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ON THE CHARACTERS
OF EXPONENTIAL SOLVABLE LIE GROUPS

By NieLs Viganp PEDERSEN (*)

Introduction

Let G be a connected, simply connected solvable Lie group with Lie algebra g. In [6]
it was shown that for any normal representation 7 of G (cf. [11]) there exists a continuous
homomorphism y : G — R*% such that © has a distribution y-semicharacter. Moreover,
it was shown that one can find a semi-invariant element u (with multiplier y, say) in U(gc),
the universal enveloping algebra of the complexification g¢ of g, such that any normal
representation © whose associated orbit of #Z in g’ ([10], [11]) is contained in a certain
G-invariant Zariski open subset of g’, has a distribution x-semicharacter f, , expressible
by fr.(©)=d(n(u * @) for eCX(G), ¢ being the trace on the factor generated by n (here
it is understood, in particular, that the right hand side is well defined). In [3] J.-Y. Char-
bonnel showed that for each normal representation n of G one can find a continuous
homomorphism y : G —» R% and an element ueU(g¢) such that © has a distribution
x-semicharacter f;, expressible as before: f, ,(¢)=d(n(u * @)) for peCX(G). Here u is
not necessarily semi-invariant; however, dn(u) is semi-invariant, i. e.

n(s)dn(u)n(s )= x(s)~ *dn(u).

Suppose now that G is exponential () (and therefore, in particular, of type I, ¢f. [2]).
In this paper we make a construction, depending only on the choice of a Jordan-Hé6lder
sequence for g¢, of a finite set of polynomial functions Q;>0, j=1, ..., n, on ¢’, a finite
set of continuous homomorphisms x;: G- R%, j=1,...,n, and a finite set «;
j=1, ..., n of positive, G-invariant analytic functions on g such.that, setting

Q;= {geg’| Qfg)+0, Qug)=0 for k<j}
we have:
1) Q; is G-invariant and g'= U7= 195
2) Qfsg)=x/5)Qfg) for seG, geQ;

(*) Supported by a grant from the Danish Natural Science Research Council (S.N.F.).
() G is said to be exponential if the exponential map exp : g — G is diffeomorphism.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE. — 0012-9593/1984/ 1 /$ 5.00
© Gauthier-Villars



2 N. V. PEDERSEN

3) for any G-orbit O contained in Q; the measure Q ;B is a non-zero, positive, tempered,
relatively invariant Radon measure on O with multiplier x; (here B, is the canonical
measure on O),

and such that, letting u;, j=1,. . .,n, be the element in U(g;) corresponding via symme-
trization to the polynomial function g — Q(ig) on g, we have for the irreducible repre-
sentation m of G associated with the orbit O contained in Q;,

4) the operator dm(u;) is a selfadjoint, positive, invertible operator, semi-invariant
under n with multiplier y;,

5) the operator m(u; * @) is traceclass for all eCX(G),

6) the functional ¢ — Tr(m(u; * @)) is a non-zero, y;-semi-invariant distribution on G
of positive type (a y-distribution semicharacter for m), and

7) for all peCP(G) we have

(%) Tr(m(u; * @)= L(Oﬂ; “ @< exp) " (NQ(D)dBo(l),

where « A » stands for the ordinary Euclidian Fourier transform.

This construction is carried out in sections 1.1, 1.2 and 1.3, the theorem is formulated
in section 1.4, and section 2 is devoted to the. proof of the theorem; in section 3 we give
a few examples.

We would like to emphasize the following feature of the formula (x) shared by no other
previously known character formula for (non-nilpotent) solvable Lie groups: once a
Jordan-Holder basis in g¢ hds been selected, all objects in the formula are explicitly cons-
tructible (for a given orbit O and associated representation =), i. e. there is no choice (in
particular of the weight function o, ¢f. [9], [4], [5], [6], [3]) involved in setting up the
formula. This, in particular, opens the possibility of using the formula (*) as a starting
point for the pairing between orbits and representations, first established by Bernat ([1]),
for exponential groups, and thus extending to these groups Pukanszky’s approach to
the Kirillov theory of nilpotent groups, [7].

In the special case where g is nilpotent x;=1 and o;=1. Therefore Q; is invariant
on OcQ;, dn(u;) is a scalar, and the formula (+) then gives that dn(u;)=Q4{O)I and

Tr(n(e))= L((p o exp)” ()dBo(l),

so (*) reduces in particular to the Kirillov character formula.

The main difference between the results obtained in [3] and the results obtained here
can be subsumed under the following points: i. We exhibit a finite collection of elements
u€U(gc) to choose from so as to make a formula like (+) valid, ii. we construct such a finite
collection explicitly, and iii. here the functions g — Q(ig) in (x) are (rather surprisingly)
the polynomial functions corresponding to the u;s via symmetrization.

The polynomials Q; were first considered by Pukanszky in the nilpotent case ([8], [10]).
We also use in an essential way the work of Pukanszky on exponential groups ([9]) and
the work of Duflo-Rais ([5]). Our methods are very different from those of [3].

We conjecture that our results can be extended to arbitrary connected, simply connected
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CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS 3

solvable Lie groups (with the usual condition on the support of the function ¢ appearing
in the formula analogous to (), though; cf. e. g. [6]).

I would like to thank prof. L. Pukanszky for useful comments on the first version of
the paper, and prof. M. Flensted-Jensen, as well as the referee, for a very careful reading
of the manuscript which resulted in the elimination of a number of inaccuracies and
obscurities.

1. Preliminaries and formulation of Theorem

In sections 1.1, 1.2 and 1.3 we introduce the notation necessary to formulate our
Theorem in section 1.4.

1.1. — Let G be a connected, simply connected solvable Lie group with Lie algebra g.

Let f;, j=0, ..., m, be a Jordan-Hoélder sequence in g, i. €. a sequence of ideals such
that f;of;-; and such that dimf{;=j, j=0, ..., m.

Let A;:g— C be the root associated with the irreducible g-module f;/f;-, (i e.
adX(Z)=MA{X)Z (mod f;_,) for all Zef;, Xeg), and let A;: G - C* be the continuous
homomorphism with A;(exp X)=¢*™ for all Xeg. We have Ad (s)Z=A{s)Z (mod f;_)
for all Zef;, seG.

Welet G act in g’ via the coadjoint representation. For geg’ we have the skewsymmetric
bilinearform B, : g x g — R given by B(X, Y)= {g, [X, Y] ), X, Yeg. The radical of B,
is equal to the Lie algebra g, of the stabilizer G, of g : g,= { Xeg | B,(X, Y)=0 for all Yeg }.
We let ﬁg : 8/9, x 8/g, = R designate the symplectic form on g/g, arising from B, by
factorization. We extend g, B,, etc. in the natural way to gc whenever convenient.

For geg’ we set f(g)=f;+(8,)c, j=0, ..., m. We then have a sequence of subalgebras:

gC=fm(g)Dfm—1(g)D fee 3f1(g)3fo(g)=(9g)c’

and dim f{g)/f;-1(g)=0or =1.
For geg’ we define J, to be the set { 1<j<m|ffg)2f;-1(g) }.
Let Z;ef;\fj-1, j=1, ...,m. Then Z,, ..., Z, is a basis in gc, and we have

JeTg = Zgfi 1+ (8c=T;-1(2)-

If geg’ and J,= {j;< ... <j;} we have

8c=T;.8) 2 fia-1(8) i ce 2 fi.(8) 2 fo(8)=(8e)c-

In particular Z;, ..., Z;, is a basis for gc (mod(g,)c), and d=dim g/g,.
Set £={J,|geg’'}, and for ecé, set Q,={geg’|J,=e}. Then we have g’'=|..,Q.
as a (finite) disjoint union. Since clearly J,=1J, for seG, Q, is a G-invariant subset of g'.
Let eef. If e+@ withe= {j;< ... < j,} we define the skewsymmetric d x d-matrix
M.(g), geg’, by -
M (g)=[BZ;, Z;)]1 <5<

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



4 N. V. PEDERSEN

and let P,(g) denote the Pfaffian of M,(g). If e=@ we set M,(g)=1, and P,(g)=1. The
map g — P(g) is a complex valued polynomial function on ¢’, and P,(g) depends only
on the restriction of g to [g, g]. P, has the property that P,(g)?>= det M(g). We set
Q.(g)= |det M(g)| = [P(g)|>. g — Q.g) is a real valued non-negative polynomial
function on g¢'.

For ee€ we set A,=]];.A;

LemMma 1.1.1. — Let ee8. If geQ,, then P,(g)+0 and P,(sg)=A(s) 'P,(g) for all seG.
Proof. — Write e= {j; < ... <j;}. Since Z;, ...Z;, is a basis for g¢c (mod (g,)c) we
have that M(g) is a regular matrix, hence P,(g)>= det M,(g)+0.

Now writing
d

Ad(s™Z;,= ¥ a,Z; +cp
u=1

where c,&(g,)c, we have a,,==0 for u>p and a,,=A; (s™'), and
Bsg('pr’ qu)= < 58, [pr’ qu:l > = <g’ [Ad (S-l)sz, Ad (S_ I)qu] >
d
= % a8 2 2] au=(AMDA) 0

where A is the matrix [a,,]j<pq<s This shows that M(sg)="'AM,(g)A, and since
det A=[4_,A; (s7")=As"") we find that

P,(sg) =Pf (M,(sg))=Pf(‘AM.(g)A)=(det A)Pf(M.(g))=As"")P.(g).

This ends the proof of the lemma.

