ANNALES SCIENTIFIQUES DE L'É.N.S.

ANNE BERTHIER On the point spectrum of Schrödinger operators

Annales scientifiques de l'É.N.S. 4^e série, tome 15, nº 1 (1982), p. 1-15 http://www.numdam.org/item?id=ASENS_1982_4_15_1_1_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1982, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE POINT SPECTRUM OF SCHRÖDINGER OPERATORS

BY ANNE BERTHIER

1. Introduction

This paper is an extension of a work [2] on the spectral analysis of partial differential operators of Schrödinger type. The problem was the following: Let A be a compact subset of \mathbb{R}^n , Σ a finite interval in \mathbb{R} and H a self-adjoint elliptic differential operator in the complex Hilbert space $\mathscr{H} = L^2(\mathbb{R}^n)$. We define $F(\Sigma)$ to be the spectral projection of H associated with the interval Σ and E(A) the multiplication operator by the characteristic function χ_A of A. Do there exist vectors in $L^2(\mathbb{R}^n)$ which are contained both in the range $E(A)\mathscr{H}$ of E(A) and in $F(\Sigma)\mathscr{H}$?

It turns out that the closed subspace $\mathscr{H}_p(H)$ generated by the set of eigenvectors of H plays a different role from the subspace $\mathscr{H}_c(H) = \mathscr{H}_p(H)^{\perp}$ associated with the continuous spectrum of H. Notice that it is shown in [2], under regularity and integrability conditions on the coefficients of the differential operator, that there do not exist vectors of $\mathscr{H}_c(H)$ which belong both to $E(A) \mathscr{H}$ and to $F(\Sigma) \mathscr{H}$. On the other hand, to prove the non-existence of vectors in $\mathscr{H}_p(H)$ belonging to $E(A) \mathscr{H} \cap F(\Sigma) \mathscr{H}$, we used an unique continuation theorem for solutions of the differential equation associated with H. Now, if for example $H = -\Delta + V$, where V is the multiplication operator by a real function $v(\vec{x})$, the known results on unique continuation require a condition $L^{\infty}(\mathbb{R}^n \setminus N)$ on v, where N is a closed set of measure zero such that $\mathbb{R}^n \setminus N$ is connected ([3], [5]).

In the present paper, we propose to show that:

(1) $\mathscr{H}_{p}(\mathrm{H}) \cap \mathrm{E}(\mathrm{A}) \,\mathscr{H} \cap \mathrm{F}(\Sigma) \,\mathscr{H} = \{0\},\$

by imposing only an integrability condition on the function v. More precisely, we will prove (1) under the hypothesis that $v \in L^s_{Loc}(\mathbb{R}^n)$ with s=2 if n=1, 2, 3 and s>n-2 if $n \ge 4$.

This result shows that, under the above conditions on v, the operator $-\Delta + v$ has no eigenvector with compact support. This is essentially the content of our Theorem 1 in paragraph 2. (In the case n = 1, one obtains *ordinary* differential operators for which results of this type have been known for a long time [9]).

annales scientifiques de l'école normale supérieure. - 0012-9593/1982/ 1 /\$ 5.00 $\textcircled{\mbox{\sc c}}$ Gauthier-Villars

This result is also interesting from the point of view of "non-existence of positive eigenvalues of the operator H". In the literature (for example [2], [12]) the non-existence of positive eigenvalues is obtained in two steps:

(i) under suitable decay conditions at infinity on the function v, it is shown that all eigenfunctions f associated with a strictly positive eigenvalue of H have compact support;

(ii) then one imposes suitable local conditions on v (e.g. $v \in L_{Loc}^{\infty}(\mathbb{R}^n \setminus N)$ in order to apply the unique continuation theorem, which then leads to $f \equiv 0$. It turns out that the non-existence of positive eigenvalues is also obtained by assuming in (ii) as a local condition that $v \in L_{Loc}^{s}(\mathbb{R}^n)$ with s=2 if n=1, 2, 3 and s>n-2 if $n \ge 4$ (Thm. 2).

Finally our method implies also the spectral continuity of a class of Schrödinger operators with periodic potentials $v(\vec{x})$.

The organization of the paper is a follows: first we give the principal results and deduce Theorems 1 and 2 from Theorem 3 in section 2, and we introduce a direct integral representation of Schrödinger operators in section 3. This representation will be used in section 4 for proving Theorem 3. The principal estimate of the proof is the subject of the last section 5.

2. Statements of the results

Let $v : \mathbb{R}^n \to \mathbb{R}$ be a measurable function. We always suppose that:

(2)
$$v \in L^s_{loc}(\mathbb{R}^n)$$
 with $s=2$ if $n=1, 2, 3;$ $s>n-2$ if $n\geq 4$.

Notice that s > n-2 in all cases.

The function v will be called *periodic* if there exist n linearly independent vectors $\vec{a}_1, \ldots, \vec{a}_n \in \mathbb{R}^n$ such that $v(\vec{x} + \vec{a}_i) = v(\vec{x})$ for all $\vec{x} \in \mathbb{R}^n$. A periodic function will be called *ortho-periodic* if:

(3)
$$\vec{a}_i \cdot \vec{a}_k = \mathbf{L}^2 \, \delta_{jk},$$

with L>0, i.e. if the vectors of the form $\sum_{i=1}^{n} \alpha_i \cdot \vec{a_i}$, $0 \le \alpha_i < 1$, define a cube Cⁿ with side L.

We denote by \hat{H} the symmetric operator:

(4)
$$\hat{\mathbf{H}} = -\Delta + v(\vec{x}),$$

with domain $D(\hat{H}) = C_0^{\infty}(\mathbb{R}^n)$ and by H_0 the unique self-adjoint extension of $\hat{H}_0 = -\Delta$, $D(\hat{H}_0) = C_0^{\infty}(\mathbb{R}^n)$. Let H a self-adjoint extension of \hat{H} . We have the following lemma:

LEMMA 1. - Assume that (2) and one of the following conditions are satisfied:

(i) v is periodic;

(ii) $v \in L^{\infty}(\mathbf{f} B_{\mathbf{R}})$ where $\mathbf{B}_{\mathbf{R}} = \{ \vec{x} \in \mathbb{R}^n | | \vec{x} | \leq \mathbf{R} \}$ and $\mathbf{f} B_{\mathbf{R}}$ denotes the complement of $\mathbf{B}_{\mathbf{R}}$. Then:

(a) v is H_0 -bounded with H_0 -bound 0;

4° série – tome 15 – 1982 – nº 1

(b) \hat{H} is essentially self-adjoint;

(c) $D(H) = D(H_0)$, where H is the unique self-adjoint extension of H.

Proof. - (b) and (c) follow from (a) by using the Kato-Rellich Theorem ([7], Chapt. 5.4.1). Under hypothesis (i), (a) follows from Theorem XIII.96 of [11], whereas under the assumption (ii), (a) can be proved by the method used in the proof of Lemma 3 in [10]. Both cases are treated in [4].

