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LOCAL HOMOLOGY OF GROUPS
OF VOLUME-PRESERVING DIFFEOMORPHISMS. Ill

BY DUSA McDUFF (*)

This is the last in a series of papers which study the local homology of groups of volume
preserving diffeomorphisms ([10], [11]). However it may be read independently of the
others, since it is self-contained apart from quoting some of their results.

Let M be a compact, connected and oriented C°°-manifold without boundary, and with
volume form CD. Thus co is a non-vanishing w-form, where n = dim M, compatible with the
orientation ofM. Further, let 2iff^A denote the group of all ©-preserving C°°-
diffeomorphisms of M in the compact-open C°°-topology. We will be concerned here with
the "local homology" of the group Qiff^M. As explained by Mather in [7], the local
homology of a topological group ̂  is the homology of the homotopy fiber B ̂  of the natural
map BG -> B ̂ , where G is the group ̂  but considered with the discrete topology. This
space B^ depends only on the algebraic and topological structure of the germ of ^ at the
identity element e (that is, of an arbitrarily small neighbourhood of e). In fact, it is not hard
to show that if ^ is locally contractible the cohomology of B ̂  may be calculated from the
complex of Eilenberg-MacLane cochains on this germ. Furthermore, one can define the
"continuous" local cohomology of^, whichfor locally contractible ̂  is just the cohomology
of the complex of continuous Eilenberg-MacLane cochains on the germ of ̂  at e. When ̂
is a Lie group, the van Est theorem implies that this is isomorphic to the cohomology of the
Lie algebra of ^. Similarly, when ̂  = Qiff^ M, it is just the cohomology of the Lie algebra
of divergence free vector fields onM([2], [5]).

Mather and Thurston showed that the local homology of the group QiffM of all
diffeomorphisms of M is isomorphic to the homology of the space of sections of a certain
bundle over M which is associated to the tangent bundle ofM. The fiber of this bundle is
made from germs of diffeomorphisms ofM. It is suggestive, but not quite correct, to say
that the fiber at x is made from the set of germs of diffeomorphisms at x. (The trouble is that

(*) Partially supported by NSF grant no MCS 79 05795 A02.
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530 D. McDUFF

this set has no algebraic structure.) Further, the map from B 2iffM to the space of sections
is essentially given by thinking of a diffeomorphism as a collection of germs, one at each point
of M. Hence one can interpret the Mather-Thurston theorem as saying that the homology
of 2iffM localized at the identity may be calculated by localizing the diffeomorphisms
spatially. Finally, note that because the elements of B 2iffM may be thought of as
holonomic or integrable sections of the fiber bundle, this theorem is very close in spirit to
Gromov's work in [3] for example.

In this paper we prove the analogous result for Q)iff^ M. Besides being of theoretical
interest, this result is of great help in the calculation of the local homology of
2iff^ M. See [12] and in particular [6], where Hurder proves the existence of an enormous
number of non-zero elements in H^(B^^M). Since all the classes found so far are
continuous, they also live on the Lie algebra level.

Here is a precise statement of the main theorem. We state it for ^^(M, relA), the
group of co-preserving diffeomorphisms of M which are the identity in some neighbourhood
of A. Throughout we assume that the (possibly empty) subset A of M is closed and that
M -A is connected. (The latter restriction entails no loss of generality since ̂ ^(M, relA)
decomposes as a product with one factor for each connected component of M—A.) The
canonical M-bundle over BDiff^M has discrete structural group and so is foliated
transversely to the fibers. Its pull-back to B ̂ iff^M is isomorphic to the product
B^i/j^MxM. Hence the space B^i/j^MxM has a canonical foliation ^transverse
to the fibers pt x M. One can check that ^ is defined by a closed n-form which restricts
to G) on the fibers. Moreover the restriction of ^ to B ̂ ^(M, rel A) x A has leaves
B Qiiff^ (M, rel A) xpt and so is trivial. (For more detail see [10] and [12].)

