
ψ̃

(k)
ϑ , ψ̃

(l)
ϑ

〉
H

= 〈(
A�

ϑ

)†
χ̃

(k)
ϑ ,

(
A�

ϑ

)†
χ̃

(l)
ϑ

〉
H

, k, l ∈ {1, . . . , d}. (2.8)

Proof. The characterization of regular parameter functions can be proved analogously to the i.i.d. setting studied in
Theorem 3.1 by van der Vaart [34]. Let us first consider d = 1. For any b ∈ Θ̇ϑ there is a path [0, τ )  t �→ ϑt in
direction b generating a submodel t �→ Pn,ϑt with h = Aϑb. If ψn is regular,

ψ̇ϑ (Aϑb) = lim
n→∞

ψn(Pn,ϑrn
) − ψn(Pn,ϑ )

rn
= lim

n→∞
χ(ϑrn) − χ(ϑ)

rn
= 〈χ̃ϑ , b〉ϑ .

Since the equality 〈ψ̃ϑ ,Aϑb〉H = ψ̇ϑ (Aϑb) = 〈χ̃ϑ , b〉ϑ holds for all b ∈ Θ̇ϑ , it follows A�
ϑψ̃ϑ = χ̃ϑ . To conclude

the converse direction, we can use the previous display as definition of ψ̇ϑ and have to verify that it is indeed lin-
ear and continuous. But this follows because by assumption there is some ψ ∈ H such that A�

ϑψ = χ̃ϑ and thus
ψ̇ϑ (h) = 〈ψ,h〉H for all h ∈ H . Because ranAϑ = (kerA�

ϑ)⊥, there is exactly one solution of A�
ϑψ = χ̃ϑ in ranAϑ

and this is given by (A�
ϑ)†χ̃ϑ = Π(kerA�

ϑ )⊥(A�
ϑ)−1({χ̃ϑ }). For d > 1 it is sufficient to consider the coordinate functions

separately.
To conclude the second part of the theorem, we consider AϑΘ̇ϑ as local parameter set and identify the local

parameter κn(Aϑb) := ψn(Pn,ϑrn
) = χ(ϑrn) with κn(0) := ψn(Pn,ϑ ). Then κn is regular relative to AϑΘ̇ϑ and we

can apply the convolution theorem in [36], Theorem 3.11.2. Hereby, we have to note that it is sufficient if the local
parameter set AϑΘ̇ϑ is only a subset of a Hilbert space, and thus (2.6) may not hold for all linear combinations of
elements in Θ̇ϑ , as long as the weak convergence Gn(h) �⇒ G(h) under Pn,ϑ holds true for all h ∈ linAϑΘ̇ϑ . �

The theorem implies immediately that the asymptotic covariance of every regular estimator of χ(ϑ) is bounded
from below by (2.8) in the order of nonnegative definite matrices. If χ̃ϑ is contained in the smaller range of the
information operator A�

ϑAϑ , then the efficient influence function can be obtained by

ψ̃ϑ = (
A�

ϑ

)†
χ̃ϑ = Aϑ

(
A�

ϑAϑ

)†
χ̃ϑ ,

owing to ker(A�
ϑAϑ) = kerAϑ . Therefore, in this case the hardest parametric subproblem is given by the direction

(A�
ϑAϑ)†χ̃ϑ ∈ linΘ̇ϑ . In the finite dimensional linear model this lower bound coincides with the minimal variance of

the Gauß–Markov theorem. Let us illustrate Theorem 2.7 in several examples.

Example 2.8 (Indirect regression model). With X = Y = L2(R) and a linear, bounded, injective operator K :X → Y

consider the indirect regression model with deterministic design

Yi = (Kf )

(
i

n

)
+ εi, i = 1, . . . , n, with unkown f ∈ X

and with i.i.d. errors ε1, . . . , εn ∼ μ for some law μ. Therefore, (Y1, . . . , Yn) ∼ Pn,f = ∏n
i=1 μ(• − (Kf )(i/n)).

Khoujmane et al. [18] have proved a convolution theorem for estimating χ(f ) = 〈ζ, f 〉L2(R), ζ ∈ X with ‖ζ‖L2(R) =
1, where f and the error distribution μ are unknown. Let us focus on the submodel with standard normal errors
εi ∼ N (0,1). Under smoothness conditions it is stated in this submodel ([18], Theorem 2, with δ = 0), that the
asymptotic distribution of any regular estimator is given by the convolution N (0,‖Kζ‖−2

L2(R)
) ∗ M for some Borel

probability measure M .
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To apply Theorem 2.7, we have to check that this model is a regular indirect model. Choosing the tangent space
Θ̇f = X with linear paths ft = f + tb in directions b ∈ Θ̇f , we calculate

log
dPn,f1/

√
n

dPn,f

(Y1, . . . , Yn)

= − 1

2n

n∑
i=1

(Kb)2
(

i

n

)
+ 1

n1/2

n∑
i=1

(Kb)

(
i

n

)(
Yi − (Kf )

(
i

n

))
Pn,f�⇒N

(
−1

2
‖Kb‖2

L2(R)
,‖Kb‖2

L2(R)

)
.

Therefore, the generalized score operator is given by Af = K . Assuming for simplicity that ζ ∈ ran(K�K), the asymp-
totic distribution of any regular estimator is given by a convolution N (0,‖K(K�K)†ζ‖2

L2(R)
)∗M . Since the Cauchy–

Schwarz inequality yields ‖Kζ‖L2(R)‖K(K�K)†ζ‖L2(R) ≥ ‖ζ‖2
L2(R)

= 1, the bound by [18] achieves our information

bound if and only if K�K = λId for some λ > 0. Therefore, their information bound may not be optimal. The reason
is that f has been perturbed in direction ζ instead of the least favorable direction (K�K)†ζ .

Example 2.9 (Nonlinear white noise model). Suppose we observe yn,ϑ = K(ϑ) + εnẆ with εn → 0 as n → ∞ on
the Hilbert space Y for some ϑ ∈ X and for a not necessarily linear operator K :X ⊇ Θ → Y with K(0) = 0 which
is Gâteaux differentiable at the inner point ϑ ∈ Θ . That is there is a continuous linear operator K̇ϑ : X → Y with

lim
t→0

1

t

(
K(ϑ + tb) − K(ϑ)

) = K̇ϑb for all b ∈ X.

By the Hilbert space structure, the tangent space can be chosen as Θ̇ϑ = X by considering the path [0,1)  t �→
ϑt := ϑ + tb for b ∈ Θ̇ϑ . Lemma 2.1 yields for any b ∈ X with associated path t �→ ϑt

log
dPn,ϑεn

dPn,ϑ

(yn,ϑ ) = Ẇ

(
K(ϑ + εnb) − K(ϑ)

εn

)
− 1

2ε2
n

∥∥K(ϑ + εnb) − K(ϑ)
∥∥2

Y
.

Therefore, the LAIN property (2.6) is satisfied with generalized score operator chosen as the Gâteaux derivative
Aϑ = K̇ϑ at ϑ and

Gn(Aϑb) = Ẇ

(
K(ϑ + εnb) − K(ϑ)

εn

)
− 1

2

(∥∥∥∥K(ϑ + εnb) − K(ϑ)

εn

∥∥∥∥2

Y

− ‖K̇ϑb‖2
Y

)
,

where Gn(Aϑb) �⇒ N (0,‖K̇ϑb‖2
Y ), since the variance of the first term of Gn converge to ‖K̇ϑb‖2

Y and the second
term converges deterministically to zero by the Gâteaux differentiability. The convergence of the finite dimensional
distributions follows likewise.

Along the path t �→ ϑt the linear functional χ(ϑ) = 〈ζ,ϑ〉X possesses the derivative

lim
t→0

1

t

(
χ(ϑt ) − χ(ϑ)

) = 〈ζ, b〉X.

Hence, χ̇ϑb = 〈χ̃ϑ , b〉X for the gradient χ̃ϑ = ζ and all b ∈ Θ̇ϑ . Applying Theorem 2.7 shows in particular that the
asymptotic variance of every regular sequence of estimators Tn (with respect to the rate εn) of the functional χ(ϑ) is
bounded from below by∥∥(K̇�

ϑ

)†
ζ
∥∥2

Y
whenever ζ ∈ ran K̇�

ϑ .

If K is a linear bounded operator the score operator is Aϑ = K̇ϑ = K and thus the statement of Theorem 2.7 coincides
with the previous result (2.3).

In Remark 2.3 we saw that this information bound can be achieved if K is linear. For nonlinear operators an upper
bound is beyond the scope of this paper.
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Example 2.10 (Example 2.4 continued). Let us come back to the ill-posed inverse problem in Example 2.4 related to
the differential equation (2.4). The corresponding nonlinear operator K :X → Y with Θ = {f ∈ L2(R)|f ≥ 0} ⊆ X

and X = Y = L2(R) was given by K(ϑ) = F−1[(1 − i•)−1F[ϑ2]]. For ϑ ∈ Θ and any b ∈ Θ̇ϑ := Θ the functional
χ(ϑ) = 〈ζ,ϑ〉X, ζ ∈ L2(R), is pathwise differentiable along the path [0,1) �→ ϑt = ϑ + tb with gradient χ̃ϑ = ζ . K

is pathwise differentiable with respect to the tangent set Θ̇ϑ at ϑ with derivative

K̇ϑb =F−1[(1 − iu)−1F[2bϑ](u)
]
.

Since K̇ is well defined on lin Θ̇ϑ = L2(R), the generalized score operator Aϑ : lin Θ̇ϑ → H := L2(R) is given by
Aϑb = K̇ϑb as in the previous example. The “directions” in which we perturb the direct parameter K(ϑ) are then
given by AϑΘ̇Θ = {K(

√
ϑb)|b ∈ X}. Applying Plancherel’s identity twice, the adjoint of Aϑ can be calculated via

〈K̇ϑb,h〉 = 1

2π

∫
(1 − iu)−1F[2bϑ](u)Fh(u)du

= 〈
b,2ϑF−1[(1 − iu)−1Fh(−u)

]〉
X
,

for b,h ∈ L2(R). Therefore, A�
ϑh = 2ϑF−1[(1 − iu)−1Fh(−u)] and regularity of the parameter function follows for

any ζ ∈ ranA�
ϑ = {ϑf |f ∈ H 1(R)} with the Sobolev space H 1(R) = {f ∈ L2(R)| ∫ (1 + u2)|Ff (u)|2 du < ∞}.

As Example 2.10 indicates, the adjoint score operator A�
ϑ has usually no closed range. In these cases it is a difficult

problem to determine the range of A�
ϑ . As the following characterization shows, it is sufficient to know A�

ϑ on a dense
subspace. This approximation argument will turn out to be very useful for more complex models.

Proposition 2.11. Let A�
ϑ :H → linΘ̇ϑ be injective and let G be a dense subspace in H . Then χ̃ϑ ∈ linΘ̇ϑ is contained

in ranA�
ϑ if and only if the following is satisfied

(i) there exists a sequence χn ∈ ranA�
ϑ |G such that χn → χ̃ϑ as n → ∞ and

(ii) (A�
ϑ)−1χn converges to some ψ ∈ H .

In this case A�
ϑψ = χ̃ϑ and thus ΠranAϑ

ψ = ψ is the efficient influence function.

