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A GENERAL COMPARISON THEOREM WITH
APPLICATIONS TO VOLUME ESTIMATES FOR

SURMANIFOLDS
BY ERNST HEINTZE AND HERMANN KARCHER (1)

1. Introduction

To get a lower bound for the cut locus distance on a compact Riemannian manifold
following Klingenberg [9], Cheeger [4] proved the existence of a lower bound for the
length of a closed geodesic in terms of an upper bound of the diameter and lower bounds
for the volume and the curvature. We generalize and sharpen this result—with a more
direct proof, e. g. not using Toponogov's triangle comparison theorem—to the following
inequality between data of M and a compact submanifold N:

vol(M)^ f /5(d(M),H(p))dvolN^vol(N)./5(d(M),A),
JN

where 8 is a lower curvature bound for M (in fact Ricci curvature bound if N is a point
or a hypersurface), d(M) is the diameter of M, H (p) is the length of the mean curvature
normal TI of N at p, A = max H (p) and/s is given explixitly in paragraph 2. It grows
monotonically with rf(M) and H ( p ) '

For 8 > 0 the inequality—if slightly weakened—allows a considerable simplification
(without changing the cases of equality, if dim N == n > O):

voKM^^^f (8+H2(p)y^vo^
VOI(S^)JN

< V01(SD .vol^) (n>0),
-vol(S^)

where S§ denotes a sphere of curvature 8. Equality implies that both M and N are of
constant curvature, and in fact all space forms can occur for N whereas for M only those

(l) This work was done under the program Sonderforschungsbereich Theoretische Mathematik (SFB 40)
at Bonn University.
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452 H.HEINTZE AND H. KARCHBR

can occur with d (M) = n/2 ̂ /8. With a simple limit arguement the Penchel-Willmore-
Chen inequality ([6], [14], [5]) for compact N in R1":

f IHQ^
JN

dvolN^vol(S"i),

is a consequence of our inequality.
Simplifications also in the case 8 ^ 0 are possible under further assumptions, e. g. for

minimal submanifolds (H= 0), see 2.3. In particular if y is a closed geodesic, 2.3 gives

lenph W^^.f l̂ V".
volS? \sinA(7|8|.d(M))/

The main tool for proving the inequality is an extension of well known Jacobi field
estimates. In fact we prove a very general comparison theorem for the length and volume
distortion of the normal exponential map of a submanifold containing as special cases the
Rauch [11] and Berger [1] estimates (§ 3). The equality discussion rests on the following
Theorem 4.5: Let N, M be compact Riemannian manifolds, N isometrically immersed and
totally umbilic in M. Assume that all planes ofM containing a tangent vector to a geodesic
segment which is normal to N and has no focal points have the same sectional curvature 8 > 0.
Then M has constant curvature 8. We emphasize that for dim N ^ 2 the assumptions
8 > 0 and M compact are essential. The proof is given in paragraph 5. The usual
Codazzi equation arguments cannot be used. We first extend a result of Warner ([12],
Th. 3.2) (who showed that kernel dexpp—at regular conjugate points of constant multi-
plicity ^2—is tangent to the conjugate set) and conclude that the mean curvature vector
field must be parallel. Then we derive that N has constant curvature and finally obtain
constant curvature for M.

2. The inequality between volume and diameter of a compact Riemannian manifold M
and the volume of a compact submanifold N

Let N, M be compact riemannian manifolds, N isometrically immersed in M and M
connected. For each/? e M there exists a distance minimizing geodesic from/? to N which
hits N perpendicularly; its length is clearly not longer than the diameter of M and it is also
not larger than the first focal distance of N in the direction of the geodesic. Therefore the
exponential map of the normal bundle v (N) of N in M is surjective, even if we restrict
expy to that subset U of normal vectors ^, which are not longer than d (M) or the focal
distance in direction §. In paragraph 3 we describe the canonical riemannian metric on
v (N). For this the projection TT : v —> N is a riemannian submersion. Therefore we
can apply Fubini's Theorem to evaluate the following volume integral by first integrating
over the fibres of v and then over the base N:

2. &. 1: vol (M) ̂  | | det (d expy) |. d vol, („).
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VOLUME ESTIMATES FOR SUBMANIFOLDS 453

We first state the curvature assumptions:
(K) jyN is a hypersurface or a point, assume that the Ricci curvatures of M for the tangent
vectors of distance minimizing normal geodesies are = 5.

If N has arbitrary codimension, assume that the planes of M containing a tangent vector
of a geodesic segment which minimizes the distance to N have sectional curvatures = 8.
Let H be the length of the mean curvature normal T| and let A be an upper bound for H.

We use the abbreviation

[ 8-1/2 singer if 8>0 l
2.0.2: S5( r )=^r if 8 = 0

[^l-^sin/iH^r if 8 < O J

C50-)=sUr).

Then Corollaries 3.3.1 and 3.3.2 state that for each § e U (put r = | ^ | ) we have

|det(dexp,)J.r——1 ̂  (cs(r)- A ̂ SsMr.Ss^)"1-"-1,

where m = dim M and n = dim N. Now 2.0.1 gives

vol(M)= f (c5(r)-/^^^\S8(r))".S5(r)OT-n-l.r-<OT—l)dvol,OT.
Ju \ r /

Since we do not want to make very specific assumptions about the second fundamental
form but assmne only bounds on | T| |, we cannot use the description ofU in terms of focal
distances. However 3.3.1 shows that the first zero z (T|, Q of the integrand is an upper
bound for the focal distance in direction ^ ("conjugate" if n = 0). Therefore we enlarge
U correspondingly, now apply Fubini and abbreviate the obtained fibre integral as

2.0.3:
/•min(d(M).z(Ti.^))/1

/8(d(M), H(p» = (C8(r)~<il(p). ̂ s^Ws^r-^drd^
Js"*-"-1 Jo

where d^ is the standard volume for the sphere s"1"""1.

REMARKS. - 1. By definition/§ seems to depend on T|, but the spherical integration
eliminates the direction dependence and leaves a function of | T| | = H. Of course/§ also
depends on the dimensions n, m.

