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ON THE CHARACTERS
OF EXPONENTIAL SOLVABLE LIE GROUPS

BY NIELS VIGAND PEDERSEN (*)

Introduction

Let G be a connected, simply connected solvable Lie group with Lie algebra 9. In [6]
it was shown that for any normal representation no!G(cf. [11]) there exists a continuous
homomorphism / : G -> IR* such that n has a distribution ^-semicharacter. Moreover,
it was shown that one can find a semi-invariant element u (with multiplier ^, say) in U(9c),
the universal enveloping algebra of the complexification 9^ of 9, such that any normal
representation K whose associated orbit of^? in 9' ([10], [11]) is contained in a certain
G-invariant Zariski open subset of 9', has a distribution ^-semicharacter f^ expressible
by fn^)=^>(^(u * (p)) for (peC^G), ((> being the trace on the factor generated by n (here
it is understood, in particular, that the right hand side is well defined). In [3] J.-Y. Char-
bonnel showed that for each normal representation n of G one can find a continuous
homomorphism %: G -> R*. and an element MeU(9c) such that n has a distribution
5C-semicharacter /^ expressible as before: .^,x(<P)=(t)(7l(M* (?)) ^or ^C^°(G). Here u is
not necessarily semi-invariant; however, dn(u) is semi-invariant, i. e.

7l(s)d7^(M)7^;(5-l)=X(5)-ld7^(4

Suppose now that G is exponential (1) (and therefore, in particular, of type I, cf. [2]).
In this paper we make a construction, depending only on the choice of a Jordan-Holder
sequence for 9^, of a finite set of polynomial functions Q^0,y= 1, ..., n, on 9', a finite
set of continuous homomorphisms ^;: G -> IR*, 7'=!, ..., n, and a finite set a,,
7=1, . . . , n of positive, G-invariant analytic functions on 9 such that, setting

0,={^9'1 Q^)+0,Q,fe)=Oforfe</}
we have:

1) Q^ is G-invariant and 9'=U?=i^
2)Q/sg)==x/5)Q/^) for seG.^eQ,,

(*) Supported by a grant from the Danish Natural Science Research Council (S.N.F.).
(1) G is said to be exponential if the exponential map exp : 9 -> G is diffeomorphism.
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2 N. V. PEDERSEN

3) for any G-orbit 0 contained in Qy the measure QjPo is a non-zero, positive, tempered,
relatively invariant Radon measure on 0 with multiplier ^j (here Po is the canonical
measure on 0),

and such that, letting u?j== 1,.. .,n, be the element in U(gc) corresponding via symme-
trization to the polynomial function g -> Qj(ig) on 9^, we have for the irreducible repre-
sentation n of G associated with the orbit 0 contained in Qy,

4) the operator dn(Uj) is a selfadjoint, positive, invertible operator, semi-invariant
under n with multiplier %p

5) the operator n(Uj * (p) is traceclass for all (peQ°(G),
6) the functional (p -> Tr(7i;(^ * (p)) is a non-zero, ^-semi-invariant distribution on G

of positive type (a ^/-distribution semicharacter for 71), and
7) for all (peQ°(G) we have

(*) Tr(7i(M, * (p)) = [ (a, • (p ° exp)A (OQ/Wo(0,
Jo

where « A » stands for the ordinary Euclidian Fourier transform.
This construction is carried out in sections 1.1,1.2 and 1.3, the theorem is formulated

in section 1.4, and section 2 is devoted to the. proof of the theorem; in section 3 we give
a few examples.

We would like to emphasize the following feature of the formula (*) shared by no other
previously known character formula for (non-nilpotent) solvable Lie groups: once a
Jordan-Holder basis in gc has been selected, all objects in the formula are explicitly cons-
tructible (for a given orbit 0 and associated representation 71), i. e. there is no choice (in
particular of the weight function a,, cf. [9], [4], [5], [6], [3]) involved in setting up the
formula. This, in particular, opens the possibility of using the formula (*) as a starting
point for the pairing between orbits and representations, first established by Bernat ([!]),
for exponential groups, and thus extending to these groups Pukanszky's approach to
the Kirillov theory of nilpotent groups, [7].

In the special case where 9 is nilpotent x/^1 ^d aj=l- Therefore Qj is invariant
on OcQ,, dn(Uj) is a scalar, and the formula (*) then gives that Ai(M,)=Q/0)I and

Tr(7l((p))=]((poexp)A(Orfpo(0,

so (*) reduces in particular to the Kirillov character formula.
The main difference between the results obtained in [3] and the results obtained here

can be subsumed under the following points: i. We exhibit a finite collection of elements
^•eU(gc) to choose from so as to make a formula like (*) valid, ii. we construct such a finite
collection explicitly, and iii. here the functions g -> Qjfe) in (*) are (rather surprisingly)
the polynomial functions corresponding to the u/s via symmetrization.

The polynomials Qj were first considered by Pukanszky in the nilpotent case ([8], [10]).
We also use in an essential way the work of Pukanszky on exponential groups ([9]) and
the work of Duflo-Rais ([5]). Our methods are very different from those of [3].

We conjecture that our results can be extended to arbitrary connected, simply connected
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CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS 3

solvable Lie groups (with the usual condition on the support of the function (p appearing
in the formula analogous to (*), though; cf. e. g. [6]).

I would like to thank prof. L. Pukanszky for useful comments on the first version of
the paper, and prof. M. Flensted-Jensen, as well as the referee, for a very careful reading
of the manuscript which resulted in the elimination of a number of inaccuracies and
obscurities.

1. Preliminaries and formulation of Theorem

In sections 1.1, 1.2 and 1.3 we introduce the notation necessary to formulate our
Theorem in section 1.4.

1.1. — Let G be a connected, simply connected solvable Lie group with Lie algebra g.
Let fj,7'=0, ..., m, be a Jordan-Holder sequence in g<c» i. ^ a sequence of ideals such

that f ;=) f^_ i and such that dim f,=/, 7=0, ..., m.
Let ^ : Q - ^ C be the root associated with the irreducible g-module f//f,-i (i. e.

adX(Z)=^.(X)Z(mod f^_i) for all Zef,, Xeg), and let A/. G -> C* be the continuous
homomorphism with A^(exp X)=e^(x) for all Xeg. We have Ad(s)Z=A/s)Z (mod f,-i)
for all Zefj, seG.

We let G act in 9' via the coadjoint representation. For ̂ eg' we have the skewsymmetric
bilinearform Bg : 9 x g -> R given by Bg(X, Y)= < g, [X, Y] >, X, Yeg. The radical of Bg
is equal to the Lie algebra gg of the stabilizer Gg ofg : 9g = {Xeg | Bg(X, Y) = 0 for all Yeg }.
We let fig : g/gg x g/Qg -> R designate the symplectic form on g/gg arising from Bg by
factorization. We extend g, Bg, etc. in the natural way to gc whenever convenient.

For ge^ we set f/^) = f^ + (gg)c, j = 0, ..., m. We then have a sequence of subalgebras:

9c=fmfe)=:)fm-lte)=^ ... ^fite^fo^^o

and dim f/g)/f,-ife)=0 or =1.
For ge^ we define Jg to be the set { l < / ^ m | f/^)^.-i(^)}.
LetZ^€fj\fj-i, y=l, ..., m. Then Zi, ..., Z^ is a basis in gc» ^d we have

je J , o Z^f,_i+(^)c=f,-i(g).

If ge^ and Jg= {j\ < . . . <^} we have

9c=y^f^fe)^ ... ^f^)^fote)=(9g)c.

In particular Z^, ..., Z^ is a basis for gc ("^odC^g)^ ^d rf=dim g/Qg.
Set ^={Jg|geg'}, and for eeS, set Q^= [ge^ \Jg=e}. Then we have ^=[jee^e

as a (finite) disjoint union. Since clearly J,g=Jg for seG, Qg is a G-invariant subset of 9'.
Let ^e^. If e^ 0 with ^= {j^ < . . . < 7^ } we define the skewsymmetric d x d-matrix

MM ̂ 9', by
M:^)=[Bg(Z,,,Z,J]^^^,

ANNALES SC1ENTIF1QUES DE L'ECOLE NORMALE SUP^RIEURE



4 N. V. PEDERSEN

and let P^(g) denote the Pfaffian of M^). If e = 0 we set M^(g) = 1, and P,(g} =1. The
map g -> ?e(g) ls a complex valued polynomial function on 9', and Pg(g) depends only
on the restriction of g to [9, g]. Pg has the property that P^g)2=det Mg(g). We set
Qefe)= | det Mg(g) | = | Pe(g) I2, g -> Qefe) ls a rea! valued non-negative polynomial
function on 9'.

For eeS we set A^fJ^A;.

LEMMA 1.1.1. — Let eeS. IfgeQ,, then P,(g)+0 and P^s^A^s)-1?^) for all seG.
Proof. — Write ^= {71 < . . . <jd}- Since Z^, .. .Z^ is a basis for gc O^od (9g)c) we

have that M^g) is a regular matrix, hence P^g)2=dei M^)=t=0.
Now writing

Ad^-^Z.^E^Z^+c p̂9

where CpC(Qg)^ we have a^==0 for u>p and app=A^(5~1), and

B^Z,,, Z,J= < % [Z,,, Z,J > = <^, [Ad^-^Z,,, Ad^-^Zj >

= E ^<g,[Z,,,Z,J>^=CAM^)A)^,
M,l;= 1

where A is the matrix [a^]^p^- This shows that ^(sg) = 'AM^)A, and since
det A^n^iA^r^A.Or1) we find that

Pe(^) = P/(M,(s^)) = P/CAM^)A) = (det A)P/(M^)) = A,(s - ̂ (g).

This ends the proof of the lemma.

COROLLARY 1.1.2. — If ge^ then Q^(g)>0 and Qe(sg)= I A^(5) j'^ete) for all seG.
For ee^ we set | e \ = the number of elements in e. We define a total ordering < on ^

in the following way: let e, e'^S. Then e < e' if and only if either | e \ > \ e' \ or d = | e \ = \ e' \
and, writing e = {j\ < . . . <ja } . e ' = {j\ < . . . <ja} J p <jp, where;? = min { | ^ r ̂  d \j\ ̂ fr}.

