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GENERA OF CURVES
VARYING IN A FAMILY

BY A. NOBILE

Introduction

In this paper, we discuss the possible variation of the geometric genus of a projective
algebraic curve varying in a family. The precise statement is in Theorem (1.2), but in
informal language this says that if an integral projective curve A of geometric genus g

s

degenerates into B (possibly non-reduced), with associated cycle ^ w;B, [cf. (1.1)], where

the genus of B, is g^ then it holds : g^, ̂  e; (m^—mf+1), where s;==l if ^->0 and
;=i

zero otherwise. In the case of plane projective curves there is a converse "existence
theorem" [cf. (2.1)], which may be phrased in geometric language as follows: a plane

5

curve B= ^ w,B^ (where B^, . . ., B, are the irreducible components of B and B^ has

geometric genus .̂), of degree n, is a specialization of an integral plane curve A, of
geometric genus g, having only nodes (ordinary double points) as singularities if and
only if the inequality above is satisfied, plus the well-known one g ^ (1/2) (n— 1) (n—2).
This gives a simple numerical characterization of the boundary points of "Severi's
variety" of irreducible plane curves having degree n and a fixed number of nodes [10].
See Theorem (2.3). Here, we work over an algebraically closed field of zero characteristic.

These results (the inequality in the planar case only) appear in a classical paper of
G. Albanese [I], unfortunatelly written in an obscure language (cf. [II], p. 216). Modern
papers on the theory are [8] (where the case where B is reduced is discussed) and [9],
where a proof of the inequality is presented, and the existence theorem is verified when

r

g ^ ^ niigi (where B^, . . ., B,. are the components of B with ^i>0). However, the
1=1

proof of the inequality given in [9] [Theorem (1.2) there] contains an error [Lemma (1.5)
of [9] is false]. One can give a proof of (1.2) based on the results of [7], a remarkable
but technical paper. But in the geometric case of interest to us one can give also a
rather short and simple proof based on the semi-stable reduction theorem [as suggested
in [9], (1.10)], and this is what is done in paragraph 1 of the present paper.
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466 A. NOBILE

As pointed out in [9], (2.6), the proof of the Existence Theorem can be reduced to the
case s=l, ^i >0; so this is the crucial case. This is Theorem (2.6) of the present paper,
which is proved in paragraph 3. For the sake of completeness, and because we believe
that the new presentation is better than that of [9], in paragraph 2 we explain again how
the quoted reduction to the case "5=1" is accomplished.

This author is very grateful to Joe Harris, who suggested the main idea in the proof
of Theorem (2.6), and also W. Fulton, for a valuable suggestion.

This paper was prepared while the author was visiting the Ecole Polytechnique of
France and the Institut Mittag-Leffler of Sweden. He thanks these institutions for their
excellent atmosphere and the support provided during that period.

1. The main inequality

(1.1) We work thoughout over a base field K, algebraically closed, of characteristic
zero. An algebraic variety will mean a reduced algebraic scheme of finite type over K.A
curve will mean a purely one-dimensional algebraic scheme (perhaps non-reduced). If B
is a curve, with irreducible components B^, . . ., By its associated cycle z (B) is defined

n

to be the formal sum ^ w^B^, where m,= length (6^ ^), where z, is the generic point of

B^ ([6], p. 425). If C is an integral curve (i. e., irreducible and reduced), then its geometric
genus g (C) (henceforth referred to as the genus) is the arithmetic genus of the normaliza-
tion ([6], p. 230).

(1.2) THEOREM. — Let n: X -> T be a family ofprojective curves (i. e., a flat, projective
morphism of relative dimension one) such that T is integral. Let A be the generic geometric

s

fiber, to^T a closed point, B=7i~ 1 (to), z (B) = ̂  m^, where the indices have been chosen

so that g (Bf) > 0 if and only if 1 < i < r, for a suitable integer r, 0 < r ^ 5. Then, the
following inequality holds:

r

(1.2.1) ^ (A)^ E (m^(B,)-m,+l)
1=1

Clearly, this inequality may be rewritten as:
r

(1.2.2) (^(A)-l)^ Em,fe(B,)- l )+r- l
1=1

Proof. — (a) By a suitable base change, we may assume that T is an irreducible
smooth curve; in the sequel we shall assume this is the case.