2. If one is interested in the volume of tubes of radius R around N, then one only has to
change the upper bound of the radial integration to min (R, z (q, (;)).

The above explanations prove the first inequality of the following Theorem, but we
emphasize that the Jacobi field estimates of paragraph 3 are the essential part of the proof.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUP&UEURE



454 E. HEINTZE AND H. KARCHER

2.1. THEOREM. — Let, as above, N be isometrically immersed in M and make the curvature
assumptions (K). Then

vol(M)^ f /s(d(M),H)dvolN
JN

^vol(N)./5(d(M),A).

For the proof of the last inequality we use.

2.1.1. PROPOSITION. — y§ (d(M), H) f.y monoton increasing in H.
Proo/. — We write T| = H.e, | e \ = 1 and note, that the functions

J,min(d(M).z(ii.^))
(Cs-H.^i^s^.sr""1^

and
"minOnM^zOh-O)

^+H^e,^s,)\srn~ldr

depend differentiably on H except for those values of H where d(M) = z(r|, ^) or
d(M) = z(r[, —§). If the upper bound of the integral is J(M), then only the mono-
tonicity of the integrand matters; if the upper bound is z (r|, §), then the integrand vanishes
there and the derivative of z is not needed. If < e, ^ > > 0, then the integrand is not
monoton increasing in H, however in this case z (T|, §) < z (r|, —Q. Therefore, since

(x-H^+(x+H^=2 S f^V-2^2^,
2fc^n\z /c/

the monotonicity of the sum of the two integrands for the directions ^ and -^ follows and
thus the monotonicity ofYg.

We give two special cases of 2.1.

2.2. THEOREM. — If under the assumptions 2.1 one has 8 > 0, then

vol(M) ̂  V01(S8) . f (S+HQ^y^volN for n > 0,
vol(S?) JN

and
vol(M)^vol(S?) for n=0 .

In particular, if | T| | ^ A and n > 0 then

vol(M) ^ vol(N)
vol(SD~vol(S^)

(Sg denotes a sphere of curvature 8).
Note that this gives a lower bound for the volume of submanifolds of bounded mean

curvature which is sharp for small spheres N = 8^2 in spheres M = S .̂ For a very
special case see Heim [8].

The case n = 0 had been proved by Bishop [2].
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2.3. THEOREM. — If under the assumptions 2.1 N is also minimal (r| = 0), then
^mmOnM^n^Vs)

voKM"1) ̂  voKN^.voUST"""1). CsO^.SsO-y""'"-1^
Jo

/— /—where the number n/2 ̂ /8 has to be deleted ifS ^ 0 and has to be replaced by TT/^/S ifn = 0
and 5 > 0.

2.3.1. COROLLARY. — Inequality 2.3 can be interpreted as a lower bound for d (M), e. g.:
if 5 = 0 then

vol(M) ̂  voKN^voKSr"''1). d(M)OT n,
m—n

if n = 0 and § > 0 wzrfvol(M) ̂  1 vol(S^) fh^i d(M) ̂  1 -7l [10].
2 2 ^8

In the last case either d(M) > (1/2)7T/^/S then M is homeomorphic to S"1 by Grove-
Shiohama [7], or d(M) = (1/2) n / ^ /S , hence vol (M) = (1/2) vol (S"*), then M is isometric
to the projective space P R"1, see [10] or our equality discussion.

2.3.2. COROLLARY (Improvement ofCheeger's inequality). — 7/'N is a closed geodesic,
then •"^•^•^(^r"

^^i^ (^'^"-^
2.3.3. Remark. —Ifn. (max K) ~1/2 is not a lower bound for the cut locus distance (e. g. in

case max K ^ 0) then there exists a closed geodesic whose length is twice the minimal cut
locus distance. Therefore 2.3.2 gives a lower bound for the cut locus distance of a
compact riemannian manifold. For example for compact oriented surfaces of genus g
with curvature between — 1 and 0 one has from 2.3.2

(cut locus distance); . ^(g-1)
sinh d(M)

Proofs. — 2.3 is immediate from 2.1 and the definition ofy§ and can of course be
generalized to submanifolds with [ T| | = Const. For 2.3.2 recall

(m-l).vol(ST) = 27i;.vol(ST2).

To obtain 2.2 first replace in the fibre integral min (d(M), z (r|, Q) by z (r|, ^) since the
integrand of/g remains positive up to there. Then observe that each fibre integral can be
recognized as the fibre integral which one gets if one computes the volume of S^ with the
normal bundle of a small sphere Sg + ̂  win s?- Therefore the fibre integral at p e N equals

vol(S8*)/vol(S8+H2(p)), which proves 2.2.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



456 E. HHNTZE AND H. KARCHER

We can also deduce

2.4. COROLLARY (Fenchel-Willmore-Chen). - Let N" be a compact submanifold of R"
with mean curvature normal of length H, then

vol(S"i)^ f H"dvolN.
JN

Proof. — Consider R"1 as the tangent space of a very large sphere S ,̂ map N by the
exponential map into S ,̂ apply 2.2 with M = S^ and take the limit 8—^0. This proof,
however, will not give the equality discussion. The inequality can also be derived by
comparing the volume of a ball of radius R in R"1 with the volume of a tube of radius R
around N in R"1.

3. Estimates for the length and volume distortions of the normal exponential map

3.1. As before, let N be isometrically immersed in M and let n : v (N) —> N be the normal
bundle of this immersion. The aim of this paragraph is to estimate in terms of lower
curvature bounds

|det(dexp,)J =l^xp^_Adexp^
I 11 A A 1 1 \MiA. . .A^

where { u^ ..., u^ } is a basis of the tangent space T^ v (N). To do this we actually prove
(with the same amount of work) a comparison Theorem where curvature inequalities for
two manifolds are assumed and obtain our estimate by specializing one of the manifolds
to be of constant curvature. Furthermore the same proof gives in certain cases a compa-
rison Theorem for the distortion of r-dimensional volumes (r < m) by exp^, i. e. for
quotients | rfexpy u^ A ... Arfexp^ Uy |/| u^ A ... AM,. |. In fact our Theorem 3.2 contains
as special cases the Rauch and Berger comparison theorems (r = 1) as well as the top-
dimensional volume estimates (r = m) which we used in paragraph 2.