LEMMA 1.1.3. — Q,== Ueg'|Q^)=0 for e'<e and Qete)+0}.
proof. — If geQe we saw in Corollary -1.1.2 that Q^) =t= 0. If e' < e and | e' \ > \ e |,

then, if e'= [j\ < . . . <j[}, Z^, ..., Z^ are linearly dependent (mod (Qg)c), so M^(^) is
singular, and therefore Q<,<^)=0. If | ^ | = | ^ ' | , and 7i=/i, .. . ,7p=7p» J'p+i<Jp+i.
then Z^^ef^+(9g)c, and therefore Z^,.. . , Z^^ are linearly dependent (mod(gg)c), and
again Qe'fe)=0. This shows the lemma.

Remark 1.1.4. — If 9 is nilpotent our definitions agree with those given by Pukanszky
in [10], p. 525 f. f., cf. also [8]. In [6], section 4.2 a study of the completely solvable
case was initiated.

1.2. — Recall the following facts: there exists an isomorphism © (the symmetrization
map) between the complex vector space S(gc) (the symmetric algebra ofgj, and the complex
vector space U(Qc) (the universal enveloping algebra of g<c)» characterized by the following

46 SERIE — TOME 17 — 1984 — N° 1



CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS 5

property: ifYi, . . . , Yp are elements in g<c, then the image of the element Yi . . . Yp in S(gc)
by © is the element (p ir^aes^ad) • • • ^a(p) ̂  U(9c)» where Sp is the group of permuta-
tions ofp elements. The following lemma is easily verified:

LEMMA 1.2.1. — If Z is a central element in g<c, then O)(ZM)=ZCO(M) for all MeS(gc).
We can identify S(gc) with Pole (9'), the complex vector space of complex valued poly-

nomial functions on g'. IfMeU(g<c) we let P,, be the polynomial on 9' corresponding to G)~ l(u).
The lemma above then says that ifZ is central in g^ and ifueU(gc), then Pzu=PzPu-

For ee^, let u^ be the element in U(g) corresponding to the real valued polynomial
function g -> ^Qg(g) on g'. Note that Ug actually is contained in U([g, 9]), since Qe(g)
only depends on the restriction of g to [g, g].

1.3. — If geg', the weights of gg in g/g^ are of the form ±^1, . . . , ±p,d/2, where
d= dim g/gg, and these weights [ij extend to linear forms, also called \ip on the ideal
t=gg+ [g, g] in such a manner that they are zero on [g, g] (v. [4], p. 248).

Following loc. cit. we set
sin^X)/2)

Ax(x)= W2 'x69'

for a complex linear form X on g, and define the function Po on t by

^(^n^iW-^
where 0 = Gg is the G-orbit through g. This definition of Po does not depend on the
choice of geO.

We set
l_^-adX

7G(X)= det ^ ,Xeg.

JQ is a G-invariant analytic function on g, and if dX is a Lebesgue measure on g there
exists a Haar measure ^ on G such that d[i(expX)=JG(X)dX.

If G is exponential we set for ee^,

TO^n.eJS^X^Xeg.

LEMMA 1.3.1. — (G exponential) Fg is a positive, G-invariant analytic function on g,
extending Po for any G-orbit 0 contained in Qg.

Proof. — The function X -> S^(X) is a G-invariant analytic function on g, and since g
is exponential ^<X)^[R\ { 0 } for 'all Xeg, hence S^.(X)+0 for all Xeg. This shows that
Fg is positive, G-invariant and analytic. Now an easy argument shows that Po(X)^0
for all Xel = gg + [g, g ] (see e. g. [4], p. 264 top; again we use that g is exponential). Therefore

PO(X)= i po(x) [ =n^i i w i -(n^i i s,,(x) HMI"^ i w 1 1 s_,,(x) i ̂ ,
and noting that ^ vanishes on [g, g] and that the weights of g^ in g/gg are precisely

{ ̂  | g^ . . . , X^ | gg} = { ±Hi | gg, . . . , ±^/i I 9g}.

we get that Po(X)=F^(X) for Xef. This proves the lemma.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



6 N. V. PEDERSEN

We set
a^^X^Xr^Xeg

(still assuming that G is exponential). (Xg is a positive, G-invariant analytic function on 9.

REMARK 1.3.2. — Lemma 1.3.1 should be compared with [4], section 4, p. 262-264.
In the exponential case the result loc. cit. is that there exists a G-invariant Zariski open
subset Q of 9' and a positive, G-invariant analytic function P on 9, such that for any
G-orbit 0 contained in Q the restriction of P to l=9g+ [9, 9], geO, is equal to Po. By
Lemma 1.3.1 and Lemma 1.1.3 we can obtain this result by taking Q to be Og for the
minimal element e in <?, and taking P to be Fg. In general the P from loc. cit. will be different
from the one exhibited here. Incidentally, by refining the methods used here can give
a complete solution to the problem raised, and partially solved, by Duflo, loc. cit., p. 263,
mid. However, at present this will not be needed, so we shall postpone it to a later time.

1.4. — Suppose now that G is exponential, and suppose in addition that the Jordan-
Holder sequence 9 c = f m = ) • • • = : > f o = { 0 } has the property that if ]j =1= f,, then f j- i= fj-1
and f , + i = f , + i , l < / ^ m — l (such a Jordan-Holder sequence clearly exists). Set
Xe=|AJ-2.

Theorem 1.4.1. — (G exponential) Let n be an irreducible representation of G, and
let 0 be the G-orbit in 9' associated with n. Let eeS be the unique element such that Qg
contains 0. Then

1) The measure QgPo is a non-zero, positive, tempered, relatively invariant Radon
measure on 0 with multiplier ^ ' (Po ls ^e canonical measure on 0.)

2) The operator dn(Ue) is a selfadjoint, positive, invertible operator, semi-invariant
under n with multiplier ^g (i. e. K(s)dn(Ue}K(s~l)==%e(s~l)dK(Ue)).

3) For any (peC^°(G) the operator n(Ue * (p) is traceclass.
4) The functional (p -> Tr {n(Ue * (p)) on C^°(G) is a non-zero, ^-semi-invariant distri-

bution on G of positive type (a distribution semicharacter for n (with multiplier ^g)).
5) For any (peQ°(G) we have the formula

(*) Tr (n{u, * <p))= f (a, • q> o ex^OO^!)^).

Here we use the notation vJ/(0= ^(X)et<xfl>dX for v|/eQ°(9), !e9', where dX is the

Lebesgue measure on 9 with the property that d^i(exp X)=7'G(X)dX, d\\. being a fixed Haar

measure on G, and 7i(q>)= (p(s)7c(5)d|A(s) for (peL^G).
JG

REMARK 1.4.2. — In the formula (*) above we can instead of a^ use any C00-function a
on 9 with the property that the restriction of a to I =9g-h [9, 9], geO, is the same as the
restriction of (Xg to f.

4° S^RIE — TOME 17 — 1984 — N° 1



CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS 7

REMARK 1.4.3. — It will follow from the proof of Theorem 1.4.1 that the distribu-
tions q> -> Tr (n(Ue * (p)) have a finite order not exceeding 2d+l, where d= \e\.

1. Proof of Theorem

Here we shall for brevity say that a Jordan-Holder sequence 9c=fm:=) • • • ^^0= { 0 }
is of class (b) if it has the property required in 1.4 (i. e. that f^+f^ 1 </^w-1, implies
that f,-i=f,-i and f^=f^), cf. [2] Definition 4.2.1, pp. 78.

2.1. — The purpose of this subsection is to prove the following lemma, from which
part 1) of Theorem 1.4.1 follows immediately.

LEMMA 2.1.1. — The measure P^po is a non-zero, tempered, A<T1 -relatively invariant
(complex) Radon measure on 0.

REMARK 2.1.2. — In the completely solvable case this was proved in [6], section 4.1. d.
The proof loc. cit. does not carry over to the case at hand, so we have to modify our approach.

Proof. — We have only left to show that P^o is tempered, cf. Lemma I.I .I .
(i) Let I be the set of indices 0</^m for which fj=f^. Foryel there exists an ideal Qj

in 9 such that (9j)c=fj-
Set F== {yell./-lei} and r= {ye l \{0} \j-lfi}. Then I = { 0 } u r u r as a

disjoint union, and for yd" we have thaty-2el (since fo, ..., L is of class (b)).
Now since Ag only depends on the Jordan-Holder sequence f^ and not on the basis Z.

we can assume here that the Z'js are constructed in the following way: former, let X^eg^-i,
<md set Zj=Xj. For_/er, pick Z^_ief,-i\f.,-2. Since f ,_ i+ f ,_ i we have that
Z,_ ief,\f,_ i. Set Z,= Z,_ i, and define X,_ i, X, by Z,=X,_ i + iX,. Then X,-1, X, is
a basis for .̂ (mod ^-2), and Xi, ..., X^ is a basis for 9. Let g^, ..., g^ be the basis
dual to Xi, ..., X^.

Fix an element geO, and write e=Jg={j\ < ... <j^}. Set Di = { 1 ̂ k^d \j\€V },
D^= {l^fe^L/^IJk+l^Jg}, Da= {l^k^|^I,A+leJ,},D4= {l^k^d\j\er }.
Clearly {1 , . . . , d } =DiuD2uE>3uD4 as a disjoint union. Observe that if keD^ then
clearly fe+leD^ Conversely, if keD^ then j=j\err^Jy and therefore j -leJg; in fact,
if 7-1 ,̂ then Z,-ief,-24-(9g)c, that is, X,._i-fX/=(9,-2)c+(9g)o implying that
X^.-i, X^.-2+9g; but then Zj=X^_i+fX^e(9^_2)c+(9g)c=fj-2+(9g)c and therefore
y^Jg which is a contradiction. The conclusion of this is that 04= { k+11 keD3 }.