We now state our principal results. In Theorem 2 we choose as conditions on the potential v at infinity those used in [4].

THEOREM 1. $-Let v \in L^{s}_{l.oc}(\mathbb{R}^{n})$ with s satisfying (2) and let H be a self-adjoint extension of H: (a) suppose that $f \in L^{2}(\mathbb{R}^{n})$ satisfies H $f = \lambda f$ for some $\lambda \in \mathbb{R}$ and E(A) f = f for some compact subset A of \mathbb{R}^{n} . (i. e. f is an eigenvector of H with compact support in \mathbb{R}^{n}). Then f = 0; (b) for each compact subset A of \mathbb{R}^{n} and each bounded interval Σ , one has:

$$\mathscr{H}_{n}(\mathrm{H}) \cap \mathrm{E}(\mathrm{A}) \mathscr{H} \cap \mathrm{F}(\Sigma) \mathscr{H} = \{0\}.$$

THEOREM 2. – Suppose that:

(i) $v \in L^{s}(\mathbf{B}_{\mathbf{R}})$ with s satisfying (2) for some $\mathbf{R} < \infty$;

- (ii) $v = v_1 + v_2$ such that:
- (α) $v_1, v_2 \in L^{\infty}(\mathbf{G} \mathbf{B}_{\mathbf{R}}),$
- $(\beta) |\vec{x}| v_1(\vec{x}) \rightarrow 0$ as $|\vec{x}| \rightarrow \infty$,
- $(\gamma) v_2(\vec{x}) \to 0$ as $|\vec{x}| \to \infty$,
- $(\delta) r \mapsto v_2(r, .)$

is differentiable as a function from (\mathbf{R}, ∞) to $L^{\infty}(\mathbf{S}^{n-1})$, and $\limsup_{r \to \infty} \frac{\partial v_2}{\partial r} \leq 0$. $(\mathbf{S}^{n-1} \text{ denotes the unit sphere in } \mathbb{R}^n.)$

Then $H = H_0 + V$ has no eigenvalues in $(0, \infty)$.

THEOREM 3. – Let v be ortho-periodic and $v \in L^s_{Loc}(\mathbb{R}^n)$ with s satisfying (2). Then the spectrum of $H = H_0 + V$ is purely continuous.

Remark 1. – By following the proof of Theorem XIII. 100 in [11], it is possible to show that the operator H in Theorem 3 is absolutely continuous. Other comments on Theorem 3 will be made at the end of this paper.

Remark 2. – Contrarily to [2], where the operator \hat{H} was defined by:

$$\hat{\mathbf{H}} = \sum_{j, k=1}^{n} a_{jk} \left(-i \frac{\partial}{\partial x_j} + b_j(\vec{x}) \right) \left(-i \frac{\partial}{\partial x_k} + b_k(\vec{x}) \right) + \mathbf{V}(\vec{x}),$$

we assume here that the vector potential $\vec{b} = \{b_k\}$ is equal to zero. It is possible to generalize Theorem 1 to the case where $\vec{b} \neq 0$.

Theorem 2 follows from results of [11] and [6], and from Theorem 1 as indicated in the introduction. (If H $f = \lambda f$ with $\lambda > 0$, then f has compact support by Theorem XIII.58 of

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

[11], and consequently f=0 by our Theorem 1.) Theorem 1 (a) is deduced from Theorem 3: By the proof of Proposition 4 of [2], the vector f belongs to $D(H_0) \cap D(V)$ and $Hf = H_0 f + VE(A) f$. Let w be an ortho-periodic function such that $w \in L^s_{Loc}(\mathbb{R}^n)$ and $w(\vec{x}) = v(\vec{x})$ for $\vec{x} \in A$. If H_1 denotes the periodic Schrödinger operator $H_1 = H_0 + W$ then $H_1 f = H f = \lambda f$. Therefore we deduce from Theorem 3 that f = 0.

To show Theorem 1(b), let $S = E(A) \cap F(\Sigma)$ (the orthogonal projection with range $E(A) \mathscr{H} \cap F(\Sigma) \mathscr{H}$) and suppose that $f \in \mathscr{H}_p(H)$ satisfies S f = f. f is a linear combination of eigenvectors of H, i.e. $f = \sum_k \alpha_k \cdot g_k$, where $H g_k = \lambda_k g_k$ with $\lambda_k \in \Sigma$. It follows that:

$$\mathbf{S} f = f = \sum_{k} \alpha_{k} \mathbf{S} g_{k}.$$

Now, by Proposition 2 of [2], S commutes with H; in particular $HSg_k = SHg_k = \lambda_k Sg_k$. This implies that each Sg_k is an eigenvector of H of compact support in A, hence $Sg_k = 0$ by the part (a) of Theorem 1. We deduce from this that $f = \sum_k \alpha_k Sg_k = 0$. The condition " Σ bounded" is fundamental: we can choose a potential V such that $\mathcal{H}_p(H) = \mathcal{H}$, i. e. such that the eigenvectors of \mathcal{H} generate \mathcal{H} . In this case, we have:

$$\mathscr{H}_{n}(\mathrm{H}) \cap \mathrm{E}(\mathrm{A}) \mathscr{H} = \mathrm{E}(\mathrm{A}) \mathscr{H} \neq \{0\}.$$

3. Reduction of the translation group of the lattice

In this part, let v be an ortho-periodic potential. In a natural way, this implies a decomposition of the Hilbert space $\mathscr{H} = L^2(\mathbb{R}^n)$ and of the operators H and H₀ into direct integrals. This decomposition will be used in the next part for the proof of Theorem 3.

The potential v satisfies $v(\vec{x} + \vec{a_i}) = v(\vec{x})$ where $\vec{a_1}, \ldots, \vec{a_n}$ are as in (3). The points of the form $\vec{z} = \sum_{i=1}^{n} q_i \vec{a_i}, \vec{q} = \{q_i\} \in \mathbb{Z}^n$, form a cubic lattice in \mathbb{R}^n which is invariant under the translations:

$$\vec{z} \mapsto \vec{z} + \sum_{i} q'_{i} \vec{a}_{i}, \qquad \vec{q}' \in \mathbb{Z}^{n}.$$

In $L^2(\mathbb{R}^n)$, we consider the unitary representation $U(\vec{q})$ of the additive group \mathbb{Z}^n given by:

(5)
$$[U(\vec{q})f](\vec{x}) = f(\vec{x} - \sum_{i} q_{i}\vec{a}_{i}) = f(x - L\vec{q}),$$

where we have written $\sum_{i} q_i \vec{a}_i = \mathbf{L} \vec{q}$, assuming that the directions of the \vec{a}_i coïncide with Cartesian coordinate system.