Proof. “if ”: Since A�
ϑ is a bounded operator, its graph{(

g,A�
ϑg

)
: g ∈ H

} ⊆ H × linΘ̇ϑ

is closed. Therefore, the inverse operator (A�
ϑ)−1|ranA�

ϑ
is closed, too. Consequently, (i) and (ii) imply χ̃ϑ ∈

dom(A�
ϑ)−1 = ranA�

ϑ with (A�
ϑ)−1χ̃ϑ = ψ .

“only if ”: Since χ̃ϑ ∈ ranA�
ϑ there is some ψ ∈ H such that A�

ϑψ = χ̃ϑ . Moreover, there is a sequence (gn) ⊆ G
with gn → ψ because G is dense in H . The continuity of A�

ϑ yields then χn := A�
ϑgn → A�

ϑψ = χ̃ϑ . �

2.3. I.i.d. observations

When the observations are given by n independent and identically distributed random variables Y1, . . . , Yn, the model
simplifies to the product space (X n,A⊗n,P ⊗n

ϑ : ϑ ∈ Θ) such that the probability measure is completely described
by the family of marginal distributions P = {Pϑ : ϑ ∈ Θ}. We will rephrase the conditions of the previous section in
terms of the marginal measure Pϑ . This setting appears quite often in applications and, in particular, the deconvolution
model and the Lévy model which we study in Sections 3 and 4 will be two examples. That is why, we will give some
details for the i.i.d. case.

Recall that a tangent set ṖPϑ at Pϑ is a set of score functions g of submodels [0, τ )  t �→ Pϑt starting at Pϑ and
for some τ > 0. In the present situation the derived parameter can be written as ψ(Pϑ) = χ(ϑ), independent of n. The
classical Hajék–Le Cam convolution theorem (cf. [2], Theorem 3.3.2) applies if ψ is differentiable at Pϑ relative to
ṖPϑ , that is, there exists a continuous linear map ψ̇ :L2(Pϑ) → R

k such that

lim
t→0

ψ(Pϑt ) − ψ(Pϑ)

t
= ψ̇g for all g ∈ ṖPϑ .
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This differentiability corresponds to the general assumption (2.7). In the i.i.d. setting local asymptotic normality
follows from Hellinger regularity of the submodel t �→ Pϑt . Therefore, we can reformulate the conditions in Defini-
tion 2.5 to the following

Assumption A. At ϑ ∈ Θ let the parameter set give rise to a tangent set Θ̇ϑ . Furthermore, let there be a continuous
linear operator

Aϑ : lin Θ̇ϑ → L2
0(Pϑ) :=

{
g ∈ L2(Pϑ):

∫
g dPϑ = 0

}
such that for every b ∈ Θ̇ϑ with associated path t �→ ϑt∫ ( dP

1/2
ϑt

− dP
1/2
ϑ

t
− 1

2
Aϑb dP

1/2
ϑ

)2

→ 0 as t ↓ 0. (2.9)

In (2.9) dPϑt denotes the Radon–Nikodym μ-density of Pϑt for some dominating measure μ and the integration
is with respect to μ. Since the integral does not depend on μ, it is suppressed in the notation.

Lemma 2.12. If the product model (X n,A⊗n,P ⊗n
ϑ : ϑ ∈ Θ) satisfies Assumption A at ϑ ∈ Θ , then it is a locally

regular indirect model at ϑ ∈ Θ with respect to the tangent set Θ̇ϑ , with rate rn = n−1/2 and (generalized) score
operator Aϑ .

Proof. The Hellinger regularity in Assumption A implies local asymptotic normality, since it yields (see Bickel et al.
[2], Proposition 2.1.2),

n∑
j=1

log
dPϑ1/

√
n

dPϑ

(Xj ) = 1√
n

n∑
j=1

Aϑb(Xj ) − 1

2
‖Aϑb‖L2(Pϑ ) + Rn

for a remainder Rn that converges in P ⊗n
ϑ -probability to zero. Hence, the LAIN property (2.6) is satisfied with rate

1/
√

n and with the score operator Aϑ mapping into the Hilbert space H = L2
0(Pϑ). The convergence of the finite

dimensional distributions in Definition 2.5 follows from the Cramér–Wold device and the linearity of Aϑ . �

Note that L2
0(Pν) is the orthogonal complement of lin 1 and thus it is a closed subspace of the Hilbert space L2(Pν).

The operator Aϑ maps directions b ∈ Θ̇ϑ into score functions at Pϑ and thus it is called score operator which explains
the name given in the general case. It generates the tangent set ṖPϑ = AϑΘ̇ϑ of the model P at Pϑ . Note that the
range of Aϑ is a subset of the maximal tangent set as the following example shows.

Example 2.13 (Maximal tangent set). Let P be the model of all probability measures on some sample space. The
maximal tangent set of the model P at some distribution P is given by L2

0(P ). This can be seen as follows: Score
functions are necessarily centered and square integrable. For any score g ∈ L2

0(P ) a one-dimensional submodel is t →
c(t)k(tg(x))dP(x) with a C2(R)-function k :R → R+ which satisfies k(0) = k′(0) = 1 and such that k′/k is bounded
and with normalization constant c(t) = ‖k(tb)‖−1

L1(ν)
, for instance, k(y) = 2/(1 + e−2y) (cf. [35], Example 25.16).

Theorem 2.7 yields then the following convolution theorem, which was already obtained by van der Vaart [34].

Corollary 2.14. Suppose the product model with marginal distributions P = {Pϑ |ϑ ∈ Θ} satisfies Assumption A and
let χ :Θ → R

d be pathwise differentiable with respect to Θ̇ϑ . The map ψ :P → R
d is differentiable at Pϑ relative

to the tangent set ṖPϑ = AϑΘ̇ϑ if and only if each coordinate function of χ̃ϑ is contained in the range of the adjoint
score operator A�

ϑ :L2
0(Pϑ) → linΘ̇ϑ . In this case the efficient influence function is given by ψ̃ϑ = (A�

ϑ)†χ̃ϑ .
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In particular, for ζ ∈ ranA�
ϑ the asymptotic covariance matrix of every regular estimator is bounded from below by

Eϑ

[
ψ̃Pϑ ψ̃�

Pϑ

] = Eϑ

[((
A�

ϑ

)†
χ̃ϑ

)((
A�

ϑ

)†
χ̃ϑ

)�]
.

If χ̃ϑ /∈ ranA�
ϑ , van der Vaart [34] shows that there exists no regular estimator of the functional χ(ϑ).

In the i.i.d. case we find the following statistical interpretation of Proposition 2.11, adopting the Cramér–Rao point
of view. Let G be a dense subset of L2

0(Pϑ) and let χ(ϑ) be a one-dimensional derived parameter with gradient χ̃ϑ .
Consider an approximating sequence χn → χ̃ϑ satisfying G  gn := (A�

ϑ)†χn → ψ̃Pϑ . Assuming G ⊆ ranAϑ , we can

define bn := A
†
ϑgn = I †χn where I := A�

ϑAϑ is the information operator. The information bound can be read as a
Cramér–Rao bound in the least favorable submodel

E
[
ψ̃2

Pϑ

] = sup
g∈lin ṖPϑ

〈ψ̃Pϑ , g〉2
Pϑ

〈g,g〉Pϑ

= sup
b∈lin Θ̇ϑ

〈χ̃ϑ , b〉2
ϑ

〈Aϑb,Aϑb〉Pϑ

≥ (〈χn, bn〉ϑ − 〈χ̃ϑ − χn, bn〉ϑ)2

〈Aϑbn,Aϑbn〉Pϑ

, (2.10)

where we plugged in the direction bn = I †χn. The term 〈χn, bn〉2
ϑ/〈Aϑbn,Aϑbn〉Pϑ = 〈gn, gn〉Pϑ is the Cramér–Rao

bound for the estimation problem of a functional, which approximates χ(ϑ), with gradient χn. The approximation
error 〈χ̃ϑ − χn, bn〉ϑ should be understood as bias. Since bn does not have to be bounded, χn → χ̃ϑ is not sufficient
to conclude that the bias vanishes. However, Proposition 2.11(ii) implies that this error converges to zero owing to the
Cauchy–Schwarz inequality:∣∣〈χ̃ϑ − χn, bn〉ϑ

∣∣ = ∣∣〈(A�
ϑ

)†
(χ̃ϑ − χn),Aϑbn

〉
Pϑ

∣∣ ≤ ‖ψ̃Pϑ − gn‖Pϑ ‖gn‖Pϑ → 0.

Hence, the Cramér–Rao bound (2.10) converges to the information bound 〈ψ̃Pϑ , ψ̃Pϑ 〉Pϑ . A similar perspective was
taken by Söhl and Trabs [31].

3. Deconvolution

Let us discuss the previous results in the classical nonparametric deconvolution setup, which has many applications,
e.g., measurement-error problems (see [24]). We observe an i.i.d. sample

Yi = Xi + εi, i = 1, . . . , n. (3.1)

Let Xi and εi be independent and have distributions ν and μ, respectively. If μ is known, the model is P = {Pν =
ν ∗ μ|ν ∈ Θ} where the parameter set Θ is given by the set of all probability measures. We aim for a convolution
theorem for estimating the linear functional ψ(Pν) = χ(ν) := ∫

ζ dν with ζ ∈ L2(ν). One of the most interesting
examples is the estimation of the distribution function of X1, corresponding to ζ = 1(−∞,t] for t ∈ R.

In a general linear indirect density estimation setting, a convolution theorem was already proved by van Rooij
et al. [37], who use the spectral decomposition of the operator. Their approach applies however only for a restricted
class of functionals, depending on the polar decomposition, and they need an abstract condition on the density of ν

which is difficult to verify. It implicitly assumes an appropriate decay behavior on this density. Their application to the
deconvolution setting is restricted to a specific example. Studying deconvolution in more detail, Söhl and Trabs [31]
have shown an information bound, assuming a polynomial decay behavior of a sufficiently regular Lebesgue density
of ν and a bit more than second moments. They described the class of admissible functionals analytically, including
the estimation of the distribution function of ν. Here, we are able to relax the conditions on ν and μ considerably, see
Theorem 3.2 and Remark 4.12 below.

For any ν ∈ Θ we choose the tangent space

Θ̇ν := L2
0(ν) = linΘ̇ν.
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According to Example 2.13, Θ̇ν coincides with the maximal tangent set for direct observations. For any direction b ∈
Θ̇ν and some sufficiently small τ > 0 the path [0, τ )  t → νt where dνt

dν
= k(tb)/

∫
k(tb)dν with k :R → R+ as in

Example 2.13 is a submodel of Θ with b = ∂
∂t

|t=0 log(dνt ). Using |k(tb)| ≤ t |b| ∈ L2(ν) and dominated convergence,
the pathwise derivative of χ along t �→ νt at t = 0 is given by

lim
t→0

t−1(χ(νt ) − χ(ν)
) = lim

t→0

∫
ζ(x)t−1

(
dνt

dν
(x) − 1

)
dν(x)

=
∫

ζ(x)b(x)ν(dx) = 〈ζ, b〉ν =: χ̇νb.

Hence, the derivative can be represented by χ̇νb = 〈χ̃ν, b〉ν for χ̃ν = ζ − ∫
ζ dν ∈ Θ̇ν . The path t �→ νt induces a

regular submodel t �→ Pνt = νt ∗ μ which is shown by the following lemma.

Lemma 3.1. For any nonzero b ∈ Θ̇ν = L2
0(ν) the submodel [0, τ )  t �→ Pνt = νt ∗ μ, for τ > 0 sufficiently small, is

Hellinger differentiable, that is (2.9) holds with continuous score operator

Aν : Θ̇ν → L2
0(Pν), b �→ E

[
b(X)|X + ε

] = d((bν) ∗ μ)

dPν

, (3.2)

where the expectation is taken with respect to the product measure P (X,ε) = ν ⊗ μ.