Now consider the groupoid F^ of germs of diffeomorphisms of R" which preserve the
standard volume form dx^ A . . . A dx^. Give F^ the sheaf topology. The homomorphism
r",i -^ y^C (n, R), which takes the germ g at x to its/ derivative dgy induces a map on
classifying spaces v: B r^-> B y^ (n, R). We will suppose that v is a Hurewicz fibration
and will call its fiber BF;. It follows from Haefliger's general theory [4] that the
foliation ^ is classified by a commutative diagram

B^/^MxM-^BF^

proj. v

M ————B.9^(n, (R)

where T classifies the tangent bundle to M. Let E^ -> M be the pull-back of v over T. Then
F induces a map

/: B^M-^(M),

where S^ (M) is the space of continuous sections of E^ -^ M with the compact-open
topology. By choosing F carefully, one can ensure that/restricts to give a map

/: B^(M,relA)^5,(M,relA),
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GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS, III 531

where 5^(M, relA) is the space of sections which equal a given base section SQ on
A. (See proof of Lemma 3.1 below and [9], Appendix.) The section space 5^(M, rel A)
need not be connected and we write 5,,o(M, rel A) for the connected component which
contains So and the image of F.

The main theorem is

THEOREM 1. — The map

f: B^,(M,relA)-> S,o(M, relA);

is a homology equivalence, that is, f induces an isomorphism on homology for all local
coefficients coming from S^(M, rel A).

We will see below that, except in the case n=2, A ̂ (ft, n^ (5^o(M, rel A)) is isomorphic
to Hi(B^fj^(M, relA); Z) s Hn~l(M, A; R). Theorem 1 is then equivalent to the
statement

/: B Qiff^ (M, rel A) H^ §^ (M, rel A),

where ^iff^Q denotes the kernel of the flux homomorphism 0 as defined in §2 below,
and where § is the universal cover of 5. (When n=2 and A 9^?) the appropriate space
on the right is a cover of S with fundamental group R.) Corresponding results for
non-compact M are given in [10]. For example, if A==^), Theorem 1 holds provided
that M is the interior of a compact manifold of dimension ^ 3 such that each of its ends
has infinite co-volume. Note that we do not treat the case of a non-compact manifold
of finite volume.

2. Sketch of proof of Theorem 1

Most of the work of proving Theorem 1 was done in [10] and [11]. Suppose for the
moment that A is an w-dimensional compact submanifold of M and let Ao be A-(open collar
nbhd ofBA). We showed in [10] that

/: B^^M-Ao^^M-Ao),

where co is an extension of co [ M — A to the non-compact manifold M—AQ such that every
end has infinite volume, and where "c" denotes compact support. Also, by [II], we have

B^(M, relA^B^^M-Ao).

Since co=co on M—A, it follows easily that Theorem 1 holds for this A. By taking direct
limits, one then proves Theorem 1 for all non-empty A.

Before going further, let us recall some facts about the fundamental groups of B Q)iff^ M
and S^o(M). Let Qiff^U. be the identity component of S^M, and D^ff^M be the
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532 D. McDUFF

universal cover of QUff^o M, but considered as a discrete group. It is easy to see that
^^iff^M^BQiff^M and that n,B ̂ iff^M^DS^M. The flux homomorphism

^ %oM^Hn- l(M;R),

may be defined as follows [16]. An element of Diff^o M is a pair (g, {^ }), where g e Diff^o M
and { g , } is a homotopy class of paths joining go = id to ̂  =g. If z is a singular (w - l)-cycle
in M, then { g^z) } is a singular ̂ -chain whose co-volume depends only on the homotopy class
{gt} and is zero if z is a boundary. Therefore one may define <i> by the formula

^{^OO-vol^^z)}.

One checks that 0 is a group homomorphism by using the fact that the g^ preserve CD. Note
also that 0 induces a homomorphism

<D: Diff,o M ̂  FT-1 (M; R)/9> (n, Qiff^ M).

We write Diff^M for the kernel of<D, and Qiiff^oM for the same group topologized
as a subspace of Qsiff^ M. (In fact QUff^o M is closed in Qiff^ M, since, as one can
easily show, ^(n^iff^M) is a discrete subgroup of H^^M; R).) Clearly
7tiB^^oM^ker<D. A difficult result of Thurston[16] and Banyaga[l] states that
ker<D is perfect. It follows that

Hi(B^oM;Z)=0,
and that

H^B^oM^^ir-^M;^)

Note also that the map B^^o(M,relA)^B^^o(M,relA), when made into a
fibration, is a covering map whose fiber is the discrete abelian group H^'^M, A; R).