We also introduce the reciprocal lattice which is the set of points of the following form:

$$\vec{z} = \sum_{i=1}^{n} q_i \vec{e}_i, \qquad \vec{q} \in \mathbb{Z}^n,$$

 4^{e} série – tome 15 – 1982 – n° 1

where the vectors $\vec{e_1}, \ldots, \vec{e_n}$ are defined by:

(6)
$$\vec{e}_i \cdot \vec{a}_k = 2 \pi \delta_{ik}.$$

We may write $\vec{z} = E \vec{q}$, with $E = 2\pi L^{-1}$. Let again:

$$\Gamma^n = \left\{ k \in \mathbb{R}^n \, | \, k = \sum_{i=1}^n \lambda_i e_i, \, 0 \leq \lambda_i < 1 \right\}.$$

Consider the Hilbert space \mathscr{G} of square-integrable functions $f: \Gamma^n \to l_n^2 \equiv l^2(\mathbb{Z}^n)$:

$$\mathscr{G} = \mathrm{L}^2\left(\Gamma^n; \, l_n^2\right).$$

We write $f(\vec{k})_{\vec{q}}$ for the component $\vec{q}(\vec{q} \in \mathbb{Z}^n)$ of f at the point $\vec{k} \in \mathbb{Z}^n$. Thus, we have:

$$||f||_{\mathscr{G}}^{2} = \int_{\Gamma^{n}} dk \sum_{\vec{q} \in \mathscr{I}^{n}} |f(\vec{k})_{\vec{q}}|^{2}.$$

Now, let $\mathcal{U} : \mathcal{H} \to \mathcal{G}$ be the operator defined by:

(7)
$$(\mathscr{U}f)(\vec{k})_{\vec{q}} = \hat{f}(\vec{k} + \mathrm{E}\,\vec{q}),$$

where \hat{f} is the Fourier transform of the function f:

$$\hat{f}(\xi) = (2\pi)^{-n/2} \operatorname{Lim} \int_{\mathbb{R}^n} dx \exp\left(-i\vec{x}.\vec{\xi}\right) f(\vec{x}).$$

It follows from Plancherel's Theorem that the operator \mathcal{U} is unitary, and its inverse is given by:

$$\mathscr{F}\left[\mathscr{U}^{-1}\left\{f\left(.\right)\right\}\right](\xi) = f\left(\vec{k}\right)_{\vec{q}},$$

where $\vec{q} \in \mathbb{Z}^n$ and $\vec{k} \in \Gamma^n$ are determined by $\vec{k} + \mathbf{E} \vec{q} = \vec{\xi}$. If $\vec{m} \in \mathbb{Z}^n$, one has:

(8)
$$[\mathscr{U} \cup (\vec{m}) f](\vec{k})_{\vec{q}} = \exp(-i \operatorname{L} \vec{k} \cdot \vec{m})(\mathscr{U} f)(\vec{k})_{\vec{q}}$$

i.e. $\mathscr{U} U(m) \mathscr{U}^{-1}$ is diagonalizable in \mathscr{G} (i.e. a multiplication operator by a function of \vec{k}). As the functions $\{\exp(i L \vec{k} \cdot \vec{m})\}_{\vec{m} \in \mathbb{Z}^n}$ form a basis of $L^2(\Gamma^n)$, each bounded diagonalizable operator is a function of $\{\mathscr{U} U(m) \mathscr{U}^{-1}\}$. As H_0 , V and H commute with every $U(\vec{m})$, these operators commute with each diagonalizable operator, i.e. $\mathscr{U} H_0 \mathscr{U}^{-1}$, $\mathscr{U} V \mathscr{U}^{-1}$ and $\mathscr{U} H \mathscr{U}^{-1}$ are decomposable in $L^2(\Gamma^n; l_n^2)$. Therefore there exist in l_n^2 measurable families of self-adjoint operators $H_0(\vec{k})$, $V(\vec{k})$ and $H(\vec{k})(\vec{k} \in \Gamma^n)$ such that, for $f \in D(H_0)$:

(9)
$$\begin{cases} (\mathscr{U} H_0 f)(\vec{k}) = H_0(\vec{k}) f(\vec{k}), \\ (\mathscr{U} V f)(\vec{k}) = V(\vec{k}) f(\vec{k}), \\ (\mathscr{U} H f)(\vec{k}) = H(\vec{k}) f(\vec{k}). \end{cases}$$

Now let us give the explicit form and the properties of these three families of operators.

LEMMA 2. $-(i) H_0(\vec{k})$ is the self-adjoint multiplication operator in l_n^2 by $\varphi_{\vec{k}}(\vec{q}) = (\vec{k} + E \vec{q})^2$: If $g = \{g_{\vec{q}}\} \in l_n^2$, then:

$$(\mathrm{H}_{0}(\vec{k})g)_{\vec{q}} = (\vec{k} + \mathrm{E}\,\vec{q})^{2}\,g_{\vec{q}}$$

(ii) the domain of $D(H_0(\vec{k}))$ is independent of \vec{k} and is given by:

$$\mathbf{D}(\mathbf{H}_{0}(\vec{k})) = \mathbf{D}_{0} = \left\{ g \in l_{n}^{2} \mid \sum_{\vec{q} \in \mathbb{Z}^{n}} \mid \vec{q}^{2} g_{\vec{q}} \mid {}^{2} < \infty \right\};$$

(iii) the resolvent $(\mathbf{H}_0(\vec{k}) - \mu)^{-1}$ of $\mathbf{H}_0(\vec{k})$ is a compact operator for all $\mu \notin \sigma(\mathbf{H}_0(\vec{k}))$, where $\sigma(\mathbf{H}_0(\vec{k}))$ is the spectrum of $\mathbf{H}_0(\vec{k})$.

Proof. - (i) and (ii) are obvious, since:

$$(H_0 f)(\vec{\xi}) = \vec{\xi}^2 \hat{f}(\vec{\xi}).$$

(iii) The resolvent $(H_0(\vec{k}) - \mu)^{-1}$ is the multiplication operator by:

 $\psi(\vec{q}) = [(\vec{k} + E \vec{q})^2 - \mu]^{-1}.$

Let χ_M be the characteristic function of the set $\{\vec{q} \in \mathbb{Z}^n | \vec{q}^2 \leq M\}$ and D_M the multiplication operator by $\psi(\vec{q})\chi_M(\vec{q})$. D_M is a compact (even nuclear) operator, and:

(10)
$$\| (\mathbf{H}_0(\vec{k}) - \mu)^{-1} - \mathbf{D}_M \| = \sup_{\vec{q} > M} [(\vec{k} + \mathbf{E}\,\vec{q})^2 - \mu]^{-1} \to 0,$$

as $M \to \infty$. Thus $(H_0(\vec{k}) - \mu)^{-1}$ is compact as the uniform limit of the sequence $\{D_M\}$ of compact operators.