COROLLARY 1.1.2. — If geQ,, then Q,(g)>0 and Q,(sg)= | As) |~ 2Q.(g) for all seG.
For ee& we set | e| = the number of elements in e.  We define a total ordering < on &
in the following way:lete,e’e€. Thene<e’ifand onlyifeither|e| > |e'|ord=|e| =|¢'|
and,writinge={j,; <...<js },e'={/1 < ... <Ji}.Jjp,<Jp Wherep=min {| <r<d|j,#j,}.

LemMa 1.1.3. — Q.= {geg’ | Q.(g)=0 for ¢’<e and Q,(g)+0}.

Proof. — If geQ, we saw in Corollary.1.1.2 that Q,(g)+0. If ¢’<e and |¢'| > |e]|,
“then, if = {ji< ... <ji}, Zj;, ..., Z;, are linearly dependent (mod (g,)c), S0 M,(g) is
singular, and therefore Q.(g)=0. If |e|=|e'|, and ji=/i, ..., J,=Jp Jp+1<Jp+1>
then Z; , €f; +(ag)c, and therefore Z,,. .., Z;, , are linearly dependent (mod (g,)c), and
again Q.(g)=0. This shows the lemma.
Remark 1.1.4. — If g is nilpotent our definitions agree with those given by Pukanszky
in [10], p. 525 f. £, ¢f. also [8]. In [6], section 4.2 a study of the completely solvable

case was initiated.

1.2. — Recall the following facts: there exists an isomorphism ® (the symmetrization
map) between the complex vector space S(g¢) (the symmetric algebra of ), and the complex
vector space U(ge) (the universal enveloping algebra of g¢), characterized by the following
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CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS 5

property:if Yy, ..., Y, are elements in g¢, then the image of the element Y; ... Y, in S(g¢)
by @ is the element (p ) ™'Y s Yoq1) - - - Yo(p in U(gc), where S, is the group of permuta-
tions of p elements. The following lemma is easily verified:

LemMMAa 1.2.1. — If Z is a central element in g¢, then o(Zu)=Zw(u) for all ueS(gc).

We can identify S(gc) with Pol¢ (g'), the complex vector space of complex valued poly-
nomial functions on g'. If ueU(g¢) we let P, be the polynomial on g’ corresponding to @~ !(u).
The lemma above then says that if Z is central in g¢ and if ueU(g¢), then P,,=P,P,.

For eeé&, let u, be the element in U(g) corresponding to the real valued polynomial
function g — i*Q.(g) on g’. Note that u, actually is contained in U([g, g]), since Q,(g)
only depends on the restriction of g to [g, g].

1.3. — If geg’, the weights of g, in g/g, are of the form +p,, ..., +p,,, where
d= dim g/g,, and these weights p; extend to linear forms, also called p; on the ideal
f=g,+ [g, g] in such a manner that they are zero on [g, g] (v. [4], p. 243).

Following loc. cit. we set
_ sin h(MX)/2)

SiX)=
A(X) X2
for a complex linear form A on g, and define the function Pg on by

Po(X)=]1]62:8,,X), Xet,

, Xeg,

where O=Gg is the G-orbit through g. This definition of P; does not depend on the
choice of geO.

We set
_ p,—adX

1
det ————
© ad X

Jo is a G-invariant analytic function on g, and if dX is a Lebesgue measure on g there
exists a Haar measure p on G such that du(exp X)=j(X)dX.

If G is exponential we set for ecé,
LX) =(] Tjee | $1,X) %, Xeg.

LemMa 1.3.1. — (G exponential) T, is a positive, G-invariant analytic function on g,
extending P§ for any G-orbit O contained in Q,.

JoX)= , Xeg.

Proof. — The function X — S, (X) is a G-invariant analytic function on g, and since g
is exponential A(X)¢iR\ {0} for all Xeg, hence S, (X)#0 for all Xeg. This shows that
I, is positive, G-invariant and analytic. Now an easy argument shows that P5(X)>0
for all Xef=g,+ [g, g](seee. g. [4], p. 264 top; again we use that g is exponential). Therefore

Po(X)= | Po(X) | =[T420 18, | =([T¢21 18,0 P)=(TT2:(1S,X) | 1S, (X)),
and noting that A; vanishes on [g, g] and that the weights of g, in g/g, are precisely
{2 18e - M l8e} = { £H118p - THa218e )
we get that P4(X)=T,X) for Xef. This proves the lemma.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



6 N. V. PEDERSEN

We set
2(X)=jcX)(X)" !, Xeg

(still assuming that G is exponential). «, is a positive, G-invariant analytic function on g.

REMARK 1.3.2. — Lemma 1.3.1 should be compared with [4], section 4, p. 262-264.
In the exponential case the result loc. cit. is that there exists a G-invariant Zariski open
subset Q of g’ and a positive, G-invariant analytic function P on g, such that for any
G-orbit O contained in Q the restriction of P to f=g,+ [g, g], g€0, is equal to P5. By
Lemma 1.3.1 and Lemma 1.1.3 we can obtain this result by taking Q to be Q, for the
minimal element ein &, and taking PtobeI,. In general the P from loc. cit. will be different
from the one exhibited here. Incidentally, by refining the methods used here can give
a complete solution to the problem raised, and partially solved, by Duflo, loc. cit., p. 263,
mid. However, at present this will not be needed, so we shall postpone it to a later time.

1.4. — Suppose now that G is exponential, and suppose in addition that the Jordan-
Holder sequence gc= f,,> ... > fo={0} has the property that if {; + f;, then f;_,=1{;_,
and fj+;=fj+1, 1<j<m—1 (such a Jordan-Holder sequence clearly exists). Set

=|A.17%

Theorem 1.4.1. — (G exponential) Let n be an irreducible representation of G, and
let O be the G-orbit in g’ associated with t. Let ee§ be the unique element such that Q,
contains O. Then

1) The measure Q.Bo is a non-zero, positive, tempered, relatively invariant Radon
measure on O with multiplier ¥, - (Bo is the canonical measure on O.)

2) The operator dm(u,) is a selfadjoint, positive, invertible operator, semi-invariant
under n with multiplier x, (i. e. n(s)dm(u)n(s ™ 1) =1yx(s ™ )dn(u,)).

3) For any ¢eCZ?(G) the operator m(u, * @) is traceclass.

4) The functional ¢ — Tr (n(u, * ¢)) on C(G) is a non-zero, y.-semi-invariant distri-
bution on G of positive type (a distribution semicharacter for n (with multiplier y.)).

5) For any ¢eC?(G) we have the formula

(%) Tr (n(u, * @)= L(Ote “ ¢ < exp) " (NQ.()dBo(l).

Here we use the notation ()= I\IJ(X)e“X 2dX for YyeC®(g), leg’, where dX is the
Lebesgue measure on g with the property that dp(exp X)=/s(X)dX, dp being a fixed Haar
measure on G, and n((p)=j o(s)n(s)du(s) for @eL}(G).

G
REMARK 1.4.2. — In the formula () above we can instead of a, use any C*-function o

on g with the property that the restriction of o to f=g,+ [g, g], g0, is the same as the
restriction of a, to I.

4° SERIE — TOME 17 — 1984 — N° 1



CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS 7

REMARK 1.4.3. — It will follow from the proof of Theorem 1.4.1 that the distribu-
tions ¢ — Tr(n(u, * ¢)) have a finite order not exceeding 2d+1, where d= |e|.

2. Proof of Theorem

Here we shall for brevity say that a Jordan-Hélder sequence gc=f,> ... >fo= {0}
is of class (b) if it has the property required in 1.4 (i. e. that fi*f5 1<j<m-—1, implies
that fj— 1 =fj_ 1 and fj+ 1 =fj+ 1), Cf: [2] Définition 4.2. 1, pp. 78.

2.1. — The purpose of this subsection is to prove the following lemma, from which
part 1) of Theorem 1.4.1 follows immediately.

LemMA 2.1.1. — The measure P,B, is a non-zero, tempered, A '-relatively invariant
(complex) Radon measure on O.

REMARK 2.1.2. — In the completely solvable case this was proved in [6], section4.1.d.
The proof loc. cit. does not carry over to the case at hand, so we have to modify our approach.

Proof. — We have only left to show that P,B, is tempered, ¢f. Lemma 1.1.1.

(i) Let I be the set of indices 0<j<m for which f;=f; For jel there exists an ideal g;
in g such that (g))c=f;.

Set I'= {jel|j—1el} and I"= {jel\{0}|j—1¢I}. Then I={0}ul’'UI” as a
disjoint union, and for jel” we have that j—2el (since o, ..., §, is of class (b)).

Now since A, only depends on the Jordan-Hélder sequence f; and not on the basis Z;
we can assume here that the Z’s are constructed in the following way: for jel’, let X €g\g;- 1,
and set Z;=X; For jel”, pick Z;_,ef;_,\f;-. Since f;_+f;—; we have that
Z;_(ef\ij—1. Set Z;=Z;_,, and define X;_,, X; by Z;=X;_; +iX; Then X;_,, X; is
a basis for g; (mod g;_,), and X,, ..., X,,is a basis for g. Letg,, ..., g,€g’ be the basis
dual to X, ..., X,

Fix an element geO, and writee=J,={j;< ... <j;}. Set D;= {1<k<d]|jel'},
D,= {1<k<d|jigL ji+1¢],}, D3= {1 <k<d|jg¢l, ji+1€l,; }, D= {1<k<d|jil” }.
Clearly {1, ..., d} =D,uUD,UD;UDj, as a disjoint union. Observe that if keD3, then
clearly k+1eD,. Conversely, if keD,, then j=j;€l”n],, and therefore j—1€l,; in fact,
if j—1¢J,, then Z;_ ief;_,+(g)c, that is, X;_ ;—iX(g;-2)c+(8,)c, implying that
Xj-1, Xj€gj-2+8,; but then Z;=X;_; +iX&(g;-;)c +(8)c=Fj-2+(g)c and therefore
Jj#J, which is a contradiction. The conclusion of this is that D= { k+1|keD; }.

