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COBORDISM OF AUTOMORPHISMS OF SURFACES

By Francis BONAHON

Topology is rich in problems whose solutions differ ’dra_ma‘tica‘lly in high and low
dimensions. One of them is the cobordism of automorphisms of manifolds : The cobordism
group of orientation-preserving diffeomorphisms of closed oriented smooth #-manifolds has
been computed for n=4 by M. Kreck ([Kr,], [Kr,]), and P. Melvin [Me] proved that his
results extend to the case where n=3. When n=2, Kreck’s invariants are still defined, but
they are known ([Cal, [JJ]) to be insufficient to determine this cobordism group. We study
here this last case and compute the cobordism group of diffeomorphisms of surfaces.

More precisely, in a ‘‘geometric” category CAT (=TOP, PL, DIFF, .. .), let us consider
CAT-automorphisms f: F" —» F" of closed oriented n-dimensional CAT-manifolds; we do
not require f to be orientation-preserving and abbreviate the notation f: F" — F" into
(F" f). Two such automorphlsms (F1. /1) and (F f,) are cobordant when there exists a
CAT-automorphism (M"*!, f ) of a compact orlented (n+ 1)-dimensional mamfold with
oM"*'= FiI (—F%) and of=f11 f2 The cobordism classes so defmpd form a group
A, (CAT), where the group law is induced by disjoint sum II.  The group A, (CAT) contains
anatural subgroup A, , (CAT), consisting of those cobordism classes that are represented by
orientation-preserving automorphisms.

In [Kr,] and [Kr,], M. Kreck computes A,, (DIFF), for n=4, in terms of ordinary
cobordism groups of oriented manifolds and, when n is even, of the Witt group
W.(Z, 2)=Z7°®(Z/2)* @ (Z /4)% of isometries of free finite- d1mens1onal Z-modules
equipped with an e-symmetric unimodular bilinear form, where &= (- 1)1/ 2n Pp, Melvin
proved [Me] tha_t the same formulas remain valid when) n=3, where A; , (DIFF)=0. For
n=2, there subsists from Kreck’s invariants an epimorphism A, . (DIFF)-»>W_, (Z, Z),
defined by considering for every automorphism (F2, /') the induced automorphism f, of
H, (F), equipped with the intersection pairing; but A. Casson [Ca], K. Johannson and Dennis -
Johnson [JJ] have independently shown that this morphism is not injective.

Omitting any reference to any category since smoothing theory and the Hauptvermutung
in dimensions 2 and 3 show that A,(TOP)=~A, (PL)=A, (DIFF), we extend here some
partial results of M. Scharlemann [Sc] and prove :

THEOREM :
“@®Z/2)*, A=Z*®(Z/2)",
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238 F. BONAHON

(where A* denotes the direct sum of countably many copies of A; the group A, (PL) has clearly
at most countably many elements).

As a consequence, every element of A,, with Kreck’s invariants of order 4 has infinite
order in A,. ‘

Infact, we obtain some more information on the structure of A,. Let A} denote the group
of periodic (PL or DIFF) automorphisms of surfaces modulo cobordism by periodic
automorphisms of 3-manifolds. We introduce in paragraph 6 a certain set &/ of
automorphisms of surfaces defined modulo isotopy and oriented conjugacy (the strongest
equivalence relation that can reasonably be considered for the study of cobordism), for which
the following holds.

THEOREM. — The canonical map A5 x of — A, is bijective, and is an isomorphism for a
suitable group structure on .

The group structure of < is simple enough to be easily analized (§ 7) and the group A¥ is
completely determined by considerations on the fixed point set of the periodic
automorphisms (§ 8). Both groups turn out to be isomorphic to Z* @ (Z/2)*, whence the
computation of A, follows.

The proofs are geometric and differ completely from those in higher dimensions (in
particular, there is no intervention of Kreck’s invariants). The basic idea consists in
modifying any null-cobordism to get a new one in a simple form (§ 5).  For this purpose, we
use a few tools provided by the theory of the geometric splittings of Haken 3-manifolds,
namely Thurston’s hyperbolization theorem, the characteristic fibered submamfold of
Johannson-Jaco-Shalen (see § 3) and another (s1mpler) characterlstlc submamfold whose
theory is developped in paragraph 2.

The results in this paper were announced in [Bo] (with a few mistakes in the algebraic
computations). At the same time, A. Edmonds and J. Ewing informed us that they had
obtained similar results by slightly different methods, using in particular the G-signature
theorem instead of hyperbolic geometry to prove the injectivity of the map A} — A, [EE].

Most of this work was carried out while I was visiting Princeton University; I would like to
thank here all the members of the Department of Mathematics and especially W. P.
Thurston, for their kind hospitality. I am also very indebted to L. Siebenmann for his
contribution by numerous advices to the improvement of the results, the proofs and the
manuscript. Lastly, I would like to thank R. Penner for carefully reading a first version of
this paper.

0. Main definitions and conventions

We shall work exclusively in the category PL (=piecewise linear). Nevertheless, the
proofs could easily be translated to the categories DIFF (=differentiable C*) or TOP
(=topological); in this last case, however, periodic maps should be assumed to have a tame
fixed point set. | -
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COBORDISM OF SURFACE AUTOMORPHISMS 239

All manifolds will be compact and orientable. This rule admits a unique exception,
almost always explicitly specified when needed, for non-orientable compact surfaces occuring
as bases of fibrations or quotient spaces of finite group actions on (orientable) surfaces.

An exponent often indicates the dimension of the manifolds considered. But let the
reader be warned that, except for this extra information on the dimension, no difference has
to be made between the notations M" and M. However, this exponent is never omitted for
tradmonal notations of some class1cal mamfolds such as the 2-sphere S?, the 2-torus T2, the
projective plane [R{[F"2 the hyperbohc plane H2, e

When the opposite is not explicitly spemﬁed, every submanifold NcM of positive
codimension is assumed to be properly embedded, i.e. such that NndM=0N. For a
codimension 0 submanifold, it is required that its frontier SN =N — M be a codimension 1
properly embedded submanifold of M.

A 1-submanifold C' of a surface F? is essential when, for every base point, the
homomorphlsms 7, (C) > m, (F) and n, (C, 0C) » =, (F, 0F)areinjective. Equivalently, C
is essential when there does not exist any disc D>  F with 8D =0D — JF a component of C
(with or without boundary).

A compression disc for F>=M? is a disc D* < M? with D n F=0D; note that D is not
properly embedded in M. Such a compression disc is effective when 0D is essentlal in F.

A surface F>cM? is incompressible when:

(1) F admits no effective compression disc.

(2) No component of F is a sphere bounding a ball.

Similarly, a 0-compression discfor F2 = M3 is adisc D* = M?, not properly embedded, such
that DN F is an arc contained in 0D and 0D—F=D n oM. Again, D is effective when
D N F is essential in F.

A surface F2=M? is boundary incompressible, or 0-incompressible, when :

(1) F does not admit any effective d-compression disc.

(2) No component of F is a boundary parallel disc, i.e. there does not exist any ball
B*>=M? with 3B a disc component of F?.

The surface F> = M? is essential when it is both incompressible and d-incompressible.

Two closed surfaces F? and G* = M? are parallel when they are disjoint and separated by a
collar =F xI. This definition extends straightforwardly when F or G consists of
components of M.

The manifold M? is irreducible when it does not contain any incompressible sphere, i. .
when every sphere £ = M bounds a ball in M>. It is boundary-irreducible or o-irreducible
when OM is incompressible (extending the definition of incompressibility to boundary
surfaces), i. e. when no component of M is a ball and there does not exist any disc D> < M?
with 0D essential in OM.

Lastlv, we often make use of the following construction: Given a codimension 1
submanlfold NrcM"+1 , compactify M — N by adjunction of a copy of the nonnal S°-bundle
of Nin M, with the obvious topology. The new compact manllfold so con)structed is said to
be obtained by splitting M along N, or by cutting M open along N. ‘
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240 F. BONAHON
1. A,(CAT) as a graded group

The key result of this paper will be Theorem 6. 1, where we shall obtain a natural splitting
of A,, by geometric methods that are peculiar to the dimension considered. However, easy
connectivity considerations already provide a decomposition of A, (CAT)into a direct sum of
“smaller” cobordism groups. This section is devoted to this last decomposition. The
corresponding results will have no effect on the geometrical part of our study of A,, and will
not be used until we resume algebraic computations in paragraphs 7-8.

For notational convenience, we agree to omit any explicit reference to a category CAT
(assuming a choice fixed for the whole section) and will henceforth abbreviate A,(CAT)
by A,.

Consider an automorphism f of an oriented manifold F".  To characterize the action of f
on the components of F, we construct a weighted graph Yy, f ) in the following way: The
vertices of ¥ (F, ) correspond to the components of F; an oriented edge joins the vertex
associated to F,; to the vertex associated to f(F,) and this edge is weighted by the
symbol + or — according as f | F, preserves or reverses the orientations induced by F.  Note
that each component of Y(F, f ) is homeomorphic to S' as a topological space and is
coherently oriented by the orientations of its edges; call such a graph (homeomorphic to S*,
coherently oriented and with a weight +or — on each edge) a weighted closed chain.
~ Ifthere exists an automorphism (M"**, 7 )such that F*<dM"* ! and f = /| F, the natural
map Y (F, 1) > y(M, f) is, above its image, a covering map respecting the orientations and
the weights of theedges. It is therefore natural to identify two weighted closed chains Y, and
Y, when there exists a covering map ¥, — v, respecting the orientations and weights of the
edges; let I' denote the quotient of the set of weighted closed chains by the equivalence
relation generated by these identifications, i.e. the equivalence relation defined by the
property that Y~7Y' when they are joined by a sequence of weighted closed chains and
covering maps (respecting weights and orientations) such as:

~

AN AL N4
7 73 5

n

;,'v

Every automorphism (F”", ) naturally splits into Ll (F7, f,), where each component of
~ yell
Y(F,, f,)isin the class yeI'. For every ye I, let A, be the subgroup of those cobordism

classes in A, that are represented by automorphisms (F”, f) where every component of
Y(F, f)isin yeT. The definitions are designed so that, for the natural map:

THEOREM 1.1:

A=A, O

yel
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COBORDISM OF SURFACE AUTOMORPHISMS 241

Call a weighted closed chain primitive when it is not a covering (respecting weights and

orientations) of another chain. For instance, - m + is primitive, and + m + isnot

+
since it is a covering of ©

LemMA 1.2. — Each class in T contains a unique primitive weighted closed chain.

It will often be convenient to identify an element of I" with a primitive weighted closed
chain.

Proof of Lemma 1.2. — It is sufficient to prove that every weighted closed chain v is the
covering of a unique primitive weighted closed chainy. But such a vy is naturally identified
with the quotient of y by its (cyclic) symmetry group. []

The two simplest (primitive) weighted closed chains are Q"’ and c@ -,
respectively denoted by + and —. Note that fpreserves (resp. reverses) the orientation of F
precisely when Y(F, f )e + €l (resp. Y, f )€ —e€l), and that these notations are
compatible with the definition of A, in the introduction.

If yeT is considered as a primitive weighted closed chain, let v(y) denote its number of
vertices and let its signature o (y)e Z/2 Z be the number of its edges that are weighted by —
(mod 2). .