For yd, set Gg= {seG | sg=g (mod 9^-)}. Gg is a closed, connected subgroup with
Lie algebra 9^= {Xe9 | XgeQf } (cf. [9], p. 105, III). Clearly j -^ Qpjel, is a decreasing
sequence of subalgebras with 9^=9 and 9^=9g.

Ifyel', then dim ^-1/^=0 or =1, and 9g~1^9g if and only if jeJy Ifyel", then
dim 9^-2/9^=0, =1 or =2, and dim 9g~2/^==2 if and only ifyj-leJg, dim 9r2/^=l
if and only ify— leJg, y^Jg.

(ii) The following is an adaptation of [9], p. 102-106, II-III to the present situation:

ANNALES SCIENTIFIQUES DE L^COLE NORMALE SUP^RIEURE



8 N. V. PEDERSEN

For feeDi there exists an element Y^ in 9^" ̂ 9^ such that Y^ is a coexponential basis
to 9^ in 9^~1 and such that Y^=^(mod 9^), and for seG^ we have

Ad (5)Yfc=A,,(5- ̂ Y, (mod 9^).

For keD^ there exists an element Y^ in 9^~l\9^+l such that Y^ is a coexponential
basis to 9^+l in 9^~1, and such that Y^=^(mod 9^+1) (to obtain this it can be neces-
sary to change X^, X^+i in a way that only affects Z^, Z^+i by multiplying them by
a factor of modulus one), and for seG^1 we have Ad(s)Yk=A^(s-l)Yfc(mod 9^+l)
(so in particular A^(5~1) is real).

For keD3 there exists elements Y^, Y^+i in 9?-lWhl such that ̂ ^J^d Qh+i\
^k+l8=gj^Amod 9tk+i)» such that ̂  ^+1 is a coexponential basis to 9^+l in ^k~\
such that ^(Yfc)=^(Yfc+i)=0 and such that

exp t^k exp rk+iYfc+i = exp (4Yk+4+iYk+i)(mod G^^1)
= exp tfc+iYfc+i exp ^Y^mod G^1).

For seG^^ we have Ad(s)(Yfc+lYfc+l)=A,,(s-l)(Yk+lY^l)(mod(9^+l)c).
(hi) The map ^ -> 0=Gg given by

(*) (ti, . . . , ^) -^ exp tiYi . . . exp ^Y^

is a differeomorphism. We shall compute the canonical measure Po in terms of the
coordinates t=(t^ . . . , ^).

Let 0) be the canonical symplectic form on 0. Via the natural correspondence between
9/9g and the tangent space to 0 at g, ©g corresponds to Bg.

LEMMA 2.1.3. — For a Po-^egrable function / on 0 we have

f fWo(I)=C \ /(exp riYi . . . exp t^)T\ I A^(exp ^Y,) | dt, .. .dt^
Jo Jo^ k< r

where C=((2<Q,(g))-i.
p^qy; — Denote by o tlie inverse of the map (*). a is a global chart and

/(Odpo(0=(27i)-^2 f /(a-Wa-W,f/(0dpo(0=(27^)-d/2[

where 9(0=(det Sj)^ Si being the skewsymmetric matrix Si= [o)i(8/9t^ 8/8Q}^^^
([9] Proposition 4, p. 99).

Now 0) is G-invariant. Therefore, writing s= exp tiYi . . . exp ̂  and l=sg,
we have

^i({8/8Q^ (8/8Qi) = (o /̂a^g. (3/a^y
o^(Y(5~1) * (S/8Q^ y(s-1) ^ (3/5r^),'^gUV3 / * V^/^^M/Sg?

where y(s); ; -> si Let us then compute y(5~1) ^ (8/8Q^:

4e S^RIE — TOME 17 — 1984 — N° 1



CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS 9

For a differentiable function (p we have

y(5-1) „ (a/aa,(p=(3/aag(p ° r(^-1)
= ̂ (P^a-^+T"))!^ (^=(8^)^^)

d
= ,(p(exp -^ ... exp -riYi exp t^Yi . . . exp (r«+T)Y^.. .exp^Y^k=o

rf
= —(p(exp -t^d • • • exp -^-nY^i exp rY^ exp ^+iY^i ... exp ^Y^) |,=o

flT

= , q)(s^1 exp TYA^) |t=o = , <P(exp T Ad (s^ ̂ Y )̂ [,=o,

where we have set s^= exp ^+iYy+i . . . exp t^^ u<d, s^e.
The conclusion of this is that Sj=[Bg(Ad (̂ - ̂ Y^, Ad(5^1)Y^)]l<^^d• Since Yi, . . .,Yd

is a basis for 9 (mod gg) we can write

Ad^Y^^a^+c,

where Cyegg, and then S^^ASgA, where A is the matrix [ciuv}i^u,v^d-> so Aat
9(0=|detA|9(g).

We shall then find det A: for ueD^ we have that s^eGg", so Ad (5,7 ̂  = A^Js^ (mod gg"),
implying that ^uM=A^(5j, while a^=Q for M<I;. For ueDa we have

Ad (5,- ̂ Y^A^JY, (mod ̂ +1)

implying that a^=A^(sJ=| A^j(5j [ , while ^u^O for M<I;. For ueD^ we have

Ad(5,-l)(Y,+fY,^)=A^J(Y,+fY,^)(mod9^+l),
implying that

Oyy ^MM+l I A / \ l2det = | A^(s^) |2,
L^U+IU ^U+lM-l-lJ

while flut,=0 and ay+iy=0 for v>u-\-\. It follows that

detA= ft |A,,(5j|-n |A^)|2.
ueDiuDi ueDa

Now for ueDa we have

A,j5j=A,Jexpr,-nY,-n . . . exp^)
=A^(exp^+2Y^+2 • • • exp^)=A^(exp^+2Y«+2 • • • exp^)=A^^(5^i),

so | A^(sJ | = | A .̂̂  ̂ +1) |, hence det A = [];!= 1 1 A^(5j | = ]~[i <u<r^d I A^(exp r,Y,) [.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Finally, a simple computation shows that det Sg= det [Bg(Y^, YJ]i^^=Qe(^)~1. This
ends the proof of the lemma.

(iv) For K/'^m we define the function Sj by

S/^i, . . . , ( < , ) = < exp tiYi . . . exp ^Y^, Z, > .

We consider S^: arguing like in [9], p. 106 we find for fceDiuDa:

p1^ ry \-i
S,,(ri, ..., t,)= ——-v-^ nA^(exp W-^S^ ..., r,-,, 0, ..., 0).

~^jk{<lk) r<k

and for keD4 we find

S î, ..., ̂ )=(tk-i+^) Jl A,,(exp r^^+S^i, ..., ̂ -2, 0, ..., 0).

(v) For a real number n>0 we set M(n)= (l-hx2)""72^. We have 0<M(n)< +00
and M(n)< +00 if and only if n>l. t/IR

LEMMA 2.1.4. — Let a, a, P be real numbers with a>Q, a=t=0, and let c, k be complex
numbers with fc=|=0. We have

(*) f ̂ L | kp(<t+w-r\2}~n/2eatdt<
( f l l l w I ) \ai\\k\a(n-l)f29

^/Wi I I I I

f - ., M(n)M(n-l)
(^) (a+ | k(5+f0-c l2)-"/2^^ , , ̂ .

JlRi |K | fl

py.̂  — Obviously we can assume that k>Q. Writing k~lc=bei\ fc^O, yelR we have

((a+\ke(a+i^-c\2)~nl2evtdt= [(a+k2\evt+w~y)-b\2)~n/2e(ttdt

< \(a-{-k2\eat-b\2)~n/2eMdt

C^
=|a|-1 (a^k2\x-b\2)~n/2dx

Jo

< \^\~l\(a+k2\x-b\2)~nf2dx

= \QL\~l\(a-{-k2x2}~n/2dx

M(n)
=^\ka(nz~w'

This proves (*). Similarly for (**).
(vi) We shall then prove the temperedness of the measure Pgpo. First observe that

4' S^RIE — TOME 17 — 1984 — N° 1
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(-»• CQ"=i I < I, Zj > l2)^ || 11| is a norm on 9'. We must show that we can find n>0

such that (1 + 111112)-"/2 | P,(Q | dpo(0 is finite. We have, using Lemma 2.1.3:

[(l+IIW^IP^I^O

C |P,(expfiYi ... expf,Y,g)| ,-,
=CL(l-H|exp^...exp^||^ n 1 AA(exp trYr) IAl • • • ̂

-. niA,,(expt,Y,)|-1

^•To^.i^....^^^-^
, niAA(expt,Y,)|-1

^^(ITTb^-^w5''----^
k^Ds

Suppose first that deDiuDa. Then (assuming that ^(Yd)+0)

S^i, ..., t,)= dwYd)""1 nA,,(exp r^^+S^i, ..., t,.,, 0),
-AJd(Yd) r<d

and the last integral is equal to

(In)-'12 f n I A^exp ^Y,) | - ̂  . . . A,- J F(ri, ..., t,)d^
JlRd-l r^k^d-1 JIR

where
F^ ^._________n^JA,,(exp^)|-1_________

19 "" ' (l+Z^I|S^,...,r,-„0)|2+|S,^,...,t,) |2)n/2•
k^Ds

Applying Lemma 2.1.4 with a=l+ Z^i|S^, ..., ^-i, 0)|2, a+fp=-^,(Y^),
ND3

k= -V^nA^exp r,Y,)-1, c= -S^i, ..., t,,,, 0)-^,(Y,)-l^A^exp (,Y,)-1

r<d r<d

we find that

f C^ • M(n) _____ 1
r^' • • •' w-w'^'(l-^ Zr=iis,(^ ...,^,o)lT-l)/2'

t^Ds

where C<,= | X^(Yd) | (| Re (̂Y<|) | )~1 (note that since Q is exponential the non-vanishing
of \,.,(Y<|) implies the non-vanishing of Re (^(Y^)), and therefore

[(i+impp^ip^idMo
. „ . ^Q-M(n) f J^IA^exp^r ^
( ) " W '^-(i+^tis^,...,^^)^-^ ^ • • • A d - 1 -

ND^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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If ^(Y^)==0 a simple change in the argument shows that the same relation is valid
withQ=l (cf. below).