For jel, set Gi= {seG|sg=g(mod gj)}. G} is a closed, connected subgroup with
Lie algebra gi= { Xeg| Xgeg; } (¢f. [9], p. 105, III). Clearly j — g}, jel, is a decreasing
sequence of subalgebras with g=g and gf'=g,.

If jeI’, then dim g}~ '/g}=0 or =1, and g} 'Zg} if and only if jeJ,. If jel”, then
dim g/~%/gi=0, =1 or =2, and dim g}™?/g}=2 if and only if j, j—1€J,, dim g}~ %/gi=1
if and only if j—1€J,, j¢l,. '

(ii) The following is an adaptation of [9], p. 102-106, II-III to the present situation:

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



8 N. V. PEDERSEN

For keD; there exists an element Y; in gj<~\g/* such that Y, is a coexponential basis
to g/« in gf~! and such that Y,g=g; (mod g3,), and for seGl* we have

Ad (5)Y;=A; (s )Y, (mod g¥).

For keD, there exists an element Y, in g/*~"\g/*! such that Y, is a coexponential
basis to g/** ! in g/« !, and such that Y,g=g; (mod gj, ) (to obtain this it can be neces-
sary to change X, X+, in a way that only affects Z;, Z; ., by multiplying them by
a factor of modulus one), and for seG}*! we have Ad(s)Y,=A;(s™")Y,(mod gi*?)
(so in particular A;(s™") is real).

For keDj there exists elements Y,, Y, in g/~ "\g/*! such that Y,g=g, (mod g3, +,),
Y:+18=gj..,(mod gj, ), such that Y,, Y, is a coexponential basis to g/<*! in gi~!
such that A;(Y)=A;(Ye+1)=0 and such that

b

exp .Yy exp iy Yir 1 = €XP (6Yy+tis 1 Yier 1) (mod GJ+1)
= CXp tk+ lYk+l Cxp thk(mOd G£k+l).
For seGi<** we have Ad (s)(Yi+iYe+1)=A;07 NYe+iYs 1) (mod (g 1)c)
(iii) The map R? - O=Gg given by
(*) (ty, ..., t) > expt;Yy ... expt;Yg

is a differeomorphism. We shall compute the canonical measure B in terms of the
coordinates t=(ty, ..., ty).

Let o be the canonical symplectic form on O. Via the natural correspondence between
/g, and the tangent space to O at g, o, corresponds to flg.

LeEmMA 2.1.3. — For a Bo-integrable function f on O we have
Lf (l)dBo(l)=Cj Jexp Yy ... exp tdeg)kl_[ [ Ajlexp &,Y,) | dty .. .dt,
R <r

where C=((2m)'Q.(g)"*.

Proof. — Denote by o the inverse of the map (*). ¢ is a global chart and
Lf (hdBo(D)=(2m)~* zLdf (c™1(e)B(c ™ (1))t

where 0())=(det S))*, S, being the skewsymmetric matrix S,= [@(0/0t,, 0/0t,)]1 <uv<a
([9] Proposition 4, p. 99).
Now o is G-invariant. Therefore, writing s= exp t,Y; ... exp t;,Y, and I=sg,
we have
@((0/0t )1, (0/0t,)) = 055((0/0t.)sg> (9/0t,)sg)

(JDg('Y(S - 1) * (a/ a tu)sp Y(S - 1) * (a/ atu)sg),
where y(s); | > sl. Let us then compute y(s™?) 4 (0/0t,)s:

4° SERIE — TOME 17 — 1984 — N° 1



CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS 9
For a differentiable function ¢ we have
'Y(S_ 1) * (a/atu)sg(p =(a/atu)sg(p ° 'Y(S_ 1)

d _

= E‘E (P(s_lo' l(t+‘cu)) |t=0 (t“=(8uvt)1 $u<d)
d

= E(p(exp —t3Y, ... exp —t;Y; exp t;Y; ... exp (t,+7)Y,...expt,Yigl.=0
d

= E‘P(exp —tgYg ... €Xp —ty41Yu1+1 €Xp TY, €XP £y 1Yyuq - .. €XP 13Y48) =0
d -1 d 1 ,

= E{ (P(Su €xXp TYusug) IT:O:;l_‘t <P(CXP T Ad (Su )Yug) It=0’

where we have set s,= exp t,+1Yy+1 --- €Xp ;Y4 u<d, s;=e.

The conclusion of this is that S,=[B,(Ad (s; ')Y,, Ad (s, ')Y,)]1 cuw<e SinceYy, ..., Y,
is a basis for g(mod g,) we can write

Ad(s; )Y, =4 1a,,Y,+c,

where c,eq,, and then S,='AS,A, where A is the matrix [a,,]i<uvr<s SO that
6()= | det A|6(g).

We shall then find det A: for ueD, we have that s,eGJ*, so Ad (s, )Y, =A, (s,)Y, (mod gi),
implying that a,,=A;(s,), while a,,=0 for u<v. For ueD, we have

Ad (s; )Y, =A;(s,)Y, (mod gi*?)
implying that a,,=A;(s,)=|A;(s,)|, while a,,=0 for u<v. For ueD; we have

Ad (sy )Yu+iYus )=A; ()Y, +iY, 4 1) (mod giv+),
implying that

det |:auu Ayy+1 :I - | Aju(su) |2,

A+ 1y Qu+tu+1

while a,,=0 and a,,,,=0 for v>u+1. It follows that

det A= [T (A (01 ug | Aj(s.) 12

ueD,UD,

Now for ueD; we have

Ai(s)=A;(€xXP tys1Yusry . €xptaYs)

=Aj“(exp tu+2Yu+2 ... EXp tde)=Aju+l(Cxp tu+ 2Yu+2 e exp tde)=Afu+ |(Su+ 1),

s0 |A;(s)|=1A;,, (Su+1)], hence det A=HZ=1 [A;(s)] = Hx <u<r<a| Ajlexpt,Y,)].

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPER[EURE
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Finally, a simple computation shows that det S, = det [By(Y,, Y;)];<,,<a=Q(&)"". This
ends the proof of the lemma.

(iv) For 1<j<m we define the function S; by

Sfty, ..., t))=<expt;Y; ... expt,Yg, Z;) .

We consider S;,: arguing like in [9], p. 106 we find for keD,uUD,:

S (YN
ek 1‘[ 5€xp 6Y) T 4S8ty -5 11, O, ..., 0),

Sults - 1= S
Jie r<k

and for keD, we find
Sits, - - s t)=(te—1 +ity) <]’11Ajk(exp tY,) 1+ S, (t1s <o vs te=2,0, ..., O).

() For a real numiber n>0 we set M(n)=| (1 +x2);”/2dx. We have 0<M(n)< + o0
and M(n)< + oo if and only if n>1.

LEMMA 2.1.4. — Let q, o, B be real numbers with a>0, a30, and let c, k be complex
numbers with k+0. We have

(*) ati - M(n)
L(a_._ | kel@tiBe _ . |2) /2 0% ]t < W,
) n M(n)M(n—1)
(**) Lz(a + | k(s + lt) —C |2) /2dsdt= W—.

Proof. — Obviously we can assume that k>0. Writing k™ 'c=be'", b>0, yeR we have
L(a+ | ke®* Bt ¢ |2)""2e"“dt=J;‘(a+k2 | e itB=1 _p |2)"m2eM gy
sj;h(a+k2 | e —b|?)~"2edt
= lal"J:o(a+k2Ix—.blz)'"/zdx
< lal"L(a+k2|x—b|2)"'/2dx

=|a |“L(a+k2x2)"’/2dx

M(n)
This proves (*). Similarly for (xx).

(vi) We shall then prove the temperedness of the measure P,B, First observe that

4° SERIE — TOME 17 — 1984 — ~N° 1
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I (371 1<LZ;>1)*=l1|| is a norm on g". We must show that we can find n>0

such that j(1+ [11113)~™2 | PAl)| dBo(]) is finite. We have, using Lemma 2.1.3:
o

J;(l + 1172 Pl | dBo(])

_ j | Pexp t,Y; ... exp t,Yug) |
ra(1+ || exp t, Y, ... exp t,Y g |22
1:[ | Ajk(exp trYr) I— !

—(r —a/zj rsk dt, ... dt
( ) Rd (] +Z}”=l ‘ Sj(tl, EUE] td) |2)”/2 ' ‘

[T 1A;(exp t,Y,)|7?

<2n"’/zf rk dt, ... dt,
2 na(1+k§):=1|sjk(t1,...,t.,)|2)"/2 ' ‘
3

kI<] | A;(exp t,Y,)|dt, ... dt,

Suppose first that deD,UD,. Then (assuming that A;(Y,)#0)

e-"’}.jd(Y,,) -1 I-[
- A‘,]a(Yd) r<d

and the last integral is equal to

S;ftss -5 t)= A;(exp £,Y,) " 48, (ts, - - -5 a1, 0),

(m)~ 92 L [I IAexpt,Y,)| tdty ... dty_y J F(ty, ..., t)dt,
d-1 r<k<d-1 R

where
I7_; | Ajexp t,Y,) | 7!