Choose a vertex v of v and consider an automorphism (F", /) such that each component of
Y, f ) is in the class yeI'. There exists a covering Y(F, f)— v, which induces a
projection from F to the O-skeleton of y; let G” be the inverse image of v by this projection and
let gbe /¥ |G. Then, up to (oriented) conjugacy, F splits into the disjoint union of v (y)
copies of G, suitably oriented, where f sends the i-th copy to the (i + 1)-th copy by the identity
(1=i<v(y)),and the last copy to thefirst one by g. Moreover, the orientations of the copies
of G are determined by the weights of the edges of y and g is orientation-preserving (resp.
-reversing) if 6 (y) =0(resp. 1). Conversely, such a(G", g), with g orientation-preserving or
-reversing according as o(y)=0 or 1, is associated to a unique (F", f), up to oriented
conjugacy, where each component of Y (F, f) is in yeT.. -

This proves :

THEOREM 1.3. — The group A, is isomorphic to A,, when c(y)=0 and to A,_ when
oy)=1. O
Remark. — For a different choice of v in the above construction, the isomorphism

A=A, or A, is just changed by composition with X+ +X. When o(y)=1, this

isomorphism is even quite canonical since the orientation-reversing automorphism g realizes
a conjugacy between (G, g) and (—G, g).

By Theorem1.1and 1.3, A, is the direct sum of infinitely many copies of A, . and A, _. If
we want to enumerate all these copies, or equivalently the elements of I', it is useful to know
for every m the number c, (m) [resp. ¢_ (m)] of primitive weighted closed chains y for which
v(y)=m and o(y)=0 (resp. 1). Let ¢(m) be ¢, (m)+c_(m).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



242 , F. BONAHON

LeMMA 1.4. — The numbers c(m) and c_ (m) are respectively determined by the induction
relations :

Y. de(d)=2",
dlm
Y. 2%dc_(2*d)=2""", where m=2*I with | odd.
d|l
Proof. — Just note that mc(m) [resp. mc_(m)] is the number of maps
{1,2,...,m}—{+, —} without any period (resp. and with signature 1). [J

Applymg the Mobius inversion formula (see for instance [HW]. § 16) to the expressions of
1.4, we can get explicit formulas for ¢(m) and ¢_ (m). Recall that the Mobius function
p: N* - { —1,0,1}is defined by the property that p(m)=0 when m is a multiple of a square
and p(p, p,...p,)=(—1)" when the primes p,, p,, ..., p, are distinct’ pu)=(- 1)° 1).

CoOROLLARY 1.5.

etm= 3 w(d)2™,

dlm

c_ (m)—z——Zu(d)Z'"/" where m=2%[ with | odd. [
dil

ProrosiTiON 1.6. — If(F", f) represents X € A, the minimum number of components of F is

@ v(y), where p, : A, — A,, is the projection defined by Theorem 1.1.
P, (X)#0

Proof. — The automorphism (F, /') naturally splits into L1 (F,, f,), where each component

of y (F,, fy)isintheclassyeI'. Now, the number of coméoqen}s of F, is a multiple of v(y)
and is non-zero when p, (X)#0. The above expression consequently provides a lower
bound for the number of components of F.

To check that this lower bound is actually a minimum. assume. without loss of generality,
that F, =@ whenp, (X)=0. IfF, #Q,consider(G,, g,)associated to(F,, f,)as in the proof
of 1.3 and select in G, a finite number of disjoint pairs of points { x;, x;’ } such that, after
isotopy, g, acts on these pairs by permutation (another property will be required for these
pairs later).

Let N"*! be the manifold obtained from G’ xI by glueing a 1-handle along each palr
{x;, x} x{1}. The automorphlsm gy X Iof G, xI extends to an automorphlsm g, of
N3*1 (here we use the fact that g, preserves or reverses the orientation of G,). Identifying
(Gy, g,) with (-G, x {0} gylG x {0}), let G} be ON, G and g, be g,1G,. By
construction, (G, gy) is cobordant to (G,, g,).

Let (F7, /), with the property that each component of Y (F’, /) isin ye T, be associated
to (G}, g;) as in the proof of 1.3. By 1.1,(F., f})is cobordant to (F,, f,). Moreover, for
a good choice of the pairs { x}, x}'}, G; is connected and F’ coqsequeqtly has exactly v(y)
components.

4° SERIE — TOME 16 — 1983 — N°2



COBORDISM OF SURFACE AUTOMORPHISMS 243

When p, (X)=0, define F, to be @. We have now constructed an automorphism
F,f)= [_[(F;, f) representing X such that the number of components of (F/, 1) is 0
Y
if p,(X)=0 and v(y) otherwise. This ends the proof. [

2. The characteristic compression body

Let a compression body be any 3-manifold V?, together with a partition 0V =0, VII 9, V of
the components of its boundary into an “‘exterior” and “‘interior” part, such that no
component of the interior part d,V is a sphere and the trlad (V; 0.V, 0;V)admits a handle
decomposition with only handles of index 2 and 3. Wheq F2 is a closed surface a
compression body for F is, by definition, a compression body V for which 6, V=F.

Compression bodies occur naturally in the following fundamental example: In an
irreducible manifold M?, let D? = M be a collection of disjoint compression discs for oM.  If
V is the union of a regular neighborhood U of D U 0M and of all the components of M —U
that are balls, then V is a compression body for dM; indeed, (V; dM, 0V — dM) clearly admits
the required handle decomposition, and no component of 0V—0M is a sphere by
irreducibility of M. This is the example that justifies the terminology for the exterior and
interior boundaries 9,V and 0, V.

Note that a handlebody (i. €. a *““pretzel”’) is just a connected compression body with empty
interior boundary. As a matter of fact, the behaviour of compression bodies is very similar
to that of handlebodies, in that sense that many properties of handlebodies extend naturally
to compressmn bodies (see Appendlx B)

THEOREM 2.1. — Let M? be irreducible. There exists a compression body V3 =M for 0M,
unique up to isotopy, such that M —V is 0-irreducible (and irreducible).

Remarks. — (1) From the uniqueness of V, it follows that every automorphism of M
preserves V after isotopy. For this reason, in later sections, we shall call V the characteristic
compressionﬁy body for M in M, or simply the characteristic compression body of M (recall
that, in a group, for instance, a subgroup is characteristic when it is preserved by every
automorphism of the group).

(2) Theorem 2.1 does not assert that the decomposition of (V; dM, 3V) into 2- and 3-
handles is unique up to isotopy, or that one such decomposition is preserved by every
automorphism of M.  As a matter of fact, these properties notoriously fail when M=V is a
handlebody.

(3) The manifold M—V is obviously irreducible since M is irreducible and every
component of V contains a component of dM.

To clarify the notion of characteristic compression body, we give some equivalent
definitions before proving Theorem 2. 1.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



244 F. BONAHON

PROPOSITION 2.2. — Let M? be irreducible and let V3 =M be a compression body for
OM. The following conditions are equivalent :

(@) M=V is d-irreducible.

(b) The frontier 8V is incompressible in M.

(c) Every surface in M that consists of discs can be isotoped inside V.

(d) Every compression body V' =M for &M can be isotoped inside V (i. e. V is ‘universal’).

Proof of (a) < (b) = (c) <> (d). — We delay the proof of (d) = (b) until the end of that of
Theorem 2.1.

The equivalence (a) <> (b) follows from the fact that 3V =0, V is incompressible in V, which
is easy to check [for every base point, the map m, (8 V) — m; (V) is injective].

To prove (b)=>(c), suppose 8V incompressible and let D be a surface in M whose
components are discs.  After isotopy, we can assume that the intersection of D and 8V is
transverse, and that the number of components of D n 5V cannot be reduced by any such
isotopy. If DN3V=0, then D=V (since ID=dMcV) and the conclusion sought
holds. Otherwise, there exists an innermost disc D'<D such that D'"3V=0D'. The
curve 0D’ bounds a disc D"’ in the incompressible surface 3V, and the sphere D’ U D’ bounds
aball B? in the irreducible manifold M.  But we should then be able to define, by “‘crushing”
B, an isotopy of D that decreases the number of components of D N3V, which would
contradict our hypothesis. The case D n 8V # @ cannot therefore occur, and this ends the
proof of (b) = (c).

Any surface D in M whose components are discs is contained in a compression body
V' <M for 0M (see the fundamental example at the beginning of this section). Itfollows that
(d)=(c).

To show that (c) = (d), consider a compression body V' = M for M and assume V satisfies
(c). There exists disjoint balls B, inside V' and a disjoint union D of discs in V' such that

0D <oM and V' —(U B,) is a regular neighborhood of D U dM: For some decomposition of

(V';0M, 8V’') into hanidles of index 2 and 3, let the B,’s be the 3-handles and D consist of the
cores of the 2-handles (extended to 0M). By (¢), D can be isotoped inside V and, after

isotopy, V' — (U B,) can therefore be assumed to be contained inside V. In particular, each
sphere 0B, is now in V. From the irreducibility of V (which we immediately prove in
Lemma 2.3 below) follows that the B;’s lie in V. Consequentely V'<V. []

LemMA 2.3. — Let V be a compression body. Then V is irreducible and every closed
connected incompressible surface F in V is parallel to a component of 9;V.

Proof of Lemma 2.3. — There exists a surface D in V, with 0D < 6M, which consists of discs
and splits V into a manifold \ 1somorphlc to the disjoint union of 9; V x I and of some balls
(the components of D are the cores of the 2-handles for a decomposition of V'into handles of
index 2and 3). By definition of compression bodies, no component of d; Visa sphere and V
is therefore irreducible (consider its universal covering). The proposition (1.8) of [Wa,]
then implies that V is irreducible.

4° SERIE — TOME 16 — 1983 — N°2



COBORDISM OF SURFACE AUTOMORPHISMS 245

If F is a closed connected incompressible surface in V, it can be, as in the proof of (a) = (c)
in Proposition 2.2, isotoped so that F n D = (since Visirreducible). Let F still denote its
image in V. Bythe classification of incompressible surfaces in J; V x I1([Wa,], Proposition
3.1), F is parallel to a component of 9,V in V, and therefore in V. [J

Proof of Theorem 2.1. — To establish the existence of a compression body V<M for dM
with M —V d-irreducible, begin with any compression body V, = M for M (for instance, the
union of a regular neighborhood of 6M and of the components of M that are balls). If
M -V, is not d-irreducible, there exists a disc D properly embedded in M —V,, such that 6D
does not bound any disc in V,,. Let then V] be a regular neighborhood of V,u D in M,
and let V, be the union of V| and of all the components of M — V| that are balls. The triad
(V,;0M, 8V, ) has clearly a handle decomposition with only handles of index 2 and 3, and no
component of 3V, is a sphere (recall that M is irreducible); V, is therefore a compression
body for M. By the same token, we can define a sequence Vo=V, cV,c... of
compression bodies for M which stops only when we reach a compression body V, for dM
with M —V,, d-irreducible (and irreducible).

Remark that 6V, is “‘simpler” than 8V, in some sense. To make this precise, we use a
well-known complexity of a closed orientable surface F, namely the co-tuple:

c(F)=(..., ¢, (F), ..., c;(F), ¢o(F))eN",

where ¢, (F) is the number of components of genus g of F. The complexity c(F)
characterizes the topological type of F. Note that, when F is connected, ¢(F) is just the
genus of F for the canonical injection of N in NM. We order the complexities by
lexicographic order (from left to right). When the two surfaces F and F’ are connected,
c(F)<c(F’) just means that F has smaller genus than F’.

Now, in the above situation, ¢(d; V)<c(d,V).