Proof. First, note that the (signed) measure (f ν) ∗ μ is absolutely continuous with respect to ν ∗ μ for any f ∈
L1(ν), written as (f ν) ∗ μ � ν ∗ μ. In particular, the Radon–Nikodym density in (3.2) is well defined and Pνt � Pν

for all t > 0. Let us write Et [•] for the expectation under P
(X,ε)
t = νt ⊗ μ. We define pt (y) := dPνt

dPν
(y), nt (x) :=

dνt

dν
(x) = k(tb(x))/

∫
k(tb)dν. Let R × B(R)  (y,A) �→ κX,X+ε(y,A) be the regular conditional probability

of P (X,ε)(X ∈ •|X + ε) that is

κX,X+ε(y,A) = P (X,ε)(X ∈ A|X + ε = y)

for P ν -a.e. y ∈ R and all A ∈ B(R). We claim

pt(Y ) = E0
[
nt (X)|X + ε = Y

] =
∫

nt (x)κX,X+ε(Y,dx) Pν-a.s. (3.3)

To verify (3.3), we note for any Borel set A ∈ B(R)

E0
[
1A(Y )pt (Y )

] = Et

[
1A(Y )

] = E0
[
1A(X + ε)nt (X)

]
= E0

[
1A(Y )E0

[
nt (X)|X + ε = Y

]]
(3.4)

which shows the first equality in (3.3). The second one follows from the choice of κX,X+ε .
We will show regularity of the submodel (−τ, τ )  t �→ Pνt = νt ∗ μ for a sufficiently small τ > 0 by applying

Proposition 2.1.1 in [2]. Using the properties of k,

ṅt (x) := ∂

∂t
nt (x) = b(x)k′(tb(x))

∫
k(tb)dν − k(tb(x))

∫
bk′(tb)dν

(
∫

k(tb)dν)2

can be uniformly in t ∈ (−τ, τ ) bounded by cb(b(x) + 1) for a constant cb > 0, depending on b, and it is continuous
in t on (−τ, τ ) for some sufficiently small τ > 0. Since b ∈ L2(ν) ⊆ L2(ν ⊗ μ), dominated convergence and (3.3)
yield that pt(y) is continuously differentiable in t ∈ (−τ, τ ) for Pν -almost all y ∈R with derivative

ṗt (y) = ∂

∂t
pt (y) =

∫
ṅt (x)κX,X+ε(y,dx) = E0

[
ṅt (X)|X + ε = y

]
.
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By Jensen’s inequality we see that

‖ṗt‖2
L2(Pt )

= E0
[
pt (Y )

∣∣E0
[
ṅt (X)|X + ε = Y

]∣∣2] ≤ E0
[
pt(Y )

∣∣ṅt (X)
∣∣2]. (3.5)

Since nt (x) can be bounded uniformly in t ∈ (−τ, τ ) and x ∈ R, the density pt (Y ) is Pν -a.s. bounded by some constant
C > 0 owing to (3.3). Therefore, we conclude from the previous estimate together with the bound |ṅt | ≤ cb(b + 1)

and b ∈ L2(ν) that

‖ṗt‖2
L2(Pt )

≤ CE0
[∣∣ṅt (X)

∣∣2] ≤ Cc2
bE0

[(
b(X) + 1

)2]
< ∞.

In particular, the Fisher information It := Et [ṗt (Y )2] is finite. Using (3.5), we infer that It is continuous. Noting that

∂

∂t

∣∣∣∣
t=0

∫
k(tb)dν =

∫
b dν = 0 and thus ṅ0(y) = ∂

∂t

∣∣∣∣
t=0

nt (x) = b(x),

we have I0 = E0[b(X)2] and It is therefore nonzero for b �= 0 and t small enough. In combination with the continuous
differentiability of pt , Proposition 2.1.1 in [2] yields the Hellinger differentiability (2.9) at t = 0 with derivative 1

2 ṗ0.
We obtain the score operator

Aνb := ṗ0 = E0
[
b(X)|X + ε

]
.

To see that Aν : Θ̇ν → L2
0(Pν) is well defined and continuous, we again use Jensen’s inequality which yields

E0[Aνb] = E0
[
b(X)

] = 0 and E0
[|Aνb|2] ≤ E0

[∣∣b(X)
∣∣2] = ‖b‖2

L2(ν)
.

Finally, a similar calculation as (3.4) shows Aνb = E0[b(X)|X + ε] = d((bν)∗μ)
dPν

. �

Lemma 3.1 shows that Assumption A is satisfied and thus Lemma 2.12 yields regularity of the deconvolution
model with rate rn = 1/

√
n. In order to apply Corollary 2.14, we have to determine the adjoint of the score operator.

For any g ∈ L2
0(Pν) and any b ∈ Θ̇ϑ ⊆ L2(ν) the map R

2  (x, y) �→ g(x + y)b(x) is ν ⊗ μ-integrable due to the
Cauchy–Schwarz inequality. (bν) ∗ μ � Pν and Fubini’s theorem thus yield

〈Aνb,g〉Pν =
∫

(Aνb)g dPν =
∫

g d
(
(bν) ∗ μ

)
=

∫ ∫
g(x + y)b(x)ν(dx)μ(dy) = 〈

μ(−•) ∗ g, b
〉
ν
.

Noting that Jensen’s inequality shows

∥∥μ(−•) ∗ g
∥∥2

L2(ν)
=

∫ (∫
g(x + y)μ(dy)

)2

ν(dx) ≤
∫

g2 d(ν ∗ μ) = ‖g‖2
L2(Pν)

and that
∫
(μ(−•) ∗ g)dν = ∫

g d(ν ∗ μ) = 0, the adjoint score operator equals

A�
ν :L2

0(Pν) → Θ̇ν, g �→ μ(−•) ∗ g. (3.6)

Under weak conditions on the measures ν and μ we conclude the following convolution theorem. Thereby we extend
the definition of the Fourier transform to finite measure μ on the Borel measurable space (R,B(R)) by Fμ(u) =∫

eiuxμ(dx).
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Theorem 3.2. In the deconvolution model (3.1) suppose that ϕε(u) := E[eiuε1] = Fμ(u) �= 0 for all u ∈ R and
that ν admits a Lebesgue density. Then A�

ν as given in (3.6) is injective. Let moreover ζ (1), . . . , ζ (d) ∈ L2(ν)

satisfy ζ (j) ∈ ranA�
ν for j = 1, . . . , d and d ∈ N. Then the limit distribution of any estimator of the parameter

(
∫

ζ (1) dν, . . . ,
∫

ζ (d) dν) which is regular with respect to the rate n−1/2 equals N (0,Σ) ∗ M for some Borel proba-
bility measure M and with covariance matrix Σ ∈R

d×d given by

Σj,k =
∫ ((

A�
ν

)−1
ζ (j)

)((
A�

ν

)−1
ζ (k)

)
dPν −

(∫
ζ (j) dν

)(∫
ζ (k) dν

)
(3.7)

for j, k = 1, . . . , d .

Proof. Let us first show that on the assumptions the adjoint operator A�
ν is injective. Since ν admits a Lebesgue

density, the equivalence classes with respect to the Lebesgue measure embed into the equivalence classes with respect
to ν and with respect to Pν . Hence, we can consider the subset G := L2(R) ∩ L2

0(Pν), which is dense in L2
0(Pν) (cf.

Section 6.4(ii)). Since the kernel of the continuous operator A�
ν is closed, it is sufficient to show that the restricted

operator A�
ν |G is injective. For any g ∈ G it holds 0 = A�

νg = μ(−•) ∗ g if and only if 0 =F [μ(−•) ∗ g] = ϕε(−•)Fg

which is equivalent to Fg = 0 since |ϕε| > 0 by assumption. Hence, the kernel of A�
ν equals {0}.

To infer the information bound, recall that the gradient of the linear functional
∫

ζ (j) dν is χ̃
(j)
ν = ζ (j) − ∫

ζ (j) dν.

Furthermore, note that ζ (j) ∈ ranA�
ν implies χ̃

(j)
ν ∈ ranA�

ν since A�
νa = μ(−•) ∗ a = ∫

a dμ = a for any real number
a ∈ R. Therefore, Lemma 3.1, Corollary 2.14 and the injectivity of A�

ν yield the vector of efficient influence functions

ψ̃
(j)
Pν

= (
A�

ν

)−1
χ̃ (j)

ν = (
A�

ν

)−1
ζ (j) −

∫
ζ (j) dν, j = 1, . . . , d,

and the assertion follows from Theorem 2.7. �

Remark 3.3. The assumption ϕε(u) �= 0, u ∈ R, is not sufficient for the injectivity of A�
ν as the following coun-

terexample shows: Let ν = δ0 be the Dirac measure in zero and μ = N (0,1) be standard normal such that
Pν = ν ∗ μ = N (0,1). Consider g ∈ L2

0(Pν) with g(x) = x3, x ∈ R. Then, A�
νg(x) = E[(x + ε1)

3] is zero at the
origin. Hence, A�

νg = 0 ν-a.s. and 0 �= g ∈ kerA�
ν . A sufficient condition for A�

ν being injective is given in Theo-
rem 3.2 by assuming additionally a Lebesgue density of ν, which is a natural assumption. In particular, we obtain
ranAν = L2

0(Pν) implying that the tangent space ṖPν = AνΘ̇ν is dense in the set of all score functions. Without
injectivity the convolution theorem remains true if the inverse (A�

ν)
−1 in (3.7) is replaced by the Moore–Penrose

pseudoinverse (A�
ν)

†.

In view of Theorem 2.7 our condition ζ (j) ∈ ranA�
ν, j = 1, . . . , d , is necessary and sufficient for the regularity

of the parameter. The remaining question is under which conditions 1(−∞,t] ∈ ranA�
ν, t ∈ R, and how the pre-image

looks like in this case. Applying the approach by Nickl and Reiß [27], we will give an answer in the more involved
Lévy setting. Under certain assumptions on μ it can be carried over to the deconvolution case and leads to a similar
result, but with weaker conditions on μ than by Söhl and Trabs [31] (see Remark 4.12 below). In particular, these
conditions will imply that 1(−∞,t] can be estimated with parametric rate.

4. Application to Lévy processes

4.1. Setting and regularity

Recall that a Lévy process (Lt )t≥0 is a stochastic process which is stochastically continuous with L0 = 0 and which
has stationary and independent increments. Let (Lt ) be real-valued. For some distance Δ > 0 we observe the Lévy
process at equidistant time points tk = Δk with k = 0, . . . , n. In the so called low-frequency regime Δ remains
fixed as n goes to infinity. The Lévy process is uniquely determined by its characteristic triplet consisting of the
volatility σ 2 ≥ 0, of the drift parameter γ ∈ R and of the Lévy or jump measure ν on (R,B(R)) which satisfies
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R
(|x|2 ∧ 1)ν(dx) < ∞ and ν({0}) = 0 (cf. [30], Chapter 2). Our aim is to derive a convolution theorem for the

estimation of the linear functional of the jump measure

χ(ν) :=
∫

ζ dν for ζ ∈ L1(ν) ∩ L2(ν). (4.1)

If ζ is R
d -valued, the scalar product in (4.1) has to be interpreted coordinatewise. As a relevant example the reader

should have in mind the generalized distribution function of ν. It corresponds to ζ = 1(−∞,t] for t < 0 and ζ = 1[t,∞)

for t > 0. This adaptation of the standard distribution function is necessary owing to the possibly existing singularity
of ν at the origin. In order for the estimation of χ(ν) to be possible with parametric rate, we restrict on processes with
finite variation in view of the lower bounds by Neumann and Reiß [26]. That means σ 2 = 0 and

∫
R
(|x|∧1)ν(dx) < ∞

are assumed. For a recent review on the statistical inference on Lévy processes we refer to Reiß [29].
Due to the stationary and independent increments of (Lt ), the random variables Yk := LΔk −LΔ(k−1), k = 1, . . . , n,

are independent and identically distributed. Their characteristic function is given by the Lévy–Khintchine formula

ϕν(u) = E
[
eiuLΔ

] = exp

(
Δ

(
iγ u +

∫ (
eiux − 1

)
ν(dx)

))
. (4.2)

Fixing the drift γ , the model is given by

P = {
Pν =F−1ϕν |ν ∈ Θ

}
with

(4.3)

Θ =
{
ν jump measure on

(
R,B(R)

)∣∣∣∫ (|x| ∧ 1
)
ν(dx) < ∞

}
.