(1+k¢ZD:;i 1Sitss - or tae1s O P |S;tns - - -» )| D72

F(tl, “eey td)=

Applying Lemma 2.1.4 with a=1+4 J4211S;ltss - - - ta—y, 0) % a+iB=—1;(Y,),
k¢D3
k=—27j(Y)~! l:ld/\j,,(exP tY)"Y, c=—=S;fty, ...\ ta-1, 0)—A;(Y) ™! l:[dAj,(eXP tY,)™!
we find that

Cy-M(n) 1
@my"? (1+ JA=HSalts, - a1 0) [2)n= 172
¢D3

LF(tl, v bty <

where C;= | A;(Y) | (I Re A;(Yy)|)™! (note that since g is exponential the non-vanishing
of A;(Y,) implies the non-vanishing of Re (A (Y,)), and therefore

L(l + 111272 | P | dBo(D

-1
< Ca-M(n) r<kl;!i- 1 | Asfexp 1Y) |

# € —F
w @m)* Jma-t (14 JRZ1IS,(tr, - o tamy, 0) 27 DP2
k¢D3

dty ... dt;_,.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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If 1;(Y,)=0 a simple change in the argument shows that the same relation is valid
with C,=1 (cf. below).

Suppose next that deD,. Then
Sidty, s t=(ta—s+it) 11 Aifexp )1 48,(ts, o, t4-2, 0, 0),

and therefore we find as above that

L(l + LA™ | P(D) | dBo(D)
<@2m)¥? J

Rd-2r<

[T AjlexptY,) 'dey ... dt,,_zj F(ty, ..., ty)dty_dt,,
k<d—2 R2
where now

922 | A (exp t,Y,) |2
F(tl’ “ .oy td) ll ld( p )|

- (1 +k¢zD:.=_§ I Sjk(tb ceey td—Z’ Oa 0) |2+ | de(tla ) td) |2)n/2
3

(here we have used that |A;,| =|A;,_,| and that

Jd-1
)\'jd_1(Yd—1)=)“jd(Yd—1)=}"jd_l(Yd)=)"jd(Yd)=0)~
Applying the relation (*+) in Lemma 2.1.4 with a=1+ Y ¢_7| Sidts, .oy t4—2,0,0) %
k¢D3
k=TI;Z7A;(exp t,Y,) ™", and c¢=—S;(ty, ..., ts—2, 0, 0) we find that

M@M(n—1) 1
J F(tl"-')td)dtd—ldtdst d/2 : d-2 2\(n—2)/2°
R2 (211:) (1+ Z k=1|sjk(t19- . -9td-2, an)l )(" Y
k¢D3

and therefore

L(l + 111%™ | Pl) | dBol))

Aj(exp t,Y,)|?
(3 #) <M(n)M(n—1). r$k1;[d—2| (XD 1Y) | i il
= - — 1 - d—2-
@n)2 Ra-2 (1 +k¢zpz=f 1S;(t1s - - ta_z 0, 0) [P~ D72
3

Repeating these two methods of estimation on the new integral () or (# #) we find that
J(1+ 112 | P | dBo(D<(2m) " 4*M(n) ... M(n—d+1)C, ... C;<+
o
for n>d. Here C,= |\ (V)| (IRe A (Y) )1 if X, (Y)+0, and C,=1 if 1;(Y;)=0.
This ends the proof of Lemma 2.1.1.

2.2. — The purpose of this subsection is to prove Proposition 2.2.1 below.

Let n be the nilradical of g, and let N be the analytic subgroup corresponding to n.
We have [g, g]lencg, and therefore u.eU(n).

4° SERIE — TOME 17 — 1984 — N° 1
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ProposITION 2.2.1. — If geQ, and if = is the irreducible representation of N corres-
ponding to the orbit O=Nf, where f=g|n, then

dr(u,)= QgL

REMARK 2.2.2. — Even in the special case where g is assumed to be nilpotent (and
therefore g=mn), Proposition 2.2.1 provides a new result.

Proof. — The proof is by induction on the dimension of g. The proposition is clearly
valid for dim g=1 (in which case e=d, and Q,=1, u,=1). Assume then that the propo-
sition has been proved for all dimensions of g less than or equal to m— 1, and that dim g=m.
The case e= being trivial we can assume that e+, and write e= {j; < ... <J;}.

Case (a) : Suppose that there exists a non-trivial abelian ideal a in g such that g | a=0.
Let A be the analytic subgroup of G corresponding to a. We have acn and setting
g =g/a,fi=n/a is the nilradical of §. We set fj=fj+ac/ac, 0<j<m, and let c: g > g/a
denote the coset map. Then we have the diagram

§C:fmafm—13 3?13foz {0};

and dimfj/fj_1=0 or =1. Set I={1<j<m|fj§fj_1}, write I={ij< ... <ip},
and set fj=f,-j, 1<j<m’. We then have a Jordan-Holder sequence in g¢:

§c=?m'37m'—13 s D’fl 370= {0}
which is immediately seen to be of class (b), and setting 2j=c(Z,~j) we have that
Zjefj\fj_l,j= 1, ...,m.
Define geg’ by §oc=g and f=3 | We have acg, and g;=g,/a. Moreover,
jel, = jel,sincej¢l = f,= §;_ 1 +ac < [;—1 +(g.)c = j¢J,. Writing
e=J={ji< ... <Ji}

we have J,={i;; < ... <iz,}={j;<...<Js}. For Ieg’ we then have with I=Toc:

Q.()= | det [BI(Zj,’ st)]1sr,s<d| = | det [Bl(zi;;, Zi,-j)]l sr,s<d|
= |det [BAZ3, Z5)]i<rs<al =Qu1).

This shows that the canonical image of u, in U(g) is precisely u; (€U(1)). Now the repre-
sentation w is trivial on A, so there exists an irreducible representation © of N=N/A
such that % o (c | N)=mn, and the orbit of 7 is Nf. But since geQ, we have dt(uz)=Q(g)I
by the induction hypothesis, and therefore dm(u,)=d(c(u.))=dm(uz)=Q«g)I=Q. (gL
This ends case (a).

Case (b) : Silppose that we are not in case (a) and that A, %0.

Write Z, =X, +iY; and set a=RX, +RY,;. Then ais an abelian ideal (of dimension 1
or 2), and g|a=%0 (since otherwise we would be in case (a)), and therefore (g, Z, > *0.

Since G is exponential we can write A,(X)=a,(X)(1+ik,), where o, is a real linear
form on g, and where k, is a real number.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



14 N. V. PEDERSEN

Set h= ker A, (= ker a;). b is an ideal in g of codimension 1 with [g, g]l=nch,
so the nilradical of b is n. Clearly Z,ebe. Set p=min {1<j<m|Zghc}. p is well-
defined and p>2. We observe that peJ,=e. Infact, suppose p¢J,. ThenZgf,_;+(g)c

and therefore 0+ (g, [Z,,1,]1)> =(Zxg, 11> = (f,-18 1> =<8, [f,-1, f1])> =0, which
is a contradiction. Also 1e€J,, since otherwise Z,€(g,)c, and therefore

0=(g [8 f1])> = (g f1 > *0.

We also note that g, < b, since otherwise g=h + g, and therefore 0= { gg, f, ) = (g, f; > #0.
Set 2,=Z; for 1 <j<p—1, Z;=Z;,,+c;js,Z, for p<j<m—1 and Z,=Z, Here
cj p+1<j<m, is defined such that Z;+c;Z,ehc. This is possible since CZ, ® hc=gc.
Clearly 2, ..., 2, is a basis in gc.
Set fj=CZI ®... C?Sj. For 0<j<p—1 we have that fj=fj. For p—1<j<m—1
we have f; ® CZ,=f,4+,, hence

f}=fj for 0<j<p—1,

f}=fj+1ﬁbc for p—1<j<m—1,

fm =40c-

From this it follows that f,-, j=0, ..., m, is a Jordan-Hélder sequence for g with §,,_ ; =hc.
We claim it is of class (b). In fact, since f,_;=f,nbc and {,_;=f,_ it follows that

f,—1="1,-1, and from this it is immediate that the claim is true. We thus have a new
diagram

Qc.=fm3fr—13 .. 2 Tiofe= {0}.
be
The objects defined relative to this new Jordan-Hélder sequence are designated J,, 8, etc.

For 1<j<p—1 we clearly have jeJ, < jejg. Furthermore pel, (see above) and
med, In fact, if m¢J, then Z,=Z,€f,_,+(g)c=bec+(3,)c, and therefore

0% <Z,g, 71> =<bg 1> =0
For p+1<j<m we have

g = Zgfj-1+8c = Zefi—2+CZy+(8p)e
<> Z; 1€]j_2+CZ,+(g))c < Z;_1€f;-2+(8)c
(since g,<h) < j—1¢J, Therefore, if j,=p we have j,=j, for 1<h<a—1, j+1=jj4,
for a<h<d—1 and j;=m, so
2; =2, for 1<h<oa-1,
th=zjh+1+c.ih+1zi for ashgd—l’

Zfd = ZJ o”
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Therefore, letting C= [c,,],<,s<q e the d X d-matrix:

1. ]

Ciaer <+ Cia | 1

L "1 >

where the empty entries are 0, we have Z;_,=Z$=1c, ;,» and therefore My(l)="CM.(])C,
with é=7, . Now det C=(—1)" sodet M())= det M(l), and Q.())=Q¢()), and therefore
u,=uz The conclusion of this is then that we can assume that f,,_ ; =b¢, and this assump-
tion will be in effect from now on. We then have:

Qe(l)= ldet [BI(Z],J Z],)]l<r sSdI
'_l 2 Slgn G<l [ j1® Jc(l)] <l [ jar Ja(d)]>|

=KL Zal> P | 3 sieno (L 125y Zip]> - < Zia- o Zia-) |

where S¥ is the set of elements ceS, with o()=d, o(d)=1.