Since the set of complexities (=the set of finite N-valued sequences) is well-ordered, the

sequence (V;) must nf:eds stop, and there exists therefore some n for which M-V, is 0-
irreducible (and irreducible).

To prove the uniqueness, consider two compression bodies V and V'<=M for M with
M-V and M —V’ d-irreducible. By condition (d) of Proposition 2. 2 [we have proved that
(a) = (d)], we may assume that V'cint V. The surface 6V’ is incompressible in M [since we
have proved (a) = (b) in Proposition 2.2], and therefore in V; by Lemma 2.3, each of its
components is consequently parallel to a component of 3, V=06Vin V. It follows then from
a connectivity argument that V—V’ =8V x =8V’ x I; the compression bodies V and V' are
then isotopic. [

Proof of Proposition 2.2 (end). — We only need to prove that (d)=(b). Consider V
satisfying condition (d). We know that there exists in M a characteristic compression body
V' for M which, by condition (d), we can assume contained in int V. We have now two
compression bodies V and V' = M for 0M, with V' <int V and §V’ incompressible in M (and
V). Noting that this is exactly the situation we encountered in the proof of the uniqueness of
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246 F. BONAHON

V', the same argument as above shows that V and V' are isotopic. In particular, 3V is
isotopic to the incompressible surface 8V’, which ends the proof. [

3. Essential annuli and tori

We saw in the last section that there exists in an irreducible manifold M* a compact
codimension 0 submanifold which “‘engulfs” by isotopy all the discs in M. A similar
engulfing phenomenon occurs for essential tori and annuli, and involves the characteristic
submanifold defined by K. Johannson[Jo], W. Jaco and P. Shalen [JS].

ProposiTION 3.1. — Let M3 be irreducible and O-irreducible. Then there exists a
submanifold W, unique up to isotopy and called the characteristic fibered submanifold, for
which the following conditions hold.

(1) Every component W, of W can be equipped with, either a Seifert fibration for which
W, n 0 M is vertical, or an 1-bundle structure over a surface (possibly non-orientable or with
boundary) for which W, n 0M is the total space of the corresponding 01-bundle; moreover, the
pair (W, W, 1 M) is never isomorphic to (T*> xI, T> x{0}).

(2) Thefrontier 8W is essential and none of its components is parallel to a component of M.

(3) For every component M, of M — W, the union W U M, does not satisfy (1).

(4) Every submanifold W' satisfying (1) and (2) can be isotoped inside W. [

Prorosition 3.2. — With the data of Proposition 3.1, the characteristic fibered
submanifold W satisfies also:

(5) Every essential annulus or torus which is not parallel to a boundary component can be
isotoped inside W.

(6) Each component of M — W which does not meet 8(8W) and is different from T2 x1 is
atoroidal and anannular.

(7) Every automorphism of M preserves W up to isotopy. [J

Remarks. — (a) For property (6), recall a manifold is anannular if it contains no essential
annulus and is atoroidal if every incompressible torus in it is parallel to a boundary
component.

(b) Our characteristic fibered submanifold is, for convenience, slightly different from the
characteristic submanifold in [Jo] or [JS]: To recover the latter, add to the former regular
neighborhoods of the components of 0M that are tori.

Our interest in trying to confine in some submanifold all the essential discs, tori or annuli of
M? is motivated by the following corollary of Thurston s Hyperbohzatlon Theorem [Th,]
and of Mostow’s Rigidity Theorem ([Mo], [Pr]).

Proposition 3.3 (Thurston). — Let M? be irreducible, 0-irreducible, atoroidal and
anannular. If, furthermore, each component of M contains an essential surface (which is
always satisfied by components with non-empty boundary), then every automorphism g of M is
isotopic to a periodic automorphism.
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Proof of Proposition 3.3. — Let 0; M denote the union of the boundary components of M
which are tori. Under the hypotheses of the proposition, Thurston’s Theorem asserts that
(M —0; M) admits a complete hyperbolic structure with finite volume and totally geodesic
boundary. Consider then the double M obtained by glueing two copies of M along
(M —0;:M). The hyperbolic structure on (M —d; M) defines then a complete hyperbolic
structure with finite volume on (M —0; M), for which the exchange involution 1 is an
isometry. v

Identify M with one “‘half” of M. The automorphism g lifts to an automorphism g of M
which commutes with © and coincides with g on McM. By Mostow’s Theorem, g is
homotopic to a (unique) automorphism g’ that is isometric on (M -0, M)_. The
automorphism g’ is periodic (the group of isometries of a complete finite volume hyperbolic
manifold is finite) and commutes with t (by uniqueness in Mostow’s Theorem). It defines
therefore a periodic automorphismg’ of M. Moreover, g and g’ induce the same outer
automorphism on n; (M)<=n, (M) and, by ((Wa,], §7), g and g’ are therefore isotopic. [J

4. Two lemmas on periodic maps

ProrosITION 4.1. — Let V be a compression body and g be an automorphism of V which is
periodicond,V. Then g canbe deformed to a periodic automorphism by anisotopy fixing 0, V.

Proof. — Recall that the complexity of a closed orientable surface F is the co-tuple:

c(F)=(..., ¢,(F), ..., ¢;(F), ¢, (F), ¢o(F))eN",

where ¢, (F) is the number of components of genus g of F, and that the complexities are
ordered by lexicographic order. It is easy to check that c¢(0;V)<c(0,V). We will prove
Proposition 4.1 by induction on ¢(V)=c¢ (9, V)—c(0; V), which measures the “‘difference”
between 0,V and 0, V. Note that ¢(V) belongs to the subset of the elements of Z" that
are (..., 0, 0)for lexicographic order (from left to right) and that the induction is possible
since this set, albeit much larger that NV, is nevertheless well-ordered for lexicographic order.

If ¢(9,V)=c(d; V), then V is isomorphic to 8, V x I, where 9, V corresponds to 9,V x { 0 }
by thisisomorphism. By ([Wa,], Lemma 3.5), g can be deformed to(g|d; V x {1 }) xId, by
an isotopy fixing 9, V=0,V x {1}, whence the property follows.

In fact, this argument also holds (by a classical result on balls) when ¢(V)eN{®=ZV. In
this case, indeed, V is isomorphic to the disjoint union of d; V xI and of ¢, (0, V) balls.

Assume now Proposition 4.1 proved for every compression body V' such that
c(V')<c(V). The crucial step in the induction is the following.

LEMMA 4.2. — Under the hypotheses of Proposition 4.1 andif (V)& N} i. e. if V requires
at least one 2-handle in a handle decomposition of (V; 0,V, 0, V), then there exists a simple
closed connected curve C in 0,V which bounds a disc in V but not in 0,V and such that, for
each n, either g"(C)=C or g"(C)n C=0.
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We assume Lemma 4.2 for the while and go on with the proof of Proposition 4.1. Let D
be a system of disjoint discs in V whose boundary is{J g"(C). By the usual intersection

reduction methods, D is unique up to isotopy fixingd,V. The automorphism g can
therefore be deformed, by an isotopy fixing 9, V, so that g(D)=D and g | D is periodic. Let
then V be the manifold obtained by cutting V open along D and g be the automorphism of ¥
1nduced by g. The mamfold ¥ is still a compression body (see CorollaryB.3 in
Appendlx B), c(9; V) c(a V)and ¢(0, V)<c(0 V) Apply then the induction hypothesis
to g and glue back together the deformation of g so obtained to conclude the proof of
Proposition 4.1, granting Lemma 4.2. []

Proof of Lemma 4.2. — 1tis here useful to leave the PL category and equip V with a smooth
structure for which g is a diffeomorphism (after isotopy fixingd, V). To do this carefully,
begin with deforming g so that it is periodic on a neighborhood U of 0, V, then equip U with a
smooth structure for which the restriction g|U is a dlffeomorphlsm (smooth first a
neighborhood of the fixed points of the non-trivial iterates of g| U, and lift afterwards an
appropriate smoothing of U/g), extend to V the smooth structure on U and, lastly, compose
g with a small PL isotopy fixing a neighborhood of 0, V.  Note that the existence of a smooth
rather than PL curve C satisfying the conditions of Lemma 4.2 provides a PL curve with the
same properties, by lifting to d, V a small perturbation of (U g"(C))/g in (0, V)/g.

There exists on d, V a Riemannian metric of locally constant curvature + 1, 0 or —1 for
which the restriction of g is an isometry (see for instance [Th,], Proposition 13.3.6; [the idea
consists in choosing a suitable singular metric on the quotient (0, V)/g]). For this metric,
each component d, V of d, V can be isometrically identified with the quotient of $?, R* or H?
by some discrete group of isometries isomorphic to m, (d, V). If d,V is not a sphere, the
number of closed geodesics in J, V with length smaller than K is finite for every constant
K >0 [otherwise, using a fundamental domain, one easﬂy checks that 7, (0, V) would not be
discrete as a subgroup of isometries of R* or H ] There exists therefore a simple closed
geodesic Cin ¢, V which is length-minimizing among all the simple curves bounding a discin
V but not in ¢, V [such curves exist because ¢(V)¢Ni*]. We are going to show that C
satisfies the desired condition.

Since g is an isometry on 0, V, the curve g"(C) is, for every n, a geodesic with same length
as C; in particular, either g"(C)=C or the intersection of C and g"(C) is
transverse. Considering 7 such that g"(C)#C, we want to prove that C does not meet
g"(C). By hypothesis, C bounds a disc D in V and g"(C) bounds D'=g"(D). By aslight
perturbation of D’ [after which perhaps D’#g"(D)], the intersection of D and D’ can be
assumed to be transverse.

Suppose in quest of a contradiction that C meets g"(C). There exists then an arc k
component of D n D’ which splits D into two half-discs D; and D, and D’ into D and
Dj. Without loss of generality, we can assume the length of D, —k minimum among all
the possible choices for k, D;, D,; in particular, this implies that D, meets no arc component
of D n D’ different from k, and that the length / (0D —k) is not greater than / (0D, —k),
and therefore than 1/2 /(0D). Consider then the two singular discs D, uDj and
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D, uDj. By the above remarks, their boundaries are simple closed curves (with two
corners) and:

[(0(D; uDY))+1(0(Dy;uD}))=21(0D, —k)+/(0D’') </(0D)+/(éD")<21(C),

which implies that the length of one of them, say D, U D1, is at most /(C). By considering
its lifting to the un1versa1 covering of the component of d,V that contains it, (D, U D})
cannot bound any discin d, V (otherwise, two distinct geodesics of R? or H? would meet inat
least two points); also, Dehn s lemma implies thatd (D; L D 1) bounds a non-singular disc
in V. But, by roundmg the two corners of 0 (D, U D), one could then construct a smooth
simple closed curve, bounding a disc in V but notin 0, V, that is shorter than 0 (D, U D}),
and therefore than C. This would contradict the definition of C and shows therefore that
Cng"(C)=0if g"(C)#C. O ‘

ProprosiTION 4.3. — Let F be a closed connected surface, possibly non-orientable, different
from S? and RP?, and let F X 1 denote the orientationI-bundle over F.  Ifg is an automorphism
of the manifold F X1 that is periodic on the boundary, then one of the two following assertions
holds (possibly both).

(a) There exists a periodic automorphism g’ of F % 1 which coincides with g on the boundary.

(b) Fisa torus or a Klein bottle and, for every n and each boundary component preserved by
g", the restriction of g" to this torus is a translation (perhaps the identity).

Remarks. — (1) In (b), we mean by translation of a torus any automorphism that lifts to a
translation of R? for some 1dent1ﬁcat10n of this torus with R?/72.