Suppose next that deD^. Then

S,,(ri, . . . , ^)=(^-i+^) PI A^(exp ^Y^+S,^, ..., ^_2, 0, 0),
r^d-2

and therefore we find as above that

[(l+\\l\\2)-n/2\Pe(l)\dW)

^(27l)-d/2 | ]"[ ^h^P Wdt, ... A,-2 [ F(ri, ..., ̂ -A
J[Rd-2 r^k^d-2 JUS2

where now
-/. .,_________ni!r?|A,,(exp^)|-2_________
nrl9 • • - td) (i+ ̂  | s,̂ ,, ..., t^ 0, 0) l̂  | S,(̂ , ..., Q I2)-/2

ND3

(here we have used that | A^ | = I A^_J and that

^,_^-0=^,(Y,-0=^_,(Y,)=^,(Y,)=0).

Applying the relation (**) in Lemma 2.1.4 with a=l+ E^=2 | SJ^i, . . . , ^-2, 0, 0) |2,
fc^Da

fe=^d=2A^(exp ^Y,)~1, and c= -S^i, .. . , ^-2, 0, 0) we find that

r M(n)M(n-l) ___________1___________
J^F(r,...,^.^< ^^ . Z^?|S,(^...,^,0,0)|T-2)^

t^Ds

and therefore

fa+imiT^iP^oi^oC')
M(n)M(n-l) f ^-.1 AA(exp trYr) rl ,

(**) < (2n^ •L.(1+^:?|S,(^...,^.0,0)|T-2)/2 1 • "2-
k^Ds

Repeating these two methods of estimation on the new integral (*) or (=N= =ti=) we find that

f (1+||! H2)-"/2 | P,(!) I ̂ 0(0^(271)-^^) . . . M(n-d+l)C, . . . Ci<+o)

for n>d. Here C^= \ ̂ (Y^) |( | Re ^(Y^) |)-1 if ^(Y^+O, and 0=1 if ^(Yfe)=0.
This ends the proof of Lemma 2.1.1.

2.2. — The purpose of this subsection is to prove Proposition 2.2.1 below.
Let n be the nilradical of 9, and let N be the analytic subgroup corresponding to n.
We have [9, g]c:nc:g, and therefore u^V(n).
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PROPOSITION 2.2.1. — IfgeU, and if n is the irreducible representation of N corres-
ponding to the orbit 0=N/, where f=g\n, then

dn(u,}=Q,(g)L

REMARK 2.2.2. — Even in the special case where 9 is assumed to be nilpotent (and
therefore 9=n), Proposition 2.2 .1 provides a new result.

Proof. — The proof is by induction on the dimension of 9. The proposition is clearly
valid for dim 9 = 1 (in which case e = 0, and Q, = 1, u, = 1). Assume then that the propo-
sition has been proved for all dimensions of 9 less than or equal to m -1, and that dim 9 = m.
The case e=0 being trivial we can assume that 6?+0, and write e= {j\< . . . <j^}.

Case (a): Suppose that there exists a non-trivial abelian ideal a in 9 such that g \ a=0.
Let A be the analytic subgroup of G corresponding to a. We have a en and setting
9 =9/a,n =n/o is the nilradical of 9. We set f^.+^c, O^m, and let c : 9 -> 9/0
denote the coset map. Then we have the diagram

^L^L-i^ ... ^ f i^ fo={o} ,
and dimjyf,_i=0 or =1. Set 1= { l</<m | f,^f,_i }, write 1= {i,< . . . <^},
and set f,=^., l^j^m\ We then have a Jordan-Holder sequence in gc:

9c=L=^L'-i^ . . . ^ f i ^ f o = { 0 }

which is immediately seen to be of class (fc), and setting Z,=c(Z^.) we have that

Z,.ef,\f,_ i,y=l, . . . ,m' .

Define 969' by Q o c ^ g and f=g\n. We have 00:9, and 9g^/a. Moreover,
jeJ, => yel, sincey^I => f, c: f,_, + o^ c: f^._, + (9^ => y^. Writing

e=h={Ji< • • • <7d}

we have J,= {ij, < . . . < ̂  } = [j\ < . . . <^ } For Te 9' we then have with / = T° c:
Q,(0= |det [B,(Z,,, Z,J],^^,| == [dot [B,(Z,^, Z,^)]^^^|

= |det [B7(Z^, Zjj]^^| =Q^7).

This shows that the canonical image of u^ in U(cj) is precisely M^ (eU(n)). Now the repre-
sentation 7i is trivial on A, so there exists an irreducible representation n of N=N/A
such that 7i o (c | N) = TC, and the orbit of n is N/. But since geQ.^ we have dn(u^= Qg(i)I
by the induction hypothesis, and therefore ^(Me)=^S(^e))=rf7c(M^)=Q^)I=Q^)I.
This ends case (a).

Case (b): Suppose that we are not in case (a) and that ̂  4:0.
Write Zi=Xi+fYi andseto=tRXi+RYi. Then o is an abelian ideal (of dimension 1

or 2), and g | o^O (since otherwise we would be in case (a)), and therefore < g, Z^ > + 0.
Since G is exponential we can write ^(X)=ai(X)(l+ffei), where oci is a real linear

form on 9, and where fei is a real number.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE
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Set t)= ker ^i (= ker ai). I) is an ideal in 9 of codimension 1 with [9, g]cncl),
so the nilradical of 1) is n. Clearly Ziel)c. Set p= min {1 </^m | Z^c }• ^ is well-
defined and /? ̂  2. We observe that p^Jg = ̂ . In fact, suppose p^Jy Then Z^Efp-1 + (Qg)o
and therefore 0+ <g, [Zp,fi]> = <Z^,f i> = <fp - ig , f i> = <g, [ fp- i , f i ]> =0, which
is a contradiction. Also leJg, since otherwise Zie(9g)c, and therefore

0=<^, [9, f i ]>=<g,f i>+0.

We also note that gg c: I), sinas otherwise 9 = 1) + gg and therefore 0 = < g ^ , f i > = = < ^ , f i > = l = 0 .
Set ^j=Zj for 1</^--1, tj=Zj+^+Cj+^Zp for p^j^m-1 and Z^=Zp. Here

Cj, ̂ +1^7^m, is defined such that Zj+c,Zp6l)c. This is possible since CZp © t)c=9c-
Clearly 2i, ..., 2^ is a basis in go-

Set f /=CZi © ... © CZj. For O^j^p-1 we have that f,=f^. For ̂ -1 ̂ j^m-1
we have f ,©CZp=f /+ i , hence

f,=f, for O^'^-l,
fj=fj+i^c for 7?-l</^m-l,

fm=9c-

From this it follows that fjj =0, ..., m, is a Jordan-Holder sequence for gc with f^ -1 = I)c.
We claim it is of class (b). In fact, since fp-i=fpnl)c and fp- i=fp- i it follows that
fp- i=fp- i» B^ from this it is immediate that the claim is true. We thus have a new
diagram

Qc^L^fm-l^ • • • =3 11=^0= {0 } .

II
I)c

The objects defined relative to this new Jordan-Holder sequence are designated Jg, ̂  etc.
For l^j^p—1 we cleairly have je Jg <^ 7'eJg. Furthermore ;?€jg (s^ above) and

meJg. In fact, if m^Jg, then Zp=Z^-i+(9g)c=l)c+(9g)o and therefore

0+<Z^,f i>=<^,f i>=0.

For p -h 1 ̂ '̂  m we have

^Jg ̂  Z,€f,-i+(9g)c o Z,€f,-2+CZ^+(^)c
<=> 2,_ief,-2+CZp+(9g)c o Z,_ief,-2+(9g)c

(since ggC:!)) <» 7-l^Jg. Therefore, ifj\=p we have^=^ for l^/i^a-l,j,,+l=7h+i
fo ra^h^d—land jd=m,so

Z;,=Z^ for l^h^a-1,

4-Z^+^A for a<^^-l,

Z.=Z^

4® SERIE — TOME 17 — 1984 — N0 1



CHARACTERS OF EXPONENTIAL SOLVABLE LIE GROUPS

Therefore, letting C= [c,Ji^,^ be the dxd-matrix:

" 1" 1

• 1
Qa+l • • • cjd

1

• 1

1C==~

15

where the empty entries are 0, we haveZ^=E;LiC^Z^, and therefore M^Q^CM^QC,
with e= 3y Now det C=( -1)", so det M^(Q= det Mg(f), and Qe(0= Q^(0, and therefore
Ue = u^. The conclusion of this is then that we can assume that fw- i= t)c? and this assump-
tion will be in effect from now on. We then have:

Q,(0=|det[B,(Z,,,Z,j]i^,|
= | E sign a < ;, [Z,,, Z^J > . . .< ; , [Z,,, Z,,J > |

oeSd

= | < J, [Z,, ZJ > |2 . I Z sign a < ?, [Z,,, Z,^^] > . . .< ; , [4.,, Z,,̂ .J > |
oeSS

where S? is the set of elements creS^ with <7(I)=d, cr(d)=l.
Set go=g\ I). Then /=^oln• We designate the objects associated with the group

H=expl) ,and the class (b) Jordan-Holder sequence ^)c=fm-l::::) • • • ^ f i^fo^O}
by J^, etc. We have (t)Jc=(!9g)c © CZi, so J^o=Jg \ { 1, m }, and therefore

J?o={^< ... </?-2}

with7?=7\+i for l^/ i^d—2, so we have for let)':

Q,o(0=|det[B,(Z,p,Z^)]^,.^-2l
=| E sign a < ;, [Z ,̂ Z,g^] > . . .< ; , [Z,g.̂  Z^.J > |

0€S(i - 2

=| £ sign a < ;, [Z,,, Z,,,̂ , ]>. . .<; , [Z^_ „ Z, ̂  J > |
oeSd-2

= | £ sign a < ;, [Z,,. Z,,.,,] > . . . < ! , [Z,,.,, Z,,.,.J > |,
CT6SS

and comparing with the result above we get Q^(Q= I < I, W > ^Q^o), where W= [Zi, ZJ
and ;o==< 11). Now since W is central in l)c and since Pw(0= < /, W > , Pw(0= < I, W >
we find that fU(0= -Pw(OPw(0^~2Q^(^o), and therefore u,= -WWM,o by Lemma 1.2.1.
By the induction hypothesis we have that ^c0^o)=Q,,o(^)I, and noting that

d 7 i ( W ) = = f < ^ W > I , ^ ( W ) = f < ^ W > I

we finally get ^(u,)= | <^, W > |2^(^o)= | <^, W > |2Q,o(g)I=Q^)I. This settles
case (b).