Let us denote by $\{\vec{v}_{\vec{q}}\}_{\vec{q}\in\mathbb{Z}^n}$ the Fourier coefficients of the periodic function v:

(11)
$$\hat{v}_{\vec{q}} = L^{-n/2} \int_{C^n} dx \, \exp\left(-i \, \mathbf{E} \, . \, \vec{q} \, . \, \vec{x}\right) v\left(\vec{x}\right).$$

Notice that $v \in L^p(\mathbb{C}^n)$ for all $p \in [1, s]$. To establish the relation between the Fourier coefficients of v and the operator $V(\vec{k})$ we need the following result:

LEMMA 3. – Given $\varphi, \psi : \mathbb{Z}^n \to \mathbb{C}$, we define an operator $A_{\varphi\psi} : l_n^2 \to l_n^2$ as follows:

$$(\mathbf{A}_{\varphi\psi}g)_{\vec{q}} = \sum_{\vec{m}\in\mathbb{Z}^n} \varphi(\vec{m}) \psi(\vec{q}-\vec{m}) g_{\vec{q}-\vec{m}}.$$

Assume that $2 \leq p < \infty$, $\psi \in l^p(\mathbb{Z}^n)$ and let $\{\varphi(\vec{q})\}$ be the Fourier coefficients of a function Φ belonging to $L^p(\mathbb{C}^n)$. Then $A_{\varphi\psi}$ is a compact operator and one has:

(12) $\|\mathbf{A}_{\varphi\psi}\| \leq L^{-(n/2)-(n/p)} \|\Phi\|_{L^{p}(\mathbf{C}^{n})} \|\psi\|_{l^{p}(\mathbb{Z}^{n})}.$

Proof. - For $g = \{g_{\vec{q}}\} \in l_n^2$, define $\psi g = \{\psi(\vec{q})g_{\vec{g}}\}$. By the Hölder inequality, $\psi g \in l_n^r$ with $r^{-1} = (1/2) + p^{-1}$, i.e. $1 \le r < 2$, and:

$$\|\psi g\|_{r} \leq \|\psi\|_{p} \|g\|_{2}.$$

4° série – tome 15 – 1982 – nº 1

Let:

$$\gamma(x) = \mathcal{L}^{-n/2} \sum_{\vec{q} \in \mathbb{Z}^n} \exp\left(i \operatorname{E} \vec{q} \cdot \vec{x}\right) \psi(\vec{q}) g_{\vec{q}}, \qquad x \in \mathbb{C}^n.$$

By the Hausdorff-Young inequality [8], $\gamma \in L^{r'}(\mathbb{C}^n)$ with $(r')^{-1} = 1 - r^{-1} = 1/2 - p^{-1}$ and:

(13)
$$\|\gamma\|_{r'} \leq L^{(n/r') - (n/2)} \|\psi g\|_{r} \leq L^{(n/r') - (n/2)} \|\psi\|_{p} \|g\|_{2}.$$

Since $1/2 = p^{-1} + (r')^{-1}$ and $\Phi \in L^p(\mathbb{C}^n)$, the Hölder inequality implies that $\Phi \gamma \in L^2(\mathbb{C}^n)$ and:

(14)
$$\|\Phi\gamma\|_{2} \leq \|\Phi\|_{p} \|\gamma\|_{r'} \leq L^{(n/r')-(n/2)} \|\Phi\|_{p} \|\psi\|_{p} \|g\|_{2}.$$

Now:

$$(\mathbf{A}_{\varphi\psi}g)_{\vec{q}} = \int_{C'} dx \, \exp\left(-i\mathbf{E}_{\cdot}\vec{q}\cdot\vec{x}\right) \Phi(\vec{x}) \gamma(\vec{x}),$$

and by Plancherel's theorem we have:

(15)
$$\|A_{\varphi\psi}g\|_{2} = L^{n/2} \|\Phi\gamma\|_{2} \leq L^{n/r'} \|\Phi\|_{p} \|\psi\|_{p} \|g\|_{2}.$$

This shows that $A_{\phi\psi}$ is defined everywhere with the bound (12) :

(b) Let D_M be the multiplication operator by $\psi_M(\vec{q}) = \psi(\vec{q}) \chi_M(\vec{q})$ (see the proof of Lemma 2). By (a), $A_{\phi\psi_M}$ is bounded, and $A_{\phi\psi_M}$ is non-zero only on a subspace of finite dimension. Therefore $A_{\phi\psi_M}$ is nuclear. By using (12) we obtain:

(16)
$$\|A_{\varphi\psi} - A_{\varphi\psi_{M}}\| \leq L^{(n/2) - (n/p)} \|\Phi\|_{p} \|(1 - \chi_{M})\psi\|_{p}.$$

Since $\psi \in l_n^p$, $\|(1-\chi_M)\psi\|_p \to 0$ as $M \to \infty$. This proves the compactness of $A_{\varphi\psi}$.

LEMMA 4. – Let Y be the operator in l_n^2 defined by:

(17)
$$(\mathbf{Y} g)_{\vec{q}} = \mathbf{L}^{-n/2} \sum_{\vec{m} \in \mathbb{Z}^n} \hat{v}_{\vec{m}} g_{\vec{q}-\vec{m}}.$$

Then:

(i) $D_0 \subseteq D(Y)$ and Y is symmetric on D_0 ;

(ii) Y is relatively compact with respect to $H_0(\vec{k})$;

(iii) $V(\vec{k}) = Y$ on D_0 , for all $\vec{k} \in \Gamma_n$ (in particular $V(\vec{k})$ is independent of \vec{k});

(iv) $H(\vec{k}) = H_0(\vec{k}) + Y$ and $D(H(\vec{k})) = D_0$.

Proof. - (i) If $g \in D_0$, then $g = [H(\vec{0}) + 1]^{-1}$ for some $h \in l_n^2$. (15) shows that $||Yg||_2 < \infty$, therefore $D_0 \subseteq D(Y)$. By using $\bar{v}_{-\bar{q}} = v_{\bar{q}}$, one obtains easily that (f, Yg) = (Yf, g) for $f, g \in D_0$;

(ii) $Y(H_0(\vec{k})+1)^{-1}$ is of the form $A_{\varphi\psi}$, with $\Phi(x)=L^{-n/2}v(\vec{x})$ and $\psi(\vec{q})=[(k+E\vec{q})^2+1]^{-1}$. Notice that $\psi \in l_n^p$ for each p > n/2. As $v \in L^s(\mathbb{C}^n)$ for s=2 if n=2, 3 and s > n/2 if $n \ge 4$, Lemma 3 implies that $Y(H_0(\vec{k})+1)^{-1}$ is compact;

(iii) this can be verified by calculating the Fourier transform of V f;

(iv) by (i) and (ii), $H_0(\vec{k})$ is self-adjoint. $H(\vec{k}) = H_0(\vec{k}) + Y$ follows from (iii) and Lemmas 1 and 2.

4. Proof of Theorem 3

Let f be an eigenvector of H, i. e. $Hf = \lambda f$ for some $\lambda \in \mathbb{R}$. By defining $v'(x) = v(x) - \lambda$ and $H' = H_0 + V'$, we have H'f = 0. Since V' satisfies also the hypothesis (2), it is possible to assume without loss of generality that $\lambda = 0$.