First we describe the canonical metric for v (N) and the differential of the normal expo-
nential map in terms of N-Jacobi fields. This information has to be used again in para-
graph 5.

3.1.1. Induced from the metric of M we have the normal connection D1 for v (N). We
use it to split the tangent bundle as a sum of the "vertical" and the "horizontal" bundle,
T v (N) = ir+^: the vertical tangent vectors are tangent to the fibres (and killed by TI^),
the horizontal tangent vectors are tangent to curves in v (N) which—considered as vector-
fields along their base curves—are D-^parallel. Since each vertical tangent space ̂
can canonically and hence isometrically be identified with the fibre v^ ^ (N) by parallel
translation in the fibre and since each horizontal tangent space ̂  can canonically and
hence isometrically be identified with T^ ^ N via n^ we have the canonical metric for
v (N) defined by

IHI^II^I^+II^II2, MGT^V(N).
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VOLUME ESTIMATES FOR SUBMANIFOLDS 457

Then, clearly, the above splitting is orthogonal, n : v (N) —> N is a riemannian submersion
and, if we represent u as u = (rf/A) ^ (0 |o, then, || ̂  || = || (D^A ) § ||. This splitting
fits also nicely with the description of d expy using N-Jacobi fields:

3.1.2. We call a Jacobi field Y along a normal geodesic s—^exp^s.^, ^eVp(N), an
N-Jacobi field, if it comes from a variation of geodesies normal to N, i. e.:

Y^^exp^.^Ol^o.at

Directly from this definition it is clear that N-Jacobi fields describe the differential ofexpy:
If u e T^ v (N) is represented as ( d / d t ) ^ (0 | (=o» Aen

dexp^.M=Y(l).
Two facts are important:

(i) N-Jacobi fields can also be characterized by their initial conditions:
Y is an N-Jacobi field if and only if

Y(0)eT^N, ^YCT-S^.Y^lTpN,
as

where S^ is the Weingarten map of N (for the'normaf^).^ Proof:

Y(0) = (7io^(0), ̂ (O) = ̂ (0) = D1^0)+ S^oi;)-(0).
ds dt dt

(ii) The tangent vector MeT^v(N) determines the "linear" vectorfield U along
•y—>.s'.§(0) given by

U(s) = ̂ s^t) |^o = A(5)+5.B(s), U (1) = M,
dt

where A is horizontal and B is vertical. And rfexpy maps this linear vectorfield onto the
N-Jacobi field Y (s) = d expy. U (s). We call Y the N-Jacobi field associated with u. Note

7^A(s)=Y(0), |B(5)|= (^Y(0)Y and H2 = JAW^+lBCO)!2.

Now, for r linearly independent of these "linear" vectorfields, say Ui, . . . , Uy, it is easy
to compute [ Ui (•s')A ... /\\5y(s) |. On the other hand, the Jacobi equation controls the
corresponding Y» (s) and in this way we obtain our information about length and volume
distortions of rfexpy. We will only consider Jacobi fields which are orthogonal to a
normal geodesic because expy is a radial isometry (Gauss-Lemma).

As a last preliminary, we give two useful specializations.

3.1.3. The Jacobi equation along a geodesic depends only on the sectional curvatures
of planes containing c'. In particular, if these sectional curvatures have the constant

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



458 E. HHNTZE AND H. KARCHER

value 5 then the Jacobi equation reduces already to (D2/^12) Y + 8. Y = 0 and the solutions
are in terms of parallel translation Pg along c:

Y(5) = P,. (c5(s).Y(0)+Ss(s). ̂ Y(0)V

see 2.0.2 for definition of c§ and s§.
From this explicit solution of the Jacobi equation it is clear that the riemannian metric

of M is uniquely determined by the canonical metric on v (N), the constant 8 and the
second fundamental tensor of N in M. A detailed but somewhat lengthy formulation is
given in Lemma 5.6.

3.1.4. If in addition N is totally umbilic with mean curvature normal T|

( i .e .<^>.<X,Y>=<S^X,Y»

then N" Jacobi fields along c are given as

Y(5) = P,((C8(S)~<T1, O.S5(5)).Y(0)+Ss(5).E),

where ^ = c ' l \ c' \ and E 1 Np is the normal component of (D/ds) Y (0).
This equation contains precise information about the focal points of N; for example

if ^ 6 v (N) is a focal point, then E = 0 hence ker (rfexpy |^) = X^.

3.2. THE COMPARAISON THEOREM.

NOTATIONS. — Let N be isometrically immersed in M, ^ e v? N a unit vector
Y( (s) = rfexpy U, (s) (i = 1, . . . , r) be linearly independent N-Jacobi fields along
c (s) = exp s. i; (see 3.1.2); let k (s) be the minimum of the sectional curvatures of planes
containing c* (s) and K (s) be the maximum; let ^i, ..., ̂  be the eigenvalues of the Wein-
garten map S^. Consider a second such situation N <= M etc.

ASSUMPTIONS. — Let SQ be not larger than the first focal distance of N in direction i;
and make one of the following assumptions (a), (b), (c) or (d) for 0 rg s ^ SQ:

(a) k (s) ^ K (s), 2 ^ r+1 ^ dim M ^ dim M, dim N = dim N = 0;
(b) k (s) ^ K (s), 2 ^ r+1 ^ dim M ^ dim M;

codim N = codim N = 1, max ̂  ^ min ̂ .
(c) k (s) ̂  K (s\ r+1 = dim M == dim M, dim N = dim N, ̂  ^ ^ for some ordering

of these eigenvalues;
( d ) Ric (c\ c') ^ (w—l).8, M of constant curvature 8, r+1 = dim M = M and either

dim N = dim N = = 0 o r = = w — 1 and N totally umbilic and tr S^ ^ tr S^.
Then we have the following comparison between r-dimensional volume distortions under

rfexpy for 0 ̂  s ^ SQ:
3.2.1. Main inequality:

|Yi(5)A.,.AY,(5)| ^ |Yi(5)A...AY,(5)|

|Ui(s)A...AU,(s)|~" |Ui(s)A...AU,(5)|'

4® S&OE - TOME 11 - 1978 - N° 4



VOLUME ESTIMATES FOR SUBMANIFOLDS 459

3.2.2. The proof will give necessary and sufficient conditions for equality to hold. We
are interested only in the following special cases:

If k(s) = K (s) = 8 for s ^ So then equality in (c) is equivalent to k (s) = K (s) = 8
and \i = Ki(i == 1, ..., yz).