Compared to tangents at the set of probability measures in Example 2.13, directions for the Lévy measures do
not need to be centered since Lévy measures are not normalized. In general, jump measures are even not finite such
that L2(ν), which gives the Hilbert space structure, is still too large. We should intersect with L1(ν) to include linear
functionals as (4.1). Hence, we define the tangent space at ν ∈ Θ as

Θ̇ν := L1(ν) ∩ L2(ν) = lin Θ̇ν. (4.4)

Using the function k(y) = 2/(1 + e−2y) from Example 2.13, for any b ∈ Θ̇ν the path [0,1)  t �→ νt with dνt

dν
(x) =

k(tb(x)) is contained in Θ and satisfies

b(x) = ∂

∂t

∣∣∣∣
t=0

log

(
dνt

dν
(x)

)
.

On this path the derivative of the functional (4.1) can be calculated with use of dominated convergence, noting that
|k(tb) − 1| ≤ t |b| ∈ L2(ν). Hence,

lim
t→0

t−1(χ(νt ) − χ(ν)
) = lim

t→0

∫
ζ(x)t−1

(
dνt

dν
(x) − 1

)
dν(x)

=
∫

ζ(x)b(x)ν(dx) = 〈ζ, b〉ν =: χ̇νb

and thus the gradient is given by χ̃ν = ζ . Compared to the deconvolution setting, we do not need to center χ̃ν because
the total mass of the Lévy measure is allowed to change along the path.

To apply Corollary 2.14, we need to verify Assumption A for the Lévy model. By the Lévy–Khintchine represen-
tation the laws Pνt satisfy

Pνt = F−1
[

exp

(
Δ

(
iγ u +

∫ (
eiux − 1

)
νt (dx)

))]
= F−1

[
exp

(
Δ

∫ (
eiux − 1

)(
k
(
tb(x)

)− 1
)
ν(dx)

)
ϕν(u)

]
. (4.5)
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Owing to (k(tb) − 1) ∈ L1(ν), the measure Pνt is a convolution of Pν and a compound Poisson type measure with
signed jump measure Δ(k(tb) − 1)dν. To see that the submodel t �→ Pνt is dominated, we check that the Hellinger
distance of the jump measures

∫
(
√

dνt −
√

dν)2 = ∫
(
√

k(tb(x))−1)2ν(dx) is finite for all t . Since the drift γ remains
constant, Theorem 33.1 in [30] yields absolute continuity of Pνt with respect to Pν , denoted as Pνt � Pν , for all t . To

find the Hellinger derivative of the path t �→ dPνt

dPν
at t = 0, we note by dominated convergence

F−1
[

∂

∂t

∣∣∣∣
t=0

exp

(
Δ

∫ (
eiux − 1

)(
k
(
tb(x)

)− 1
)
ν(dx)

)
ϕν(u)

]
= ΔF−1

[
ϕν(u)

(∫ (
eiux − 1

)
b(x)ν(dx)

)]
= Δ

(
Pν ∗ (bν) −

∫
b(x)ν(dx)Pν

)
.

This indicates how the score operator should look like. The following proposition determines the score operator Aν

and shows Hellinger regularity of the parametric submodel t �→ Pνt . This is the key result to apply the theory of
Section 2 to the Lévy model.

Proposition 4.1. Let the model P be given by (4.3) with the tangent space Θ̇ν at ν ∈ Θ as defined in (4.4). Then
Pν ∗ (bν) � Pν for all b ∈ Θ̇ν ∩ L∞(ν). Moreover, the linear operator

Aν |Θ̇ν∩L∞(ν) : Θ̇ν ∩ L∞(ν) → L2
0(Pν), b �→ Δ

d(Pν ∗ (bν)) − (
∫

b dν)dPν

dPν

(4.6)

is bounded. Θ̇ν ∩L∞(ν) is dense in Θ̇ϑ and thus Aν : Θ̇ν → L2
0(Pν) can be defined as its unique continuous extension.

Then for all b ∈ Θ̇ν the associated submodel [0,1)  t �→ Pνt is Hellinger differentiable at zero with derivative Aνb,
that means (2.9) is fulfilled.

The proof of this proposition is given in Section 6.2. An essential ingredient is an estimate of the Hellinger integral
of two infinitely divisible distributions by Liese [23]. More precisely, his results imply (for details see Section 6.2)∫ (

dPνt

dPν

)2

dPν ≤ exp

(
1

2

∫ (
dνt

dν
− 1

)2

dν

)
≤ exp

(
1

2
t2‖b‖2

L2(ν)

)
. (4.7)

Remark 4.2. Relying on the semimartingale structure of the model, an alternative strategy to prove Proposition 4.1 is
as follows: Observing LΔ is a sub-experiment of observing (Lt )0≤t≤Δ in continuous time. Hence, by proving Hellinger
differentiability of the latter model, we find a score process, say (Vt )0≤t≤Δ, and the score operator is then given by
Aνb = E[VΔ|LΔ].

Theorem 2.34 by Jacod [16] yield local differentiability of the experiment with continuous observations corre-
sponding to the score process

Vt =
∑
s≤t

b(ΔLs) − t

∫
b dν.

Noting that the Hellinger processes are deterministic (cf. [17], Remark IV.1.25), local differentiability implies
Hellinger differentiability, see [15].1

Proposition 4.1 shows that the Lévy model P , defined in (4.3) equipped with the tangent space Θ̇ν , given in (4.4)
satisfies Assumption A. In particular, it is a regular indirect model at any ν ∈ Θ with respect to the rate n−1/2 by
Lemma 2.12. Having in mind the regularity Lemma 3.1 in the deconvolution model, the score operators look very

1Thanks to an anonymous referee for pointing out this approach.
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similar in both models. Since the gradient does not have to integrate to zero in the Lévy model, the centering is
incorporated in the operator Aν . Apart from that the convolution structure is the same. Therefore, the Lévy model can
locally be weakly approximated with a linear white noise model whose operator is of convolution type.

By Proposition 4.1 the score operator Aν is characterized by (4.6). To prove information bounds, we will combine
this result with Proposition 2.11 which shows that it is sufficient to study A�

ν on a nicely chosen, dense subset of
L2

0(Pν). Then Theorem 2.7 provides the convolution theorem for all ζ ∈ ranA�
ϑ . In the following we will discuss

Lévy processes with finite and infinite jump activity separately because the analytical properties of the score operator
are quite different: In the compound Poisson case the inverse adjoint score operator can be explicitly expressed as a
convolution with a finite signed measure. If the jump intensity is infinite, the distribution Pν possesses a Lebesgue
density and thus A�

ν will be a smoothing operator.

4.2. Compound Poisson processes

Let (Lt ) be a compound Poisson process with jump intensity λ := ν(R) < ∞. Consequently, the tangent space sim-
plifies to Θ̇ϑ = L2(ν) and the measure Pν can be written as the convolution exponential (cf. [30], Remark 27.3)

Pν = δΔγ ∗
(

e−Δλ
∞∑

k=0

Δk

k! ν∗k

)
, (4.8)

where δx denotes the Dirac measure in x ∈ R. Define the subsets

G := L∞(Pν) ∩ L2
0(Pν) ⊆ L2

0(Pν) and
(4.9)

H :=
{
h ∈ L2(ν)

∣∣ sup
k=0,1,...

‖h‖L∞(ν∗k) < ∞
}

⊆ Θ̇ν

which are dense in L2
0(Pν) and L2(ν), respectively. Let g ∈ G and b ∈H. By Proposition 4.1 we know (bν)∗Pν � Pν

which implies g ∈ L∞((bν) ∗ Pν). Hence,
∫

g dPν = 0 and Fubini’s theorem yield

〈Aνb,g〉Pν =
∫

(Aνb)g dPν = Δ

∫
g d

(
Pν ∗ (bν)

) − Δ

(∫
b dν

)(∫
g dPν

)
= Δ

∫ ∫
g(x + y)b(x)dν(x)dPν(y)

= Δ
〈
Pν(−•) ∗ g, b

〉
ν
. (4.10)

Therefore, the adjoint score operator on G is A�
ν |G :G → L2(ν), g �→ ΔPν(−•) ∗ g.

Lemma 4.3. The map A�
ν :G → H, g �→ Pν(−•) ∗ g is well defined.

This lemma is proved in Section 6.3. Although the centering of g ∈ L2
0(Pν) implies A�

νg(0) = ∫
g dPν = 0, it does

not cause an additional constraint owing to ν({0}) = 0. In general, A�
ν is not injective as the following example shows:

Example 4.4 (Poisson process). Setting ν = δ1, γ = 0 and Δ = λ = 1, the law Pν = e−1 ∑∞
k=0 δk/(k!) is the Poisson

distribution and the adjoint score operator is given by

A�
νg(x) = e−1

∞∑
k=0

g(x + k)/(k!), x ∈R.

Consider the function g = 1{0} − 21{1} + 21{2} which is a nonzero element of G by construction. However, A�
νg(1) = 0

and thus 0 �= g ∈ kerA�
ν contradicting injectivity.
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As in the deconvolution model we assume therefore that ν admits a Lebesgue density concluding injectivity of A�
ν

exactly as in Theorem 3.2. Since |ϕν(u)| = eΔ
∫
(cos(ux)−1)ν(dx) ≥ e−2Δλ for all u ∈ R by (4.2), the inverse of A�

ν is
then the deconvolution operator h �→ Δ−1F−1[1/ϕν(−•)] ∗ h with the finite signed measure

F−1[1/ϕν(−•)
] = δ−Δγ ∗

(
eΔλ

∞∑
k=0

(−Δ)k

k! ν(−•)∗k

)

which is well defined on H. In particular, the pre-image of the indicator function ζ = 1(−∞,t] (or equivalently
1(−∞,t]1R\{0}) is well defined for any t ∈ R. Consequently, Corollary 2.14 and Theorem 2.7 yield

Corollary 4.5. Let (Lt ) be a pure jump process of compound Poisson type with jump measure ν which is absolutely
continuous with respect to the Lebesgue measure and with drift γ ∈ R. Then the limit distribution of any regular
estimator of the distribution function R

d  (t1, . . . , td ) �→ (ν((−∞, t1]), . . . , ν((−∞, td ])), for d ∈ N, is a convolution
N (0,Σ) ∗ M for some Borel probability measure M and with covariance matrix Σ ∈R

d×d given by

Σi,j = Δ−2
∫ (

F−1
[

1

ϕν(−•)

]
∗ 1(−∞,ti ]

)(
F−1

[
1

ϕν(−•)

]
∗ 1(−∞,tj ]

)
dPν

for i, j ∈ {1, . . . , d}.