Let $\Gamma_0 = \{\vec{k} \in \Gamma \mid (\mathcal{U}f)(\vec{k}) \neq 0 \text{ in } l_n^2\}$. Γ_0 is measurable. Since $H(\vec{k})(\mathcal{U}f)(\vec{k}) = 0$, $H(\vec{k})$ must have the eigenvalue 0 for almost all the $\vec{k} \in \Gamma_0$. We will show that, for all $p \in (k_1, \ldots, k_{n-1}, 0) \in \mathbb{R}^{n-1}$ the set $\theta(\vec{p})$ of the points $k_n \in (0, E)$ such that $0 \in \sigma(H(\vec{p} + k_n E^{-1} \vec{e}_n))$ is a set of measure zero. Thus the measure of Γ_0 is zero, i.e. $(\mathcal{U}f)(\vec{k}) = 0$ a.e., i.e. f = 0. Therefore H cannot have any eigenvalues.

Fix $\vec{p} = (\vec{k}_1, \ldots, \vec{k}_{n-1})$. To show that the measure of $\theta(\vec{p})$ is zero, we shall use the Fredholm theory of holomorphic families of operators of type (A), [7]. Let Ω be the following complex domain:

(18)
$$\Omega = \{ \mathscr{X} + ir \mid \mathscr{X} \in (0, 1), r \in \mathbb{R} \}.$$

For $z \in \Omega$, we define $H_0(\vec{p}, z\vec{e_n})$ to be the multiplication operator in l_n^2 by $(\vec{p} + z\vec{e_n} + E\vec{q})^2$ and:

(19)
$$H(\vec{p}, z\vec{e_n}) = H_0(\vec{p}, z\vec{e_n}) + Y.$$

We shall see that:

(1) $\{H(\vec{p}, z\vec{e}_n)\}\$ is a holomorphic family of type (A) with respect to z. (See the terminology in [7]);

(II) the resolvent of $H(\vec{p}, z\vec{e_n})$ is compact;

(III) the resolvent set of $H(\vec{p}, z\vec{e_n})$ is not empty.

Under these conditions, Theorem VII.1.10 of [7] says that we have the following alternative:

- either $0 \in \sigma(H(\vec{p}, z\vec{e_n}))$ for each $z \in \Omega$;

- or every compact Ω_0 in Ω contains only a finite number of points z such that $0 \in \sigma(H(\vec{p}, z\vec{e_n}))$.

We shall show that:

(IV) 0 belongs to the resolvent set of $H(\vec{p}, z\vec{e_n})$ for Im z sufficiently large. Hence the first alternative is excluded, so that the measure of $\theta(\vec{p})$ is zero.

The remainder of the paper is devoted to the verification of the properties I to IV of $H(\vec{p}, z\vec{e_n})$. To simplify the notations we write $H(\vec{p}, \vec{z})$ for $H(\vec{p}, z\vec{e_n})$.

LEMMA 5. - (i) $H_0(\vec{p}, z)$ is a self-adjoint holomorphic family of type (A) in Ω with domain $D(H_0(\vec{p}, z)) = D_0$;

4° série – tome 15 – 1982 – nº 1

(ii) $\forall z \in \Omega$, the resolvent of $H_0(\vec{p}, z)$ is compact;

(iii) 0 belongs to the resolvent set $\rho(\mathbf{H}_0(\vec{p}, z))$ of $\mathbf{H}_0(\vec{p}, z)$ for all z with $\operatorname{Im} z \neq 0$.

Proof. – (i) Let $P_i(j=1,...,n)$ be the following operator in l_n^2 :

(20)
$$\mathbf{P}_{j}g_{\vec{q}} = g_{j}g_{\vec{q}}.$$

One has:

(21)
$$H_0(\vec{p}, z) = (\vec{p} + E\vec{P} + z\vec{e}_n)^2 = (\vec{p} + E\vec{P})^2 + E^2 z^2 + 2E^2 z P_n,$$

and the result is immediate:

- (ii) the proof is the same as in Lemma 2 (iv).
- (iii) for $z = \mathcal{X} + ir$, we have:

(22)
$$\operatorname{Im}(\vec{p} + \operatorname{E} \vec{q} + z \vec{e}_n)^2 = 2 \operatorname{E}^2 r \left(\mathscr{X} + q_n \right),$$

which is different from zero if $r \neq 0$. Since $q_n \in \mathbb{Z}$ and $\mathscr{X} \in (0, 1)$ it follows that:

$$\| [\mathbf{H}_0(\vec{p}, z)]^{-1} \| = \sup_{\vec{q} \in \mathbb{Z}^n} |(\vec{p} + \mathbf{E} \, \vec{q} + z \vec{e}_n)^2 |^{-1} < \infty,$$

i.e. $0 \in \rho(\mathbf{H}_0(\vec{p}, z))$.

LEMMA 6. - (i) $H(\vec{p}, z)$ is a self-adjoint holomorphic family of type (A) in Ω with domain D_0 ; (ii) $\forall z \in \Omega$ the resolvent of $H(\vec{p}, z)$ is compact;

(iii) for all $\vec{p} \in \Gamma^{n-1}$ and $z \in \Omega$, $\rho(H(\vec{p}, z))$ is not empty.

Proof. - (i) this follows from Lemmas 5 (i) and 4 (ii);

(iii) it suffices to show:

(23)
$$\lim_{\lambda \to +\infty} \| \mathbf{Y} [\mathbf{H}_0(\vec{p}, z) - i\lambda]^{-1} \| = 0,$$

since then the Neumann series for $[H(\vec{p}, z) - i\lambda]^{-1}$, i.e.:

(24)
$$[H(\vec{p}, z) - i\lambda]^{-1} = [H_0(\vec{p}, z) - i\lambda]^{-1} \sum_{n=0}^{\infty} \left\{ -Y [H_0(\vec{p}, z) - i\lambda]^{-1} \right\}^n,$$

is convergent if λ is sufficiently large. Now, by (12):

(25)
$$\| \mathbf{Y} [\mathbf{H}_0(\vec{p}, z) - i\lambda]^{-1} \| \leq \mathbf{L}^{-n/s} \| v \|_s \{ \sum_{\vec{q} \in \mathbb{Z}^n} |(\vec{p} + \mathbf{E} \vec{q} + z\vec{e}_n)^2 - i\lambda|^{-s} \}^{1/s}.$$

We have with the notations $z = \mathscr{X} + ir$, $\vec{k} = (\vec{p}, \mathscr{X} \vec{e_n}) \in \Gamma^n$:

(26)
$$|(\vec{p} + \mathbf{E}\vec{q} + z\vec{e}_n)^2 - i\lambda|^{-2} \leq \{ [(\vec{k} + \mathbf{E}\vec{q})^2 - \mathbf{E}^2 r^2]^2 + 4 \mathbf{E}^4 r^2 [\mathscr{X} + q_n - \lambda(2\mathbf{E}^2 r)^{-1}]^2 \}^{-1} \leq [(\vec{k} + \mathbf{E}\vec{q})^2 - \mathbf{E}^2 r^2]^{-2}.$$

This shows that each term of the sum in (26) converges to zero as $\lambda \to +\infty$, and that the series in (26) is uniformly majorized in λ by a convergent serie (since s > n/2). Therefore (23) is proven.