(b) I claim the inequality (1.2.2) follows if it holds in the case where the general fiber
of 7i is smooth. In fact, assume (1.2.2) to be true for A smooth, and consider any family
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GENERA OF CURVES 467

X -> T [with T a smooth curve, by (a)]. Then X is an integral surface. Let X' ->• X be
the normalization of X and q=nr[. One easily checks that q is a flat, projective
morphism and that the general fiber of q is smooth (isomorphic to the normalization of
the general fiber of n). Let W==q~1 (to), and let us write

r / h ( i ) ^

^(B^Ef E m,,B,,)+Zr,B,,
i = l \ 7 = l /

where B^, . . ., B^), f = l , . . ., r are all the components of B" such that T] (B^.)=Bf,
f= 1, . . ., r (i. e., T| (Bfc)=B^, with m >r, for all fe). Then we have:

r ^(0 ^

g-^ Z Zm,,fe(B,,)-l) +r-l
» = i \ j = i /

by our assumption and the obvious inequality h (1)+ . . . +A (r) ^ r. By Hurwitz for-
mula, ^ (B^)—l ^ ̂  (g (B^)—l), where rf^=deg (B^.-^B^) (induced by T|). Hence we
get:

r / h (0 ^

(^-1)^ E ( Em^,,)^(B,)-l)+r-l
f = i \ j = i /

h(i)

But ^ niijdij=mi, because z (B)=T|* (z (B')) [image as a cycle, c/ [4], Proposition 10.1

or [9], (1.8)].
Hence, we must show (1.2.2) when the general curve A is smooth. First, we discuss:
(c) Case g (A) ^ 2. In this case, we use the semi-stable reduction theorem (cf. [3]) and

some basic facts on surfaces, to obtain a commutative diagram

Z ^X
/! [ n

U ^T

where/is flat, p ~~1 (to) = 0 £ U, p is etale off 0, for all u £ U, u ̂  0, /-1 (M) and TT -1 (p (u))
are isomorphic, and/"1 (0)=Zo is a reduced curve, whose only singularities are nodes.
Then we have, for u e U, u ̂  0;

gW=g==g(f~1 (u)) =p, (/-1 (u)) =p, (Zo),

where we use the flatness of/and the smoothness of/"1 (u). By a well-known formula,
since Zo is reduced and connected,

r / v (i)r ^ i; (i) <

MZo)^ E ( Z^(E.,))+Dr(E,),i = i \ j = i / fc
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468 A. NOBILE

where E^, . . . , E, y^ are all the components of ZQ mapping onto B,, f = l , . . ., r, the
E^s being the other components. We conclude as in (c):

^-l^^(E,,)-l)+r-l
i,J

r 7 17 (i) ^

^ E ( E P^(B,)-l))+r-l
i = i \ j = i /

»• / V (l) s

> £fe(B,)-l)( Ep^+r-1
1=1 \ j= i /

=I>.Qr(B,)-l)+r-l,
1=1

where p^ is the degree of E^. -> B^ induced by P and we have used Hurwitz formula and
the equality of cycles P* (z (Zo) =z (B). This proves the assertion.

(d) We must verify the cases: A is smooth, and its genus is zero or one. The usual
semi-stable reduction theorem does not hold in this case, but if g=g (A) = 1 and there is
a section a:T-^X, then it holds (because we have a family of abelian varieties of
dimension one). Now, we may take a base change T -^ T such that the pulled-back
family X' -> T admits a section a (e. g., 1 et D be any curve in X such that n (D) =T, T'
its normalization; then the composition morphism T-^T works. We may proceed
exactly as in (c) to show (1.2.2) for this family, and this clearly implies the searched
inequality for the family X -^ T too.