Equality in (J) is equivalent to k (s) = K (5-) = 8 for .y ^ .s-o?tr S^ = tr S^ and N umbilic
for the normal ^.

3.2.3. Note that:
s'.jY'l^A ... AY;(0)| in case (a),

|Ui(s)A ... AU,(s)| = |Yi(0)A ... AY,(0)| in case (&),
^codimN-i const. in cases (c), (d).

Therefore (a) resp. (6) are generalizations of the Rauch resp. Berger estimate. Note also
that (c) and (d) give comparisons between the focal distances of N and N; under our
dimension assumptions they are stronger than that in Warner ([13]), Th. 3). Finally, the
restriction in (c) to the top-dimensional volume (r = m—1) is essential, since an example
of Warner ([13], p. 353) shows that a length comparison is not true up to the first focal
point of N in general.

3.3. The Corollaries which were needed in paragraph 2 are obtained if M has constant
sectional curvature 8:

3.3.1. COROLLARY [to 3.2 (c)]. - With the notation in 3.2 assume k(s) ^ Sfor s not
larger than the first focal distance o/N in direction ^ ( | ^ [ = 1), then

[det^exp^.J.^-"-1 ^ n^^+^.s^.sr""1^)
1=1

^ (C5(5)-<11, ̂ .S^))"^)"1-"-1,

where T| is the mean curvature normal of N.
Equality in the last inequality is equivalent to

fe(s)=K(s)=8 and ^ = - < T I , ^ > ( i= l , . . . , n ) .

Also, the first zero z (T|, ^) of the last estimate is an upper bound for the first focal distance
of N in direction S;.

proof. — Apply 3.2 (c) to N and a local submanifold N in a space of constant curvature 8
which has at one point the same second fundamental tensor as N at n (Q. The second
inequality then uses the geometric-arithmetic-mean inequality.

3.3.2. COROLLARY [explicit reformulation of 3.2 (rf)]. — For s not larger than the first
focal distance of N in direction ^ ( | ^ | = 1) holds

Idet^exp^l.s"-"-1 ^(C5(5)-<ii, ̂ s^r.s^r-"-1.

ANNALES SCffiNTIFIQUES DE L'^COLE NORMALE SUP^RIEURE 60



460 E. HEINTZE AND H. KARCHER

Again, the first zero z (r|, 1Q of the right hand function is an upper bound for the first focal
distance (n = m-\) resp. conjugate distance (n = 0) of N in direction ^ (with
8 ^ Ric (c', 0/m-l). Equality as in 3.2.2.

3.4. Proof. - The arguments generalize Bishop's volume estimate and the Jacobi field
estimates of Rauch and Berger.

3.4.1. Put:
^. |Y,(5)A.. .AY,(5)|

|Ui(5)A.. .AU,(s) | '

^_|Y,(s)A...AY,(^
|U,(s)A...AU,(5)|*

Since limf(s) = lim/0-) = 1 it suffices to prove (log/)' ^ (log/)'. Because of the
5-^0 S-»0

mentioned curvature-independent behaviour of | U^A ... AUy [ in (3.2.3) it suffices to
prove

(*) (log|Yi(5)A ... AY,(s)|)' ̂  (log|Yi(s)A ... AY,(s)|y,

for s smaller than the first focal distances of N and N; now/(^) ^ f(s) as long as (*) holds
and, consequently, the first focal point of N does not come earlier than that of N.

3.4.2. We fix •s'i (smaller than those focal distances along the geodesies c, c under
consideration) and, after taking linear combinations with constant coefficients we assume
that YI (^i), . . . , Y,. (j-i) are orthonormal. Similarly Yi (^i), . . . , Y,. (s^) can be replaced
by r linearly independent combinations without changing the logarithmic derivative, a
freedom needed at the end.

3.4.3. We denote by 1̂  the indexform of c/[0, s^~\ with respect to N. Its fundamental
property is that, before the first focal point (!) one has:

If Y is an N-Jacobi field and X is any C^-Vector field along c with X (s^) = Y (s^) and
X (0) e N<.(O) then 1̂  (Y, Y) ^ 1̂  (X, X); equality if and only if X = Y.

3.4.4. For N-Jacobi fields and likewise for N-Jacobi fields one has

<Y,r>(0)=<Y,S^o).Y>(0),
therefore

log(|YiA.. .AYj) '(50
r

== S < Y., Yf > (si) [ { Y, (5i)} orthonormal]
1=1

r
= E«Y,,S^Y..>(0)+ r'«Y;,Yi>-<R(Yi,c')c',Y,>ds

i=l Joi=l J O

= SVY(,Y,).
i=l

So, we have to compare the indexforms on M and M to prove (*).
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VOLUME ESTIMATES FOR SUBMANIFOLDS 461

3.4.5. Choose a linear isometric injection

i^ : Mp -> Mp (p = c(0), p = c(0)) which satisfies,

^(c'(0))=c'(0),

^i (Np) c: Np [no condition in (a), (fc), (d)],

^(V^) = V,, [no condition in (c), (d)],

where V^ (resp. V^) is that r-dimensional linear subspace of Mp (resp. M_) which is obtained
by parallel translation along c to c (0) [along c to c (0)] of the span of the Y, (s^) [of the
Y î)].

Clearly, in case (c) one can in addition assume that i^ maps, independently of.s'i, eigen-
spaces of S^ onto eigenspaces of S^ in such a way that Kj ^ .̂ (j = 1, ..., n), hence for
all X e Np < SX, X > ^ < S i^ X, i^ X >. If we want to prove the inequalities in 3.3
using only [ T| | == | fj |, then we note that there exist (locally) submanifolds N in spaces
of constant curvature, which have on one of their tangent spaces TpN any prescribed
second fundamental tensor, in particular the same as N at p. To eliminate the unknown
eigenvalues, use det (A) ^ (1/n trace A)" (if A ^ 0).