Considering the negative half line, this lower bound coincides with the asymptotic variance of the kernel estimator
by Nickl and Reiß [27]. An interesting deviation is obtained by restricting the model on compound Poisson processes
with known jump intensity λ > 0 as studied in the decompounding problem by Buchmann and Grübel [5]. Similarly to
the deconvolution model in Section 3 the tangent space is then given by L2

0(ν) and thus the gradient of the functional
χ(ν) = ν((−∞, t]) equals χ̃ν = 1(−∞,t] − ν((−∞, t]). We obtain the smaller information bound, setting d = 1 for
simplicity,

Δ−2
∫ (

F−1
[

1

ϕν(−•)

]
∗ 1(−∞,t]

)2

dPν − Δ−2ν
(
(−∞, t])2

.

That means an efficient estimator which “knows” the jump intensity should have a smaller variance than for unknown
λ and the statistical problem is significantly simpler. Indeed, the estimator from [5] is asymptotically normal with the
above variance.

4.3. Lévy processes with infinite jump activity

If the Lévy process has infinite jump activity, the analysis is more difficult. However, we can profit from the absolute
continuity of the infinite divisible distribution Pν with respect to the Lebesgue measure ([30], Theorem 27.4). To apply
Fourier methods, we will again assume that ν admits a Lebesgue density which implies in particular that the set of
Lebesgue-a.e. equivalence classes embeds into the ν-a.e. and into the Pν -a.e. equivalence classes. Keeping the Hilbert
space structure, we can then define

G := H∞(R) ∩ L2
0(Pν) and H := {

b ∈ H∞(R)|b(0) = 0
}∩ Θ̇ν, (4.11)

where H∞(R) := ⋂
s≥0 Hs(R) with Sobolev spaces Hs(R) := {f ∈ L2(R)|‖(1+|u|2)s/2Ff (u)‖L2 < ∞} of regular-

ity s ≥ 0. For b ∈ H the condition b(0) = 0 should hold for the continuous version of b. To allow that the generalized
distribution function of ν can be estimated with parametric rate, we concentrate on mildly ill-posed problems leading
to the assumption that |ϕν(u)| decays polynomially as |u| → ∞ (cf. [26]).

Lemma 4.6. Let the finite variation Lévy process (Lt ) with ν ∈ Θ have infinite jump activity satisfying |ϕν(u)| �
(1 + |u|)−β for some β > 0 and let ν be absolutely continuous with respect to the Lebesgue measure. Then
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(i) on G from (4.11) the adjoint score operator A�
ν |G is a bijection onto H satisfying

A�
ν |G :G → H ⊆ Θ̇ν, g �→ Δ

(
Pν(−•) ∗ g

)
, (4.12)(

A�
ν

)−1|H :H → G ⊆ L2
0(Pν), b �→ Δ−1F−1[Fb/ϕν(−•)

]
, (4.13)

(ii) G is dense in L2
0(Pν) and A�

ν is the unique continuous extension of A�
ν |G .

The proof of this lemma uses that by the polynomial decay (1 + |u|)−β � |ϕν(u)| � 1 both operators, A�
ν and

(A�
ν)

−1, are Fourier multipliers on Sobolev spaces and thus H∞(R)-functions are mapped into H∞(R) again. The
smoothness will be used to show |(A�

νg)(x)| � 1 ∧ |x| for x ∈ R in order to verify that A�
ν is well defined. For details

we refer to Section 6.4.
Comparing the adjoint score operator (4.13) in the Lévy model to A�

ν in the deconvolution model (3.2), we see that
both operators have exactly the same structure. To invert A�

ν , we have to deconvolve with the observation measure
itself in the Lévy case. From our lower bounds perspective we clearly recover this auto-deconvolution phenomenon,
which was already described by Belomestny and Reiß [1] as well as Nickl and Reiß [27]. For convenience we will
write throughout F−1[1/ϕν(−•)] ∗ b = F−1[Fb/ϕν(−•)] which is justified in distributional sense. In combination
with the results for the compound Poisson case Lemma 4.6 has two immediate consequences.

Remark 4.7. If the Lévy process is of finite variation, has an absolutely continuous jump measure and has either finite
jump activity or has a polynomial decreasing characteristic function, then

(i) A�
ν is injective and therefore ranAν = L2

0(Pν). This means that the tangent set ṖPν = AνΘ̇ν is dense in L2(Pν).
(ii) For any linear functional χ(ν) = ∫

ζ dν satisfying ζ ∈ H, where H ⊆ Θ̇ν is defined in (4.9) and (4.11), respec-
tively, the information bound is given by

Δ−2
∫ (

F−1
[

1

ϕν(−•)

]
∗ ζ

)2

dPν.

The subset H of arbitrary large Sobolev smoothness is obviously very restrictive. Let us extend the information
bound to a larger class of functionals by using Proposition 2.11. This is illustrated in the following example.

Example 4.8 (Gamma process). Let (Lt ) be a gamma process with Yk ∼ �(αΔ,λ) for all k = 1, . . . , n. For simplicity
set λ = 1. The probability density, the characteristic function and the Lévy measure are given by

γαΔ(x) := 1

�(αΔ)
xαΔ−1e−x1[0,∞)(x), ϕν(u) = (1 − iu)−αΔ and

ν(dx) = αx−1e−x1[0,∞)(x)dx, for x,u ∈R,

respectively. Therefore, |ϕν | decays with polynomial rate β = Δα and we can apply Lemma 4.6. The estimation
of the generalized distribution function χ(ν) = ∫ ∞

t
dν for some fixed t > 0, induces the gradient χ̃ν = 1[t,∞). To

approximate χ̃ν with a sequence in H, we construct χn(x) = ∫ x

−∞(δn(y − t) − δn(y − n))dy for a Dirac sequence
(δn). More precisely, let (δn) ⊆ C∞(R) be a family of smooth nonnegative functions satisfying

∫
R

δn = 1 and supp δn ⊆
[−1/n,1/n]. Obviously, (χn) ⊆ H. Since ν is a finite measure on R \ (−ε, ε) for any ε > 0, dominated convergence
shows ‖χ̃ν − χn‖L2(ν) → 0. Denoting the distribution function of �(β,1) by �β , we obtain for αΔ < 1/2(

A�
ν

)−1
χn = Δ−1F−1[(1 + iu)(1 + iu)αΔ−1] ∗ χn

= Δ−1γ1−αΔ(−•) ∗ (
χn − χ ′

n

)
= Δ−1(γ1−αΔ(−•) ∗ χn − γ1−αΔ(−•) ∗ δn(• − t)

+ γ1−αΔ(−•) ∗ δn(• − n)
)



Information bounds for inverse problems 1639

→ Δ−1((1 − �1−αΔ(t − •)
)− γ1−αΔ(t − •)

)
= Δ−1γ1−αΔ(−•) ∗ (1(−∞,t] − δt ) =: ψ, (4.14)

where the convergence holds in L2(R) owing to γ1−αΔ ∈ L2(R) for αΔ < 1/2. Therefore, in a natural way the limiting
object is ψ = F−1[1/ϕν(−•)] ∗ 1(−∞,t]. When does this limit hold in L2(Pν), too? As we saw above, the probability
density of Pν is bounded everywhere except for the singularity at zero which is of order 1 − αΔ. For any t > 0
and n large enough γ1−αΔ ∗ δn(• − t) is uniformly bounded in a small neighborhood of zero such that dominated
convergence around zero together with the L2(R)-convergence on the real line yields ‖(A�

ν)
−1χn − ψ‖L2(Pν) → 0.

Hence, Proposition 2.11 shows 1[t,∞) ∈ ranA�
ν . Therefore, the information bound is given by∫ (

F
[
1/ϕν(−•)

] ∗ 1[t,∞)

)2
dPν,

which can be understood via definition (4.14) or equivalently as the limit limn→∞ ‖(A�
ν)

−1χn‖2
L2(Pν)

. For αΔ > 1/2
Neumann and Reiß [26] show that ν([t,∞)) cannot be estimated with

√
n-rate.

This example shows the importance of the pseudo-locality for the devolution operator which was discussed by
Nickl and Reiß [27] in detail: If the singularity of the pointwise limit ψ as in (4.14) and the singularity of the dis-
tribution Pν would coincide, the L2(Pν)-norm of any approximating sequence (A�

ν)
−1χn would diverge such that

χ̃ν cannot be an element of ranA�
ν by Proposition 2.11. A simple example is given by the convolution of a Gamma

process and a Poisson process (cf. [27], Section 3.2).
For δ > 0 and lδ the largest integer which is strictly smaller than δ, let Cδ(R) denote the set of functions f that

possess lδ continuous derivatives with f (lδ) being (δ − lδ)-Hölder continuous. We will show that for suitable regularity
δ > 0 the class

Zδ(R) := {
ζ = ζ s + ζ c|(1 + |x|−1)ζ s(x) ∈ Hδ(R), ζ c ∈ Cδ+ε(R) for some ε > 0, ζ c(0) = 0

}
intersected with L1(ν) ∩ L2(ν) is a subset of ranA�

ν .

Example 4.9 (Generalized distribution function). Recall that the generalized distribution function of ν corresponds
to the functionals ζt := 1(−∞,t] for t < 0 and ζt := 1[t,∞) for t > 0. It is easy to check that ζt can be decomposed
for all t �= 0 in a way such that it is contained in Zδ(R) for any δ < 1/2. For instance, write 1[t,∞) = ζ s

t + ζ c
t with

ζ s
t (x) := et−x1[t,∞)(x) and ζ c

t (x) := (1 − et−x)1[t,∞)(x) for t > 0. Then ζ s
t is a translation of the gamma density γ1

such that its Fourier transform decays with polynomial rate one. The factor (1 + |x|−1) is harmless since ζ s
t equals

zero around the origin. Moreover, ζ c
t is Lipschitz continuous. On the negative half line an analogous decomposition

applies.

For this analytic description of the range of the adjoint score operator, we apply the approach by [27] as well as
[31]. They study the deconvolution operator F−1[1/ϕν(−•)] as Fourier multiplier on Besov spaces. We suppose that
the Lévy process L with jump density ν satisfies the following.

Assumption B. For some β > 0 assume for all u ∈ R

(i) |ϕν(u)| � (1 + |u|)−β and
(ii) xν has a bounded Lebesgue density with |F[xν](u)| � (1 + |u|)−1.

This assumption is satisfied by the gamma process discussed in Example 4.8 and in view of Lemma 2.1 in [32] for
much larger class of Lévy processes as well, including self-decomposable processes.

Proposition 4.10. Let the finite variation Lévy process (Lt ) with ν ∈ Θ satisfy Assumption B for some β > 0. Then
for any ζ ∈ Zβ(R) ∩ L1(ν) ∩ L2(ν) it holds ζ ∈ ranA�

ν with (A�
ν)

−1ζ =F−1[1/ϕν(−•)] ∗ ζ .
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To prove this proposition, we combine the analysis of Lévy processes in [27] with the insights on the interplay of the
smoothness of ζ and the decay of the deconvolution operator in [31] and with the characterization in Proposition 2.11.
The proof is postponed to Section 6.5.

The formula (A�
ν)

−1ζ = F−1[1/ϕν(−•)] ∗ ζ can be either understood in distributional sense or as the limit of an
approximating sequence as illustrated in Example 4.8. Applying Theorem 2.7 and Proposition 4.10 on Example 4.9,
we get the following convolution theorem.