(2) In (a), one could moreover show that g’ is isotopic to g by an isotopy fixing the
boundary.

Proof. — Assume first that F is orientable (F x I=F x I), that its genus is at least 2 and that
g does not exchange the two boundary components. Let g, (resp. g;) denote the
automorphism of F defined by the restriction of g to F x { 0 } (resp. F x { 1}),for the standard
identifications. To prove (a), it is sufficient to show that g, is conjugated to g, by an
automorphism isotopic to the identity. For this, equip F with a (smooth) conformal
structure m, (resp. m;) for which g, (resp. g,) is conformal (by averaging some
metric). Teichmiiller theory ([Te,], [Te,]) asserts then that every homeomorphism f of F,
considered as a mapping from the Riemann surface (F, m,) to (F, m,), is topologically
isotopic to a unique homeomorphism ¢ , with constant dilatation (which measures at each
point the distortion between the two conformal structures m, and ¢%m;). Since m,
(resp. m,) is preserved by g, (resp. g,) and since g, and g, are homotopic (and therefore
isotopic), it follows from the uniqueness of the Teichmiiller mappings that:

P1a 80 =Py, = P, =81 Pra-

The homeomorphism ¢y, realizes therefore a conjugacy from g, to g,, and is isotopic to the
identity. By a small perturbation of ¢, (consider the quotient spaces F/g, and F/g,), we
can lastly find a PL automorphism with the same properties. (I am indebted to
L. Siebenmann for this short proof.)
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If F is a torus and still g does not exchange the boundary components, it is easy to classify,
up to conjugacy by isotopies, all the periodic automorphisms of F (consider the quotient
space, or more precisely the quotient “‘orbifold”, in the sense of [Th,], §13.3). Since g, and
&, are homotopic, it then turns out that they are conjugate by an isotopy, unless they are both
homotopic to the identity, in which case (b) holds. This ends the proof in this case.

C0n81der now the case where F is not orientable. Identifying F with the section
F % { 1/2}cF x1, we can deform g by an isotopy ﬁxmg the boundary so that g(F)=F
((Wa,], Lemma 3.5; on}y the case where the base of the I-bundle is orientable is explicity
stated there, but the non-orientable case is similar). Then, g defines outer automorphisms
of the groups below which preserve (up to inner automorphisms) the exact sequence:

0 m, (FX3I) > n, (F xI)=n, (F) > Z/2 - 0.

Since g is periodic on F X 41, it follows that the outer automorphism of n; (F) defined by g;¢
has finite order. By Nielsen’s Theorem [Ni,], g5 is then isotopic to a periodic map and we
can therefore isotop g so that it perserves F x[1/4, 3/4] and that its restriction there is
periodic. To end the proof, it is then sufficient to apply the study of the orientable case to
Fx(1—]1/4, 3/4[)=(F X oI) x L.

The proof is similar when g exchanges the boundary components of F xI (F is then
orientable). By[Wa,], Lemma 3.5, we can assume that g (F)=F where F is identified with
Fx{1/2}. Asabove, g can be made periodic on F x[1/4, 3/4] and we end the proof by
applying the previous case to F x[0,1/4] and F x[1/4,3/4]. O

5. Splitting of cobordisms

The principal tool for our analysis of A, is Proposition 5.1 below. This section is
devoted to its proof.

ProposiTioN 5.1. — If (F2, f) is null-cobordant, it bounds an automorphism (M3, f) where
M splits into three pieces V?, M3 and M3, preserved by f, such that:

(1) V is a compression body for OM and M——_V=MII_I M,.

(2) M, is an I-bundle over a closed, possibly non-orientable, surface.

(3) The restriction of fto My is periodic.

Remark. — In Proposition 5.1, there does not in general exist any handle decomposition
of V that is preserved byf For instance A. Fathi and F. Laudenbach[FL] have
constructed an automorphism (F, f)= a(V, f ) where f is pseudo- Anosov and V is a

handlebody; if f preserved any handle decomposition of V, the automorphism f would be
reducible and could not be pseudo-Anjosov

To prove Proposition 5.1, we need some preliminary results.

Lemma 5.2. — If (F2, f) is null-cobordant, it bounds an automorphism (M3, f) with M
irreducible.

Proof. — See Appendix A. [
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Say that (F1, f,) compresses to (F3, f,) if (Fy, f;)l (—F,, f,) bounds an automorphism
(V3, f) such that V is a compression body for F, (i.€. 6, V=F,; and 9, V= —F,). Note that
if (F,, f;) compresses to (F,, f;) and (F,, f,) compresses to (F, f3), then (F;, f;) compresses
to (F5./3).

Lemma 5.3. — If (F1, f,) is null-cobordant, it compresses to an automorphism (F2, f,)
bounding some (M3, f,) where M, is irreducible and d-irreducible.

Proof. — By Lemma 5.2, (F,, f;) bounds (M3, fl) with M, irreducible. Consider then
the characteristic compression body V of M, (¢f. §2), which we can assume preserved by fi
(Theorem 2.1) and take (F,,f,)=(—8V, f,|8V). O

Recall that an automorphism (F%, /) is reducible when there exists an essential ‘1-
submanifold C* such that /(C)=C up to isotopy.

LEMMA 5.4. — Any automorphism (F1, f,) compresses to an automorphism (F3, f,) withf,
irreducible.

Proof. — If f; is reducible, it preserves after isotopy an essential submanjfoldC1 of
F!. Let (F,, f2) be constructed from (F,,f;) by performing a 2-surgery along each
component of C and deleting the spherical components of the surface so obtained. Then
(Fy, f1) clearly compresses to (F,, ). Iff, is notirreducible, perform the same trick until an
irreducible automorphism is reached (this process must stop since the compressions decrease
the complexities of the surfaces). [

Proof of Proposition 5.1. — Usingalternatively Lemmas 5.3 and 5.4, define a sequence of
automorphisms (F?, f;) where (Fy, f;)=(F, f) and:

(1) for every i, (F;, f;) compresses to (F;, 1, fi+1);

(2) for every k=1, f,, ., is irreducible and (F,,, f;,) bounds some (M;, , , 4+ 1) With
M,, ;. irreducible and d-irreducible.

Since these compressions reduce the complexities of the surfaces, the ‘“‘compression
cobordism” between (F;,f;) and (F,,,,f;,,) consists, for i sufficiently large, of an
automorphism of a product compression body V;=~F; x I, where F; corresponds to F; x { 0 }
and F,,, to F,; x { 1}. By[Wa,], Lemma 3.5, f; and fi+, are then isotopic for the above
identification F;~F,, ;. Thereexists consequently an automorphism (F’, /') and, for every
i suﬁ"lcxenltly largc, an oriented isomorphism #; : F; > F’ such that f; is isotopic to ;' f ',
[in other words, the sequence (F,f;) ‘‘stabilizes” to (F’,f’) up to conjugacy and
isotopy]. By construction, f ' is irreducible and (F’, f ') bounds an automorphism (M’, 7N
where M’ is irreducible and d-irreducible.

Since (F, ) compresses to (F’, /'), it is now sufficient to show that (F’, /') bounds after
isotopy some (M, LI Mj, 7 '') where M is an I-bundle and /"’ is periodic on M.

Consider the characteristic fibered submanifold W of M’ and isotop f’sothat f'(W)=W
~ (Proposition 3.1; recallM is irreducible and o-irreducible). The irreducibility of f’ implies
the following properties.

Cram 5.5. — The surface 8W is closed; equivalently, W n M’ consists of components
of oM. Moreover, every component of W that meets dM' is a component of M’ and admits an
I-bundle structure over a closed surface.
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Proof of 5.5. — The closed 1-submanifold d(6W) of F'=0M’ is essential and preserved
by f’. Since f’ is irreducible, it must be empty. This proves the first statement.

By definition and since 0 (3W) =, every component W, of W is either an I-bundle over a
closed surface, in which case it isa component of M’, or a Selfert manifold. If W, isnot such
anl- bundle itis a Seifert mamfold with non-empty boundary and dltferent from S! x D? and
T? x1 [recall that (W, w LN 3dM) is by definition of W never isomorphic to (T? xI
T2 x {0})]. [Wa,] implies then that 7’ can be isotoped in order to preserve the Seifert

fibration on \J (f')" (Wl). Then W, cannot meet M’ : Otherwise, f’ would preserve the

essential 1-submanifold \ J (7 ')"(C) of F’, where C is a fiber in W; n oM. [

Let M; consists of all the components of M’ that are I-bundles over closed surfaces, and let
M" be M’—MI. Note that, by Claim 5.5, W A oM" = and W M" consists oﬁly of
Seifert manifolds. Weare ri)ow goin,g' to modify dramatically M [and (M, 7 ")l so that f'be
periodic on M"". ‘

We may of course assume that no component of M’ is closed. By Propositions 3. 2(6)
and 3.3 S can be isotoped so that it is periodic on the components of M’ —W that are not
isomorphic to T? x L.

Consider a component W, of W n M" that is isomorphic to T? xI. By condition (3) of
Proposition 3.1, no component of M’ —W meeting W, is isomorphic to

T2 x1. Consequently, ' is periodicon | J (f')"(6W,). Now, by Proposition 4.3,f ' can

be assumed to be periodic on (J(f')"(W,), except possibly in the case where, for every m,

n

(f/)™ is a translation on each (torus) component of (J ( F/)"(6W,) it preserves.

Apply the above process to each component of W n M"’ that is isomorphic to T> x I.  Let
then My den)dte the part of M"’ where we Ha\;e so far been abie to make /' periodic: It is the
union of all the components of M —W that are not isomorphic to T? xI, and of some
components of W n M"" isomorphic to T? x L.

For every component W, of M" — My 'that is a component of W, 7' preserves up to isotopy

the Seifert fibration of U F" )"(W,) [Wa,]. If G is a boundary component of 0W, and if

(f )" respects G, then (/' )" necessarily preserves a non-trivial isotopy class of simple closed
curves in G (consider the fiber). By definition of M , the same property holds for the other
kind of components of 3My. The automorphism (6M f | 6Mp) consequently bounds
some (Vp, f p) where V, consists of solid tori and f4 is periodic (use the classification of
periodic automorphisms of T2, or an equivariant surgery argument). Consider Iiow the
manifold M; obtained by replacing M’ —M} ¢ by (—V;p) in M", and let f» be the periodic
automorphism (f’ IMP) U fp of Mp. The automorphlsm (F’ f ) then bounds (M;II Mp,

(' IM, )U fp), where M, is an I-bundle and f, is periodic. This ends the proof of
Proposition 5.1.
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Remark. — In the statement of Proposition 5.1, we did not require that M be irreducible
and that V be its characteristic compression body, or, equivalently, that M be irreducible
and O-irreducible (and this is in general false for M and V provided by the above
proof). Using the Equivariant Sphere Theorem and Loop Theorem [MY], and some
cutting and pasting argument, it is nevertheless possible to add this extra condition to the
conclusions of Proposition 5.1, but this is of no use for the following.

6. The canonical decomposition of A,

For our purposes, it is natural to identify two automorphisms (F%, f;) and (F3, f,) when
there exists an oriented isomorphism 4 8 F, — F, such that 4f; A~ is isotopic to f,; we shall
then say that (F,, f;) and (F,, f,) are equivalent by conjugacy and isotopy. Let & be the set
of such equivalence classes of automorphisms of surfaces. We often denote simply by (F, f)
the class in & of the automorphism (F, f).