3.4.6. After the choices in 3.4.2 and 3.4.5 have been made, define vectorfields W,
along c as follows

W,(s): = P,oi^op^.Y.(s) (0 ̂  s ̂  s,\

where P, and P»s denote parallel translation along c (from 0 to s) and along c(from s to 0).
Obviously we have

|W,(5)|=|Y,(5)|, |WKs)|=|YKs)|.

We now assume (see 3.4.2), by taking a suitable linear combination, that

Y,(5i)=W^) 0=l , . . . , r ) ,

since span { W; (s^) } = span { Y; (s^) }, as follows from i^ (V^) = V^. Finally we get

W,(0)e^(Np)<=Np from Y^OeNp.

Therefore we have from 3.4.4 and 3.4.3:

(log|YiA ... AY,|y(sO = t I,,(Y,, Y,) ̂  S ̂ (W,, W,).
1=1 i=i

It remains to show

EUW,,W^ EUY,,Y,).1=1 i=i
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3.4.7. The curvature assumptions and the definition of W^ imply in cases (a), (b), (c)
immediately:

f^W^-KCc'AW^.Ic'nw,!2)^
Jo

^ pdY.'^-KCc'AY,).!?!2.)^!2)^.

In case (d) the constant curvature of M implies that the Y, and hence the W, are,
up to a common factor, orthonormal; therefore, after summation the Ricci curvature
assumptions on M imply the desired inequality. This proves case (a); (b) and (c) follow,
since the eigenvalue assumptions imply <SW,,W,>(0) ^ <SY,,Y( >(()); for (d) we
need again that the { Y, } and the { W, } are, up to a common factor, orthonormal, so that
the trace assumption suffices.

3.4.8. Equality discussion. - If equality holds, then 1̂  (Y,,Y,) = 1̂  (W^,W,) implies
that all the W, are Jacobi fields; this forces corresponding sectional curvatures of M and M
along c and c to be equal, which we will use in paragraph 4 if M has constant curvatuie.
Furthermore, 1̂  (W,,W,) = 1̂  (Y,,Y,) [in cases (A) and (c)] implies equality of corres-
ponding eigenvalues of Sy and S,,. If the inequality is in case (c) simplified to contain
only the trace (3.3.1), then equality in det A = (1/n trace A)" forces all eigenvalues to be
equal, i. e. N must be totally umbilic at p in M. Since equality in {d) forced all the sec-
tional curvatures of M of planes containing c' to be = 8, we can now apply part (c) of the
theorem so that equality in (d) also forces N to be totally umbilic at;? in M.

Remark. - Warner [13] proved a length comparison theorem for N-Jacobi fields which
holds at least up to the first focal point of a suitably choosen hypersurface N in M but
which does in general not hold up to the first focal point of N, example 13, p. 353. We
give an example of a Jacobi field on a homogeneous space for which one does not have
a length comparison on any interval [0, s]:

The space is S3 with a left invariant metric (a general Berger sphere) which is obtained
by changing the biinvariant metric < , > with a left invariant endomorphism field A to
g ( , ) = < A , >. We denote the eigenvalues by a > b(= 1) > c > 0 and the corres-
ponding left invariant eigenfields by Ei, E^, E^ Then the following is true [16]: The
integral curves of E^ are unit speed closed geodesies along which one has the following
exponentially growing Jacobi field

Z(Q = C. sinhaf.Ei(0 + cosha(.E3(Q,
where
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The sectional curvature

2b+2c-3a .(b-cf .K(E2, Es) = ———,——— + ——— == 6
4 4a

is always the minimum of the sectional curvatures of the metric g and 8 > 0 for example
if3a^ 2b+2c.

On the sphere of constant curvature 8 choose a unit speed geodesic; normal Jacobi fields
along it are in terms of parallel fields V, W given as

^(t)=cos^6t.V(t)+lsm^&t^(t).
^

Choose the initial data to obtain a comparison situation

|Y(0)|=|Z(0)|, <Y,Y />(0)=0=<Z,Z />(0), 1^(0)1=1^(0)1.

Then one might expect a comparison | Z ( t ) \ ^ | Y { t ) | at] least on some interval.
However one checks easily for all t ^ 0 : \ Z ( t ) | >^ Y ( t ) \\ (Differentiate
f(t) = | Z (Q |2 -1 Y (0 [2 twice, observe /(O) = /' (0) = 0 because of the initial data
and/ / /(0=Cl.cosh2a^-C2.cos2^/8?with/ / /(0)=Cl-C2=Osince|Y'(0)|=|Z'(0)|
and with K (E^, Es) = 8 also < Y, Y" > (0) = < Z, Z" > (0).)

Our proof of Theorem 3.2 when applied to a single Jacobi field (case r = 1) leaves room
for improvements. For example one does not need max ̂  ^ min ?i, but only
<Y,Y '>(0)>^max^ . |Y(0) | 2 .

Also the hypersurface N perpendicular to the geodesic c can be choosen so as to have a
suitable Weingarten map A; the only condition for the symmetric endomorphism
A : c' (O)1 -> c' (O)1 with eigenvalues K, are:

A.Y(0)=r(0) and <Y, Y'>(0)> = max^.|Y(0)|2.

Then | Y ( t ) \ = | Y (t) \ up to the first focal point of a hypersurface N with Weingarten
map A at c (0). Such an A does not exist in our example, but one obtains sharp estimates
if Y (0) and Y7 (0) are linearly dependent.

4. Equality Discussion

If we have equality in 2.1 or 2.2 then all the upper estimates which were used in the
derivation must be sharp. Therefore we have parts (i) and (ii) of the following proposition
immediately from 3.4.8 and (iii) from the definition of/g in 2.0.2.