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



16 N. V. PEDERSEN

Case (c): Suppose we are not in case (a) and (b) and that ^^O-
Again we have <^, Zi > =1=0 and, moreover, Ti=fi (since fi is a central ideal in 90).

We write [X, Z2]==X2(X)Z2+7(X)Zi, Xeg, where 7 is a (complex valued) linear form
on 9. The linear form y has the form y(X) ==yi(X) + ̂ (X), where yi,y2 are real linear forms
on 9. We extend \^ y to complex linear forms on 9^ svic^ ^at we have

[Z,Z2:|=^2(Z)Z2+7(Z)Zi for Ze9c.
We note the formula

(2.2.2) y( [Z, W) ] = 7(Z))i2(W) - y(W)^(Z)

for Z, We9c, which we get by a simple application of the Jacobi identity.
Since G is exponential we can write 'k^(X)=^(X}(l+ik^\ where 03 is a real linear

form on 9 and where k^ is a real number.
We then distinguish three subcases: (cl): rank (o^, yi, 72) =3. ^2): rank (o^, Vi, 72) =2

and (c3): rank (02, Yi, 72)= 1.

Case (cl): Set t)= ker 7in ker 72 (= ker 7 | 9). It follows from the formula (2.2.2)
that I) is a subalgebra in 9, and its codimension is 2. We observe that Zel)c if and only if
7(Z)==0 and 7(Z)==0. Set l)o= ker ̂  \ l)== ker 02 11)= ker adZ2 | 9. bo is an ideal
in 9 of codimension 3. That l)o is an ideal in 9 follows from the fact that

I)o= ker 70 ker ̂ ^Q

and by applying the formula (2.2.2).
Let m be the nilradical of t)o. Since l)o is an ideal we have that Tn=nnl;)o=nnt).

Observe that dim n/m=2. In fact, pick Wdt)\I)o. Then we have that

7([Z,W])=?i2(W)7(Z) for Ze9c,

and therefore 7( [Z, WJ) = ̂ (W)7(Z). Choosing Z such that y(Z)=l, y(Z)=0 and Z'
such that 7(Z')=0, 7(Z')==1 we get that

7([Z, W])=?i2(W)+0, 7(TZ7W])=0, 7(-[Z77W])==)l2(W)+0,,7([Z', W])==0,

and this shows that [Z, W |, [Z', W] is a basis in He (mod me).
We claim that f2+f2 . In fact, we have [Z, Z2]=UZ)Z2+7(Z)Zi for all Ze9c, and

therefore [Z, Z2]=^2(Z)Z2-l-7(Z)Zi. Since ^2 does not vanish on I)c we have that
[t)o f2 ] = CZ2 and [t)c, f2 ] •-= CZ^ Therefore, if f2 = f2, then CZ2 = GZ2, hence 7(Z) === 0
implies that 7(Z)=0, so l)c is the set of Ze9c such that 7(Z)=0, contradicting the fact
that codimt)==2. We conclude that f2=l=f2» ^d therefore that f i = f i and f3=f3. In
particular Z^i'

We have seen that Zi, Z^, Z2 span f3. Now since ^2(Z2)=0 we have that a2(Z2)==0,
and this means that [Is^l^fi- We then distinguish two possibilities: case (ell):
[f3,f2]=0 and case (cl2): [f^Mr
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Set fo = f | m=g | m, and let TI() be the irreducible representation of M = exp m corres-
ponding to M/o.

Case (ell): (i) It is our first aim to show that ^eU(mc), and that dno(u^)=Q^g)L We
start by noting that we can assume that <g, Z^ > =0; in fact, if necessary replace Z^
by Z2-cZi; this does not change e, Q^, etc. (it changes y=y^+fy2 , though, but does
not affect t)o and rank (03, yi, 72))-

Set/?= min { 1 </^m | Z^}. p is well-defined, and 4<p^m-1, since Zi, 73, Z3el)c,
and since the codimension of ̂  is 2. Set g= min { l</^m|Z^CZp © t)c }. q is
well-defined and 5 <p +1 ̂  ̂  ̂  m (so dim 9 > 6).

We first note 2, 3eJg. In fact, if 2^, then Z^efi +teg)c, and therefore

Y ( Z ) < g , Z i > = < ^ , [ Z , Z 2 ] > = < Z 2 ^ , Z > = 0 forall Zegc

which is a contradiction. So 2eJ,. If 3^J,, then Z^ef^ + (9,)c, i. e. Z^ = aZ^ (mod (g,)c),
aeC. But then

yW<g,Zi> = <g, [z, z^] > = <z^, z> = ̂ <z^^, z> = ̂ y(Z)<g, Zi >
which contradicts the fact that codim 1) = 2, so 3eJg. We also note that l^Jg, since fi c (9^.

Next we note that p, qe],. In fact, if^Jg, then Zp6l)c+(9g)c and Z^c+(9g)c, and
therefore

-y(Z^) < g, Z, > = < g, [Z^, ZJ > = < Z ,̂ Z^ > c: < t)̂ , Z^ >

=<^ [t)c,Z2]>=<^,CZ2>=0,

so y(Zp)=0 and similarly y(Zp)==0 implying that Zp€t)c, which is a contradiction. There-
fore /?eJg. Suppose then that ^Jg. Then Z^eCZp+t)c+(Qg)c, i. e. there exists aeC with
Zq = aZp(mod (l)c + (Qg)c)). But then

-y(Z,) < g, Zi > = < g, [Z^, ZJ > = < Z ,̂ Z^ > = a < Z ,̂ Z^ > = -ay(Z^) < g, Z^ >,

from which y(Z^)=ay(Z^). Similarly ^Zg)=ay(Zp). Now consider the linear map
from Qc to C2 given by Z -^ (y(Z), y(Z)). The kernel is t)c, so it is surjective since
codim t) = 2. But Zp, Zq is a basis for gc (mod t)c), and we have just shown that the images
of Zp and of Z, are linearly dependent; in fact, (y(Z,), y(2y)=a(y(Zp), y(Z^)). But this
is a contradiction, and we conclude that ^eJg.
^ Define 2,=Z, for l</<p-l, Z,=Z^i+^+iZp for p^j^q-2 (empty if^=^+l) ,
Z,=Z,+2+^+2Zp+fc^2ZJor^-1^7^m-2,Z^-i=^Zp+foZ,,Z^=^Zp+fc'Z,, where
^p+i» • • . , ^g-i, ^+1, . . . , a^, bq+^ . . . , b^ has been picked such that Z^c, 1 </^m—2;
this is possible since Qc=t)c © CZp © CZ^. The numbers a, fc, a', fc'eC has been selected
suchAat afc'-a'fc=l, and such that <^, [Z,_i, Z^] > = 0, <^, [Z,_i, Za] > + 0,
<^, [Z^, 2:3 ] > = 0, < g, [Z^, Z2 ] > +0 which is possible by a reasoning as above. Clearly
Zi, . . . , Z^ is a basis for Qc. Set f^=CZi © . . . ® CZ,. For Q^j^p-l we have
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that f,=f,. For p-l^j^q-2 we have that f ,eCZp=f^i and for q-2^j^m-2
we have that f, C CZp C CZ,=f,+2. Also L-2=l)o L==9c. We thus have

f,=f, for 0</<p-l,
f/=fj+i^c for p-l^j^q-2,
fy=f^+2^t)c for ^-2</<m-2,

fm=9c-

From this it follows that

t)c=fm-2^ ... ^ f l=>fo={0}

is a Jordan-Holder sequence for t)c (but note that fo, ..., fm is not necessarily a Jordan-
Holder sequence for gc? smce I) is ̂ t necessarily an ideal in 9). We claim it is a Jordan-
Holder sequence of class (&). To see this, observe that fp- i==fp- i , since fp- i=fp- i
and fp-i=fpnt)c, and iq-2'-=^q-2. since f^-2=^-1 ̂ t)c Bnd ^-2=^°^ and from this
it follows easily that f,, y=0, ..., m—2 is of class (b).

Write e= {j\< . . . <7d}» and letj^==p, j^=q with l^a<^P<rf . Define the set
J g = = { 7 i < • • • <Jd } by setting 71=71, ..., ^-1=^-1, 7^=A+i-l for a^h^P-2,
Jh=7h+2-2 for P-l^/i^d-2, 7d-l=m-l» 7d=^- We then have

2;,=Z^ for l^h^a-1,

^J^^H^+^.A, ^ a^^P-2,
2;H= .̂.+ .̂̂ +b,,̂ Z,p for P-l^^d-2,

2L-l=az^+fcz^
Z^Z.+b'Z,,.

Therefore, letting C= [^rs]i<r,s<d be the dxd-matrix:

1 .