(If z is such that $(\vec{k} + \mathbf{E}\vec{q})^2 - \mathbf{E}^2 r^2 = 0$ for certain $\vec{q} \in \mathbb{Z}^n$, then there exist c > 0 and $\lambda_0 < \infty$ such that $4 \mathbf{E}^4 r^2 [\mathscr{X} + q_n - \lambda(2 \mathbf{E}^2 r)^{-1}]^2 \ge c$ for all these \vec{q} and for each $\lambda \ge \lambda_0$. For these values of \vec{q} we can take as majorization in (26) the number c^{-1}).

(ii) Now we use the first and the second resolvent equation:

$$[H(\vec{p}, z) - \xi]^{-1} = [H(\vec{p}, z) - \mu]^{-1} + (\xi - \mu)[H(\vec{p}, z) - \xi]^{-1}[H(\vec{p}, z) - \mu]^{-1}.$$

(28)
$$[\mathbf{H}(\vec{p}, z) - \mu]^{-1} = [\mathbf{H}_0(\vec{p}, z) - \mu]^{-1} - [\mathbf{H}(\vec{p}, z) - \mu]^{-1} \mathbf{Y} [\mathbf{H}_0(\vec{p}, z) - \mu]^{-1}.$$

(27) shows that if $[H(\vec{p}, z) - \mu]^{-1}$ is compact for $\mu \in \rho(H(\vec{p}, z))$ then $[H(\vec{p}, z) - \xi]^{-1}$ is compact for each $\xi \in \rho(H(\vec{p}, z))$. Since $[H_0(\vec{p}, z) - \mu]^{-1}$ and $Y[H_0(\vec{p}, z) - \mu]^{-1}$ are compact if $\mu \in \rho(H_0(\vec{p}, z))$, by (28) it suffices to show that:

 $\rho(\mathrm{H}_{0}(\vec{p}, z)) \cap \rho(\mathrm{H}(\vec{p}, z)) \neq \phi.$

We know from (iii) that there exists a point $\mu_0 \in \rho(H(\vec{p}, z))$. If $\mu_0 \notin \rho(H_0(\vec{p}, z))$, there exists a point close to $\mu \in \rho(H_0(\vec{p}, z)) \cap \rho(H(\vec{p}, z))$, since:

(a) $\rho(\mathbf{H}(\vec{p}, z))$ is open;

(β) $\sigma(H_0(\vec{p}, z))$ consists of isolated eigenvalues only, because the resolvent of $H_0(\vec{p}, z)$ is compact ([7], Thm. III 6.29).

By Lemma 6 we have verified the properties (I) to (III) of the family $\{H(\vec{p}, z)\}$. It now remains to prove (IV) i.e. $0 \in \rho(H(\vec{p}, z))$ for some $z = \mathscr{X} + ir$ in Ω . We have seen that $0 \in \rho(H_0(\vec{p}, z))$ if $r \neq 0$. We shall show that:

(29)
$$\lim_{r \to \infty} \| \mathbf{Y} [\mathbf{H}_0 (\vec{p}, \, \mathcal{X} + ir)]^{-1} \| = 0.$$

By using the Neumann series (24) with $\lambda = 0$ and r sufficiently large, (29) implies $0 \in \rho(H(\vec{p}, z))$ if r = Im z is sufficiently large.

To obtain (29), we use the inequality (25). By virtue of the first inequality in (26), it suffices to show that:

(30)
$$\lim_{r \to \infty} \sum_{\vec{q} \in \mathbb{Z}^n} \left\{ \left[\left(\vec{q} + \frac{\vec{k}}{E} \right)^2 - r^2 \right]^2 + 4r^2 |q_n + \mathcal{X}|^2 \right\}^{-s/2} = 0,$$

which will be done in the next section.

5. Estimation of the series (30)

We now show that (30) holds if s = 2 for n = 2, 3, s > n - 2 for $n \ge 4$ and $\mathscr{X} \in (0, 1)$. We use the following notations:

(31)
$$a=2r|q_n+\mathcal{X}|, \quad b=(q_n+\mathcal{X})^2-r^2.$$

4° série – tome 15 – 1982 – nº 1

10

We set $\vec{p} = \mathbf{E}^{-1}(k_1, \ldots, k_{n-1}) \in \Gamma_1^{n-1}$, where $\Gamma_1^{n-1} = \{ \vec{p} \in \mathbb{R}^{n-1} \mid 0 \le p_j < 1 \}$, and: (32) $\mathbf{S}(q_n, r) = \sum_{\vec{m} \in \mathbb{Z}^{n-1}} \{ [(\vec{m} + \vec{p})^2 + b]^2 + a^2 \}^{-s/2}.$

(30) is then equivalent to:

(33)
$$\lim_{r\to\infty}\sum_{q_n\in\mathbb{Z}}S(q_n,r)=0.$$

To prove (33), we first give a preliminary estimate in Lemma 7.

LEMMA 7. – Let $\delta > 0$, c > 0 and R > 0. Then:

(34)
$$\varepsilon \equiv \inf_{\substack{r \ge R \\ b \ge -r^2 \\ l, z \ge 0 \\ |t-z| \le c}} \inf_{\substack{a \ge \delta r \\ b \ge -r^2 \\ l, z \ge 0 \\ |t-z| \le c}} \frac{(z^2+b)^2 + a^2}{(t^2+b)^2 + a^2} > 0.$$

Proof. – Setting $\alpha = a/r$, $\beta = br^{-2}$, $\sigma = z/r$, $\tau = t/r$ and $\Omega_r = \{(\alpha, \beta, \sigma, \tau) \mid \alpha \ge \delta, \beta \ge -1, \sigma \ge 0, \tau \ge 0, |\sigma - \tau| \le cr^{-1}\}$, we see that (34) is equivalent to:

(35)
$$\varepsilon = \inf_{r \ge R} \inf_{\Omega_r} \frac{(\sigma^2 + \beta)^2 + (\alpha/r)^2}{(\tau^2 + \beta)^2 + (\alpha/r)^2} > 0.$$

The quotient on the r.h.s. of (35) is ≥ 1 if $|\tau^2 + \beta| \leq |\sigma^2 + \beta|$. Hence the infimum is obtained by taking $|\tau^2 + \beta| \geq |\sigma^2 + \beta|$. Under this restriction we have:

(36)
$$\frac{(\sigma^2+\beta)^2+(\alpha/r)^2}{(\tau^2+\beta)^2+(\alpha/r)^2} \ge \max\left[\frac{(\sigma^2+\beta)^2}{(\tau^2+\beta)^2},\frac{(\sigma^2+\beta)^2+(\alpha/r)^2}{(\tau^2+\beta)^2+2(\alpha/r)^2}\right].$$

Also notice the following inequalities, valid on each Ω_r with $r \ge R$:

(37)
$$\tau^{2} + \beta = [(\tau - \sigma) + \sigma)]^{2} + \beta \leq 2(\tau - \sigma)^{2} + 2\sigma^{2} + \beta$$

= $2(\sigma^{2} + \beta) - \beta + 2(\tau - \sigma)^{2} \leq 2(\sigma^{2} + \beta) + 1 + 2c^{2}R^{-2}$.
(38) $|(\sigma^{2} + \beta) - (\tau^{2} + \beta)| \leq (\sigma + \tau) |\sigma - \tau| \leq (\sigma + \tau) cr^{-1}$.