4.1. PROPOSITION. — Let N be isometrically immersed in M and make the curvature
assumptions (K) of paragraph 2. Then equality in 2 A is equivalent to the following set of
statements:

(i) all planes ofM containing a tangent vector to a geodesic segment "which minimizes the
distance to N have the same sectional curvature 8 ;
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(ii) N is totally umbilic in M (a (X, Y) = T| . < X, Y »;
(iii) the normal geodesies minimize the distance to N up to the minimum between d (M)

and the first focal distance. In particular the immersion o/N in M is an embedding and N
is connected. Equality in 2.2 equivalent to (i), (ii) and

(iii') the normal geodesies minimize the distance to N up to their first focal point.
With 4.1, 3.1.4 and 4.4 we will prove the following theorem which gives the first part

of the equality discussion.

4.2. THEOREM. - (i) if 6 ^ 0, then equality does not occur in 2.1;
(ii) ;/8 > 0, then equality in 2.1 implies equality in 2.2 with the only exception where N

is a point in real projective space (there 2.1 gives equality, 2.2 does not).

4.4. LEMMA. — Assume for N c: M property 4.1 (iii) and dim N > 0. Then, a geodesic
which minimizes the distance from N up to rf(M) has focal endpoints.

Proof:
4.4.1. Let c be a geodesic which minimizes the distance from N up to length rf(M), let;?

be its endpoint. Then we have or every n eN:

d(p, n) ̂  d(M) (definition of diameter),
d(p, n) ̂  d(p, N) = d(M) (choice of p).

In addition, every minimizing geodesic from/? to N is also perpendicular to N, since other-
wise there would be shorter curves.

4.4.2. Assume, that/? is not a focal point. By continuity all normals close to c' (0) also
have their first focal distance larger than ^(M), hence [with 4.1 (iii)!] everything in 4.4.1
holds for them. Since their endpoints are not focal we obtain a piece of hypersurface P
such that:

(i) all points of P have distance d (M) from N, hence all minimizing goedesics are perpen-
dicular both to N and P;

(ii) each point of P has minimal geodesic connections to all points of N.
As soon as N has more than two points this is a contradiction.

Proofof'4.2. — If N is a point in (i) or (ii), then M is of constant curvature 8 and a ball
of radius d(M) in the universal covering M would be a fundamental domain for M, but
this is impossible if 8 ̂  0 since the ball is strictly convex and similarly if 8 > 0 and
d (M) ^ Ti/2 ̂ /8. In the exceptional case, obviously, M = RP"*.

If N is not a point, then (ii) follows immediately from 4.4, compare 4.1 (iii) to (iii').
If 8 ^ 0 and N c M satisfies 4.1 (i), (ii) then it is clear from 3.1.4 that for at least one
of the normals ^, — ^ there does not exist a focal point. Then 4.1 (iii) and 4.4 give a
contradiction.

The second part of the equality discussion (i. e. of 2.2) rests on the following theorem
which will be proved in paragraph 5.
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4.5. THEOREM. — Let N and M be compact riemannian manifolds, N isometrically
immersed and totally umbilic in M. Assume that all planes ofM containing a tangent vector
to a geodesic segment which is normal to N and has no focal points have the same sectional
curvature 8 > 0.

Then M has constant curvature § and, of course, the totally umbilic submanifolds are
well known,

4.5.1. Remark. — The proceeding result is trivial if N is a point, locally true if N is a
curve (5.7) but locally false if dim N ^ 2: for any compact manifold N choose a cos (^/5 t )-
warped metric on the product Nx(—'jr/2^/5, Ti/2^/5), then all assumptions except
compactness are satisfied. If 8 ^ 0 then these warped product metrics can even be made
complete, for example product metrics on N x J^ if 5 =0.

4.6. THEOREM (Equality discussion of 2.2). — (i) ifr\ ^ 0, n ̂  0, then equality in 2.2 is
equivalent to: M = S^*, [ T| [ = Const. and N = S^+j^ p with standard embedding in S^;

(ii) ;yr| =0, then equality in 2.2 is equivalent to: (M, N) = (S^, S^)/r, where T acts
reducibly on Rm+l cleaving span (S^) invariant^ All space forms S"|r can occur for N.
IfT is not trivial, then d(M) = n/2 ̂ /8. Ifn=0, then T is trivial.

Proof:
4.6.1. Equality in 2.2 implies (because of 4.5) constant curvature for M, hence M = S^

or M = S^/r. We first treat the simply connected case and come to non-simply connected
M in 4.6.4.

4.6.2. The case dim N = 1 must be handled seperately, since 4.1 (ii) is void for n ^ 1.
We consider M as sphere in R"4'1. Then (8+H2 (p))112 is the curvature x of N as a
curve in R"14'1, so that 2.2 reduces to the Fenchel-Borsuk inequality:

2n^\ \K\ds.
JN

Equality in this Fenchel-Borsuk inequality holds if and only if N is a convex curve in some
2-dimensional plane. In our case N is also a spherical curve, hence a circle [in particular
H(j?) == Const.].

4.6.3. If dim N > 1 then, since N is totally umbilic by 4.1 (ii), we have the standard
conclusion that H = Const. (which follows also from 5.5) and that N = S^+^z together
with the standard embedding in S .̂

4.6.4. If equality in 2.2 holds for a non simply connected M then, obviously, we have
equality also if we lift N to the universal covering S^ of M. The lift N is connected because
of 4.1 (iii). If T| ^ 0, then N is a small sphere invariant under the deck group F of M in
S^; but then the midpoint of N is a fixed point of F, so the group must be trivial. If
dimN = 0, then 4.1 (iii) and this fixed point argument also forces F to be trivial. If
T| = 0, then N is a totally geodesies sphere in S^ and invariant under F, so r acts reducibly
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on R"1'1'1. If S"/r is any space form, choose m = 2n+l and take the representation
corresponding to S"/F twice.

4.6.5. If a quotient of S"* has diameter > n/2, then there exist points p, qe S"1 such
that the distance from/? to the orbit F.q is > n/2, i. e. T.q lies in a ball of radius < 7t/2.
The midpoint of the smallest (convex!) ball containing T.q is a fixed point of F, hence I"
is trivial. On the other hand, if F acts reducibly on S"1, then any pair of points from
orthogonal invariant subspaces has a distance n/2 in S"1 and in S^VF; for reducible actions
we therefore have d ^ / F ) = n/2.

This completes the proof of Theorem 4.6.