• 1

a P-2
i I

aJ.^ ' " ^p-i
1

• 1

P-l d-2
1 I

^i • • • ̂

^•?+i • • • bld
1

• 1

d-\
[

a

b

d
I

a'

b'

C=

P-

where the empty entries are zero, we have ^=£{LiC,.,Z^, and I$[e(()='CMe(J)C, where
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iCUO is the matrix [B,(2 ,̂ ̂ ,)}^r.^- Now det C=(-iy^, and therefore we have
for tec)' with < ?, Z; > =0:

Q,(0=|detM,(01=|detM,(0|
= | E sign CT < ;, [Z;,, 2;,,J > . . . < ? , [2 .̂ 2;,,J > |

oeSd

=!<;, [^J^K/, [23,2^_J>|2

. | E sign a < ?, [2;,, 2^.] > . . . < / , [̂ ., 2 .̂J > I,
<T6S»d

where S? is the set of permutations <j in S^ such that o(l)=rf, or(2)=d-l, a(d-l)=2,
a(d)=l.

Set go =g 1I), and let ? ,̂ etc. designate the objects defined relative to the Jordan-Holder
sequence focf ic . . . c=f^_2=:^. Since clearly g^c:I), and (Uc=(9g)c+CZ2+CZ3
we find that 1, 2, 3 ,̂ and for 4^j^p-l we findyeJ^ <s> jeJ,. For p+l^j^q-2
we have

^J, o Z^f,-^+(^)c ^ Z^.-2+CZ^+(9,)c ^ Z,_ief,-2+(t)Jc ^7-leJg°o.

so yeJg <=> j— leJ^o. For g +1 ̂ y^ m we have

^J, ̂  Z^f,-i+(9,)c ̂  Z,4_3+CZ^+CZ,+(Q,)c o 2,-2ef,-3+(^)c ^7-2^J,°o,

soyeJ, o7~2eJ^. Therefore, if ^°=J^={y;< .. . <j°^} we find that J^=h^
for l^/i^a-3, }?+1=A+3 for a-2^/i^P-4, ^+2=^+4 for P-3^/i^d-4, and
comparing with the definition of/,, we find that ]^=jh+2 fo1" l^^d—4. Using this
we get for IQ^'.

QJ?o)= | E sign a < ;o, [Z^, Z^J > ... < ;o, [Z^ ̂ -^ > I
crcSd - 4

=| E sign a < ;o, [4. Z .̂,,J > ... < /o, [2;,.,, 2 .̂,̂ J > |
oeSd-4

= | Esign a < ;o, [2;,, 2;,,,.] > ... < ;o. [Z .̂,, 2 ,̂,.,,] > |,
CT6S3

and comparing with what we saw above we find for teg' with < /, Z^ > =0 and lo=l\t):

(*) Qe(0= I < ', [Z2, Z,] > |2 | < ?, [Z3, Z,_ J > ̂ Q^o).

Let us now observe that the nilradical of 1) is m. In fact, since Z^et), ^-2 11) is a root
for 1), and therefore the nilradical oft) is contained in l)o and consequently it is precisely m.

Write Z2=X2+fY2 and set 6=^X2 © HWz. Then b is an ideal in t), and g\b=0.
Let c : t) -^ I)/b=t) be the coset map and define io^l)' by ^o °c==go.

We now claim that Me6U(m),i. e. that Qg only depends on its restriction to I) (and therefore
to m). Assuming for a moment this claim to be true, we consider Qg as a polynomial
function on I)' and get for To6!)' (using the formula (*)):

Q.(/o ° c)= | < /o, Wi > |2 I < ;o, W2 > I^To ° 4

where Wi=c([Z2, 2^,]), W2=c([23, Z^_J). Now since Wi ,Wi ,W2,W2 are central
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in 1) and since Pw,(<o)= < Wi, ? o > , Pw,(<o)= <W^, ; o > , and similarly for W^, we
find that ^Qe(<o ° ̂ =Pw,(?o)Pw^o)Pw,(To)Pw2(^~4Q^(To o c), and therefore

c(u,)=WiWiW,W,c(u^)
by Lemma 1.2.1.

Since b is an abelian ideal in t)o and since < fo, b> =0 there exists a representation
So of M=M/B, B=expb, such that fto ° c='n;o. Using the induction hypothesis we then
get _ ^

^o(^)=^So(^))=rf%o(WiWiW2W2C(M,o))= I < /o, Wi > |2 I < /o,W2 > Î Tlo^o)

= I <g, [Z2, ZJ > |2 I <g, [Z3, Z,_J> PQ^o^Qete)!.

We have thus shown that <^o(uJ=Q^)I. This ends case (ell) (i), except for the fact
that we have to prove the claim from above:

Proof of claim: We shall prove that Qe(f) only depends on the restriction of ( to I). If
all Z;̂ ., 3^ r^d—2 belong to (t)o)c, then the result is clear (because I)o is an ideal). Suppose
then that there exists 3 ̂  r ̂  d — 2 such that Z;^(t)o)c5 and let p be the smallest such r. We
then have t)c=C2;p © (t)o)c, and 9c=CZ;p © ker 02. Set Y,=Z^.+c,Z;p, r=l, . . . , ri,
where c^ is defined such thai: Y^e ker 002 for r 4= p, and where Cp = 0. We then have Y^e(^o)c
for l^r^d-2, r+p, while Yp^o)c and Y<,, Yd-iekera2. We also have [Y^Z2]eCZi,
[Y,,Z3]=0, [Y,-,,Z3]eCZi, [Y,_i,Z2]=0.

Letting C= [c^]i ̂ r,s^d bs ihe d x ^-matrix given by:

' 1

• 1
1 Cp+i . . . Cd

1 1

• 1

the empty entries meaning zero, we have ¥,=£?= iC.,2;,., so, setting N(Q= [B,(Y,, Y,)]i ̂ ,,,^^
we get N(Q = 'CIVHOC, from which Q^(Q = | det M,(J) | = | det ̂ l,(l) | = | det N(Q |. There-
fore

Q^IL^gQ^Ol'
where we have set P</0= < ;, [Yi, Y,(I)] > . . . < ; , [ ¥ „ Y,(,)] > .

Define the following subsets of S^:

8^= { C T o(l)=p, cr(2)=d-l, CT(p)=d, o(rf-l)=2, o(d)=l},
S;,2^ { CT CT(l)=rf, CT(2)=p, CT(p)=d-l, CT(d-l)=2, CT(d)=l },

S;,3^ {CT CT(l)=d,CT(2)=d-l ,CT(p)=l,CT^-l)=2,CT(d)=p},

S;,4^ { 0 0(1)=^ CT(2)=d-l, CT(P)=2, CT(d-l)=p, O(rf)=l },

Si,5>= {(7 CT(p)+^ACT(p)+d- lAp+<7(d)Ap+(T(rf - l ) } ,

S^^S^Uj^iS^.
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We then assert that P^=0 if aeS .̂ In fact, observe first that

P^O=>(a(l)=pVCT(l)=rf)A(a(2)=pVCT(2)=rf- l)
A (l=o(p) V l=o(d)) A (2=a(p) V 2=a(d-l)).

Therefore, if P^+O and if a^S^ with e. g. a(p)=d, then a(l)=p, (r(2)=d-l, <J(d)=l,
<J(d-l)=2, so aeS .̂ Similarly, if cr^S^ with o(p)=ri-l, then P^+0 => aeS ,̂ etc.
This shows our assertion.

We next assert that P(0=EjLi Z signaP,(0=0. To see this, define the permuta-
oeSi

tions Ti, T2, ^3, ^4 in S^ by Ti== identity, 12(1)= p, T2(2)=l, T2(p)=2, T3(l)=p, ^(p)=d,
^(d) = 1, T4(l) = p, T4(p) = d -1, x^(d -1) = 1, all other elements left fixed. It is then imme-
diate to verify that the map a -> a o ̂ .J= 1,2, 3,4, defines a bijection between S^ and S ,̂
and since T; are even permutations we get

P(0=Zaesy)SignaE^iP,^.(0.

Now for aeSĵ  we have

E^ iPoo.,(0= n?= i < I, [Y. Y,(,] > (E^ i n < ^ [Y. Y.(^(O)] > ),
1=^1,2,p, 1=1,2,p,
d-l,d d-l,d

and a direct computation shows that

E^ n <UY,Y,^]>=O-»j=l 11 \ l' L 1 ^ lo(TJ•(i))J
i=l,2,p,
d-l,d

i=l,2,p,

for all teg'. This shows that P=0, and therefore we have

Qe(0=| Z signaP,(0|.
CTeS^>

But we clearly have that P^(l) only depends on the restriction of I to t) if oeS ,̂ because
all [Y ,̂ Yo(r)], r==l, ..., d, then belong to 1) (we use here that I) is a subalgebra and that
t)o is an ideal). This proves our claim and ends (i).

(ii) We now apply (i) to the same Jordan-Holder sequence f,, but to another basis
Z^\f^-i (whereby l)o and therefore m are not changed), and we get similarly that
dno(u^) = Q^fe)I, where Q ,̂ i4 are the objects associated with this new basis. Setting in par-
ticular Z;.=Ad(s)Zj, we get u',= M(s)u,, and Q^^QeO^O for seG, and therefore
d7io(Ad (s)u,) = Q,(5- ̂ )I = | A,(s) j2?^)!.

Now since Zi, Za, ^em^ it follows that nycm and from this we get that

(mjc=(ny)c C CZ2 C CZ;,..

It follows that a polarization in m at fo is also a polarization in n at /, hence n = ind^ifN ^o-
' Let then (p be a differentiable vector in L^N, Tto), the space of the induced representation
^ = indMfN Tto. We have dn(u^(s) = dno(M (s ~ ̂ u^s) = Qefe)(p(s), seN, so dn(u,) = Q^)I.
This ends case (ell).
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Case (cl2): (i) As in case (cl 1) we start by showing that i^eU(m) and that dno(u^) = Qe(g)I,
and we can assume that (g , Z^ > =0.