Now consider 7Ci5^o(M, relA). We showed in [10] that when n ̂  3, ^(Br;)^IR
and 7if(Br^)=0 for 1 ̂  i < n and f=n+1. Therefore, obstruction theory implies that

n, S^ (M, rel A^H"-1 (M, A; R).

When n=l we have 7ii(Br^)==0 and K^Y^^K^Y^^R. By using obstruction
theory or by looking at the fibration obtained by restricting sections to the 1-skeleton
of (M, A), one can show that n^S^o(M, rel A) is an extension of H^M, A; R) by a
quotient of IR. In fact, we showed in [10], §7 that, when A^, 7Ci5^o(M, rel A) is a
central extension of H1 (M, A; R) by R and so is nilpotent. In a moment we will see
that Tii^oM^H^M; R). For now, however, let 5^o(M, rel A) be the covering space
of 5^o (M, rel A) corresponding to the kernel of the map

TCi (^o (M, rel A)) -^ H"-1 (M, A; R).

Thus 7c(5") is zero if n^3 and is abelian otherwise.
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We return to the proof of Theorem 1. Consider the commutative diagram

B 2iff^ (M, rel x^) ̂  B Qijf^ M -^ BF^

"1 !' , _ ^
S^o (M, rel Xo) -^ 5^ M ^ B F;,

where the map e evaluates sections at a point XQ e M and where P = e °/. The argument
of [10], Lemma 6.1 shows that the restrictions of/0 and/to B Qfiff^ lift to 5'. Therefore
there is a commutative diagram

B^o(M, rel x^) -> B^o M ̂  Br;,--) I. _ I <..,
5,o (M, rel xo)-^,0 M-£. B C,.

Note the following
(i) The map/" in diagram (*) is a homology equivalence because Theorem 1 holds for the

pair (M, Xo). This immediately implies that its lifty is also a homology equivalence.
(ii) The bottom row of (* *) is a fibration sequence because the bottom row of (*)

is, and because W-^M, Xo; IR^ir-^M; R).
p

(Recall that F -^ E -^ B is called a fibration sequence, resp. homology fibration sequence,
if there is an associated inclusion of F into the homotopy fiber of P which is a weak
homotopy, resp. Z-homology, equivalence. Further, a Z-homology equivalence is a
map which induces an isomorphism on untwisted integer homology.) We will prove in
§3 below that

PROPOSITION 2. — The top row of (**) is a homology fibration sequence.
A comparison of the Leray-Serre spectral sequence for the rows of (*''') now shows

that/is a Z-homology equivalence. But we saw above that Hi(B^f/j^M; Z)==0 and
7ii(S,oM) is abelian. It follows that 7Ci(5,oM)=0. Therefore/and/are homology
equivalences. This completes the proof of Theorem 1.

3. Proof of Proposition 2

Let ^==^^oM and 2'=^iff^o (M, rel^o). The corresponding discrete groups are
denoted D and D'. We want to show that the sequence

B^^B^BT^,

is a homology fibration sequence. As in [9], we do this by considering corresponding
sequences for the discrete and topologized groups.

ANNALES SCIENTIFiqUES DE L'ECOLE NORMALE SUPERIEURE



534 D. McDUFF

Let DM be the groupoid whose elements are pairs (g, x), geD, xeM, topologized as
D x M, where D is discrete and M has its usual topology. The partial composition law is
(h,gx).(g, x)=(hg,x). Then BD^ is the total space of the canonical M-bundle
over BD, and so M -^ BD^ -^ BD is a fibration. Note: in [9], § 3 BD^ is
written D \^ M.) Similarly, if ̂  denotes the groupoid DM topologized as Q) x M, there is
a fibration M-^B^-^B^. It follows that the homotopy fiber of BD^->B^ is
homotopy equivalent to B Qs. Further, Let F^ be the groupoid of germs of ©-preserving
diffeomorphisms ofM, with the sheaf topology, and let J^ be the groupoid of 1-jets of
elements of F^, with its usual topology. Since B FM classifies the same objects as B F^, the
spaces B]"M and BF^ are weakly equivalent. (Another proof of this is given
in [8], §2.) Similarly W^By^(n,R). Hence we may identify the homotopy fiber
of the differential v : B F^ -*- BJ^i with B T;,.