Set go=g|h. Then f=go|n. We designate the objects associated with the group
H=exph, and the class (b) Jordan-Holder sequence be=f,-1> ... of;2fo= {0}
by J9, etc. We have (b, )c=(3)c ® CZ,, so 12=J,\{1,m}, and therefore

={A< ... <jid-2}
with j)=jj+, for 1<h<d-2, so we have for leh’:

QD)= | det [B(Zjo, Zg)]1 <r,<a-21
= Z sign oL [Zg Zig,, 1> - <L [Zgg 0 Zigu», 1|

0€Sq-2

=| Z Slgn G<l [le’ Zlc(2)+1]> <l [Zld 1? J (d—~2)+1]>|

Gésd 2

= |0§3 Slgl'l 0'< l’ [ij’ Zic(Z)]> o < l’ [Z.id—l’ Z.io(d—l)] > I’

and comparing with the result above we get Q ()= |, W ) |?Q.o(lo), where W= [Z,, Z,,]
and l,=1|hH. Now since W is central in ¢ and since Py())= {l, W), Pg()= (L, W)
we find that #Q(l)= — Pw()Pw(D)i*~2Q,o(l,), and therefore u,= — WWu,o by Lemma 1.2.1.
By the induction hypothesis we have that dm(u.)=Q.o(g)l, and noting that

dn(W)=i{ g, WY1, dr(W)=i(g, W) 1

we finally get dn(u,)=|<{g, W) Izdn(ueo)= I<g, W> ]zQeo(g)I=Qe(g)I. This settles
case (b).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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Case (c) : Suppose we are not in case (a) and (b) and that X, %0.

Again we have (g, Z, > +0 and, moreover, {,=f, (since f, is a central ideal in gg).
We write [X, Z,]=A(X)Z,+7(X)Z,, Xeg, where vy is a (complex valued) linear form
ong. The linear form y has the form y(X)=1y,(X)+ iy,(X), wherey,, v, are real linear forms
on g. We extend A,, y to complex linear forms on g such that we have

[Z, Z,1=0(D)2,+Y(2D)Z, for Zegc.
We note the formula

(2.2.2) Y([Z, W) [=Y(Z)1 (W) —v(W)A2(Z)

for Z, Wegc, which we get by a simple application of the Jacobi identity.

Since G is exponential we can write A,(X)=o,(X)(1+ik,), where o, is a real linear
form on g and where k, is a real number.

We then distinguish three subcases: (c1): rank (o, vy, Y2)=3, (c2): rank (o, v;, Y2)=2
and (c3): rank (a5, 71, v2)=1.

Case (cl1): Set h= ker y,n ker y, (= ker y|g). It follows from the formula (2.2.2)
that  is a subalgebra in g, and its codimension is 2. We observe that Zel if and only if
v(Z)=0 and y(Z)=0. Set ho=ker A, |h=ker a, |h=keradZ,|g. b, is an ideal
in g of codimension 3. That b, is an ideal in g follows from the fact that

ho= ker yn ker A,Nng

and by applying the formula (2.2.2).

Let m be the nilradical of §,. Since }, is an ideal we have that m=nnhy=nn}.
Observe that dim n/m=2. In fact, pick Web\h,. Then we have that

Y([Z, WD) =2(W)r(Z) for Zegc,

and therefore Y([Z, W])=A,(W)y(Z). Choosing Z such that y(Z)=1, ¥(Z)=0 and Z’
such that y(Z")=0, y(Z')=1 we get that

WIZ, W) =2(W)*0, Y([Z, W])=0, W([Z", W])=A,(W)=*0, y([Z’, W])=0,

and this shows that [Z, W], [Z’, W] is a basis in ng (mod myg).

We claim that f,+f,. In fact, we have [Z, Z,]=A,(Z)Z,+Y(Z)Z, for all Zegc, and
therefore [Z, Z,]1=M(Z)Z,+Y(Z)Z,. Since A, does not vanish on he we have that
[Bc, f2]1=CZ, and [b¢, T,1=CZ,. Therefore, if f,=f,, then CZ,=CZ,, hence y(Z)=0
implies that y(Z)=0, so b is the set of Zege such that y(Z)=0, contradicting the fact
that codim h=2. We conclude that f,+{,, and therefore that f,=f, and fi=f;. In
particular Z,¢f,.

We have seen that Z,, Z,, Z, span f;. Now since A,(Z,)=0 we have that a,(Z,)=0,
and this means that [f;, f,]<=f;. We then distinguish two possibilities: case (c11):
[f3, f2]=0 and case (c12): [fs, f2]=1:.
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Set fo=f | m=g|m, and let &, be the irreducible representation of M= exp m corres-
ponding to Mf,,

~ Case (c11): (i) It is our first aim to show that u,eU(mg), and that dmy(u,)=Q.(g)l. We

start by noting that we can assume that { g, Z, > =0; in fact, if necessary replace Z,
by Z,—cZ,; this does not change e, Q,, etc. (it changes y=1v; +iy,, though, but does
not affect b, and rank (a5, v4, v2))-

Set p=min { 1<j<m|Zghc }. pis well-defined, and 4<p<m—1, since Z,, Z,, Z,eh,
and since the codimension of bh¢ is 2. Set g=min { 1<j<m|Z#CZ, Db }. q is
well-defined and 5<p+1<g<m (so dim g=>6).

We first note 2, 3eJ,. In fact, if 2¢J,, then Z,ef, +(g,)c, and therefore

VD)8 Zi)>=X8 [Z,Z,]) =(Zy8,Z) =0 forall Zegc

which is a contradiction. So 2el,.  If 3¢],, then Zyef, +(g,)c, i. €. Z,=aZ, (mod (g,)c),
acC. But then

VD8 Ziy =<8 [2.7,]> =(Zg. Z) = a{Z8, Z) = a¥(D) <& Z1 )

which contradicts the fact that codim h=2,s03eJ,. Wealso note that 1¢J,, since {; =(g,)c.

Next we note that p, gel,. In fact, if p¢J,, then Z,ehc+(g,)c and Z,ebe+(g,)c, and
therefore

W28 21> =48 (22, Zy)) = Zp8, 25> = {be8 Z2)
=<8 e Z2]) =<8, CZ; ) =0,

so Y(Z,)=0 and similarly y(Z,)=:0 implying that Z eb, which is a contradiction. There-
fore peJ,. Suppose then that q¢J,. Then Z,eCZ,+bc+(g)c, i. €. there exists acC with
Z,=aZ,(mod (hc+(g,)c))- But then

—VZ)8 L) =K8 22, 2,]) =28 2, =al28 Z;) =—ay(Z,)<g L),

from which y(Z)=ay(Z,). Similarly @:a@. Now consider the linear map
from gc to C? given by Z — (y(Z), ﬁ). The kernel is B¢, so it is surjective since
codim h=2. ButZ, Z, is a basis for gc (mod b¢), and we have just shown that the images
of Z, and of Z, are linearly dependent; in fact, (Y(Z,), Y(Z))=a(¥(Z,), ¥(Z,)). But this
is a contradiction, and we conclude that geJ,. '
Define Z,=Z; for 1<j<p—1, 2;=Z;, +a;,,Z, for p<j<q—2 (empty if g=p+1),
Z2,=Z;,,+0aj2Z,+bj,Z, for q—1<j<m—2,2Z,_,=aZ,+bZ, Z,,=a'Z,+b'Z,, where
Qpits oo Qg1 09415 - -+ Am bgs 1, ..., by, has been picked such that Zjeb@, 1€j<m-2;
this is possible since gc=bhe ® CZ, ® CZ,. The numbers a, b, a’, b’eC has been selected
such that ab’—a’b=1, and such that <{g, [Z,_1,Z,]> =0, {g [Zm-1,Z3]> *0,
& [Zm Z3]1)> = 0,{ g, [Zm Z,]1) +0 which is possible by a reasoning as above. Clearly
Z,...,2,is a basis for gc. Set ;=CZ,;® ... ®C2, For 0<j<p—1 we have
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that f;=f, For p—1<j<q—2 we have that f,@cz =f;+1 and for g—2<j<m—2
we have that f,@ CZ,®CZ,=f;+,. Also f,_,=bh¢, fn=0c. We thus have
fi=f; for 0<j<p-1,
fj=fj+1f"bc for p—1<j<q-2,
fi=fjs20be for g—2<j<m-2,
fm':gc'
From this it follows that
bC=fm—23 DfF’fo: {0}

is a Jordan-Holder sequence for b (but note that fo, . . ., .. is not necessarily a Jordan-
Holder sequence for gg, since ) is not necessarily an 1deal in g) We claim it is a Jordan-
Holder sequence of class (b) To see this, observe that f,, l—fp 1, since f,, 1=fp-1"
and f,, 1=F,Nbe¢, and fq 2= fq 2, since fq 2=f,-1nbc and fq 2=f,nbc, and from this

it follows easily that f,, j=0, ...,m—=2 is of class (b).
Write e= {j;< ... <ja}, and let j,=p, Jjg=4q with l<oc<[3<d Define the set
Je={ji< ... <Ja} by setting j,=ji, .. s Ja=1=Ja-15 Jw=Jn+1—1 for a<h<B-2,

] =jus2—2 for p—1<h<d-2, j_1=m— 1 Ja=m. We then have
Ze=Z~ for 1<h<a-—-1,
2;=2Z,, +a;,Z, for a<h<p-2,
Z;h Z.,+a;,.Z;,+b;,,Z;, for B—1<h<d-2,
Z;d ,=aZ; +bZ;,

zfd = a,ch + b,ZjB'

Therefore, letting C= [c,;]1<,s<q4 be the d xd-matrix:

: o B—2 PB-1 d-2 d-1 d
_ | l l Lol
1,
1
o— Ajyy - Ay, | Gjgoy ---Gjy | @ | @
1
C=
1
p- bjg,, --- by, | b | b
1.
L "1 i

where the empty entries are zero, we have Z;,=Z‘,‘= 16rsZ;,, and M, () ="CM())C, where
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M,()) is the matrix [B(Z;, 2;)];<,s<s Now det C=(—1)**#, and therefore we have
for leq’ with (I, Z, > =0:
Q)= |det M () | = | det M (D |

=| X sign o<1, [2;,2;,,1> ... <1 (25, Z;,,1>]

oeSa

= ‘<la [229 Zm]>|2 l < l, [23’ 2m—1]>|2
. |ZS sign 6 (1, [Z3, Z3,,1> - <L (255, 25,10

where S} is the set of permutations ¢ in S; such that o(1)=d, c(2)=d—1, o(d—1)=2,
o(d)=1.