Since [ f3 , f2 ]==f i we have that Z^ Z^c' Therefore 9c=CZ2 © CZ^ © l)c. Just
like in case (ell) we see that 2, 3eJg. Define 2i=Zi, 2;=Zj+2-t-a;+2Z2+b,+2Z3 for
2</^m-2, ^-i=Z2, ^=Z3, where 04, ..., a^, ^4, ..., ̂  have been picked such
that2^=l)c,l</^m-2. Clearly Zi, ..., Z^ is a basis forge. Setfj=C2i © ... © CZ,.
We have that fi = fi and f, © CZ2 © CZ3 = f^+ 2 for 1 </ ̂  m - 2. Also L- 2 = t)c, fm = 9c-
We thus have

fi=Ti,
^•=f^2n^c ^ 1^7^m-2,

fm==9c-

From this it follows that l^fm-2^ • • • ^ f i ^ fo= { 0} is a Jordan-Holder sequence
for t)c. We claim it is of class (b). But this follows easily from the fact that fi =fi.

Write e= {71 < .. .jd}. a^nd define the set Jg== {Ji< . . . <L} by settingj^==7\+2-2
for l<^d-2,7d-i=m-l,Jd=m. We then have

Z^=Z^a^Z^b^^ for l^h^d-2,

^d-^7./?
^=2,,

Therefore, letting C= [Ui^,,,^ be the dxd-matrix:

C=

•̂3 • • • ̂

•̂3 • • • bJd

1

• 1

1
1

where the empty entries are zero, we have Z^=S^c,,Z^, and M^(Q ̂ CM^QC, where
M,(Q is the matrix [Bj(Z^, Zj)]^^d' Now det C=l, and therefore we have for teg'
w i t h < ( , Z 2 > =0:

Q,(0=|detM,(0|
= | E sign a < (, [Z^ 1^ > . . . < ; , [̂ , 2;̂ ] > |

creSd

= | < I, [2^_ i, 2,] > |2 | Z sign a < I, [2;,, Zj,.J > . . .< ! , [2;,.,, 2 ,̂.,,] > |,
06S5

where S^ is the set of permutations a in S^ such that a{d-l)=d, a(d)=d-l.
Set go=^ I ̂  and let %' etc- designate the objects defined relative to the Jordan-Holder

sequence fodfid . . . cV^c. Since clearly 9 ,̂ and t)^=Qg we find that 1̂ ,
and for 4<y<m we have

y^Jg ^ Z,ef,-i+(9g)c ^ Z,.ef,-3+CZ2+CZ3+(^)c o Z,-2ef,-3+(t)go)c ̂  7-2^%,
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so je3, ̂  j-2eJ^. Therefore, if g°=J^={^< ... <^_^ } we find that ^+2=7^2
for 1< h ̂  d — 2, and comparing with the definition of/,, we find that^ =/,, for 1< h < <f — 2.
Using this we get for Jo6^

Qgo((o)= |det [B,̂ , Z^)]^,,,,sd_2 |
= I j^ sign a < ;o, [2;,, ̂ ..] > ... < ?o, [2L_, ̂ .J > |

= | S sign a < Jo, [2;,, 2^,,] > ... < ;o, [̂ .,, 2;,,.,.J > (,
<y6S(ji

and comparing with what we saw above we find for teg' with < ?, Z^ > =0:

(*) Qe(0==ia [Z^z^-j)!2?^),

where Jo = 111)-
We then claim that Qg(Q only depends on the restriction of I to I). Assuming for a

moment this to be true, we find that the formula (*) is valid for all teg'. The conclusion
ofthisisthatfU(0= - < 1. W > < !, W > i^Q^o), where W= [Z,, 2,.J= [Z^, Z3]efi,
and therefore that Ue= —WW^go.

Let us then prove our claim: if all 2 .̂, l^r^d—2 belong to ?0)0 Aen the result is
clear (since I)o is an ideal). Suppose then that there exists 1 ̂  r ̂  d - 2 such that 2;^t)o)c,
and let p be the smallest such number r. We then have l)c=C2; ®(t)o)c? ^d
9c = CZ;p © ker 02. Set Y, == Z .̂ + c^Z;p, r = 1, ..., d, where c^ is defined such that Y^e ker ̂
for r =t= p and where Cp = 0. We then have Y^e(l)o)c for all 1 ̂  r ̂  d - 2, r =r= p, while Yp e(t))c,
Y,= Z,= Z;,, Y,_ i = Z,_, = Z;,, ,e ker ^.

Letting C== [c^]i^^^^ be the rfxrf-matrix given by:

C=

' 1 .

• 1
i Cp+i . . . c^-2 0 0

1 .

• 1

the empty entries meaning zero, we have Y,=^= ic.,2;,, so, setting N(Q= [B^Y,, Y,)]i ̂ ,,^d
we get N(Q = 'CK4<,(OC, from which Q<,(Q = | det M,(l) | = | det Kt^Q | = | det N(Q |. There-
fore Q,(Q= | Sees, sign CTP<,(O |, where we have set P<^0= < /, [Yi. Y,,,!)] > . . . < ; , [Y^ Y^)] >.
Define then the following subsets of S<(:

S^>= {CT|CT(^-l)=pA<r((0=d-lACT(p)=d},

S^>= {CT|CT(((f-l)=dACT(d)=pACT(p)=d-l},

S^={<T|CT(J-l)+pA(T(d)+p},

S^S.WuS^uSi,3').
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We then assert that: aeS^ ==> P^=0. In fact, observe first that since:

[Y,_i,YJ+0 => ^=rfVr=p,

and since: [Y^YJ+0 => r= r f—lV r=p we have:

p^O=>(a(d-l)=dVCT(rf-l)=p)A(a(d)=ri-lVCT(d)=p).

Moreover, if r^ { p, ri-1, r f } , then: [Y,, Y^]4=0 => a(r}^d-l A a(r)=M, hence:

p^+O => (d==a(d-l)Vrf=a(p))A(d-l=a(ri)Vrf-l=a(p)).

Therefore, if Po+0 and c^S^ with e. g. <j(rf-l)=p, then a(d)=d-l and a(p)=d, and
therefore aeS .̂ Similarly, if o^S^ with o(d)=p, then P,=h0 => oeS .̂ This shows
our assertion.

We next assert that P(Q =-- ]̂  sign aPJQ == 0, where S; = S^uS^. To see this, define
the permutation T in S^ by r(p)=rf, T(d-l)=p, T(d)=d-l, all other elements left fixed.
It is then immediate to verify that the map o -> a. o T defines a bijection between Sj^
and S ,̂ and since T is an even permutation we get P(0=ZCT6si,l) ^g11 ^P^+P^J. Now
for oeS^ we have

P,(O+P,,(O= n <uY,Y^]xn <UY,Y^]>+ n <UY,Y,^]»,
i+P, i=P, i=P,

d-l,d d-l,d d-l,d

and n < i, [Y, Y^] > + n < i. [Y. Y^^] >
i=P, i=P,

d-l,d d-l,d

= < k [Yp, YJ > < ?, [Y,-i, Yp] > < ;, [Y,, Y,-J>
+ < ;, [Yp, Y,_J> < J, [Y,-i, YJ > < (, [Y,, Yp> = 0.

This shows that P=0, and therefore we have

Qe(0=|Eaes^signaP,(0|,

and since Py(I) only depends on the restriction of I to I) when aeS^ we have proved our
assertion.

Now if m is the nilraxiical of t) it follows from the induction hypothesis that
dno(u^)=Q^{go)^ and since d7io(W) = f < j&, W > , and ^=-WWi^o we get that

dno(u,)= | < /o, W > I'Q^o^Qefe)!,

and this proves (i) in this case.
Suppose then that m is not the nilradical mi oft). Then m=t)onmi, and dim mi/m= 1.

Setting Mi = exp mi we now face two possibilities (1) either KQ extends to an irreducible
representation KQ of Mi or (2) indMfMi ^o=7I;o ls an irreducible representation of Mi.
In the first case we obviously get as above that du^u^) = Qe(g)I, and therefore dn^u^= Q<j(g)I.

re
In the second case we have KQ | M = snods, and therefore we get by the induction

JMI/M
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r@
hypothesis that Qe(g^=dno(Ue)= d(sno)(u,)ds, from which d(57Co)(^)=Q^)I for

JMi/M

almost all s, hence for all 5 by continuity. This shows that dno(Ue) = Qe(^)I, and ends (i).
(ii) Just like in case (ell) (ii) we conclude from (i) that

d7Co(Ad(sK)=Q,(5-lg)I=|A,(5)|2Q^)I for all seG.

Now since Z^, Z^en^ anc! since [m, 23]= [m, Z^]=0 we see at once that myQ==ny.
Suppose then that p is a polarizati on in m at Jo. Then, writing Z^ = X^ + iY^ Pi = P © ̂ 2
is a polarization in n at /, and therefore TC= indp^N ^i? where r|i is the unitary character
on Pi= exp pi corresponding to /|pi. Similarly 7io= indp^ ̂  where P= exp p,
r|=r|i |P. We then set n^ =RY2, and note that Hi is a direct product of m and (?¥2.
Let 71:1 be the irreducible representation of N^= exp n^ with Tii |M=7to,

7ii(exp t^^e^'^.

Then n= mdp^r}^= i^NifN (^dpifNi 'Hi)= i^NiiN^i- Now noting that N1 is a
normal subgroup in N and that clearly rf7ti(Ad(s)^)=Qe(^)I for 5eN, we can end this
case just like case (ell) (ii). This ends case (cl2).

Case (c2): (i) Since fi =f i we can clearly assume that Zi =Xieg. A standard argument
shows that ^2 must be a real root in this case, so ̂  = 02. We claim that it is no loss of
generality to assume that 72 ̂ O- I11 fa^ 1̂  a^ a^ b be real numbers, not all equal to
zero, such that O^iYi+^Yi+^z. Then (a^ ^^(O, 0), since ^ =1=0, and we can
assume that a\ + a\ == 1. Replacing T.^ by Z; =(^2 + ̂ '̂ i - fcz! does not change Q^, and
it is trivial to verify that [X, X'2]=5i2(X)Z2+y'i(X)Zi, where y'i==^2Yi-^iY2. This
proves the claim. So, from now on we assume that Zi=Xi€9, y=yi, and writing
Z2=X2+i'Y2 we then have

[X,X2]==5i2(X)X2+y(X)X,

[X,Y2]==?l2(X)Y2.