We now construct the commutative diagram

B^'^ .B^- BH

BD' ^ - f — — B D M -
a.^ V ^ \^F,

BF.

B^'
^F

--^B^M- BJ.

as follows. The middle row BD' -> BD^ -> B FM consists of the classifying spaces of the
exact sequence D' -> D^ -> FM of groupoids, where D' is included in D^ as the subobject
{fe» ^o) : ^=id nearxo} and D^ is mapped to F^ by taking (g, x) to the germ of g
at x. Further, F^ is defined to be the homotopy fiber of Yi at the point * in B F^ which
corresponds to the identity germ (id, Xo) in F^. Since D' maps to the base point (id, Xo) of
FM, the image of BD' in B FM contracts to *. (It is not equal to * since we have to take thick
realizations, see[9]. Appendix.) The choice of contraction determines o^. The bottom
row is constructed similarly. Clearly, one can make the square involvingcxi, 03
commute. The spaces in the top row are the homotopy fibers of the corresponding vertical
maps and the maps (XQ, Yo are induced in the obvious way by the o^, y,. Notice that Fo is the
homotopy fiber of both Jo and F^ -> F^.

We will prove:

LEMMA 3.1. Yo-P.

LEMMA 3.2. — o^ is a homotopy equivalence.

LEMMA 3.3. — (Xi is a ^.-homology equivalence.

PROOF OF PROPOSITION 2. - Since Yo^P» ^ suffices to show that ao is a Z-homology
equivalence. But B Q ) ' and F^ are simply connected. Therefore we may apply the spectral

4" SERIE - TOME 16 1983 ?4



GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS, III 535

sequence comparison theorem to the columns B Q ) ' -> BD' -> B Q)' and FQ —^ F^ -> F^. The
result now follows from Lemmas 3.2 and 3.3. D

It remains to prove Lemmas 3.1-3.3. The proofs of 3.1 and 3.2 are
straightforward. In 3.3 we replace the groupoids D^ and FM by discrete categories so that
we can use Quillen's Theorem B [13]. This is applicable because of the results of [11].

It will be convenient from now on to use the language of categories, rather than groupoids,
since it is more flexible and more highly developed. Recall that a groupoid F may be
thought of as a topological category all of whose morphisms are invertible. The space of
objects of ^(F) is the subspace of F formed by the identities, and the space of morphisms
of ^(F) is r itself. Groupoid homomorphisms then correspond to continuous
functors. We will assume that the reader is familiar with the basic definitions of [14]
and [9], § 3.

PROOF OF LEMMA 3.1.- This is just a matter of spelling out definitions.

First consider P. Let ^=^iff^oM and reca11 the definition of /^B^-^oM
from[8], §2. It arises from a homotopy commutative classifying diagram

B ^ x M ^ B F M

7t= proj. v

M -^ BJM ^ H
for the canonical foliation on B ^ x M in the following way. We identify S^M with
the space of pairs (^, h), where ^ is a map M -> B F^ and h is a homotopy from T to
v o <T. Then, given y e B ̂ , we define / (y) = (F | y x M, H | y x M), where H is the indicated
homotopy from T ° K to v ° F.

Now diagram (&) is the realization of a diagram of categories and functors

^f(G\^xM) ^ ^(FM)

^({^}^M) c, ^^(JM)^H

Here ^(G\^xM) is made from the action g: (h, x)\-^(gh, x) of G on ^ x M as in
[9], §3. Thus its spaces of objects and morphisms are ^ x M and G x ^ x M
respectively. Similarly, ^({^^M) has M as space of objects and only identity
morphisms. The functor n is the obvious projection, T is the inclusion and F is given by

¥(g : (/?, x) ->(gh, x))=germ of g at hx.

Observe that T o i r ^ v o F . However there is a natural transformation H from T o 71 to
v o F. It is a continuous map from the objects ̂  x M of ^ (G^^ x M) to the morphisms
JM of ^(JM) and is defined by

• H(/z,x)=(^,x).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



536 D. McDUFF

It follows from [9], §3, Appendix that one can realise this diagram so as to get(&). In
particular the (thick) realization G\^xM of ̂ (G\^xM) is homeomorphic to the
product (G\^)xM, and G^^B^. Further, by [14], §1, the realization of the
natural transformation H is the homotopy H.