Set go=g| b, and let 320, etc. designate the objects defined relative to the Jordan-Holder
sequence focfyc ... =f,_,=bhe Since clearly g.<h, and (b, )c=(g,)c+CZ,+CZ,4
we find that 1, 2, 3¢J2, and for 4<j<p—1 we find jeJ%, < jel, For p+1<j<q-2
we have

JEl, < ZEfi-1+(8)c = Zﬁfj-z"‘czp‘*‘(gg)c hag zj—le’fj—2+(bgo)0 < j— 163?0,
so jel, < j—1€J%. For q+1<j<m we have
JEly = Zgfi-1+(8)c = Zjefj—3+czp+czq+(gg)c <> Zj—Zij—3+(bgo)C <« j —2¢'320,

50 jeJ, < j—2e3°. Therefore, if ¢°=J%= {8< ... <ji-4} we find that jP=j,.,
for 1<Sh<a—3, 04+1=j,+3 for a—2<h<B—4, jo+2=jj44 for B—3<h<d—4, and
comparing with the definition of j, we find that 7y =j,,, for I<h<d—4. Using this
we get for lyeh’:

Qeo(lo)__' | Z Sign ) <: IO’ [2;?’ z] “)] > e <IO’ [273_0 Z}E(d‘-”] >|

0€Sq-4

= | Z Slgn 0'< lo’ [2;3’ ch(l)+z]> ct <lO’ [zfa-z’ Zfo(d-zuz] >|

€S- 4

= | Zs sign o lo, [23, 2;,,1> - {loy (25, 10 Z5,,, 1) |,

and comparing with what we saw above we find for leg’ with (I, Z, > =0 and ly=1|}:
(*) Q)= 1< 1 [Z2, Zy 1> PI<L [Z3, Zp- 11> PQeollo).

Let us now observe that the nilradical of ) is m. In fact, since Z,eh, A, |} is a root
for b, and therefore the nilradical of |) is contained in f), and consequently it is precisely m.

Write Z,=X,+1iY, and set b=RX, @ RY,. Then b is an ideal in b, and g|b=0.
Let c: h - bh/b=h be the coset map and define goeh’ by gooc=g,.

We now claim that u,eU(m), 1. e. that Q, only depends on its restriction to |y (and therefore

to m). Assuming for a moment this claim to be true, we consider Q, as a polynomial
function on b’ and get for lyeh’ (using the formula (*)):

QuTo°9)=1<lo, Wi Y121 <lo, W2 > *Qal Tg 2 0),
where W, =c([2,, Z,]), Wo=c([Z3, Z,,—,]). Now since W;, W,, W,, W, are central
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in b and since Pw‘(l )= (Wy, 0), Pw(l )= Wy, lo> and similarly for W,, we
find that QI c)= Pwl(lo)Pwl(lo)Pwl( lo)sz(lo)ld *Qso( 1o ), and therefore

o c(ue) =W W, W, W c(uz0)
by Lemma 1.2.1.

Since b is an abelian ideal in b, and since ¢ fo, b)> =0 there exists a representation
7o of M= M/B, B=expb, such that Ty o c=m,. Using the induction hypothesis we then
get

dmo(ue) = dTo(cue) = dRo(W W W, Wc(uz)) = | < fo, Wi > P 1< fo, W2 ) |2dmo(us,)
=148 [Z2 Zu] > P1< 8 [Z3, Zm-1]1) PQao(go)l = Q)L

We have thus shown that dny(u,)=Q.(g)l. This ends case (c11) (i), except for fhe fact
that we have to prove the claim from above:

Proof of claim: We shall prove that Q) only depends on the restriction of [ to . If
all Z;r, 3<r<d-2 belong to (§,)c, then the result is clear (because , is an ideal). Suppose
then that there exists 3 <r<d—2 such that Z 5.¢(bo)c, and let p be the smallest suchr. We
then have [)C—CZJ‘, ® (ho)ec, and g¢c= CZ* @ ker a,. Set Y,= Z >+ ij, r=1,...,d,
where c, is defined such that Y,e ker «, for r+ p, and where c,=0. We then have Y (Do)
for 1<r<d-2, r+p, while Y ¢(ho)c and Y,, Y,_€kera,. We also have [Y,,Z,]eCZ,,
Yo Z3]1=0, [Y4-1, Z3]€CZy, [Yq4-1, Z,]1=0.

Letting C= [c,s]1 <rs<q b€ the d x d-matrix given by:

\1.
1
1| corr - Ca
I 1
1

the empty entries meaning zero, we have Y,=39_ lc,sZ;r, so, setting N(I)= [B(Y,, Y511 <rs<a
we get N(J)="CM())C, from which Q,(I) = | det M(I)| = | det M(])| = | det N(I)|. There-

fore
QD)= | Yo, sign oP,() |,

where we have set P ()= (L [Yy, Yoiy]) - <L [Ya Yo -
Define the following subsets of S;:

S={o|o(l)=p, 6(2)=d—1, o(p)=d, o(d—1)=2, o(d)=11},
$@'= {o|o(1)=d, o(2)=p, o(p)=d—1, od—1)=2, o(d)=1},
SP = {olo(l)=d, o(2)=d—1, o(p)=1, o(d—1)=2, o(d)=p },
S= {olo(l)=d, 6(2)=d—1, o(p)=2, o(d—1)=p, o(d)=1},
8= {olo(p)+d A o(p)+d—1 A p*o(d) A ptold—1)},
S§6)=Sd\Uf’=1S$rj)-
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We then assert that P,=0 if ceS{®. In fact, observe first that

P,+0=(c(1)=pV o(1)=d) A(c(2)=pV o(2)=d—1)
A(l=0o(p)V 1=0(d) A 2=0(p) V 2=0(d—1)).

Therefore, if P,+0 and if o¢Sy with e. g. o(p)=d, then o(1)=p, o(2)=d—1, o(d)=1,
o(d—1)=2, so ceS§". Similarly, if c¢S{® with o(p)=d—1, then P,+0 = oS, etc.
This shows our assertion.

We next assert that P(l)=2}‘=1 Z sign oP,(I)=0. To see this, define the permuta-

oeS}
tions 14, T, T3, T4 in S; by T, =identity, 1,(1)=p, 1,2)=1, 12(p)=2, 13(1)=0p, 13(p)=d,
13(d)=1, 14(1)=0p, 14(p)=d —1, t4(d —1)=1, all other elements left fixed. It is then imme-
diate to verify that the map ¢ — o o 1, j=1, 2, 3, 4, defines a bijection between S§"’ and S,
and since T; are even permutations we get

P()= Zoes‘j’ sign GZ;'; 1P oe-rj(l)'
Now for ceS{" we have

;}= 1P0°!j(l)= ‘i’= 1 < l; [Yb Yc(i)] >( ?=1 R l_; < l’ [Yl" YG(tj(i))] > )’
i#1,2,p, i=1,2,p,

d-1,4d d-1,d

and a direct computation shows that

‘;=1 . 1_[ <l, [Yia YG(Tj(i))]> =0

for all leg’. This shows that P=0, and therefore we have

Q=] ¥, sign oB.()].

But we clearly have that P (/) only depends on the restriction of I to b if 6eS$”, because
all [Y,, Yo(n], r=1, ..., d, then belong to b (we use here that ) is a subalgebra and that
ho is an ideal). This proves our claim and ends (i).

(i) We now apply (i) to the same Jordan-Holder sequence f;, but to another basis
Z’ef;\f;—1 (whereby b, and therefore m are not changed), and we get similarly that -
dro(uy)=QuUg)L, where Q, u, are the objects associated with this new basis. ~Setting in par-
ticular Zj= Ad (s)Z;, we get u,= Ad (s)u,, and Q))=Q.s™ ') for seG, and therefore
dno(Ad (s)ur)= Qs ™ &)= | As) I*Q.(g)L.

Now since Z;, Z,, Z,emg it follows that n,cm and from this we get that

(my)ec=(1y)c ® CZ, @ sz.,

It follows that a polarization in m at f; is also a polarization in n at f, hence n= indy;n To.
' Let then ¢ be a differentiable vector in L%(N, =), the space of the induced representation
n= indyn To. We have dn(u,)o(s) = dny(Ad (s~ )u.)o(s) = Q.(g)9(s), seN, so dn(u,)= Q.(g)L.
This ends case (c11).
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Case(c12): (i) Asin case(c11) we start by showing that u,eU(m) and that dny(u,)= Q.(g)I,
and we can assume that (g, Z, ) =0.