Theorem 4.11. Let the finite variation Lévy process (Lt ) with ν ∈ Θ satisfy Assumption B for some β < 1/2. Then
the limit distribution of any regular estimator of the generalized distribution function (R \ {0})d  (t1, . . . , td ) �→
(〈ζti , ν〉, . . . , 〈ζtd , ν〉) is a convolution N (0,Σ) ∗ M for some Borel probability measure M and with the covariance
matrix Σ ∈R

d×d given by

Σi,j = 1

Δ2

∫
R

(
F−1

[
1

ϕν(−•)

]
∗ ζti

)(
F−1

[
1

ϕν(−•)

]
∗ ζtj

)
dPν

for i, j ∈ {1, . . . , d}.

In the situations of Corollary 4.5 and Theorem 4.11 the estimator constructed by Nickl and Reiß [27] is therefore
efficient.

Remark 4.12. Let us finish the considerations of Section 3 for the deconvolution model Yj = Xj + εj ∼ Pν = ν ∗ μ.
If the characteristic function of the error distribution μ satisfies for some β > 0∣∣ϕε(u)

∣∣ > 0 and
∣∣(1/ϕε)

′(u)
∣∣� (

1 + |u|)β−1
, u ∈ R, (4.15)

Lemma 5(i) in [31] shows that ϕ−1
ε is a Fourier multiplier on Besov spaces. Therefore, an analogous result as Propo-

sition 4.10 applies in the deconvolution setup which can be combined with Theorem 3.2. We can recover Theorem 4
in [31] under weaker assumptions on the distributions of ν and μ: If the distribution ν of Xj possesses a Lebesgue
density and if (4.15) is satisfied for some β > 0, then the asymptotic variance of every regular estimator of the linear
function χ(ν) = ∫

ζ dν for some ζ ∈ Zδ(R), δ > β , is bounded from below by

∫ (
F−1

[
1

ϕε(−•)

]
∗ ζ

)2

dPν −
(∫

ζ dν

)2

.

As we saw in Example 4.9, we need δ < 1/2 to apply this information bound to distribution function estimation.
Therefore, we need |ϕε(u)| � (1 + |u|)−β for β < 1/2 which coincides with the classical condition under which the
distribution function can be estimated with the parametric rate, cf. [11].

5. Extension to Banach space valued functions

So far we considered R
d -valued derived parameters χ . The aim of the section is to generalize Theorem 2.7 to functions

χ :Θ → B for a Banach space (B,‖•‖). As pointed out by van der Vaart [33] for the estimation of parameters in
infinite dimensional spaces efficiency means essentially efficiency for the marginals plus tightness of the limit law of
the sequence of estimator.

Let (Xn,An,Pn,ϑ : ϑ ∈ Θ) be a locally regular indirect model at ϑ ∈ Θ with respect to the tangent set Θ̇ϑ and with
generalized score operator Aϑ : lin Θ̇ϑ → Hϑ for some Hilbert space (Hϑ, 〈•, •〉H ). First, we have to generalize the
notion of regularity to Banach space valued functions. The derived parameter χ :Θ → B is pathwise differentiable at
ϑ ∈ Θ with respect to the tangent set Θ̇ϑ if for all b ∈ Θ̇ϑ with associated path [0, τ )  t �→ ϑt

t−1(χ(ϑt ) − χ(ϑ)
) → χ̇ϑb
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holds true for some continuous linear map χ̇ϑ : lin Θ̇ϑ → B. The gradient of χ̇ϑ is then defined as in [34] using the
dual space B�, which is the space of all continuous linear functions b� :B →R. The composition b� ◦ χ̇ϑ : lin Θ̇ϑ →R

is linear and continuous and thus it can be represented by some χ̃ϑ,b� ∈ linΘ̇ϑ :(
b� ◦ χ̇ϑ

)
b = 〈χ̃ϑ,b� , b〉ϑ for all b ∈ lin Θ̇ϑ .

Similarly, the parameter ψn(Pn,ϑ ) = χ(ϑ) is regular if (2.7) holds for some continuous linear map ψ̇ϑ :H → B. The
efficient influence functions ψ̃ϑ,b� ∈ ranAϑ are defined by (b� ◦ ψ̇ϑ )h = 〈ψ̃ϑ,b� , h〉H for all h ∈ ranAϑ . The sequence
of estimators Tn :Xn → B is called regular at ϑ ∈ Θ with respect to the rate rn if there is a fixed tight Borel probability
measure L on B such that for all b ∈ Θ̇ϑ with corresponding submodel t �→ Pn,ϑt

1

rn

(
Tn − χ(ϑrn)

) Pn,ϑrn�⇒ L,

where weak convergence is defined in terms of outer probability to avoid measurability problems, that is,

E
∗
Pn,ϑrn

[
f
(
r−1
n

(
Tn − χ(ϑrn)

))] →
∫

f dL

for all bounded, continuous function f :B → R (cf. [36], Definition 1.3.3). Now we can state the following general-
ization of Theorem 2.7.

Theorem 5.1. Let (Xn,An,Pn,ϑ : ϑ ∈ Θ) be a locally regular indirect model at ϑ ∈ Θ with respect to Θ̇ϑ and let
χ :Θ → B be pathwise differentiable at ϑ with respect to Θ̇ϑ . Then the sequence ψn :Pn → B is regular at ϑ relative
to Θ̇ϑ if and only if

χ̃ϑ,b� ∈ ranA�
ϑ for all b� ∈ B

�. (5.1)

In this case the efficient influence functions is given by the Moore–Penrose pseudoinverse ψ̃ϑ,b� = (A�
ϑ)†χ̃ϑ,b� . For any

regular sequence of estimators Tn the limit distribution L of r−1
n (Tn − χ(ϑrn)) is given by the law of a sum N + W of

independent, tight, Borel measurable random elements in B such that

b�N ∼N
(
0,‖ψ̃ϑ,b�‖2

H

) =N
(
0,

∥∥(A�
ϑ

)†
χ̃ϑ,b�

∥∥2
H

)
.

The proof of this Theorem is analogous to Theorem 2.7 with an additional application of Lemma A.2 in [34]. We
omit the details.

Remark 5.2. The type of regularity which we used for the parameters ψn(Pn,ϑ ) to apply the convolution theorem is
quite strong because the derivative ψ̇ϑ has to be continuous with respect to the norm topology of B. Necessarily, the
range condition (5.1) has to hold for all b� ∈ B

� which may fail if the dual space is large. This problem can be solved
by using a weaker topology on B which is generated by a subspace B ′ ⊆ B

� as shown by van der Vaart [33], Section 3.

To show tightness of the limit distribution may be a difficult problem for inverse problems. In the i.i.d. setting the
theory of smoothed empirical processes by Giné and Nickl [12] turns out to be useful as the following example shows.

Example 5.3. Let us consider again the estimation of the distribution function R  t �→ ν((−∞, t]) in the deconvolu-
tion model in Section 3. On the whole real line the parameter χ(ν) = (ν((−∞, t]))t∈R maps into the space of bounded
functions B = �∞(R) which is equipped with the supremums norm. Under suitable conditions Söhl and Trabs [31]
have shown a uniform central limit theorem in �∞(R) for the canonical plug-in kernel estimator. In particular, their
limit distribution is tight and the finite dimensional distributions coincide the information bound from Theorem 3.2
and Remark 4.12. In the Lévy model Nickl and Reiß [27] have proved a Donsker theorem for the estimation of the
generalized distribution function in �∞((−∞,−δ] ∪ [δ,∞)) for δ > 0 which proves tightness of the limit process in
Theorem 4.11.
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6. Remaining proofs

6.1. Proof of Lemma 2.1

As discussed above the law of the white noise εẆ = yε,0 is a symmetric (zero mean) Gaussian measure on (E,B(E)).
Its (unique) reproducing kernel Hilbert space is Y with norm ‖•‖ε := ε−1‖•‖Y . To see this, note that every functional
ϕ ∈ E� can be represented by ϕ = 〈y, •〉Y = 〈ỹ, •〉ε for some y ∈ Y and ỹ = ε2y. Then

ϕ(εẆ ) ∼N
(
0,‖ỹ‖2

ε

) =N
(
0, ε2‖y‖2

Y

)
.

The Cameron–Martin formula ([9], Proposition 2.24) yields that Pε,x and Pε,0 are equivalent measures on (E,B(E))

with Radon–Nikodym derivative

dPε,x

dPε,0
(yε,0) = exp

(〈
yε,0,K(x)

〉
ε
− 1

2

∥∥K(x)
∥∥2

ε

)
Pε,0-a.s.

and thus

dPε,0

dPε,ϑ

(yε,ϑ ) = exp

(
−〈

yε,ϑ ,K(ϑ)
〉
ε
+ 1

2

∥∥K(ϑ)
∥∥2

ε

)
and

dPε,x

dPε,ϑ

(yε,ϑ ) = dPε,x

dPε,0
(yε,ϑ )

dPε,0

dPε,ϑ

(yε,ϑ )

= exp

(〈
εẆ ,K(x) − K(ϑ)

〉
ε
− 1

2

∥∥K(x) − K(ϑ)
∥∥2

ε

)

= exp

(〈
Ẇ ,

K(x) − K(ϑ)

ε

〉
Y

− 1

2

∥∥∥∥K(x) − K(ϑ)

ε

∥∥∥∥2

Y

)
Pε,ϑ -a.s.

6.2. Proof of Proposition 4.1

Without loss of generality we assume Δ = 1 in this and the following subsections.
For any b ∈ Θ̇ν let Pν ∗ (bν) = (Pν ∗ (bν))a + (Pν ∗ (bν))⊥ be the Lebesgue decomposition of Pν ∗ (bν) with

respect to Pν , that is the first and second measure are absolutely continuous and singular with respect to Pν , re-
spectively. dPν∗(bν)

dPν
is then defined as the Radon–Nikodym density of (Pν ∗ (bν))a with respect to Pν . Therefore,

Aνb = dPν∗(bν)
dPν

− ∫
b dν is well-defined without further assumptions.

In a first step we will show L2-differentiability of the submodels corresponding to some direction b ∈ Θ̇ϑ ∩L∞(ν).
The extension to the whole tangent set is proved in the second step. In the last step we will see that even Pν ∗(bν) � Pν

holds true.
Step 1: Let b ∈ L1(ν) ∩ L∞(ν). We will show that the associated model [0,1)  t �→ Pνt is L2-differentiable at 0

with derivative Aνb ∈ L2
0(Pν) as defined in (4.6), that is∫ (

dPνt − dPν

t dPν

− Aνb

)2

dPν → 0 as t → 0. (6.1)

Note that dPνt

dPν
∈ L2(Pν) by (4.7), which follows by a similar argument as the one following (6.2). Applying Proposi-

tion 1.199 in [38], the L2-regularity (6.1) implies the proposed Hellinger differentiability for all b ∈ Θ̇ν ∩ L∞(ν).