This defines/. The map P : B ̂  -^ BF^ is the composite of/ with evaluation at the
point XQ. Since B F^ is the homotopy fiber ofv and B^^G\^^, the map P is given by
a pair (?', p"), where P' : G\^ -> B F^ and P" is a homotopy trom the constant map to
vop'. Identifying ^(G\^) with the full subcategory of ^(G^^xM) with objects
^xxo, one can easily check that ?' and P" are induced by the restrictions of F and
H. Finally note that pi : B^ -> BF^ is just the restriction of P to B^cB^.

Now consider y^. Instead of using the model D\^ for B^ in its definition, we
identified B^ with the homotopy fiber F' of ^D^M-^^M. (Recall that
BDM=D\^M and B^M=^^M.) Therefore in order to relate JQ to p we must first
describe an explicit homotopy equivalence i :D\^Q!-> F'. This will be given by a pair
0'\ i")^ where i' : D^^-^D^M and ;" is a homotopy from the constant map to
t o i ' . As before, we define i' and i" on the level of categories by a diagram

^ (D\^) L, <€ (D^M)

^(M^o)^(^\M)^I

Herejis the inclusion given on objects by the evaluation map h\->h(xo) at XQ, and I is the
natural transformation from the constant functor to t o } given by
I(/0=(/z : XQ ->h(xo)). (Observe that i is a continuous map from the objects Q) of the
category ̂ (D^^) to the morphisms 2 x M of ^(^Jvl). Also e denotes the identity
element of the group D.)

We claim that the map i=(i\ i") induced by the pair (/, I) is a homotopy
equivalence. One way to prove this is to recall that there are fibration sequences
^^D^Af-^BD, M-^^M-^B^ and to compare the above diagram with the
analogous diagram

W^)^(D^*)) • <
^({^\s*)-^(^*n

which expresses D\s^ as the homotopy fiber of BD -^ BQ>.

Finally observe that the composite D^^-^F'^]8F^ is given by the pair (yio;',

Y20^). But y ^ o f = p ' and y 2 of^p" because the underlying functors and natural
transformations are the same. Hence J^Yo. D
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PROOF OF LEMMA 3.2. - We must show that B Q)' -> B ̂  -> BJ^ is a fibration sequence,
where W = ^K?o(M, rel^o). Let ^o=te^: ̂ 0)==^)} and ^^={geQ>o:
dg^ =id.}. Then ̂ i -»- ̂ o -^ y5e (^ R)is an exact sequence of groups. Since 2' ̂ 2^
this implies that

B W -^ B So ̂  B ̂ f̂ (n, R),

is a fibration sequence. By comparing the fibrations M -> B ̂ o -> B ̂  and
M-^B^M-^K^ one sees that the obvious inclusion B^Q^^M ^ a homotopy
equivalence. The result now follows easily. D

PROOF OF LEMMA 3.3. - We must consider the sequence

BD'-^BD^BrM.

Since the groupoid homomorphism D^ -^ FM is not a fibration and has no other apparent
redeeming topological properties, the easiest way to understand the map BD^ -> B FM seems
to be to replace the groupoids D^ and FM by discrete categories, since then we may use
Quillen's Theorem B.

Let ̂  = {U, }, a eA, be the cover of M by the interiors of all smoothly embedded closed
discs. Let ̂ (DJ be the discrete category with objects a e A and morphisms a -^ P given
by all geD such that ^U,gUp. Further, let ^(E<») be the discrete category with the
same objects as ^(DJ and with morphisms a-+ P given by the germs at U, of those
geD with gU,iUp. There are two related topological categories ^(D$) and ^(E$)
whose spaces of objects consists of all pairs (x, a), xeU,, topologized as the disjoint
union ]_] U,. Their morphisms are those morphisms g: (x, a) -> (y, P) in ^(D<J, resp.

a

^(E^), which are such that g(x)^y and ^U, ̂  Up. The forgetful functors:

^ (DS) -^ ̂  (DJ and ^ (E$) -^ ̂  (EJ

give homotopy equivalences upon realization since they induce homotopy equivalences on
the spaces of objects and morphisms. There are also functors:

p^ : <€ (DS) ^ ̂  (DM) and p^ : ^ (E^) -^ ̂  (FM).