Since [fs, f,]=f; we have that Z,, Z,¢hs. Therefore go=CZ, ® CZ; ® he. Just
like in case (c11) we see that 2, 3eJ,. Define Z,=Z,, Z;=Z;,,+a;.,Z,+b;:,Z; for
2<jsm—=2, 2,,_1=2,, 2,,=Z,, where ay, ..., Gy, by, ..., b, have been picked such
thatZe[)c,1<J<m 2. Clearly 2, ..., 2,isabasisforge. Setf;=C2,® ... ® C2;
We have that f, =f, and f, D CZ, ® CZy=Fj4,for 1<j<m—2. Also f,- z—bc, f,,,—gc
We thus have

fl = fla
fj=fj+znb(3 for 1<jsm-2,
‘fm =0c-
From this it follows that I)C:fm_z 5 ... 21 2f= {0} is a Jordan-Holder sequence

for he. We claim it is of class (b). But this follows easily from the fact that f, =f,.
Write e= {j; < ...js}, and define the set J,= {j; < ... <J;} by setting j,=jj+,—2
for 1<h<d-2, j;_;=m—1, j;=m. We then have

Z2; =27 Z; +b;

Jn J';.+2 A s 2

Jd-1 2’
Z}d=2‘j2’

for 1<h<d-2,

Jh+2

Therefore, letting C= [c,;]; <, s<q b€ the d xd-matrix:

a 1

js...a

Ja
C= J3 bjd

1 .

‘1 ,

where the empty entries are zero, we have Z* =2Z_,cZ;, and M., () ="CM())C, where
M.,(}) is the matrix [B(Z: 7 7 )i <rs<a Now det C=1, and therefore we have for leg’
with (I, Z, > =0:

Q.()= | det Me([) |
= l gs‘; sigh 6 € l, [j?‘fp 2;‘0(”] > ... < [Zjd’ Zlc(d)] > l

= 1< 21 Za1> | 3, sign 0 <L (25 230,15 - <b (25 2 D |
€Sq ]

where S¥ is the set of permutations o in S, such that o(d—1)=d, o(d)=d—1.

Set go=g|bh, and let J 30, etc. designate the objects defined relative to the Jordan-Holder
sequence focfic ... cfu_2=bhe Since clearly g,<bh, and b, =g, we find that 1¢Jgo,
and for 4<j<m we have

JElg = Zgfj-1+(8g)c = Zﬁfj— 3+CZ, +CZ3+(g)c < zj— 2€Tj- 3+ () = Jj— 2¢j2,,-
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so jeJ, < j—2eJ0. Therefore, if 2°=J0={70<...<j9_,} we find that +2=j,.,
for 1 <h<d—2, and comparing with the definition of j, we find that ;2 =J, for 1 <h<d-2.
Using this we get for lyeh’:

Qzo(lo)= | det [Bzo(z}f,', 2312)]1 <rs<d-2 |
= | Z Slgn G< lo’ [fo’ Z;cu)] > M < 10’ [zfd—z’ 2;0(4—2)] >|

oeSy-2

=| ¥ sign o (1o, [Z5, 25,1 ... Lo [Z34_ 2300010

oeSY
and comparing with what we saw above we find for leg’ with (I, Z, ) =0:

* Q)= 1<, [Zm Zm-11> P Qaollo),

where lo=1|h.

We then claim that Q,(l) only depends on the restriction of I to ). Assuming for a
moment this to be true, we find that the formula (%) is valid for all leq’. The conclusion
of this is that #Q ()= — (I, W ) < I, W) i#72Q,u(lo), where W = [Z,, Zpn— 1 1= [Z2, Z3 J€f1,
and therefore that u,= — WWu.

Let us then prove our claim: if all Z;, , 1<r<d-2 belong to (ho)c, then the result is
clear (since b is an ideal). Suppose then that there exists 1 <r<d—2 such that Z},ﬂbo)o:a
and let p be the smallest such number r. We then have he= CZ;p @ (ho)c, and
9c=CZ; @kera,. SetY,=Z;+c,Z;,r=1,...,d,wherec,isdefined such that Y,e ker o,
for r+p and where c,=0. We then have Y,e(bo)c for all 1<r<d—2, r+p, while Y,&(b)c,
Y,=2,= Z;d, Yyo1=2p 1= 2;‘,_, €ker a,.

Letting C= [¢,s]1 <,,s<a be the d x d-matrix given by:

[ 1 . i

C= 1 Co+1 ...04_200

1

the empty entries meaning zero, we have Y, = ¢_ 1c,sZ;r, so, setting N())=[B(Y,, Yo } <r.s<4a
we get N(J)="CM,(/)C, from which Q,(l)= | det M (])| = |det M()| = | det N(})|. There-

fore Q ()= lzoesd sign o Py(]) | , where we have set Py()= <1, [Yq, Yoq)1 > ... <1, [Yg Yol )-
Define then the following subsets of S,:

SP= { o] od—1)=pAcd)=d—1 A o(p)=d},
SP={clo(d—1)=d Ao(d=p A o(p)=d—1},
SP={clod-)*pAcd+p},

S =S,\(SPUSPUSS).
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' We then assert that: ceS{Y = P;=0. In fact, observe first that since:
[Yio1, X, ]300 = r=d Vr=p,
and since: [Yy Y, ]$+0 = r=d—1V r=p we have:
P,+0=(c(d—1)=dV o(d—1)=p) A(c(d)=d—1V o(d)=p).
Moreover, if r¢ {p, d—1,d }, then: [Y,, Yo 190 = o(r)d—1 A o(r)+d, hence:
P40 = (d=o0(d—1)V d=o(p) A (d—1=0(d) V d—1=0(p)).

Therefore, if P40 and o¢S{» with e. g. 6(d—1)=p, then o(d)=d—1 and o(p)=d, and
therefore ceS§". Similarly, if o¢S{® with o(d)=p, then P,+0 = ceS{. This shows
our assertion. .

We next assert that P()=) ., sign oP,())=0, where S;=S{PUSP?. To see this, define
" the permutation t in S; by ©(p)=d, 1(d—1)=p, ©1(d)=d—1, all other elements left fixed.
It is then immediate to verify that the map o — o. o T defines a bijection between S{V
and S{?, and since 1 is an even permutation we get P(l)=zcesf,” sign o(P,+P,.;). Now
for ceS{" we have

Pc(l)+Pcot(l) = D < l, [Yi’ Yﬁ(i)] >( l__[ < l’ [Yb Yo(i)] > + l_—[ < l, [Yi, Yc(t(i))] > )a
4=t a1 it
and

,-[! LY, Yol + H <L Y Yoean]D
d—-1,d d—1,d

=L Y Ya1) <0 [Yany, Yol D <L [V Yaoi 1D

+ L [Yy Yaoi1> <, Yoo 1, Yol <L [Ya Y,> =0.

This shows that P=0, and therefore we have

Qe(l)= | Zces'(i” Sign GPO'(I) I s

and since P,(]) only depends on the restriction of I to ) when ceS{® we have proved our
assertion.

Now if m is the nilradical of § it follows from the induction hypothesis that
dmo(uz,)=Qaolgo)l, and since dmno(W)=i{ f, W), and u,= —WWuz we get that

dno(u)= 1< fo, W [*Quolgo)]=Qulg)L,

and this proves (i) in this case.

Suppose then that m is not the nilradical m, of ). Then m=h,~m,, and dim m,/m=1.
Setting M; = exp m, we now face two possibilities (1) either n, extends to an irreducible
representation mp of M; or (2) indyy, To="m5 is an irreducible representation of M;.
In the first case we obviously get as above that drg(u,) = Q.(g)I, and therefore dry(u,)= QgL

®

In the second case we have mj | M=j smods, and therefore we get by the induction
’ M;/M
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)
hypothesis that Q(g)l=dnj(u,)= d(smo)u,)ds, from which d(smo)u,)=Q.g)] for

Mi/M
almost all §, hence for all § by continuity. This shows that dro(u,)=Q,(g)l, and ends ().

(i) Just like in case (c11) (ii) we conclude from (i) that
dng(Ad (s)u,)=Q.(s 'g)l= | A(s) Q)] for all seG.

Now since Z,, Z3eng, and since [m, Z,]=[m, Z;]=0 we see at once that m, =n;,.
Suppose then that p is a polarizationin mat f;. Then, writing Z, =X, +iY,,p; =p @ RY,
is a polarization in n at f, and therefore m= indp ;x5 Ny, Where 1 is the unitary character
on P;= exp p, corresponding to f|p,. Similarly my= indp,y n, where P= exp p,
n=n; |P. We then set n, =RY,, and note that n, is a direct product of m and RY,.
Let m; be the irreducible representation of N; = exp n, with n, | M=mn,,

nt,(exp tY,)=e* <Y,

Then m= indp ;5 n1¥ indy, 1y (indp,yn, N1)= indy 1n7T;. Now noting that N, is a
normal subgroup in N and that clearly dr,(Ad (s)u,)=Q.(g)I for seN, we can end this
case just like case (c11) (ii). This ends case (c12).

Case (c2): (i) Since f, =, we can clearly assume that Z, =X,eg. A standard argument
shows that A, must be a real root in this case, so A,=a,. We claim that it is no loss of
generality to assume that y,=0. In fact, let a,, a,, b be real numbers, not all equal to
zero, such that 0=a,y,+a,y,+ba,. Then (ay, a;)*(0, 0), since a,+0, and we can
assume that a?+a%2=1. Replacing Z, by Z5=(a,+ia)Z,—bZ, does not change Q,, and
it is trivial to verify that [X, X5]=A,(X)Z5+v1(X)Z,, where y|{=a,y;—a;Y,. This
proves the claim. So, from now on we assume that Z,=X,eq, y=v,;, and writing
Z,=X,+iY, we then have

[X, X3 ]1=2,(X)X; + (X)X,

[X, Y2 ] = xz(X)Yz-

Set h= ker y. It follows from the formula (2.2.2) that b is a subalgebra in g, and
its codimension is 1. Set ho= ker o, |h= ker ad Z, |g. o is an ideal in g of codimen-
sion 2.