(38) implies that:

(39)
$$(\tau^2 + \beta)^2 \leq 2(\sigma^2 + \beta)^2 + 2(\sigma + \tau)^2 c^2 r^{-2}.$$

We denote by ε_+ and ε_- the infimum in (35) under the restriction $\sigma^2 + \beta \ge 1$ and $\sigma^2 + \beta \in [-1, +1]$ respectively. It suffices to show that $\varepsilon_+ > 0$ and $\varepsilon_- > 0$. In the first case (i. e. for $\sigma^2 + \beta \ge 1$), we use the first expression on the r. h. s. of (36) and the inequality (37). Setting $x = \sigma^2 + \beta$, we see that:

(40)
$$\varepsilon_{+} = \inf_{x \ge 1} \frac{x^{2}}{(2x+1+2c^{2}R^{-2})^{2}} > 0.$$

In the second case (i.e. for $\sigma^2 + \beta \in [-1, +1]$), we have $\sigma^2 \leq 2$, hence $\sigma + \tau \leq 2 \sqrt{2} + c R^{-2} \equiv \eta$. After inserting this into (39) and using the second expression on the r.h.s. of (36), one obtains by setting $y = (\sigma^2 + \beta)^2$:

(41)
$$\begin{aligned} \varepsilon_{-} &= \inf_{\substack{r \ge R \\ \alpha \ge \delta}} \inf_{\substack{0 \le y \le 1 \\ \alpha \ge \delta}} \frac{y + (\alpha/r)^{2}}{2y + 2\eta^{2}c^{2}r^{-2} + 2(\alpha/r)^{2}} \\ &= \inf_{\substack{r \ge R \\ \alpha \ge \delta}} \inf_{\substack{2 \eta^{2}c^{2}r^{-2} + 2(\alpha/r)^{2} \\ \alpha/r)^{2}} = \frac{\delta^{2}}{2\eta^{2}c^{2} + 2\delta^{2}} > 0. \end{aligned}$$

Proof of (33). – Let $\vec{m} \in \mathbb{Z}^{n-1}$ and $\Gamma(\vec{m})$ be the cube:

$$\Gamma(\vec{m}) = \{ \vec{x} \in \mathbb{R}^{n-1} \mid \vec{x} = \vec{p} + \vec{m} + \vec{y}, \ \vec{y} \in \Gamma_1^{n-1} \}.$$

We have $\Gamma(\vec{m}) \cap \Gamma(\vec{m'}) = \emptyset$ if $\vec{m} \neq \vec{m'}$ and:

$$\mathbb{R}^{n-1} = \bigcup_{\vec{m} \in \mathbb{Z}^{n-1}} \Gamma(\vec{m}).$$

Let $c = \sqrt{n-1}$. Then for each $\vec{x} \in \Gamma(\vec{m})$ and each $\vec{m} \in \mathbb{Z}^{n-1}$:

$$||\vec{m} + \vec{p}| - |\vec{x}|| \leq c.$$

Let $\delta = 1/2 \min(\mathscr{X}, 1-\mathscr{X})$. By assumption $\delta > 0$; since $a \ge \delta r$ and $b \ge -r^2$, Lemma 7 implies the existence of a number $\varepsilon > 0$ such that, for each $\vec{m} \in \mathbb{Z}^{n-1}$, each $x \in \Gamma(\vec{m})$, each $a \ge \delta r$ and $b \ge -r^2$ and all $r \ge \mathbb{R}$:

(42)
$$[(\vec{m} + \vec{p})^2 + b^2] + a^2 \ge \varepsilon [(\vec{x^2} + b)^2 + a^2].$$

Thus:

$$(43) \quad \mathbf{S}(q_{n}, r) = \sum_{\vec{m} \in \mathbb{Z}^{n-1}} \left\{ [(\vec{m} + \vec{p})^{2} + b^{2}] + a^{2}]^{-s/2} \\ = \sum_{\vec{m} \in \mathbb{Z}^{n-1}} \int_{\Gamma(\vec{m})} dx \left\{ [(\vec{m} + \vec{p})^{2} + b]^{2} + a^{2}]^{-s/2} \\ \leq \varepsilon^{-1} \sum_{\vec{m}} \int_{\Gamma(\vec{m})} dx \left\{ (\vec{x}^{2} + b)^{2} + a^{2} \right\}^{-s/2} \\ = \varepsilon^{-1} \int_{\mathbb{R}^{n-1}} dx \left\{ (\vec{x}^{2} + b)^{2} + a^{2} \right\}^{-s/2} \\ = \frac{1}{2} \varepsilon^{-1} w_{n-1} \int_{0}^{\infty} y^{(n-3)/2} \left\{ (y+b)^{2} + a^{2} \right\}^{-s/2} dy,$$

where we have introduced spherical polar coordinates, $y = |\vec{x}|^2$ and w_{n-1} denotes the area of the unit sphere in \mathbb{R}^{n-1} .

To estimate the integral in (43), we distinguish the two cases $b \ge 0$ and b < 0. For $b \ge 0$, we have $\{(y+b)^2 + a^2\}^{-s/2} \le \{y^2 + a^2 + b^2\}^{-s/2}$, and (43) leads to:

$$\mathbf{S}(q_n, r) \leq \frac{1}{2} \varepsilon^{-1} w_{n-1} (a^2 + b^2)^{-s/2 + (n-1)/4} \int_0^\infty z^{(n-3)/2} (z^2 + 1)^{-s/2} dz.$$

Notice that the integral in this expression is convergent since s > n/2. By observing that:

(44)
$$a^2 + b^2 = [(q + \mathcal{X})^2 + r^2]^2.$$

we obtain:

(45)
$$\sum_{|q_n+\mathscr{X}| \ge r} \mathcal{S}(q_n, r) \le \operatorname{Cte} \sum_{|q_n+\mathscr{X}| \ge r} |q_n+\mathscr{X}|^{-2s+n-1}.$$

The hypothesis s > n/2 implies that the last series is convergent so that this term tends to zero as $r \to \infty$.