Set l)= ker y. It follows from the formula (2.2.2) that 1) is a subalgebra in g, and
its codimension is 1. Set l)o = ker ̂  11) = ker ad Z2 | 9. t)o is an ideal in 9 of codimen-
sion 2.

Let m be the nilradical of l)o. Since t)o is an ideal we have that m=nnl)o=nnl).
Observe that dim n/m=l. In fact, pick Wel)\l)o. We then have y([X, W])=^(W)Y(X)
for Xeg. Choosing X such that y(X) == 1 we get that y( [X, W ]) = ̂ (W) =h 0, and this shows
that [X, W] is a basis in n (mod m).

Set fo= f | rn==g \ m, and let KQ be the irreducible representation of M = exp m corres-
ponding to Mfo.

(ii) We first show that i^eU(m), and that dno(u^)=Q^g)L We start by noting that
we can assume that < g, X^ > ==0; in fact, if necessary replace X2 by X2—cXi; this does
not change e, Qg, etc. (it will change y, t), though, but does not affect t)o, rank (02, Yi» 72)
and the fact that ^^^O^
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Except for some obvious modifications we can now proceed just like in case (ell) (i).'
(hi) Just like in case (ell) (ii) we conclude that Aco(Ad(s)t^)== | A^(s) PQete)! for seG.
Now since Xi, X^m it follows that n^cm and from this we get that myo=ny © RX^

Therefore a polarization in m at J& is also a polarization in n at /, hence TC== indMfN^o-
We can then end this case just like we did in case (ell) (ii).

Case (c3): It is no loss of generality to assume that y = 0. In fact, there exists real numbers
a^ a-i such that yi = a^, 72 = ̂ 20^ and therefore yi = a^(l 4- ik^)~1^ Ji = ̂ (l + ik^)'1^.
Replacing Z^ by Z^=Z^-}-{\^-ik^~\a^-\-ia^Z^ does not change Q^, etc., and we have
[X, Z^ ] = ̂ W^i' This proves the assertion.

Set i) == ker ^2- Then t) is an ideal in g of codimension 1, so n c I). We can now proceed
here much like in case (b), so we omit the details.

Case (d): Suppose we are not in case (a), (b) or (c).
We have [X, Z^]=y(X)7.^ where y=t=0 and <^, Zi > =1=0 (since otherwise we would

be in case (a)), and also fi=fi .
Writing y = yi + iy-z we distinguish two subcases: (dl): rank (y^, 72) == 2 and

(d2): rank (y 1,72)=!.
Case (dl): Set !)== ker y^n ker y2. Then ^ is an ideal of codimension 2. We then

distinguish two possibilities: case (dll): [f3, f2]=0 and case (dl2): [f3, f2]=f i . We can
then proceed here much like in case (cl) (the case at hand is easier, since here I) is an ideal
containing [g, g]). We omit the details.

Case (d2): Just like in case (c2) we see that we can assume that y2=0. Set t)== ker y.
Then t) is an ideal of codimension 1, and we can treat this case much like case (b). We
also omit the details here. This ends the proof of Proposition 2.2.1.

2.3. — We shall now end the proof of Theorem 1.4.1. We use [4], 4.2.2 Theoreme,
p. 121 with vMO== | P^(l) |. It follows from Lemma 2.1.1 that the condition of the theorem
loc. cit. is satisfied. The conclusion is that the operator A7i;((p)A is traceclass for
all (p€C^(G), that (p -> Tr([A7c((p)A]) is a distribution (of positive type) on G, and that

Tr ([An((p)A])= f(a,-(po exrt^OQ^dpoW
Jo

Here we have also used Lemma 1.3.1.

REMARK 2.3.1. — In [4|, p. 248 and [5], p. 118 appear two different definitions of the
function Po (cf. section 1.3). Here we use the one from [4] (which is the most natural
one), while the 4.2.2. Theoreme in [5] uses the definition of Po from [5]. There is no
difficulty in proving 4.2.2. Theoreme with the definition of Po from [4] when \|x has the
property that v|/(0 only depends on the restriction of I to [9, g] which is the case here
(cf. [5] 4.2.3. Remarque).

We shall then identify the operator A: Set Go=ker/g, let 90 be the Lie algebra of Go,
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and let KQ be the irreducible representation associated with go=g\Qo- Then
TC= indoofG^ and A is realized on L^G, no), the space of the induced representation
K = indootG^ by Af(s) = ̂ (sg)f(s)= \ P^(sg) \ f(s). Now it follows from Proposition 2.2.1
that dno(Ue)=Qe(g)^ and that dKo(Ad(s)Ue)=Q^s~lg)l which implies that we have for
a differentiable vector/eL^G, 71:0) :

dTt(Ue)f(s) = dKo(Ad (S - ̂ /(S) = Qe(sg)f(s) = | Pe(sg) \2 f(s) = A2 f(s) ,

and thus dn(u^)=A2.
Now since A7i((p) c: Tr^-^A we have that ATT((P)A c: A2^-^), and therefore

[A^A^IA2^-1^)] from which [A2^-1^)], hence [A2^)], is traceclass for
all (peC^G), and Tr ([A^op) ]) = Tr ([A7c(x,(p)A ]) = Tr ([A7c((p)A ]), the last equality being
valid because the distribution (p ̂  Tr ([A7i;((p)A]) is supported on Go (cf. [5], [6]). Observ-
ing finally that [Aln(^)}=n^Ue^^\ we have proved the theorem.

3. Examples

We shall give a few examples of the calculation of^, Q^, u^ ̂  for an exponential solvable
Lie algebra 9. If Zi, ..., Z^ is a Jordan-Holder basis for gc we denote by M(g), ^eg',
the skewsymmetric mxm-matrix [<^, [Z,,Z,.]> ]i^.^ and we write ^,= <^ ,Z ,> .
The matrices M^) are all submatrices of M(g). Note that Z==p^z^ belongs to
(9g)c if and only if M(g)z=0, where z=(zi, ..., zj. We write ^= { ̂  < . . . <^ } .

3.1. — Let g be the five dimensional real solvable Lie algebra with the following non-
vanishing brackets: [X^l^-X^ [X^Xs 1=2X3, [Xs.X^X^ [X^Xs^X;,,
[X4,X2]=Xi. Then Xi, . . . , X 5 is a Jordan-Holder basis for 9, so 9 is completely
solvable. We set Z,=X, and ^,= < g, X, > = ̂  j= 1, ... ,5.

We have

M(g)=.

" 0 0 0 0 0
0 0 0 - ^ -^
0 0 0 - ^ -2^
0 ^1 ^2 0 -^

0 E;2 2^ ^4 0

i) If ^j-2^^3+0, then 9^=^X1 and therefore Jg= {2 , 3, 4, 5 }.
ii) If ^-2^3=0 and ^+0 then

9,=RXi C R(-^2X2+^1X3) © ^(-^4X2-^2X4+^1X5), J,= { 3, 5 } .

iii) If ^j-2^3=0, ^i=0 and ^3+0, then Q,=RXi © RX^ © ^(-^4X3+2^3X4),
•lg= { J? ^ } •
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iv) If ^-2^3=0, ^=0, i;3=0 and ^+0, then

9g==lRXi @ IRX;; ® 1^X3, Jg= { 4, 5 }

v) If i;j-2i^3=0, ^=0, ^=0, ^=0, then 9,=9, ^=0.
We can then write down:

ei={2,3,4,5} , Q,,={g|^-2^3+0},

C2={2 ,4 } , Q,,= {^|^j-2^3=0, ̂ i+O},

e 3 = { 3 , 5 } , Q^={^|^=^=0,^+0},

C 4 = { 4 , 5 } , Oe<={^l =^2=^3=0, ^4+0},

es=0 n^={g|^=^=^=^=0},

Qe,(g)=(^-2^^)2, «e,=(XJ-2XiX3)2,

Qe,fe)=^, "e.=-X?,

Q^)=4^, «^=-4Xi*e3

"^=-xiQ^te)=U,
Q^)=i, "e,=l.

3.2. — Let 9 be the six dimensional real exponential solvable Lie algebra having a
basis X i , . . . , X g with the following non-vanishing brackets: [Xg, X5]=X4+X5,
[Xg, X4]=X4—X5, [Xg, X2]=Xi+X2, PCg, Xi ]=Xi—X2, [X5,X4J=X3, [X5,X3J=X2,

pC4,X3]=Xi. Set Zi=Xi-iX2, Z2=Xi+iX2, Z3=X3, Z4=X4-iX5, Z5=X4+iXs,
Zg=X6. Then Zi, ..., Zg is a Jordan-Holder basis for 9c, and

Mfe)=

0
0
0
0
0

(l-iKi

0
0
0
0
0

(l+'K2

0
0
0

î;2

0

0
0

-<;!

0
2^3

(1-1K4

0
0

-^2

-2^3

0
(1+IK5

-(1
-(1+1X2

-(1

-(i+'Ks

-OCi'

0
-i)^

0

"Writing ^== <g, X ^ > , 7=!, ..., 6, we have ^1=^1-^2. ^z=^i+^2> ^3=^3>
^4=^4-^5. t;5=^4+^5, ^6=^6.

i) If ^i +0, then Jg= { 1, 3, 4, 6 } .
ii) If ^i=0 (=> ^=0), t;3+0, then J,= { 4 , 5 } .
iii) If (;i =0, ^=0, ^4+0, then J,= { 4, 6 }.
iv) If ^i=0, ^=0, ^4=0 (^ ^=0), then J,=0.
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We can then write down:

^ = { 1 , 3 , 4 , 6 } , 0 . ,={g |^+^+0},
^={4 ,5 } , ^-{^1^+^-0,^+Q},

e^ {4, 6 } , ^3={^|^+^=0^3=0,U+^+0},

^4=0, ^= {^|^1=^=^=^=^5=0},

Qe^)=2(^+^)2, ^=2(X?+Xi)2,

Q )̂=4i;l ^-^Xj,

Q^)=2(^+^), ^= -2(Xi+XJ),

Q^)=l, ^=l.
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