In view of the applications to cobordism, an interesting subset of & is &, that consists of
the classes of automorphisms which cannot be written as (F, /)11 (= F, f)U (F’, /'), with F
non-empty. There is an obvious retraction # — #, defined by removing all the pairs (F,
S)U(=F, f); it transforms the monoid law Il on # into a group lawfl on &, and factors
the canonical map # — A, through a group homomorphism %, — A,.

Define on & the following relation <, which is a slight extension of the compression
cobordism of paragraph 3: (F, f) < (F’, f') when (—F, f)U (F’, /') bounds some (M3,f),
where M? is the disjoint union of a compression body V and of an I-bundle W over a closed
(possibly non-orientable) surface, such that F= —0,Vand F'=0WII 0, V. Note that <is
proper by [Wa ,], Lemma 3.5.

Forany XeA,, let (F¥, f*) be an automorphism representing the cobordism class X, with
the property that its class in & is minimal for <; for instance, choose (F*, f*) so that the
complexity of FX is minimum among all automorphisms representing X.

The automorphism f*is clearly irreducible. ~ A result of J. Nielsen ([Ni, ], [Ni,]), expressed
with a terminology issued from [Th,], asserts then that (FX, /) splits after isotopy into
(F3, f3)LL(FX, /%), where f§ is periodic and f} is pseudo-Anosov. Here, an
a_utomofphism (FZ, f) is (homotopically) pseudb-Anosov when, for every n#0 and every
essential 1-submanifold C of F, f™(C) is never isotopic to C; equivalently, (F?, f) is pseudo-
Anosov in this sense if and only if it is topologically isotopic to a pseudo-Anosov
homeomorphism in the geometric sense of [Th,].

Let o/ be the set of those elements of # which may occur as the class of such a (F}, f K),
i.e. the elements of & that are represented by pseudo-Anosov automorphisms and are
minimal for <. It is clearly a subgroup of #, [note that if (F, /) and (F', f")e # are
minimal for <, both belong to %, and (F, U (F', f) is minimal for <].

Also, recall from the introduction that A% is the periodic cobordism group, which consists of

periodic automorphisms of oriented surfaces modulo cobordism by periodic automorphisms
of 3-manifolds.
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THEOREM 6.1. — The rule X — ((F%, fX), (FX, fX)) induces a group isomorphism
A, =A@ A, whose inverse is the obvious homomorphism.

Remark. — Theorem 6. 1 asserts in particular that (F}, /) is well-defined up to conjugacy
and isotopy. If we had required /X to be a geometric pseudo-Anosov homeomorphism (in
the sense of [Th,]), (F}, fX) would even be unique up to mere (topological) conjugacy (two
geometric pseudo-Anosov homeomorphisms of the same surface that are isotopic are
conjugate).

Proof of 6.1. — To prove that the map A, - A} @ o/ is well-defined, consider another
automorphism (G*, g%)=(G%, gX)II (G%, g%) that represents X and is minimal for < (where
gp is periodic and g} is pseudo-Anosov). By definition, (F*, f*)II (—G*, g*) bounds
some (M3, /). By Proposition 5.1, this null-cobordism can be chosen so that M splits into
three pieces V, M, and Mp, preserved by f, where Vis a compression body for M, M, is an
I-bundle and f | M, is periodic.

Since both (FX, f*) and (G*, g*) are minimal for <, the compression body V is just a
regular neighborhood of dM in M.  Let Mj (resp. My ) denote the union of M (resp. M) and
of the adjacent components of V.

Since no pseudo-Anosov surface automorphism is homotopic to a periodic one,
aMI’,cFX U G¥ and f is consequently periodic on the boundary of the product I- bundle
M;—M,. By Proposition 4.3, f can therefore be assumed to be periodic on
M;=(Mj—M,) UM, [case (b) of Proposition 4.3 cannot occur since (F¥, f*) and
(GX, g¥) are mir'lﬂima‘l for <]. This provides a partition M =M/l M; of the components
of M such that My is an I-bundle and F1Mj is periodic.

No component of M; can have its boundary completely contained in F* or G* : Otherwise,
(FX, /%) or (G*, &%) would Anlo‘t be minimal for <. From this fact, it follows for homotopy
theoretic reasons that each component of M joins, either a component of F to a component
of G}, or a component of F} to a component of G}.

Let M;" consist of the components of M; that meet F} (or G}), and let My be
M~—M;. Note that 9M{'=F¥u G¥ and oMy =F} U G}.

The manifold My’ is a product I-bundle. By[Wa,], Lemma 3.5, f can be isotoped on My’
so that it preserves the projection M{’ - 1. It follows that (F), fX) and (G}, gX) are
equivalent by conjugacy and isotopy, i.e. represent the same element of <.

Applying Proposition 4.3 to the I-bundle M; — My, f can be modified to be periodic on
My’ =M; U (M; —M’) [again, case (b) of Proposition 4.3 cannot occur by minimality of
(F%, f*) and (G*, X)] Hence (F}, %) and (G) g¥) are periodic cobordant.

This ends the proof that the rule X - ((Fj, f3) (FX, fX)) induces a map
@:A,->A® . The map ¢ is clearly a group homomorphism since, if (F, f) and
(F', f')e #, are minimal for <, so is (F, f)fI F, f).

Let § : AY ® o/ — A, be the obvious group homomorphism. By definition of ¢, Yo =1d
and ¢ is therefore injective.

To prove that ¢ is surjective, we need to show that, for every automorphism (Fp, f5)U (F,,
fa) where f; is periodic and the class of (F,, f,) in # is contained in <, (Fp, f;) is periodic
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cobordant to a periodic automorphism (Fj, /) such that (Fp, /)1 (F,, f,) is minimal for

<. By some homotopy theoretic remarks and the usual compatibility of 0 with

minimality, this last property is equivalent to the fact that (F}, ) is minimal for <.
The proof of Theorem 6.1 is therefore achieved by Lemma 6.2 below.

LEMMA 6.2. — Every periodic automorphism (F?, ) is periodic cobordant to a periodic
automorphism whose class in & is minimal for <.

Proofof 6.2. — If (F?, f) is not minimal for <, there exists by definition an automorphism
(M3, f) and a partition M=VII W of the components of M such that:

(1) V is a compression body;

(2) W is an I-bundle over a closed surface;

(3) F=0,Vuow aqdf=f|F;

4) MEF xL :

We would like 7 to be periodic. Apply Proposition 4.3 to each component of W (and to
thefirstiterate of f that preservesit). When we getin case (b) of Proposition 4. 3, replace the
considered component of W (and its images by f) by one or two solid tori and add them to
V. Eventually, only case (a) holds avh1d 7 can be assumed to be periodic on W. By
Proposition 4.1, f can also be isotoped so that it is periodic on V, and therefore on M.

Let now F; be —(0M —F) and let f; be fIF,. The periodic automorphisms (F, 1) and
(F,, f,) are periodic cobordant and (F,, f;) <(F, f). If (Fy, f;) is minimal for <, the
property is proved. Otherwise, iterate this process and define a sequence (F, f;) of periodic
automorphisms periodic cobordant to (F, /) such that :

. -~(Fi+19fi+l),<(Fi9fi)_< e <(F17f1)<(Faf)

Considering the complexities of the surface F;, this sequence must needs stop. which happens
when we reach a (F,, f;) that is minimal for <.

This ends the proof of Lemma 6.2, and therefore of Theorem 6.1. [

An important remark for the following sections is that the proof of 6.1 is natural with

respect to the graded group structure of A, defined in paragraph 1. Consequently, for the
obvious definitions of &7, and A} :

PROPOSITION 6.3. — For each yel', A, ,=A} @« . U]

7. The group <&/

Let o/ , = o consist of the classes of automorphisms (F, /) where f acts transitively on the
set of the components of F [or, equivalently, (F, /') cannot be decomposed into (F’, /)L (F”,
f'") inanontrivial way]. Ifa: % — & istheinvolution(F, f) — (—F, ), let # denote the
fixed point set of a in o/, and choose a subset € such that &/, =% €11 a(%¥). Every
element (F, f) of o/ can be written as a disjoint sum of elements of .o/, and this
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decomposition is unique; if a € ./, let n,(F, f)e N denote the number of times a appears in
this decomposition. From the definition of the group .o, it is then clear that:

ProrosiTioN 7.1. — The map o/ — (Z/2)* @® Z°* defined by:

(F, f) i ((nb (st)_)_begb (nc (F,f)_n,(c) (F’ f))_ce‘f),

is a group isomorphism. [
Let # , (resp. # _) be the subset of the elements (F, f) of & where f preserves (resp.
reverses) the orientation of &, and define , =#n% ., 6, =¢nTF ., etc.

ProposiTioN 7.2. — The sets B,,% ., B _ are infinite, and € _ is empty.

COROLLARY 7.3:

A, 2T@X/2), A _=(Z/2),
=@ o4,22°®2/2)°. O

yell

Proof of Proposition7.2. — The set #_ is empty since (F, f)=(—F, f)in & whenever fis
orientation-reversing. To prove that #,, %, and #_ are infinite, it will be sufficient to
exhibit an infinite number of elements of each among (pseudo-)Anosov automorphisms of the
torus T2, Note that such automorphisms always belong to </ by uniqueness of meridian
discs in solid tori and of the ‘‘neck” of Klein bottles. Since there are, up to conjugacy and
isotopy, infinitely many orientation-reversing Anosov automorphisms of T2, the set B_is
infinite.

The elements of # corresponding to orientation-preserving automorphisms of T? are in
1-1 correspondence with the conjugacy classes of SL,(Z) [by considering H, (T?)=Z?].
It is a pleasant exercice to show that each such conjugacy class is classified by the data of a
number € Z/2 and of a sequence (a, a, . . .a,), defined up to cyclic permutation, of rational
integers with the following property: Either all the a;’s are non-null and g; and q;, , have
opposite signs (including a, and a,,,;=a,), or the sequence is (0), (1) or (0a). To
check this property, associate to each such data the conjugacy class of:

)

and use some arguments on developments in continued fractions (compare with [BS],
§12). Moreover, the conjugacy classes of SL, (Z) represented by Anosov automorphisms
are those whose classifying sequence is different from (0), (+1) and (0a), and the involu-
tion defined by conjugacy with an element of GL,(Z) of determinant —1 is translated
in these data by keeping €€ Z/2 unchanged and replacing each a;€Z by —a;. With this
description, it is clear that Anosov automorphisms of T? define infinite subsets of # , and € ,
(see also [Sc], §3). O
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8. The periodic cobordism group A5

This section is devoted to the computation of A3, and thus completes the computation
of A,.

Consider a periodic automorphism f of a closed oriented surface F2.  To each point xéF
can be attached an element r(f, x) of Q/Z in the following way: If n is the smallest positive
integer for which /" preserves both x and the orientation of F near x, then /" is locally
conjugate to a rotation of angle 2 r(f, x) around x (the orientation is determined by that of
F). Let Fix, f denote the (finite) set of points where r(f, x)#0.

ProposiTiON 8. 1. — If f is periodic,(F?, f) is periodic null-cobordant [i. e. the class of (F, f )
in AS is 0] if and only if Fix, f admits a partition into pairs { x;, x; } such that:

1) r (f, x;)+r(f, x;)=0 for every i.

(2) For every i, f ({ x;, x;})={x;, x}} for some j.

(3) f preserves the orientation of F near x; if and only if it preserves it near x;.