5. Proof of Theorem 4.5

The heart of the proof consists of Lemmas 5.3 (iii), 5.4 and 5.5, which show (in case
dim N > 1) that r\ is parallel, that D-^parallel displacement in v (N) is locally independent
of the path and that N has constant curvature 8+| T| |2. Note that these statements,
which we will prove in this order, correspond to the Codazzi, Ricci and Gauss equations
for "small" spheres S^,^ .2 in spheres S^ of curvature §. Together with the more
technical Lemma 5.6 they immediately will imply the theorem. If dim N ^ 1, the theorem
is locally true and follows already from Lemma 5.6.

To prove that T| is parallel, we first extend a result of Warner ([12], Th. 3.2) (see also
Whitehead [14]) to the case dim N > 0.

Let N, M be riemannian manifolds, N isometrically immersed in M and F c= v (N) the
set of first focal points of the normal exponential map. Assume that the multiplicity of
the first focal points is a constant, say k, so that F is a hypersurface in v (N).

5.1. THEOREM. — Ifk > 1, then

ker (d exp^) <= T^ F for all ^ e F.

5.1.1. COROLLARY. — ker rfexpy is an integrable distribution in TF.
Proof of 5 A. — For any map/: N —> M between riemannian manifolds one has from

the differential df the tension field D2/, defined for local vector fields X, Y on N by

D^X, Y) = D^df Y)-df D$Y,

where D14 and T>M are the covariant derivations in N and M, the one in M generalized to
vector fields along maps into M. Working with symmetric connections, one has the usual
symmetry of second derivatives

D2/(X,Y)=D2/(Y,X),

which will be essential later on, when applied to / = exp^.
Now, let § be a focal point, X e T^ F and Y e ker (^fexpy^). Then

(*) D2 exp^ (X, Y) 6 image (d expj,
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since X can be represented as the tangent vector of a curve ̂  (s) in F and Y can be extended
to a vector field Y (s) along this curve with Y (s) e ker (rfexp^). Since k > 1 and T^ F
is a hyperplane in T^ v (N), we can find a non-zero Z e ker (d expy^) n T^ F. Let
Y e ker (rfexp^) be decomposed into Y = V+X, X e T^ F and V tangent to the geodesic
y (0 = exp t ^. We claim V = 0. Indeed, by the symmetry of D2 expy and (*):

D2 exp^ (V, Z) = D2 exp^ (Z, Y) - D2 exp^ (X, Z) e image (d exp,,).

Thus it follows from the definition of the tension field that also

D^ (d exp^ Z (t)) e image d expv,

where Z (?) is any extension of Z along y (?). Choosing for Z ( t ) the "linear" vectorfield
such that J ( t ) = d exp^ Z (0 is the N-Jacobi field associated with Z (see 3.1.2) we get
on one hand J (1) =0 and on the other hand

| v |. D J (1) = D^ d exp^ Z (0 e image (d expj.
dt

But this forces V to be zero by the next Lemma, finishing the proof of the Theorem.

5.2. LEMMA. — Let N be isometrically immersed in M and/ the set of all N-Jacobi fields
along the geodesic y ( t ) = exp t^, ̂  e v (N). Let to e R and put Vi = { Y (ro)/Y e / } and
V2 = { Y' (^)/Y e / with Y (^o) = 0 }.
Then V\ is orthogonal to V^ (^/ clearly dim V\ +dim V^ = dim M).

Proof. - Since < Yi (t), Y'̂  (0 > - < Y'i (r), Y^ (0 > is constant for any Jacobi fields
along y, it is zero for N-Jacobi fields (the Weingarten map is symmetric). Thus
< Yi (to), Y^ (to) > = 0 if Yi, Y^ e ̂  and Y^ Oo) =0.

We now come to the proof of the Theorem. Let F denote as usual the set of first focal
points, D1 the induced connection in the normal bundle and T| the mean curvature vector
field of the immersion.

5.3. LEMMA. — If, in addition to the assumptions of Theorem 4.5, dimN > 1, then:
(i) ^-parallel curves in F are mapped under exp^ onto point curves;

(ii) F is invariant under ^-parallel displacement along curves in N;
(iii) T| is ^-parallel.

proof, — Note that by 3.1.4 ker (^exp^) consists, at a focal point, of the horizontal
subspace. This proves (i) and shows also that Corollary 5.1.1 applies. Now, let
^ : [0, 1] -> v (N) be a D-^parallel curve along c = n o ^ with ^ (0) e F. Obviously the
set of t for which ^ (Q e F is closed. But it is also open. Indeed if ^ (to) e F, for some
to e [0, 1] and K <= F is an integral manifold of ker (rfexpy) through § (to), then there
exists a curve ^ ( t ) in K with ^ (to) = ̂  (to) and n o ^ = n o ^ because n : K —> N is a local
diffeomorphism. But ^ (0 in K implies (D^/dt) ^ = 0 (3.1.4), hence ^ = ^ in a neigh-
bourhood of to. Therefore ^ ( t ) e F in this neighbourhood and thus ^ ( t ) e F for all
t e [0, 1]. This proves (ii) and shows also that the N-Jacobi fields Y^ associated with ^ ( t )
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vanish at 1. From the explicit formula for N-Jacobi fields in 3.1.4 we conclude that
< ^, T| o c > is constant and therefore from (ii) that < ^, T| o c > is constant for any D-^parallel
vector field ^ along any curve c in N. This finishes the proof of (iii).

5.4. LEMMA. — If the assumptions of Theorem 4.5 hold, then ^-parallel displacement
in v (N) is locally independent of the path.

Proof. — We may assume dim N > 1. Let PQ e N and ^ e F with TC^ = PQ. Let c be
a closed curve in N starting at po, which is homotopic to zero. Parallel displacement of^
with respect to D1 around any closed curve of a fixed differentiable homotopy gives a
curve ^ ( t ) in N^ with ^ (1) = ^ [since ^ (1) is obtained by parallel displacement around
a point curve]. By 5.3 (i) exp^(^) = exp^ for all t. Since ker^expy) is horizontal,
^ (r) must be constant. Hence ^ (^) = ^ and the lemma is proved.