Let m be the nilradical of b, Since b, is an ideal we have that m=nnby=nnbh.
Observe that dim n/m=1. In fact, pick Weh\h,. We then have y([X, W])=A,(W)y(X)
for Xeg. Choosing X such that y(X)=1 we get that y([X, W])=X,(W)=+0, and this shows
that [X, W] is a basis in n (mod m).

Set f,= f | m=g|m, and let n, be the irreducible representation of M= exp m corres-
ponding to Mf;.

(ii) We first show that u,eU(m), and that dmy(u,)=Q.(g)l. We start by noting that
we can assume that { g, X, > =0; in fact, if necessary replace X, by X, —cXj; this does
not change e, Q,, etc. (it will change v, h, though, but does not affect §o, rank (a5, vy, v2)
and the fact that y,=0).
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Except for some obvious modifications we can now proceed just like in case (c11) (i)."

(iii) Just like in case (c11) (ii) we conclude that dmy(Ad (s)u.)= | A(s) |*Q.(g)I for seG.

Now since X, X,emt it follows that n,cm and from this we get that m, =n; ® RX,.
Therefore a polarization in m at f is also a polarization in n at f, hence = indy;nTo.
We can then end this case just like we did in case (c11) (ii).

Case(c3): Itis no loss of generality to assume that y=0. Infact, there exists real numbers
a,, a, such that y, =a,a,, Y, =a,0,, and therefore y, = a,(1 +ik,) ™ 'A,, v, = a,(1 +ik,) 1A,
Replacing Z, by Z,=Z,+(1+ik,) " Y(a, +ia,)Z, does not change Q,, etc., and we have
X, Z5]=1,(X)Z5. This proves the assertion.

Seth= ker A,. Then }is an ideal in g of codimension 1,soncl. We can now proceed
here much like in case (b), so we omit the details.

Case (d): Suppose we are not in case (a), (b) or (c).

We have [X, Zz]='{((X)Z,, where y+0 and { g, Z; > +0 (since otherwise we would
be in case (a)), and also f,=f,.

Writing y=vy,+iy, we distinguish two subcases: (d1): rank(y;, y;)=2 and
(d2): rank (v,, y,)=1.

Case (d1): Set h= ker y,n ker y,. Then b is an ideal of codimension 2. We then
distinguish two possibilities: case (d11): [fs, f,]=0 and case (d12): [f;, f,]=f;. Wecan
then proceed here much like in case (c1) (the case at hand is easier, since here | is an ideal
containing [g, g]). We omit the details.

Case (d2): Just like in case (c2) we see that we can assume that y,=0. Set h= ker y.
Then ) is an ideal of codimension 1, and we can treat this case much like case (b). We
also omit the details here. This ends the proof of Proposition 2.2.1.

2.3. — We shall now end the proof of Theorem 1.4.1. We use [4], 4.2.2 Théoréme,
p. 121 with y())= | P(})|. It follows from Lemma 2.1.1 that the condition of the theorem
loc. cit. is satisfied. The conclusion is that the operator Am(@)A is traceclass for
all peC2(G), that ¢ — Tr ([An(p)A]) is a distribution (of positive type) on G, and that

Tr ([A(@)A])= L(Ote * @ < exp) " (DQDdBo()).

Here we have also used LLemma 1.3.1.

REMARK 2.3.1. — In [4], p. 248 and [S], p. 118 appear two different definitions of the
function Pg, (cf. section 1.3). Here we use the one from [4] (which is the most natural
one), while the 4.2.2. Théoréme in [5] uses the definition of Pg from [5]. There is no
difficulty in proving 4.2.2. Théoréme with the definition of Py from [4] when { has the
property that () only depends on the restriction of ! to [g, g] which is the case here
(¢f. [5]4.2.3. Remarque).

We shall then identify the operator A: Set G, =kery,, let g, be the Lie algebra of G,
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and let m, be the irreducible representation associated with go=g|g,. Then
n= indg,1GMo, and A is realized on L*G, m,), the space of the induced representation
n= indg,16Mo, by Af(s)=(sg) f(s)= | Psg)| f(s). Now it follows from Proposition 2.2.1
that dmy(u,)=Q.(g)l, and that dny(Ad (s)u,)=Q.(s 'g)I which implies that we have for
a differentiable vector feL%(G, m,):

dn(u,) f(s)=dmo(Ad (s~ ")u,) f(5)=Qus8) f(s)=| Plsg) I f(5)= A f(5),

and thusr dn(u,)=A2.

Now since An(9) < m(x, '¢)A we have that Am(@)A < A’n(y, '¢), and therefore
[An(@)A]=[A%n(x, '9)] from which [A’n(x, '¢)], hence [A’n(@)], is traceclass for
all peC(G), and Tr ([A%n(@)])=Tr ([An(x.@)A])= Tr ([An(p)A]), the last equality being
valid because the distribution ¢ — Tr ([An(p)A ])is supported on G (¢f. [5], [6]). Observ-
ing finally that [A%n(¢)]=n(u. * @), we have proved the theorem.

3. Examples

We shall give a few examples of the calculation of &, Q., u,, Q. for an exponential solvable
Lie algebra g. If Z,, ..., Z, is a Jordan-Hoélder basis for gc we denote by M(g), geg’,
the skewsymmetric m x m-matrix [{ g, [Z;, Z;] ) ]i<ij<m and we write {;= (g, Z;).
The matrices M(g) are all submatrices of M(g). Note that Z=Z’}'=lszj belongs to

(g,)c if and only if M(g)z=0, where z=(z,, ..., z,). We write &= {e;< ... <e,}.

3.1. — Let g be the five dimensional real solvable Lie algebra with the following non-
vanishing brackets: [Xs, X 1= —X,, [Xs, X3]=2X;, [Xs, X21=X,,  [Xa, X31=X,,
[X4, X;]=X;. Then Xj, ..., X5 is a Jordan-Holder basis for g, so g is completely
solvable. We set Z;=X; and §;= (g, X;)> =(; j=1, ...,5

We have
[0 0 0 0 0
0 0 0 =& -¢
M@g={0 0 0 -& -2&;
0& & 0 =&
0 & 2 & 0

i) If £2—2€,£,+0, then g,=RX, and therefore J,= {2,3,4,5}.
i) If £2—2£,E,=0 and &, +0 then

8 =RX; ® R(—&,X,+&:X3) ® R(—E&4X, 52X +8:X5), J,={3,5}.

iii) If £3—2€,E,=0, &, =0 and £;+0, then g,=RX, ® RX, ® R(—£,X;+2£,X,),
J,=1{3,5}.
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iv) If £5—2€,€5=0, &, =0, £3=0 and &,+0, then
g.=RX, ® RX, ® RX;, J,= {4,5}

V) If &§—2&1&3=0’ &1-—_0, §3=07 §4=09 then gg=g9 Jg=Q
We can then write down:

ei=1{23,4,5}, Q.= {g|&3—28:&:+0},

e;={2,4}, Q.= {g|&3—2£,8;=0,&,+0},
e;=1{3,5}, C.,={216,=8,=0,5%0},
es=1{4,5}, Q.= {g]&=8,=83=0,8%+0},
es=0 Q.= {gl&=8=E=E8=0},

Qe,(@)=(63—28:83)%,  w,, =(X3—2X,X,)%,

Q..(8)=&1, u,=—X}%,

Q.,(g)=4E3, U, = —4X3,

Q.(8)=&3, U, = —X3,

Q. (8)=1, U, =1.

3.2. — Let g be the six dimensional real exponential solvable Lie algebra having a
basis X, ..., Xg with the following non-vanishing brackets: [X¢, Xs5]=X4+Xs,
[Xe, X4]=X4—Xs, [Xe, X2]=X;+X3, [X6, X11=X;1 =Xy, [Xs, Xa]=X5, [Xs5, X3]=X,,
[X4 X3]=X;y. Set Z, =X, —iX,, Z,=X;+iX,, Z3=X3, Z,=X,—iXs, Zs=X4+iXs,
Zs=Xe. Then Z,, ..., Zg is a Jordan-Holder basis for g¢, and

0 0 0 0 0 —(l—i)ClT
0 0 0 0 0 -1+,
0 0 0 & & 0
M=l 0 &L 0 -2l —(-i
0 0 G, 2il5 0 —(1+0)Es
it A+t 0 (-G (+0C O

" Writing §;=<g,X;>, j=1,...,6, we have §;=8& —if,, (,=8& +i,; C{3=8&,
Ca=E8s—i8s, Ls=E4+is, Co=Ee.

i) If §;+0, then J,={1,3,4,6}.

ii) If ;=0 (= {,=0), {30, then J,= {4,5}.

iii) If §; =0, {3=0, {40, then J,= {4,6}.

iv) If §;=0, {3=0, {,=0 (= {5=0), then J,=0.
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~ We can then write down:

el={1’394’6}’ Qe1={g|§%+§%*0},

e;=1{4,5}, Q.,={g|&i+83=0,&+0},

es={4,6}, Q,,= {g|E1+&3=0,8,=0,E3+E3+0},

e,=9, Q,,= {g|§1=§2=§3=§4=§5=0},
Q.,()=2E3+E3)%,  u,=2XI+X3)
Q.,(g)=4E3, U, = —4X3,

Qeg(g) = 2(&% + %g), Uey = — 2(X12$ + Xg)a
Qe4(g) =1, Ue,= L
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