Defining the measure νc
t via the density dνc

t

dν
= (k(tb) − 1) =: fνc

t
, we write as a consequence of (4.5) and Re-

mark 27.3 in [30]

Pνt = e−νc
t (R)

∞∑
k=0

1

k!
(
νc
t

)∗k ∗ Pν.
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Arranging terms∫ (
dPνt − dPν

t dPν

− Aνb

)2

dPν

=
∫ (

dPνt − dPν − t d(Pν ∗ (bν)) + t (
∫

bν)dPν

t dPν

)2

dPν

=
∫ (

(e−νc
t (R) − 1 + t

∫
b dν)dPν + d(((e−νc

t (R)fνc
t
− tb)ν) ∗ Pν)

t dPν

+ e−νc
t (R)

∑∞
k=2(k!)−1 d((νc

t )
∗k ∗ Pν)

t dPν

)2

dPν,

all three terms in the numerator turn out to be of order t2. Note that we can dominate |fνc
t
| ≤ t |b| as well as |fνc

t
− tb| ≤

t2|b2| by |k(y) − 1| ≤ |y| and |k(y) − 1 − y| ≤ y2. Therefore,∣∣∣∣e−νc
t (R) − 1 + t

∫
b dν

∣∣∣∣ =
∣∣∣∣∑
k≥2

(−νc
t (R))k

k! −
(

νc
t (R) − t

∫
b dν

)∣∣∣∣
≤

∑
k≥2

tk‖b‖k
L1(ν)

k! + t2‖b‖2
L2(ν)

≤ (
e‖b‖

L1(ν) + ‖b‖2
L2(ν)

)
t2,∣∣e−νc

t (R)fνc
t
− tb

∣∣ = ∣∣(e−νc
t (R) − 1

)
fνc

t
+ fνc

t
− tb

∣∣
≤ t2(e‖b‖

L1(ν) |b| + |b|2),∣∣∣∣e−νc
t (R)

∞∑
k=2

(νc
t )

∗k

k!

∣∣∣∣∣ ≤ t2
∞∑

k=2

(|b|ν)∗k

k! .

Hence, we estimate∫ (
dPνt − dPν

t dPν

− Aνb

)2

dPν

≤ t2
∫ ( (e‖b‖

L1(ν) + ‖b‖2
L2(ν)

)dPν + (e‖b‖
L1(ν) |b| + |b2|)d(ν ∗ Pν)

dPν

+
∑∞

k=2(k!)−1 d((|b|ν)∗k ∗ Pν)

dPν

)2

dPν

≤ t2(e‖b‖
L1(ν) + ‖b‖2

L2(ν)

)2
∫ (

d(
∑∞

k=0((|b| + |b|2)ν)∗k/(k!)) ∗ Pν

dPν

)2

dPν.

Introducing an infinite divisible distribution μ without diffusion component, without drift and with finite jump measure
(|b| + |b|2)ν, the previous line can be written as

t2 (e‖b‖
L1(ν) + ‖b‖2

L2(ν)

)2e
2‖b‖

L1(ν)
+2‖b‖2

L2(ν)︸ ︷︷ ︸
=:C(‖b‖

L1(ν)
,‖b‖

L2(ν)
)

∫ (
d(μ ∗ Pν)

dPν

)2

dPν. (6.2)
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Therefore, the assertion holds true provided the Hellinger integral H2(μ ∗ Pν,Pν) = ∫
(d(μ ∗ Pν)/dPν)

2 dPν is finite.
To show this, we apply the bound of Renyi’s distance R2 for infinite divisible distributions by Liese ([23], Theo-
rem 2.6). Using that both distributions, μ ∗ Pν and Pν , have the same drift and have finite variation, we obtain (for
α = 2)

1

2
logH2(μ ∗ Pν,Pν) = R2(μ ∗ Pν,Pν)

≤ 1

2
χ2((|b| + b2 + 1

)
ν, ν

)
where the χ2-distance of the jump measures satisfies

χ2((|b| + b2 + 1
)
ν, ν

) := 1

2

∫ (
d((|b| + b2 + 1)ν)

dν
− 1

)2

dν

= 1

2

∫ (|b| + b2)2 dν

≤ 1

2

(
1 + ‖b‖2

L∞(ν)

)‖b‖2
L2(ν)

< ∞.

The combination with the bound (6.2) yields∫ (
dPνt − dPν

t dPν

− Aνb

)2

dPν ≤ t2C
(‖b‖L1(ν),‖b‖L2(ν)

)
e
(1/2)(1+‖b‖2

L∞(ν)
)‖b‖2

L2(ν) .

As t → 0 this upper bound converges to zero which shows the L2-differentiability. We conclude
∫

Aνb dPν = 0 for
all b ∈ Θ̇ν ∩ L∞(ν).

Step 2: To show continuity of Aν |L1(ν)∩L∞(ν), let ε > 0 and b ∈ L1(ν) ∩ L∞(ν) with ‖b‖2
L2(ν)

< ε. By (6.1), 1
2Aνb

is the L2-limit of t−1(
√

dPνt − √
dPν) and thus for t small enough

‖Aνb‖2
L2(Pν)

≤ 2

t2

∫
(
√

dPνt −√
dPν)

2 + ε.

As above Theorem 2.6 in [23] for α = 1/2 yields the estimate for the Hellinger distance of the infinite divisible
distributions∫

(
√

dPνt −√
dPν)

2 ≤ 2

(
1 − exp

(
−2

∫
(
√

dνt − √
dν)2

))
= 2

(
1 − exp

(
−2

∫ (√
k(tb) − 1

)2 dν

))
. (6.3)

Since |√k(y) − 1| ≤ |(√k(y) + 1)(
√

k(y) − 1)| = |k(y) − 1| ≤ |y| and 1 − e−y ≤ |y| for y ∈ R, the previous display
can be bounded by

2

(
1 − exp

(
−2

∫
(tb)2 dν

))
≤ 4t2‖b‖2

L2(ν)
.

Because ε > 0 was arbitrary, we conclude ‖Aνb‖L2(Pν) � ‖b‖L2(ν) which is equivalent to the continuity of the linear
operator Aν |L1(ν)∩L∞(ν). Since L1(ν) ∩ L∞(ν) is dense in Θ̇ν , there is a unique continuous extension Aν on Θ̇ν

satisfying Aνb = dPν∗(bν)−∫
bν dPν

dPν
for all b ∈ L1(ν) ∩ L∞(ν).

Now, for any b ∈ Θ̇ν with associated path t �→ dνt = k(tb)dν and for any positive null sequence (tm)m∈N and let
b̃m ∈ L1(ν) ∩ L∞(ν) with path t �→ d̃νt := k(t b̃m)dν such that ‖b − b̃m‖L2(ν) → 0 and ‖b̃m‖L∞(ν) = o(| log tm|1/2)
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as m → ∞. Then

t−2
m

∫ (√
dPνtm

dPν

− 1 − tm

2
Aνb

)2

dPν

≤ 3

t2
m

∫ (√
dPνtm

dPν

−
√

dPν̃tm

dPν

)2

dPν + 3

t2
m

∫ (√
dPν̃tm

dPν

− 1 − tm

2
Aνb̃m

)2

dPν

+ 3

4

∫
(Aνb̃m − Aνb)2 dPν. (6.4)

The first term is the Hellinger distance between Pνt and Pν̃t which can be bounded as in (6.3)

t−2
m

∫ (√
dPνtm

dPν

−
√

dPν̃tm

dPν

)2

dPν

≤ 2t−2
m

(
1 − exp

(
−2

∫
(
√

dνtm − √
d̃νtm)2

))
= 2t−2

m

(
1 − exp

(
−2

∫ (√
k
(
tmb(x)

) −
√

k
(
tmb̃m(x)

))2
ν(dx)

))
.

An easy calculation shows |(√k)′(x)| ≤ 1 for all x ∈R and thus the above display can be bounded by the mean value
theorem

2t−2
m

(
1 − exp

(−2t2
m‖b − b̃m‖2

L2(ν)

)) ≤ 4‖b − b̃m‖2
L2(ν)

→ 0.

The second term in (6.4) converges to zero according to Step 1 provided ‖b̃‖L∞(ν) = o(| log t |1/2). Applying continuity
of Aν , the third term in (6.4) vanishes as well. Therefore, we have shown that Aνb is the Hellinger derivative of Pνt

for all b ∈ Θ̇ν .
Step 3: Finally, we will show Pν ∗ (bν) � Pν for all b ∈ Θ̇ν ∩ L∞(ν). By construction |b| ∈ Θ̇ν ∩ L∞(ν), too. Let

Pν ∗ (|b|ν) = (Pν ∗ (|b|ν))a + (Pν ∗ (|b|ν))⊥ be Lebesgue’s decomposition with respect to Pν where both measures
can be chosen to be nonnegative and finite. According to Step 1,

∫
Aν |b|dPν = 0 which yields together with the

nonnegativity of the measures and Fubini’s theorem∫
|b|dν =

∫
d(Pν ∗ (|b|ν))

dPν

dPν =
∫

d
(
Pν ∗ (|b|ν))a ≤

∫
dPν ∗ (|b|ν) =

∫
|b|dν.

We conclude (Pν ∗ (|b|ν))a = Pν ∗ (|b|ν) or equivalently Pν ∗ (|b|ν) � Pν . Now for any event A ∈ B(R) with
Pν ∗ (|b|ν)(A) = 0 we have∣∣Pν ∗ (bν)(A)

∣∣ =
∣∣∣∣∫

R2
1A(x + y)b(x)ν(dx)Pν(dy)

∣∣∣∣
≤

∫
R2

1A(x + y)
∣∣b(x)

∣∣ν(dx)Pν(dy) = Pν ∗ (|b|ν)(A) = 0.

Consequently, Pν ∗ (bν) � Pν ∗ (|b|ν) � Pν .

6.3. Proof of Lemma 4.3

First, we show ν∗l ∗ Pν � Pν for any l ∈N. Let A ∈ B(R) satisfy Pν(A) = 0. (4.8) yields

0 = e−Δλ

∞∑
k=0

Δk

k!
∫

1A(x + Δγ )dν∗k(dx)
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and thus
∫

1A(x + Δγ )dν∗k(dx) = 0 for all k ∈ N. But this implies by linearity of the convolution that ν∗l ∗
Pν(A) = 0.

To see that A�
ν is well defined on equivalence classes with respect to Pν zero sets, note that ν ∗ Pν � Pν implies

that for any function g with g(x) = 0 for Pν -a.e. x ∈ R it holds Pν(−•) ∗ g(y) = 0 for ν-a.e. y ∈ R. It remains to
show A�

νg ∈ H for g ∈ G. For any g ∈ L∞(Pν) there is a set A ∈ B(R) with Pν(A) = 0 such that g(y) ≤ C for some
constant C > 0 and for all y /∈ A. Using

0 = ν∗l ∗ Pν(A) =
∫ ∫

1A−{x}(y)Pν(dy)ν∗l (dx)

we infer Pν(A − {x}) = 0 for ν∗l-a.e. x ∈ R and therefore Pν(−•) ∗ g(y) = ∫
g(x + y)Pν(dx) is bounded by C for

ν∗l-a.e. y ∈R. Hence, ‖Pν(−•) ∗ g‖L∞(ν∗l ) ≤ C for any l ∈N.

6.4. Proof of Lemma 4.6

(i) We will determine the adjoint score operator and its inverse on the subsets G and H as defined in (4.11). In the
case of infinite jump activity the application of Fubini’s theorem in (4.10) holds as well. Hence, the adjoint score
operator on G is given by A�

νg = Pν(−•) ∗ g. To verify that A�
ν |G is well-defined, we note first that by the Sobolev

embedding any g ∈ G has a version in C1(R). Throughout we can identify g with this smooth version. Then, we
obtain A�

νg(0) = ∫
g dPν = 0 and ‖(A�

νg)(l)‖∞ = ‖Pν(−•) ∗ (g(l))‖∞ ≤ ‖g(l)‖∞ ≤ ‖g‖C1 for l = 0,1. Hence, A�
νg is

a bounded function and∫ ∣∣A�
νg(x)

∣∣ν(x)dx ≤
∫ (∥∥A�

νg
∥∥∞ ∧ (|x|∥∥(A�

νg
)′∥∥∞

))
dν(x)

≤ ‖g‖C1

∫ (
1 ∧ |x|)dν(x).