We now turn to the case b < 0. We set z = (y+b)/a. (43) then gives:

(46)
$$S(q_n, r) \leq \frac{1}{2} \varepsilon^{-1} w_{n-1} a^{-s+1} \int_{b/a}^{+\infty} (az-b)^{(n-3)/2} \{1+z^2\}^{-s/2} dz.$$

If $n \ge 3$, this leads to:

(47)
$$S(q_n, r) \leq c_1 a^{-s+1} \int_{-\infty}^{+\infty} [|az|^{(n-3)/2} + |b|^{(n-3)/2}] \{1+z^2\}^{-s/2} dz$$

$$\leq c_2 a^{-s+1} [|a|^{(n-3)/2} + |b|^{(n-3)/2}] \leq c_3 a^{-s+1} (a^2+b^2)^{(n-3)/4}.$$

Using (47), (44) and (31), we obtain in this case that:

$$\sum_{|q_n+\mathscr{X}| < r} \mathsf{S}(q_n, r) \leq c_4 r^{-s+1} r^{n-3} \sum_{|q_n+\mathscr{X}| < r} |q_n + \mathscr{X}|^{-s+1} = \mathcal{O}(r^{-s+n-2}\log r),$$

since $s \ge 2$. Under the hypothesis s > n-2, this converges to zero as $r \to \infty$.

Finally, if n=2, one may bound the integral in (46) by a constant which is independent of a and b on the set $\{a \ge a_0 > 0, b < 0\}$; this is easily achieved by splitting the domain of integration into $\{z \mid az-b \le 1\} \cup \{z \mid az-b > 1\}$. Thus:

$$\mathbf{S}(q_n, r) \leq c_5 r^{-s+1} |q_n + \mathscr{X}|^{-s+1}, \qquad \forall q_n, \quad \forall r \geq r_0.$$

For any s > 3/2, this implies that:

$$\lim_{r \to \infty} \sum_{|q_n + \mathcal{X}| < r} S(q_n, r) = 0. \quad \blacksquare$$

Remark 3. – One sees from the preceding proof that, for n = 3, the limit in (33) is zero under the weaker hypothesis that s > 3/2. By using a modified resolvent equation, one obtains the result of Theorem 1 for s > 3/2. The case s=2, n=3 was first treated by Thomas

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

in [12]. Similarly, for n=2, a more careful estimate of the integral in (46) shows that it suffices to require s > 1.

Remark 4. – Theorem 3 remains true if the condition of ortho-periodicity of v is replaced by the weaker condition of periodicity. Indeed, the estimation of the series given in section 5, may be applied if, instead of $\vec{a}_i \cdot \vec{a}_j = \delta_{ij}$, one requires only that $\vec{a}_i \cdot \vec{a}_n = \delta_{in}$ (i.e. the vector \vec{a}_n is orthogonal to the hyperplane spanned by $\vec{a}_1, \ldots, \vec{a}_{n-1}$). Clearly the direction \vec{a}_n is distinguished in our estimation. A similar result for an arbitrary periodic lattice is given in Theorem XIII.100 of [11], under a more restrictive assumption on the local behaviour of the function $v(\vec{x})$ than that of Theorem 3.

Remark 5. - We also have the following result which generalizes Theorem 1:

THEOREM 1'. $-Let v \in L_{loc}^{s}(\mathbb{R}^{n} \setminus N)$, where s satisfies s = 2 if n = 1, 2, 3 and s > n - 2 if $n \ge 4$, and where N is a closed set of measure zero. Let H be a self-adjoint extension of \hat{H} , $D(\hat{H}) = C_{0}^{\infty}(\mathbb{R}^{n} \setminus N)$. Suppose that $f \in L^{2}(\mathbb{R}^{n})$ satisfies $H f = \lambda f$ for some $\lambda \in \mathbb{R}$ and E(A) f = ffor some compact subset of $\mathbb{R}^{n} \setminus N$ (i.e. f is an eigenvector of H having compact support in $\mathbb{R}^{n} \setminus N$). Then f = 0.

Proof. – One has $\chi_A(.) v(.) \in L^s(\mathbb{R}^n)$. Let C be a cube in \mathbb{R}^n such that $A \subseteq C$. Define w by:

$$w(\vec{x} + \sum q_i \vec{a}_i) = \chi_A(\vec{x}) v(\vec{x}), \qquad \vec{x} \in \mathbb{C},$$

w is ortho-periodic and in $L_{loc}^{s}(\mathbb{R}^{n})$. Since $(H_{0} + w) f = \lambda f$, one has f = 0 by Theorem 3.

Remark 6. – The hypothesis " Σ bounded" in Theorem 1(b) is essential. Assume for example that v is such that $H_0 + v$ has pure point spectrum (e.g. $v(\vec{x}) \to +\infty$ as $|\vec{x}| \to \infty$). Take $\Sigma = \mathbb{R}$. Then:

 $F(\Sigma) \mathscr{H} = \mathscr{H}$ and $E(A) \mathscr{H} \cap F(\Sigma) \mathscr{H} \cap \mathscr{H}_{p}(H) = E(A) \mathscr{H}.$

Since $E(A) \mathcal{H} \neq \{0\}$ if A has positive measure, it is clear that one cannot have $E(A) \mathcal{H} \cap F(\Sigma) \mathcal{H} \cap \mathcal{H}_n(H) = \{0\}$ in this case.

Remark 7. – By combining our Theorem 1 with Proposition 4 of [2], one may also prove that $E(A) \mathcal{H} \cap F(\Sigma) \mathcal{H} = \{0\}$ under assumptions of Theorem 1(*b*).

REFERENCES

[1] S. AGMON, J. Anal. Math., Vol. 23, 1970, pp. 1-25.

[2] W. O. AMREIN and A. M. BERTHIER, Reports Mathematical Physics, Vol. 11, 1977, pp. 122-131.

- [3] N. ARONSZJAN, J. Math. Pures Appl., Vol. 36, 1957, pp. 235-249.
- [4] A. M. BERTHIER, Spectral Theory and Wave operators for the Schrödinger Equation (to appear Pitman Research Notes).
- [5] H. O. CORDES, Nachr. Akad. Wiss. Gottingen, Math. Phys., KLII a, 1956, pp. 239-258.
- [6] K. H. JANSEN and H. KALF, Comm. Pures Appl. Math., Vol. 28, 1975, pp. 747-752.

 4^{e} série – tome 15 – 1982 – n° 1

ON THE POINT SPECTRUM

[7] T. KATO, Pertubation Theory for Linear Operators, Springer, Berlin, 1966.

[8] Y. KATZNELSON, An Introduction to Harmonic Analysis, Wiley, New York, 1968.

 [9] O. A. LADYZENSKAJA and N. N. URAL'CEVA, Équations aux dérivées partielles de type elliptique, Dunod, Paris, 1968.

[10] E. NELSON, J. Math. Phys., Vol. 5, 1964, pp. 332-343.

[11] M. REED and B. SIMON, Methods of Modern Mathematical Physics, IV, Analysis of operators, Academic Press, New York, 1978.

[12] B. SIMON, Comm. Pure Appl. Math., Vol. 22, 1969, pp. 531-538.

[13] L. THOMAS, Comm. Math. Phys., Vol. 33, 1973, p. 335.

(Manuscrit reçu le 28 novembre 1980, accepté le 25 août 1981.)

A.-M. BERTHIER, Université Paris-VI, U.E.R. n° 47, Mathématiques, ·4, place Jussieu, 75230 Paris Cedex 05.