Remark. — Since r(f, f (x)) is equal to r (f, x) or to —r(f, x) according as f preserves of
reverses the orientation of f near x, the last condition is only relevant when
r(f, x;)=r(f, x1)=1/2 [otherwise, (3) follows from (1) and (2)]. It is also void if f is
orientation-preserving or -reversing, which, by paragraph 1, we could assume as well.

Proof. — If (F2, ) bounds (M?, 7 ), where f and ¥i are both periodic, consider the set Fix , 7
of the points x in M such that, for some , /" fixes x and is a nontrivial rotation near x. Itisa
1-submanifold of M, preserved by £, with boundary Fix, f. Moreover, if x; and x; are
the two boundary points of a component k; of Fix., firlf x;)+r(f, x;))=0. We then get
the partition of Fix, f sought by letting k; range over all the arc components of Fix, 7

Conversely, if such a partition exists, choose a small disc d; (resp. ;) around each x; (resp.
x;), such that all these discs are disjoint and their union is preserved by f. Let then V be the
manifold obtained from F x I by glueing a 1-handle along each pair {d; x {1}, d; x {1} };it
is a compression body with interior boundary 9;V=F x {0} and exterior boundary
0,V=0V—0,V. Theautomorphism f x Id, of F x I extends to a periodic automorphism f
of V. Then, (F, f) can be identified with (4, V, f19,V) and (F’, /" )=(—2. V, [0, V) is
such that Fix, f'=@. To complete the proof, it is now sufficent to apply Lemma 8.2
below to (F’, /). O

Lemma 8.2. — If f is periodic and Fix , f =, then(F?, f) bounds a periodic automorphism
of a disjoint union of handlebodies.

Proof. — We prove 8.2 by induction on the complexity of F.  Assume the lemma proved
for every surface of lower complexity than F and consider the quotient space F/f; it is a
surface, possibly non-orientable and/or with boundary if / does not preserve the orientation
of F. We may of course assume F/f connected.

Consider first the case where the surface F/f is closed and dim H, (F/f; Q)=2. The
projection p : F — F/f is a covering map and this cyclic regular covering is defined by some
morphism p : H,(F/f; Z) > Z/n. By the condition on H, (F/f; Q) there exists an
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indivisible class x in H, (F/f; Z) such that p(x)=0. Since x is indivisible, it can be
represented by a simple closed curve C inF/f[MP]. Theinverseimage of C in Fis a closed
1-submanifold C, which is essential since its components are non-separating. Then,
construct a manifold V from F xI by glueing a 2-handle along each component of
Cx {1}. For asuitable construction of V, the automorphism f x Id, of F x I extends to a
periodic automorphism f of V. Since C is essential, F'=0V—(F x {0}) has smaller
complexity than F.  Moreover, because p (x)=0, each component of C preserved by some
S™ is in fact fixed by f™; it follows that Fix, f'=0Q, where f'= fIF'. By induction
hypothesis, (F',f’) bounds a periodic automorphism [’ of a disjoint union V' of
handlebodies. If F is identified with F x {0} =dV, (F, /) then bounds (VU (= V'), f U [)
and each component of VU V' is clearly a handlebody.

When F/ f has non-empty boundary and is not a disc, there exists a properly embedded arc
k in F/f that is non-separating. Let C denote the inverse image of k in F; this is a closed
essential 1-submanifold, preserved by F.  Let then (F', f”) be constructed as above from (F,
f)and C. For each component C, of C and each /™ preserving C,, f™|C, is either the
identity or a reflection; it follows that Fix, f'=(. Then, apply the induction hypothesis to
(F’, ') to get the required property for (F. f).

To start the induction, we now only need to study the cases where F/ f is a disc, a sphere,
a projective plane or a Klein bottle. In the first three cases, F consists of spheres and [
therefore extends to a periodic automorphism of disjoint balls. ~For the last case, note that
F consists of tori; then surger (F, /) along the inverse image C of an essential curve in F/ fto
get a periodic automorphism (F’, ') of a disjoint union of spheres; since (F', /') bounds a
periodic automorphism of disjoint balls, it follows that (F, ) bounds a periodic
automorphism of disjoint solid tori. [

The group A} naturally splits into @ A5 (), where A% (n) is the subgroup of periodic

cobordism classes of automorphisms (F, /') with f periodic of period n.  As in paragraph 1,

A% (n) itself splits into @ A3, (n); note that A% (n)#0 only if v(y) divides n, and that

yel

A% (n)= A%, (n/v(y)) or A5_ (n/v(y)) according as 5 (y)=0 or 1.

ProposITION 8. 3:
P ~ 1/2(n—
A2+(n)=Z‘ 2= 1))

A} _(4k+2)=0,
A (dk)=(2/2)M2* D=0 jfk<2)
(here [ ] means “‘integral part”).

COROLLARY 8.4:
A (n)=7® (Z/2)",

g1
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g}

where ¢, (m) and c_ (m) are determined by Corollary 1.5. O

and:

COROLLARY 8.5. — For every yelI:

AZ,Y;ZOO ('B(Z/Z)OO and AZY_ZOO lf O-(Y)=0’
A =(Z/2)*  and  AB,=(Z/2)° if oly)=1,
A=7°®Z/2)° and AE=Z*@(Z/2)". O

Proof of Proposition 8.3. — Consider (F2, f'), where f preserves the orientation of F and is
periodic of period n.  The projection p : F — F/f is a cyclic branched covering and (F, f)is
consequently determined up to oriented conjugacy by the closed oriented surface F/f, the

ramification points X, in F// and the representation p : H, (F/f — U {X;}) = Z/n defined

by the property that p ([py])=m for every path y in F—p ! (u {)?i}) joining some x to

J™(x). Note that the rotation numbers r(f, x) can be easily recovered from p: For the
natural embedding Z/n=Q/Z, r(f, x)=p([0d]) where d is a small disc around X=p(x) in
F/f, oriented by the orientation of F. Moreover, the number of points of the orbit of x is
determined by r(f, x)(together with the period n). = Since f is orientation-preserving, r (f, x)
depends only on Xx=p(x) and will also be denoted by r(f, X).

Let #%, (n) denote the set of (oriented) conjugacy classes of automorphisms (F2, /), where
/ preserves the orientation of F and is periodic of period n. If C(n)=(Z/n)— {0}, consider
the map ¢ : #% (n) > NE that “counts” for each ce C(n) the number v.(f) of orbits
xeF/f with r(f, ¥)=c. If d is a small disc in F/f around each orbit x with r(f. X,)#0,
then Z [0d]=0inH (F/f— U { x.}), and the image of ¢ is therefore contalned in the subset

of the elements ve N¢® that satisfy the condition:

(*) Y v.e=0 in Q/Z

ceCn)
Conversely, every ve N“™ satisfying (% ) can easily be realized by some (F, f)eF P (n)
(construct a suitable cyclic branched covering over S?).

Choose now A = C(n) such that C(n)=ALl (—A) or ALL (—A)LI {1/2} according as n is
odd or evena IfFix, f admitsa partitibn into pairs { x;, x} } asin Proposition 8. 1, note that
x;and x; belong to the same orbit if and only ifr(f, x;)=r(f, xj)=1/2,n=4k and x; =f4x;)
[recall r(f, f(x)=r(f, x) since f is orientation-preserving]. It consequently follows from
Proposition 8.1 that the map s, defined by

V: FE 70 if n#2[4],
(F. ) (v () =V_o(fDien
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or:
V: FESTAN@Z/2 i n=2[4],

(F. )= (va(f) =Vl Daecas Va2 (),
induces a monomorphism A, (n) > Z* or Z* @ (Z/2). By the characterization of the
image of ¢, the image of Y is easily seen to be isomorphic to Z®“*. Since card
A=[1/2(n—1)] (and not [1/2n]—1 as written in [Bo]!), the first statement of Proposi-
tion 8.3 follows.

If(F*, f)is an orientation-reversing automorphism of period 2n, themapp : ¥ - F/fisa
cyclic branched covering above int (F/f). As in the previous case, (F, /) is determined up
to oriented conjugacy by the surface F/f (possibly non-orientable and/or with boundary),
the ramification points x;eint F/f of the restriction of p above int(F/f) and some
representation p : H, (F/f —\U{X;}) — Z/2n [note that there is no ambiguity for the

orientation of F, since f* realizes a conjugacy between (F, f) and (—F, f)]. As before,
r(f, x)=p([0d]) where dis a small disc around p (x) in int (F, /) oriented by the orientation of
F near x [and r(f, x)=0if p(x)ed(F/f)]. ‘

Since r(f, f™ (x))=(—1)"r(f, x) for every x and m, every orbit of order 4k +2 in Fix, f
admits a partition into pairs {x;, f2**!(x;)} such that r(f, x;)+r(f****(x;))=0. By
Proposition 8.1, the class of (F, f) in Aj_(2n) can therefore be represented by an
automorphism (F’, f’) such that the order of every orbit in Fix, f’ is a multiple of 4.
When 7 is odd, Fix, f’ must then be empty and, consequently, A5 _ (4k+2)=0 for every k.

Now, consider the case where n=2k. By the same argument as above, we can cancel
every orbit where r (f’, x)=1/2 [because (1/2)+(1/2)=0in Q/Z] and can therefore assume
that r(f”, x) is never 1/2. Since the order of each orbit is a multiple of 4, each r(f”, x) is
contained in Z/k=Q@/Z. Let B be the set of pairs {B, —B} in Z/k with B0,
1/2. Proposition 8.1 shows that the map @ : A5_ (4k) — (Z/2)®, which counts modulo 2
the number of orbits representing each element of B [for r(f, )], is well-defined and is a
monomorphism (no orbit in Fix, f'is “‘self-cancelable”).

We claim that @ is surjective; since card B=[1/2 (k —1)], this will achieve the computation
of A5_(4k). We just need to construct, for any integer / with 0 </<(1/2)k, an orientation-
reversing automorphism (F?, f) of period 4k such that r(f, x)= +//k if x belongs to one
specific orbit and r(f, x)¢(Z/k—{0, 1/2}) otherwise. For this purpose, choose in the
sphere S? (2/+1) distinct points X, Xy, . .., X5, and let p : F> — S? be the 4k-fold cyclic
branched covering associated to the morphism p : H, (§*— {x;}) — Q/Z defined by the
property that, if d; is a small disc around x;, p ([0do])=//k and p (0d}])= —1/2k if i#0. The
surface F has exactly two components, and consequently admits an orientation for which
the covering translation f is orientation-reversing. Now, Fix, f consists of the orbit
p~'(x,) where r(f, )=x(/k) and of the orbits p~!(x;), with i#0, where
r(f, )=+1/2k. The automorphism (F, /') therefore satisfies the desired properties.

This ends the proof of Proposition 8.3. []
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We end this section by an exercice which provides a sufficient condition for a periodic
automorphism to be null-cobordant. In fact, this result generahzes to the property that the
restriction A§, - W_,(Z, Z) of Kreck’s homomorphism (see the introduction) is
injective [EE].

PropOSITION 8.6. — If f is a periodic automorphism of ¥ such that X. f, (X)=0 for every
XeH, (F), then (F, f) is null-cobordant.

Moreover, (F, ') bounds a periodic automorphism of a disjoint union of handlebodies.

Remark. — If f preserves (resp. reverses) the orientation of F, the condition that
X. f(X)=0 for every Xe H, (F) is equivalent to the property that (f,)*=Id (resp. —Id)

Proof of 8.6. — The property is proven by induction on the complexity of F; the result is
clear when F consists of spheres, which starts the induction.