Now /?2 induces a homotopy equivalence by the argument of [15], § 1.
To understand p^ consider the diagram

BD

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



538 D. McDUFF

The homotopy fiber of BD^ -> BD is clearly M. We will show that the same is true for
BD^ -> BD. To do this, we apply

QUILLEN'S THEOREM B [13], §1. - Let f: ^->T be a functor between discrete
categories. J/Yeobj^', let Y\/ denote the category whose objects are pairs (X, v),
Xeobj^, i;: Y ->fX, and where a morphism (X, v) ->(X\ v ' ) is a morphism w: X -^X'
in ^ such that f(w)v=v'. If for every morphism Y-^Y' in ^ the induced functor
y/\f~^ Y\/i5 a homotopy equivalence (resp. Z-homology equivalence) then the sequence

Y\/-^-^<r,

is a homotopy (resp. homology) fibration sequence.
(Following Quillen, we call a functor a homotopy equivalence, etc. if it is one upon

realization.)
Since in our situation ^=^(0) has only one object * and since all its morphisms

are invertible, the induced functors * \/-^ *\/have inverses. They therefore give
homeomorphisms upon realization. Hence the homotopy fiber of BD^ -> BD is
||*\/||- We aim to show that ||*\/||^M. Now *\/has objects (a, /Q, aeA,
AeD, and a morphism (a,/z)^(p,g/?) if and only if yU^Up. Consider the full
subcategory/-^*) of *\/with objects (a, e). There is a functor p : ̂ y^/"^*)
defined on objects by p (a, h) = (h ~1 a, e\ where h ~1 a e A satisfies U^-1, = h -1 U,. If
1 ' ' f ~ 1 (*) <=> *\/is the inclusion, then p o ;'=Id and there is a natural transformation from
; o p to Id. Therefore ; and p are adjoint functors, and so are homotopy equivalences by
[14]. But/"1 (*) is the full subcategory of the category of open sets and inclusions of M
corresponding to the cover ^. Therefore /"^^M by SegaTs covering lemma in [15],
Prop. A. 5. Hence the homotopy fiber of BD^ -> BD is M as claimed. It follows that^i is
an equivalence.

We now have a commutative diagram

BD^————BD^—^—^BD^

!• ' 1 ' 1 - 1
BE^ ^——— BE^ ^2 > B FM

Choose a e A with XoeU., and let D, be the group {geD'-.g^d nearU,}. Then
^(D,) may be included in ^(D^) as the subcategory with objects (a, g), geD^. Since
the inclusion BD, -> BD7 is a Z-homology equivalence [II], it will clearly suffice to show
that:

BD, -. BD^ -> BE^,

is a homology fibration sequence.

46 SERIE - TOME 16 - 1983 - ?4
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To do this we apply Quillen's Theorem B to the functor q: ^(D^) -^(E^). For
each object a in ^(E^), the category on\q has objects (y, h\ where h is a germ of
diffeomorphism at U, taking U, into Uy, and has a morphism (y, R) -> (y', gR) for all
g: y-^y' in ^(D^). Let r be the morphism Ic: P-^a in ^(E^), and consider the
diagram:

a\^P\^

•M-
^(D,)^(Dp),

where the functors ; are the inclusions and v^ is induced by v in the obvious way. We define
p: a\^ -> ̂ (D,) on morphisms by:

p^^^Cy',^))^^)-1^

where, for each (y, /?), the element heD is chosen to have germ h atU^. The functor
p : p\^-^ (Dp) is defined similarly. Finally vi is induced by the group homomorphism
g }—> k ~1 gk, where k e D is chosen to have germ k at U p. It is easy to check that; and p are
adjoint, so that they are homotopy equivalences. Also, since there is a natural
transformation from i o v ^ t o v ^ o i, the diagram is homotopy commutative. Moreover, v^ is
the composite of an isomorphism followed by the inclusion D^-i^ c^ Dp. But this inclusion is
a Z-homology equivalence by [11]. Hence v^ is also a Z-homology equivalence. Therefore
Quillen's Theorem B applies to show that || a\g [[ -^ BD<^ -> BE^ is a homology fibration
sequence. Since BD, ̂  || a\^ ||, the same is true of BD, -> BD<^ ̂  BE^. D
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