5.5. LEMMA. — If in addition to the assumptions of Theorem 4.5 dimN > 1, N is of
constant curvature 8+| T| |2.

Proof. — LeipQ e N. We will explicitly construct a homothety between a neighbourhood
of PQ with an open subset of an w-dimensional sphere in M^, q^ a focal point of N.

Put N* = exp^ F. It follows from 5.3 (ii) that N* = exp^ (F n N^) and from 3.1.4
that expy : F n N^ —> M is an immersion. Furthermore, if we put N^ = rfexpy (T^ F)
for any i; e F, then 5.3 shows that N^ remains unchanged if we D-^parallel translate !;
along curves in N.

If T( = 0, F n N is a sphere of radius n/2 ^/& around 0 as follows from 3.1.4. There-
fore by the Gauss-Lemma we have y (1) ± N^ for all geodesies y ( t ) = exp t ^ with
§ e F n N^. If T| ^ 0 only the geodesies in the direction of ± T| hit N* orthogonally as
follows again from 3.1.4 and the Gauss-Lemma.

Now, let ^o 6 N_ be an arbitrary unit vector if T| = 0 and §o == r! (^oV|| T! (Po) \\ if
T| ^ 0. Extend ^o to a L^-parallel vector field ^ in a neighbourhood U of po, which is
possible by Lemma 5.4. Of course ^ ( p ) = T| (p)l\\ T| (p) \\ if T| ^ 0 by 5.3 (iii). Let
SQ e (0, TT/^/8) be determined by ^/8 cot ^/6 ^o = | r! |- Then ^o = ex? ^o -^o ls Ae first
focal point along exp t ^. Let jp (t) = exp t£, (p). Then also y^ (•s'o) = ^o by 5.3 (ii)
and Yp (-s'o) -L N^^ by the above discussion. Thus the map 0 from U into

S={xeMj||x| |=l,xlN^},

the normal sphere of N^, given by 0 (p) = Yp (.s'o) is a well defined differentiable map.
Note that dim S = dim N. We claim that 0 is an isometry up to a constant factor.
Indeed, if c (t) is a curve in U and Y( (s) the N-Jacobi field along YC(Q (s) associated with

toc(0, i.e. Y,(s) = (9^/9t)(s,t\ ̂ (s,t) = exp^fc(Q), then 0^(0 = (D/A)Y^o).
Since Y( (so) =0, 3.1.4 shows

Y^)=^cos785-|T^|sm^Wys
4° S&UE - TOMB 11 - 1978 - N° 4



VOLUME ESTIMATES FOR SUBMANIFOLDS 469

so that

|^(c(0)|= ^Y^o) =sin^85o.f,/8+ l^VlcCOl^TsThF.lcCOl.ds \ ya /
This finishes the proof. Note also that 0 gives a global isometry if T| ^ 0, an alternative
proof of 4.6 (i).

5.6. LEMMA. — Let M, M be complete riemannian manifolds and N c: M, N <= M be
embedded submanifolds mth the induced metrics. Let v (N) and v (N) be open star shaped
neighbourhoods of the zero sections in v (N) and v (N), respectively, on which the normal
exponential maps are injective and of maximal rank.

Let 8 e R and assume that K (a) = 8 for all tangent planes <r to M and M which
contain a tangent vector of a geodesic exp tv with t e [0,1] and v e v (N) or v (N), respec-
tively.

Letx? : v (N) •—> v (N) be a vector bundle isomorphism which maps v (N) into v (N).
Denote by <I> the induced map between N and N and putx? = exp^)0 ̂  ° (^PvCNVvTN))"1-
Then:

I. ^F is an isometry if and only if:
(i) 0 is an isometry;

(ii) | y (v) | = v for all v e v (N)$
(iii) y maps D-^parallel vectorfields along curves in N onto D^arallol vectorfields.
II. ̂  is an isometry if and only if ̂  is an isometry and:
(iv) for all p e N and v, we Np:

a(0^,0^)=y(a0;,w)),

where a and a denote the second fundamental forms of N in M and N in M, respectively.
Remark. — If N and N are both totally umbilic or 1-dimensional, (iv) is equivalent to:
(iv)' ^F o ri = T| o <]> (r| and r[ the mean curvature vector fields).
Proof, — The first part follows directly from the definition of the riemannian metrics for

the normal bundles and it is clear also that the conditions in the second part are necessary.
That x? is an isometry if y is an isometry and (iv) holds is precisely the content of the
discussion in 3.1.3.

5.7. END OF PROOF OF THEOREM 4.5. — The low dimensional cases follow quite trivial
and don't even use 8 > 0. Indeed, if dim N = 0 the last Lemma already shows that M
except on a set of measure zero (the cut locus) has constant curvature 8. Therefore M
itself is of constant curvature 8 by continuity of the curvature function. If dim N = 1
and PQ eN, we choose locally an orthonormal w-frame v^, ..., v^ (m = dim M) with
v^ e TN and D1 v^ = 0 for ; ̂  2. Put w^ = < (D/A) i^, Vj, > = —w^ and integrate the
corresponding Frenet differential equation in a space of constant curvature 8 to obtain a
curve N with orthonormal w-frame v^, ..., i^. Since w^ = 0 for f, k ^ 2 we get a
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bundle isometry between the normal bundles by identifying v^ with v^, i ̂  2. This bundle
isometry also satisfies (iv)' of Lemma 5.6 because < ( D / d t ) v^ v^ > = < ( D / d t ) v^, v^ >.
Thus we may conclude as above that M is of constant curvature.

Now, let dim N > 1. For any^o e N there exists by Lemma 5.5 an open neighbourhood
U and an isometry <3> : U—> U, U an open subset of a "small" sphere N of curvature
8+j T| |2 in a sphere M of curvature 8. By Lemma 5.4 we may assume that v(U) is
parallizable with respect to D1. Choosing next a linear isometry between N^ and N^ ̂
which maps TI (po) onto rj(^o) (rj the mean curvature vector field of N in M) and extending
this by parallel translation. Lemma 5.6 can be applied, yielding constant curvature 8 for
all points in exp ((U)) within focal distance. Thus, by continuity as above, M has constant
curvature 8.
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