When at least one component of F is not a sphere, we claim that there exists an essential
curve Cin F such that, for every m, either C Nf™(C)=0 or f"'(C) C. Asin8.2, the
existence of such a curve achieves the proof by application of the induction hypothesis to the

automorphism (F’, /') obtained by (equivariantly) surgering (F, /') along { f"(C).

" The proof of the existence of C is very close to that of Lemma 3.2 and we just sketch
it. Equip F with a smooth structure and a Riemannian metric for which f is an isometric
diffeomorphism, andlet C' be a simple closed geodesxc that is length-minimizing among all
essential curvesin F.  An argument similar to that used in Lemma 3.2 then shows that, for
every m, either C' n f™(C")= 0 or f™(C’)=C’ [hint: Otherwise, select a shortest arc k in C’
that joins two intersection points in C'nf™(C’) of opposite signs; k exists since
[C]. fZ(IC']) =0; one can then construct an essential curve that is shorter than C’ by adding
a component of C'—f™(C’) to k and rounding the corners, which provides a
contradiction]. The PL curve C is then obtained from the smooth curve C’ by lifting a
suitable small isotopy in F/f.

This ends the proof of Proposition §.6. [

9. Cobordism and handlebodies

In the preceding sections, we obtained the algebraic structure of A,. But, for a practical
determination of the map & — A,, the following problem has still no general solution known.

(P) Given an automorphism of surface (for instance presented as a product of Dehn
twists), decide whether it is null-cobordant on not.
As an approach to Problem (P), the following weaker problem is easier to handle.

(P’) Given an automorphism of a connected surface, decide whether it bounds an
automorphism of a handlebody or not.

For instance, in [JJ], K. Johannson and D. Johnson exhibit an automorphism of a surface
of genus 2 which induces the identity on the homology and does not extend to any
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handlebody (they show that any manifold obtained by perturbing with this automorphism a
genus 2 Heegaard decomposition of S* is a homology sphere of Rohlin invariant 1).
Moreover, they prove that the cobordism class of this automorphism is then non-trivial (see
Corollary 9.4 below).

It may therefore be of some interest to give some relations between these ‘‘handlebody
null-cobordisms™ and the usual null-cobordisms. This is what we are going to do in this
section.

The following easy corollary of Proposition 8.1 and Lemma 8.2 shows that Problem (P)
and Problem (P’) are equivalent for an orientation-preserving periodic automorphism of a
connected surface.

PRrOPOSITION 9.1. — If an orientation-preserving periodic automorphism (F2,f) of a
connected surface is null-cobordant, it extends to a periodic automorphism of a handlebody.

Proof. — By Proposition 8.1 and with the notation of §8, the set {)7 eF/f r(f, x)#0,
1/2} admits a partition into pairs {x;, x;}, i=1, ..., n, with r (f, X;)+r (f, x})=0 for
every i. Let D=D,,uD,u ... uUD, be a collection of disjoint discs in F/f such that:

(a) (Fix, f)/fcintD;

(b) Dy, N (Fix, f)/f ={xeF/f: r(f, X)=1/2};

(¢) D;n(Fix, f)/f ={X,;, x|} for every i=1, ..., n.

If p : F - F/fdenotes the natural projection, consider the periodic automorphism (F’, ')
constructed tfrom (F. /) by performing an equivariant 2-surgery along the [-manifold

n

p~1(@D). Itsplitsinto (Fg, f o)L (Fq,,f1,2) < L FLf ;)) where, fori=1/2,1, ..., n,
i=1
F’ consists of the components of F’ that meet p~! (int D;).

Let p: H; (F/f —(Fix, f)/f)— Q/Z be the morphism classifying the cyclic branched
covering F — F/f. From the relation between p and the r(f, x)’s (see §8), it follows that
p (0D;)=0 for every i=1/2, 1, ..., n [note that there is an even number of feF/f
with r(f, X)=1/2]. Consequently, Fix, f =0, (f1,)" is for every m an orientation-
preserving involution on each component of F |, it preserves and, for every i=1, ..., n,
F | consists of spheres. Using Lemma 8.2 and Proposition 8.6, it follows that (F’, /)
bounds a periodic automorphism of disjoint handlebodies (and balls). Since (F,f)
compresses to (F’, f'') by a periodic automorphism of a compression body, this ends the
proof. [

An easy argument, by consideration of the induced automorphism of H; (T?)(i. e. Kreck’s
invariant), shows that an automorphism of the torus T? is null-cobordant if and only if it
extends to a solid torus. A similar property holds for automorphisms of the surface of
genus 2:

ProposITION 9.2. — If an automorphism (F2, f') of a connected surface of genus 2 is null-
cobordant, either it is reducible or it extends to an automorphism of a handlebody.

Remark. — 1f fis reducible, it compresses to an automorphism of one or two tori. Using
Propositions 5.1and 8.1, it can be shown that an orientation-preserving automorphism of a
disjoint union of tori that is null-cobordant extends to a disjoint union of solid tori and of
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copies of T? x I (but the situation is more complex for some orientation-reversing periodic
automorphisms of two tori). Together with 9.2, this implies that a null-cobordant
orientation-preserving automorphism of the surface of genus 2 extends, either to a
handlebody, or to a manifold obtained by glueing a 1-handle over T x I (with one attaching
disc on each component of T? x o).

Proof of 9.2. — The null-cobordant automorphism (F2, 1) bounds some (M?, f) where
M? splits into three parts V, M; and M; as in Proposition 5. 1.

If V=M, then f extends to a handlebody and the property is proved.

If V#M but V is nevertheless non-trivial (i. e. VoM x1), (V; dM, 8V) admits a handle
decomposition with exactly one 2-handle. Now, Proposition B.1 in Appendix B proves
that the core of the 2-handle (extended to dM) do not depend on the handle decomposition,
up toisotopy. Consequently, it is preserved by fup to isotopy, and fis therefore reducible.

If V is trivial then, after isotopy, either fis periodic on M, or M is an I-bundle over the non-
orientable connected surface G* of Euler characteristic —1 and fpreserves the fibration (by
[Wa,], Lemma 3.5, exten’ded to I-bundles with non- orlenﬁable base).

If f is periodic and orientation-preserving, apply Proposition 9.1.

If fis periodic and orientation-reversing, it is easy to see that f'is reducible (lift a suitable
curve in F/f).

If M is an I-bundle over G? and f is fiber-preserving, f induces some automorphism g
of G. Theautomorphism g is reducible, since it is well-known that the curve splitting G into
a punctured torus is unique up to isotopy. Consequently, f'is reducible. []

COROLLARY 9.3[)]]. — Let f be an automorphism of a connected surface F of genus 2 such
that X.f,(X)=0 for every XeH,(F) [or equivalently (f,)*=1d or —1d according asf
preserves or reverses the orientation of Fl. Then (F, f) is null-cobordant if and only if f
extends to an automorphism of a handlebody,

Proof. — Proposition 9.3 shows that, if (F, /) is null-cobordant, it compresses to some
(F'. /') where F' consists of tori (with possibly F'=Q).

One readily checks that X' .f/(X") =0for every X' e H, (F’), whence it follows casily that
is reducible and extends to an automorphism of solid tori. This ends the proof. []

Given a reducible surface automorphism, there is a natural way to surger it and obtain a
new automorphism of a *‘smaller” surface. We consider now the inverse construction: For
any automorphism (F2, 1), choose a collection of disjoint discs partitioned into pairs
{D,Di},i=1, ...,n Iffis isotoped so that it sends each pair { D;, D}} onto a pair
+ {D;, D)} (possibly i=/ ), f extends to an automorphism /' of the surface F’ obtained by
1-surgeries along the pairs { D;, D;}. We shall then say that (F", /') is a stabilization of
order n of (F, f).

If the D, ‘s arefixed, there are still many possible stabilizations of (F, /). For instance, the
isotopy classes of stabilizations of the identity constructed by use of the D, s form a subgroup
of 1, (Aut F’), a semi-direct product of Z" (the Dehn twists along the surgery handles) and of
some braid group.
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. THeOREM 9.4. — For a given surface F?, there exists a constant K (F) such that every null-
cobordant automorphism (F, ) admits a stabilization of order <K (F) which bounds an
automorphism of a disjoint union of handlebodies.

For instance, one can take K (F)=2s(F), wheres(F) is the sum of the genera of the
components of F.

Remark. — 2s(F) is not the optimum value for K (F). For each surface, the proof of 9.4
provides a lower possible value for K (F), but this value does not seem to admit a “‘nice”
expression in a general formula Moreover, even the value provided by the proof is not
optimum.

Proof. — If (F, f') is null-cobordant, it bounds, by Proposition 5.1, an automorphism
M3, 7 ) where M splits into three pieces V, M; and M,, each preserved by £, such that:

(1) V is a compression body for F=0M and M——V—=MI U M.

(2) M, is an I-bundle over a closed, possibly non-orientable, surface and /| M, is fiber-
preserving (apply [Wa,], Lemma 3.5).

3) 71 Mj is periodic.

In each component of M, choose a fiber of the I-bundle and let U; be a regular
neighborhood in M; of the union of these fibers. After isotopy, f can be assumed to
preserve U Note that M,-U; consists of handlebodies.

In M;, consider the 1-submanifold Fix, ( 7l M;) of the points where an iterate of fis
locally a non-trivial rotation (see §8). ~Let Uy, be a regular neighborhood in M; of the union
of the arc components of Fix, (f|M,), preserved by f. Now Fix, (f|8(Mp—Up))=0
and, by Lemma 8.2, f|0 (W—_U—P) therefore extends to a periodic automorphism of a
disjoint union of handlebodies. Changing if necessary M by replacing M, — U, by these

handlebodies, we can henceforth assume that M, — Uy, consists of handlebodies.

Let V' consist of the components of V that are not handlebodies (i. . that are not
components of M). A result proved in Appendlx B (Lemma B.4) asserts that after an
isotopy of f'| V fixing 9, V, V' admits a presentation as (9, V xI)u {1- handles} where:

(1) 9,V corresponds to 9,V x{0}.

(2) The 1-handles are attached on 8, V x { 1 } and avoid the discs (U; U Up) n 9, V) x { 1}.

(3) fpreserves U, =((U,uUp)nd, V) x1.

Now, if U=U; U U, U Uy, the automorphism 7l a(MTU‘ ) is a stabilization of f and it
bounds f|M—U. By construction, M — U consists of handlebodies since it is obtained by
glueing 1-handles on (V—-V)IO(M;—U)U(Mp—U,), that consists itself of
handlebodies. The stabilization 7l 6(—M——U—) is therefore of the required type.

To end the proof, we just need to prove that the order of this stabilization is bounded by
2s(F). This order is the sum of the number of components of M, and of 1/2 card
(Fix, f10M,). An easy computation on the Euler characteristic shows that:

card (Fix, f|0M,)<4s5(0M,),
whence the result follows [remark that s(F)=s(0;V)]. O
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APPENDIX A. — Essential spheres in 3-manifolds
(following M. Scharlemann)

This appendix is devoted to the proof of Lemma 5.2, which we recall below. We follow
here the (unpublished) exposition of M. Scharlemann in a talk given at Orsay in 1979.

LEmMaA 5.2. — If (F% f) is null-cobordant, it bounds an automorphism (M3, f) with M
irreducible.

Proof. — Consider an arbitrary null-cobordism (M3, f) for (F%; f ). Without loss of
generality, we may assume M connected.