A similar estimate holds for L2(ν). Therefore, A�
νg ∈ L1(ν) ∩ L∞(R) ⊆ Θ̇ν . Owing to ‖ϕν‖∞ ≤ 1, it holds for any

s > 0 ∥∥(1 + |u|2)s/2F
[
A�

νg
]
(u)

∥∥
L2 = ∥∥(1 + |u|2)s/2

ϕν(−u)Fg(u)
∥∥

L2 ≤ ‖g‖Hs < ∞.

We conclude ranA�
ν |G ⊆H.

Let us show now that the inverse adjoint score operator as given in (4.13) is well-defined on H. Applying the
assumption |ϕν(u)| � (1 + |u|)−β , we obtain for all b ∈H and s > 0∥∥(1 + |u|2)s/2F

[(
A�

ν

)−1
b
]
(u)

∥∥
L2 = ∥∥(1 + |u|2)s/2Fb(u)/ϕν(−u)

∥∥
L2

�
∥∥(1 + |u|2)(s+β)/2Fb(u)

∥∥
L2

≤ ‖b‖Hs+β < ∞.

Therefore, (A�
ν)

−1b ∈ H∞(R) and the Sobolev embedding yields ‖(A�
ν)

−1b‖L2(Pν) ≤ ‖(A�
ν)

−1b‖∞ ≤ ‖(A�
ν)

−1b‖Cs <

∞. It remains to verify the condition
∫
(A�

ν)
−1b dPν = 0. By construction∫ (

A�
ν

)−1
b dPν = (((

A�
ν

)−1
b
) ∗ Pν

)
(0)

= (
F−1[Fb/ϕν(−•)

] ∗ Pν

)
(0) = b(0),

where the last equality is clear in distributional sense and can be shown via integration against test functions. Since
b(0) = 0 for all b ∈H, we conclude ran(A�

ν)
−1|H ⊆ G.

By construction g = (A�
ν)

−1A�
νg and b = A�

ν(A
�
ν)

−1b for all g ∈ G, b ∈ H which proves that A�
ν |G is a bijection

from G onto H.
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(ii) Let us show that G is dense in L2
0(Pν). Since the Borel σ -field is generated by E := {[a, b]: −∞ < a < b < ∞},

the set of indicator functions {1E : E ∈ E} is dense in L2(Pν). Hence, it suffices to approximate in L2(Pν)-sense the
indicators 1E,E ∈ E , by smooth L2(R)-integrable functions. Let ε > 0 be arbitrary and let us denote the distribution
function of Pν by F(x) := Pν((−∞, x]), x ∈ R. Since F is right continuous with left limits, for all a < b there are
a′ < a,b < b′ such that

Pν

((
a′, b′] \ [a, b]) = Pν

((
a′, a

))+ Pν

((
b, b′]) = F(a−) − F

(
a′)+ F

(
b′)− F(b) < ε.

Therefore, for any A ∈ E there is a bounded set B ∈ B(R) satisfying A ⊆ B , Pν(B \ A) < ε and the distance be-
tween x ∈ A and R \ B is strictly positive. Consequently, there is some nonnegative ψ ∈ C∞(R) with ψ(x) = 1
for x ∈ A, ‖ψ‖∞ < 1 and suppψ ⊆ B . Obviously, ψ is contained in H∞(R) ∩ L2(Pν) and ‖1A − ψ‖L2(Pν) <

√
ε.

Since L2
0(Pν) = (lin 1)⊥ is a closed subspace of L2(Pν), we conclude that G is dense in L2

0(Pν).
Continuity of A�

ν follows from the continuity of Aν which was shown in Proposition 4.1. Hence, A�
ν is uniquely

given by the continuous extension of A�
ν |G to L2

0(Pν).

6.5. Proof of Proposition 4.10

Taking the derivative of the Lévy–Khintchine formula (4.2), we obtain

ϕ′
ν(u) = ϕν(u)

(
iγ +F[xν](u)

)
, u ∈R.

In a first step we will show that the drift can be discarded, which was also the case for the upper bound in [27]. Since
Lemma 4.6 shows that the inverse adjoint score operator is given by F−1[1/ϕν(−•)] on the smooth subset G, we study
the mapping properties of this deconvolution operator in Step 2. Finally in Step 3, we apply the characterization in
Proposition 2.11 to prove that Zβ(R) ⊆ ranA�

ν and to determine (A�
ν)

−1 on Zβ(R).
Step 1: Let us show that γ = 0 can be assumed, meaning that the process L has no drift. For any γ ∈ R consider

the infinitely divisible distribution P̃ν := Pν ∗ δ−γ . Then the following map is an isomorphism

Φ :L2
0(Pν) → L2

0(P̃ν), g �→ g(• + γ ).

Lemma 4.6 determines the adjoint score operator Ã�
ν which corresponds to P̃ν . Also by Lemma 4.6 we see for g ∈ G

that A�
νg = Pν(−•) ∗ g = P̃ν(−•) ∗ g(• + γ ). Therefore, A�

ν = Ã�
ν ◦ Φ which implies

ranA�
ν = ran

(
Ã�

ν ◦ Φ
) = ran Ã�

ν .

Hence, for the rest of the proof suppose γ = 0.
Step 2: The aim of this step is to show for ζ = ζ s + ζ c and any ε > 0

∥∥F−1[ϕ−1
ν (−•)Fζ

]∥∥
L2(Pν)

�
∥∥ζ s(x)

∥∥
Hβ +

∥∥∥∥ 1

x
ζ s(x)

∥∥∥∥
Hβ

+ ∥∥ζ c
∥∥

Cβ+ε . (6.5)

To this end note that Assumption B yields, due to γ = 0,∣∣ϕ−1
ν (u)

∣∣� (
1 + |u|)β and

∣∣(ϕ−1
ν

)′
(u)

∣∣� (
1 + |u|)β−1

and thus Lemma 4(c) in [27] or alternatively Lemma 5(i) in [31] shows that for all s ∈R,p, q ∈ [1,∞] the linear map

Bs+β
p,q (R) → Bs

p,q(R), f �→ F−1[ϕ−1
ν (−•)Ff

]
(6.6)

is bounded. This yields for any ε > 0 and ζ c ∈ Cβ+ε(R)∥∥F−1[ϕ−1
ν (−•)Fζ c

]∥∥
L2(Pν)

�
∥∥F−1[ϕ−1

ν (−•)Fζ c
]∥∥∞ �

∥∥ζ c
∥∥

B
β
∞,1

�
∥∥ζ c

∥∥
Cβ+ε . (6.7)
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For the singular part we apply a similar decomposition in [27]. Integration by parts yields

F−1
[ Fζ s

ϕν(−•)

]
= F−1

[
(F[(1/(ix))ζ s(x)])′

ϕν(−•)

]
= ixF−1

[F[(1/(ix))ζ s(x)]
ϕν(−•)

]
+F−1

[
F
[

1

ix
ζ s(x)

](
ϕ−1

ν

)′
(−•)

]
. (6.8)

Note that 1/ϕν is a Fourier multiplier from Hβ into H 0 = L2(R) on the assumption |ϕν(u)| � (1 + |u|)−β . Similarly,
(ϕ−1

ν )′ is a Fourier multiplier from Hβ into H 1. Hence, for 1
i•ζ s ∈ Hβ

F−1
[F[(1/(ix))ζ s(x)]

ϕν(−•)

]
∈ L2(R),

F−1
[
F
[

1

ix
ζ s(x)

](
ϕ−1

ν

)′
(−•)

]
∈ H 1(R) ⊆ C0(R),

where the last inclusion holds by the Sobolev embedding. Moreover,

ixF−1
[F[(1/(ix))ζ s(x)]

ϕν(−•)

]
=F−1

[F[ζ s(x)]
ϕν(−•)

]
−F−1

[
F
[

1

ix
ζ s(x)

](
ϕ−1

ν

)′
(−•)

]
which is an L2(R)-function. Applying Lemma 4(a) from [27], the distribution xPν(dx) has a bounded Lebesgue
density and which yields together with |x|2 � |x||1 + ix|2 and the continuous embeddings above

∥∥F−1[ϕ−1
ν (−•)Fζ s

]∥∥
L2(Pν)

≤
∫
R

∣∣∣∣ixF−1
[F[(1/(ix))ζ s(x)]

ϕν(−•)

]
(x)

∣∣∣∣2 dPν(x)

+
∫
R

∣∣∣∣F−1
[
F
[

1

ix
ζ s(x)

](
ϕ−1

ν

)′
(−•)

]
(x)

∣∣∣∣2 dPν(x)

�
∥∥∥∥(1 + ix)F−1

[F[(1/(ix))ζ s(x)]
ϕν(−•)

]
(x)

∥∥∥∥
L2

+
∥∥∥∥F−1

[
F
[

1

ix
ζ s(x)

](
ϕ−1

ν

)′
(−•)

]
(x)

∥∥∥∥∞

�
∥∥∥∥ 1

x
ζ s(x)

∥∥∥∥
Hβ

+ ∥∥ζ s
∥∥

Hβ .

Combining with (6.7), we get (6.5).
Step 3: Define the sets

G′ := C∞(R) ∩ L2
0(Pν) and H′ := {

b ∈ C∞(R)|b(0) = 0
}∩ Θ̇ν

which are larger than G and H from above. Using the Fourier multiplier property on Besov spaces (6.6) and an
analogous result for the Fourier multiplier ϕν(−•), we obtain∥∥Pν(−•) ∗ f

∥∥
Cs′ � ‖f ‖

Cs′ and
∥∥F−1[ϕ−1

ν (−•)Ff
]∥∥

Cs � ‖f ‖
Cs′

for any s > 0 and f ∈ Cs′
for s′ > s + β . Therefore, following the lines of the proof of Lemma 4.6(i), we see

that A�
ν |G′ is given by A�

νg = Pν(−•) ∗ g for g ∈ G′ and that A�
ν |G′ is a bijection from G′ onto H′ with inverse

(A�
ν |G′)−1b = F−1[ϕ−1

ν (−•)Fb] for b ∈H′.
By Proposition 2.11 for any ζ a necessary and sufficient condition to be in the range of A�

ν is the existence of a
sequence (χm)m∈N ⊆ H′ such that χm → ζ in L2(ν) and (A�

ν)
−1χm converges in L2(Pν). Now, for any ζ ∈ Zβ ∩
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L1(ν) ∩ L2(ν) we find χm = χs
m + χc

m with χs
n,χc

n ∈H′ satisfying χs
m → ζ s and χc

m → ζ c in L2(ν) as well as∥∥∥∥F−1
[F [ζ − χn]

ϕν(−•)

]∥∥∥∥
L2(Pν)

�
∥∥(ζ s − χs

n

)
(x)

∥∥
Hβ +

∥∥∥∥1

x

(
ζ s − χs

n

)
(x)

∥∥∥∥
Hβ

+ ∥∥ζ c − χc
n

∥∥
Cβ+ε → 0

for m → ∞ owing to (6.5). Hence, ζ ∈ ranA�
ν with (A�

ν)
−1ζ =F−1[ϕ−1

ν (−•)Fζ ] =F−1[ϕ−1
ν (−•)] ∗ ζ .
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