Let X2 be a collection of disjoint spheres in M that realizes a decomposition of M into a
connected sum of prime manifolds ([Kn], [Mi]). Let My, M,, ..., M, be the components of
the manifold obtained by splitting M along X, and let M, be constructed from M, by glueing
a ball along every component of 0M; thatisa “‘face” of £. The surface Z and the indices can
be chosen so that:

(1) Every M, is a prime manifold (i. e. every separating sphere bounds a ball in M,).

(2) Every component of X is separating.

(3) My=S3.

(4) For every i#0, M;% S and 0M, contains exactly one face of Z, corresponding to the

component Z, (it then follows from (2) that Z=[ | ;).
i#0
A classical result of Kneser (see [Mi]) asserts that the M;’s do not depend of . This can
be slightly improved by the following statement.

LemMMA A.1. — If = and ' are two collections of spheres in M? that satisfy the above
properties (1) to (4), there exists an automorphism g of M? fixing IM such thatg(Z)=X'.

Lemma A .1achieves the proof of 5.2 : Let g be prov1ded by application of Lemma A.1to

=7 (). If M’ denotes the disjoint union of the M,’s that are not isomorphic to St x S2,

the automorphism g~ ! f of M preservesZ and therefore induces an automorphism Vi
of M. The manifold M’ is irreducible (recall that every prime connected 3-manifold is
either irreducible or isomorphic to S' x $2), and (F, f)=0 (M', /') since | M =Id. This
ends the proof of Lemma 5.2, granting Lemma A.1. [J

Proof of Lemma A.1. — Let My, M1, ..., M, denote the components of the manifold
obtained by splitting M along X', where the indexing is coherent with conditions (1) to (4).

Con51der first the case where XN X'=(. By condition (1), every separating sphere in

M, i#0, either bounds a ball or is parallel to the component of 0M; that is a face
of ¥'.  Considering the (M )'s and (M) s as submanifolds of M, we may therefore assume,
after an isotopy of X fixing 0M, that X<=Mj. By asymmetric argument, for every i#0, M,
contains exactly one component of X’ and this component is parallel to £;,in M;. It follows
that ¥ and X’ are isotopic by an isotopy fixing dM.
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Consider now the general case.  We may assume that £ and £ meet transversally and that
the number of components of X’ cannot be reduced by any isotopy of X
fixing M. A standard argument then shows that, for every i #0, no component of ' n M;
is a disc (otherwise, one could reduce £ N X’ by “‘crushing” some ball whose boundary is the
union of a disc in £’ and a disc in ).

If XN X' #0Q, at least one component of X’ N M, is a disc D (by the above remark), with
boundary in the component X, of X. Let then X7 be the surface (two spheres) obtained from
Z,; by performing an embedded 2-surgery along D. There exists a simple arc k that joins the
two components of 27, with k N X' =0 and k n =0k : Indeed, the component of T’ n M;
that is adjacent to D is not a disc; construct k by a slight translation of an arc in this
component that joins 6D to a different component of ' n X, (Fig. 1). Let then Z¥ be the
sphere obtained from X# by an embedded 1-surgery along k, and let £* be (Z—ZX;) U Z¥
(Fig. 2).

By construction, XZ¥*NnX'=(ZnNZX)—0D. We claim that there exists an
automorphism g* of M, fixing M, such that §*(X)= T*  Let D' bea disc bounding 0D in
%, and let k' be a simple arc contained in M,, joining the point 6k —D’ to a point in D and
whose interior avoidsZ (but possibly X' nint k'# Q) (Fig. 1). To describe g*, it is
convenient to consider the manifold M* constructed by splitting M along the sphere D U D’
and by glueing a ball B*> on the boundary of the manifold so obtained, along the “‘side” of
DuU D’ that meetsk andk’. In M*, there exists an isotopy that translates B alongk Uk’ in
the direction k' —k and joins the identity to some automorphism g#, where g* fixes B and the
complement of a small neighborhood of BU kU k’.  Since g* fixes  (M* —int B), it induces
an automorphism g* of M, for which g* (Z) is easily seen to be isotopic to Z* by an isotopy
fixing OM (see Fig. 2); note that, unlike g#, §* is in general definitely not isotopic to the
identity.

Iterating this process, we obtain an automorphism ¢ fixingdM such that
g(Z)nZ'=0Q. The study of the case where Z N X'=( then shows that ¢ can lastly be
deformed by an isotopy fixing OM so that g(Z)=%'. [

Fig. 1 Fig. 2
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APPENDIX B. — Compression bodies

The aim of this appendix is to extend to compression bodies some well-known properties of
handlebodies (see [£])). These results were needed in paragraph 4 and paragraph 9.

For a compression body V, consider the set & of all surfaces D in V with the following
properties:

(1) D consists of discs with boundary in 9, V and splits V into a ¢-irreducible manifold.

(2) Property (1) fails if we remove one component from D.

The set & contains at least one element D, (with possibly D, =): Indeed, consider a
decomposition of (V; 0, V, 0; V)into handles of index2and 3. The union of the cores of the
2-handles (extended to 0, V) satisfies (1); remove then as many components as necessary from
this surface.

Given an element of 2, there is a natural construction, related to classical “‘handle sliding”
for handle decompositions, that provides many other elements of 2: Let d; and d, be two
distinct components of D e & and let k be a simple arcin ¢, V that joins a side of d, to itself
and whose interior meets (transversally) 0D in exactly one point contained indd, (see
Fig. 3). Consider then a regular neighborhood U of k L d,; its frontier U consists of a disc
and of anannulus A. By definition, a sliding of d, over d, along k is any automorphism z of V
thatis isotopic to a Dehn twist along A.  Up toisotopy, t(D—d,)=D —d, and t(d,)is asin
Figure 3 (the two cases occur according to the direction of the Dehn twist).  Note that (D)
depends only on one “half™ k" of k; we shall say that (D) is obtained from D by sliding d,
over d, along k'. Note that 1~ ! is a sliding of 7(d,) over d,.

Fig. 3

PRrOPOSITION B.1. — Any two elements of 9 are related by a succession of slidings (and
isotopies).

Proof. — Consider D, and D, €2 and isotop D, so that its intersection with D, is
transverse and has minimum number of components (among all isotopies
of D 1) A stémdayrd argument then shows that no component of D, N D, is closed [see for
instance the proof of (b) = (c) in Proposition 2.2].

We now want to decrease D, n D, by performing a succession of slidingson D,. For this
purpose, assume D, n D, # @ and consider the manifold V, constructed by cutting V open
along D;. Let D,=V, be the surface obtained by splitting D, along D, nD;. Since D,
consists of discs and no component of D, N D, is closed, a component d,, of D,, is a disc that
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meets in exactly one arc the union of the faces of D, on dV,. Let d; be the face of D, that
meets d,, d, be the corresponding component of D and d; be the other face of d, on 6V,. By
definition of @, V, is d-irreducible and dd, consequently bounds a disc d}, in 0V,.

Fig. 4 Fig. 5

If d;, does not contain d;, let d, be the disc constructed by ‘‘pushing” the interior of
di ud, inside V, and slightly moving its boundary so that df nod,=0
(Fig. 4). Considering d, as a (properly embedded) disc inV, let D, denote
(D;—d;)ud,. One checks easily that D, is obtained from D, by a succession of slidings
of d, over the other components of D, that have at least one face in dj.

If d;, contains d , let d, be constructed from dy—d; by pushing its interior inside V, and
slightly moving its boundary so that di ndd,=Q (Fig. 5). Again D,=(D,—d,)ud, is
obtained from D, by a succession of slidings of d; over the other components of D, with at
least one face in d}, (but now, the slidings occur “on the dj -side”).

In both cases, D, n D, has less components than D, nD;. By iterating this process, we
eventually reach a surface D,e 2, related to D, by a sequence of slidings, such that
D,nDy=Q. LetV,beobtained by cutting V open along D,. If d, is a component of D,
dd, bounds a disc d;, in 0V, (V, is é-irreducible).

There exists a component d, of D, with exactly one face in d;,: Otherwise, d, would
separate the component of V that contains it into two components, one of which is a
handlebody (use the irreducibility of V), and D, would not satisfy the minimality
condition (2) in the definition of 2. Now, the surface D,,, =(D,—d,) U d, is obtained
from D, by sliding d, over the other components of D, with at least one face in dj,

By iterating this process, we eventually reach D,=D,. By minimality of D,[=condi-
tion (2) in the definition of 2], it follows that, in fact, D ,=D,. This ends the proof. []

CoroLLARY B.2. — IfDyand D, € 9D, then D, =u,u,_ ...u,(Dy)where, for every i, uis
a sliding of a component of D, over another one.

Proof. — Proposition B.1 asserts that D, =¢,1,_, ... t;(D,) where, for every i, t; is a
sliding of a component of ¢, ...t (D,) over another one. Note that, if
@=t, 4 t,_,... 1, then t,=¢ ', is a sliding of a component of D, over another
one. Since t,f,_,...t;=¢t,, the result then follows by induction on n. [J
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CoroLLARY B.3. — In a compression body V, let D consist of discs with 0D <d,V. Then
the manifold V obtained by cutting V open along D is a compression body with interior
boundary corresponding to 0, V.

Progf. — Choose a handle decomposition of (V; 0, V, 0; V) into handles of index 2 and 3
with minimum number of handles, and consider the union D,, of the cores of the 2-handles
(extended to 9, V). Then V,, obtained by cutting V open along D,, is isomorphic to the
disjoint union of (9; V) xI and of some balls. Moreover, it is easy to check that D,e 2.

When De 2, Proposition B.1 shows that V=V, which proves B.3 in this case.

In the general case, D is contained in a surface D’ which consists of discs and splits Vinto a
0-irreducible manifold. Let D”€% be constructed by removing from D’ as many
components as necessary, and let V' (resp. V") denote the manifold obtained by splitting V
along D’ (resp. D”').  Since V"'~V is irreducible and ¢-irreducible, V' is isomorphic to the
disjoint union of V, and of some balls, and therefore to the disjoint union of (3, V) x I and of
balls. It follows that V, obtained from V' by glueing 1-handles on 0V'—4,V, is a
compression body. [

In §9, we needed the following technical result.

LeEMMA B.4. — Let V be a compression body, A be a finite collection of disjoint discs in 0; V
and g be an automorphism of V preserving 0;V and A.  Assume that no component of V is a
handlebody (just to lighten the notation) and choose a presentation of V as (0;V xI) u { 1-
handles }, where 8,V is identified with 0,V x{0} and the 1-handles are attached on
@, V-A)x{1}.

Then, g can be deformed, by an isotopy fixing 0;V, to an automorphism g' such that
g (AxD)=AxL

Proof. — First of all, note that V admits such a handle decomposition: Indeed, by
definition of compression bodies and since no component of V is a handlebody, the triad
(V; 0.V, 0, V) admits a decomposition into 2-handles (the 3-handles can easily be
cancelled.) Consider then the dual decomposition.

Let D consist of the co-cores of the 1-handles of this decomposition. Clearly De 2.

By Corollary B.2, g can be deformed, by an isotopy fixing d; V, to y¢ where {(D)=D and
the support of ¢ is contained in a regular neigborhood of the union of D and of a 1-
subcomplex of d,V. In particular, we may assume that the support of ¢ avoids
A xI<=V. Now, | can be isotoped relatively to 9,V so that y (A xI)=A xI (first, make it
preserve the 1-handles, and then the strata 9,V x { ¢} by use of [Wa,], Lemma 3.5). This
ends the proof of Lemma B.4. [
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