To conclude, we check the case g=0. Let X ̂  T be any family whose general fibre A
is a smooth rational curve. Clearly in this case (1.2.2) will follow if we verify that
pa (B()=O for all f, where B^, . . ., B, are the irreducible components of B=7i~1 (to). In
view of [6] (Proposition 9.8 and Example 2.5.4) and the theory of resolution of singulari-
ties, we may assume that X is a smooth, projective surface. Now, for each i= 1, . . ., s
we have a surjection

^B^B,

which implies, by one-dimensionality, that:

H^B.^^H^B,,^)

is surjective. If we prove that H1 (B, (9^)=0, we are done. But B is a divisor in a
regular scheme, hence it is Gorenstein, so its dualizing sheaf (OB is invertible. By flatness of
TC, pa (B) = 0. Now, deg (0)3) = Ipa (B) - 2 (use [6], p. 366, 1.3 and ©s = ̂  ® (9^ (B) ® ©x);
hence deg (0)3)= -2. But then H° (B, ^)=0, hence its dual H1 (B, 0^ is also zero, as
needed.

This concludes the proof of Theorem (1.2).
I am indebted to T. Ekedahl of a suggestion to simplify the proof of cases ^=0,1 in

above's theorem.
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GENERA OF CURVES 469

2. An existence theorem

In this section, we discuss a proof of the following result [except for an important
auxiliary result, namely Theorem (2.6), which will be shown in paragraph 3].

Here and in the sequel, a nodal curve will mean a reduced curve whose only singularities
are nodes, i. e., ordinary double points.

5

(2.1) THEOREM. — Let B= ^ fefC; be a plane curve of degree n (where C^, . . ., C, are
1=1

the irreducible components o/B), gi==g (C,), where gi>0 if and only ifi^r^s. Let g be
an integer such that

(2.1.1) ^ k,g,-k,+l)^g^^(n-l)(n-2)
1=1 2

Then, there is a family of plane curves of degree n, X -^T (with T integral) whose general
fiber is a nodal irreducible curve of genus g and a special fiber is the curve B.

(2.2) This can be rephrased in terms of "Seven's varieties", which will be heavily used
in the proof. Namely, let V^ be the closure in P^ N=(l/2)n(n-h3), of the set of
points corresponding to plane curves of degree n having 8 nodes and no more singularities.
In general we shall use the same letter to indicate a curve and the corresponding point
of P1 .̂ The basic facts on Severi varieties that we need are summarized in [8] (3.1), see
also [10] for the details (however, here we shall use a slightly different notation).

It is known that ¥„ 5 has a unique irreducible component whose general point corre-
sponds to an irreducible nodal curve [5]. This will be denoted by S^ §.

If C is a (possibly reducible) nodal curve having 8 nodes, we define g(C):p^(C)—S.
s

If C has s irreducible components then it holds: g(C) = ̂  ^(C;)—s+1.
i=i

We shall use sometimes a "dual" notation:

V.,s:=V^, S,,,:=S^, if ^=(l/2)(n-l)(n-2)-8.

Clearly, the conclusion of Theorem (2.1) is equivalent to the assertion: BeS^; and
Theorems (1.2) and (2.1) imply:

s

(2.3) THEOREM. — A plane curve B= ^ k,C, [as in (2.1)] is in S^ if and only if g

satisfies the inequalities (2.1.1).
We present next some auxiliary results, needed in the proof of Theorem (2.1).

(2.4) LEMMA. —Assume k^C^ is a plane curve of degree n^, with C; irreducible and
fei ^ 1, such that fefCtCS^1) (for a suitable ^), f= 1, . . ., 5. Let h be an integer satisfying:

1
^h^h^_(n-l)(n-2); n= ̂  n,
1=1 2 i=i
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470 A. NOBILE

Then

i:k,C,eS?\
1=1

Proof. — One considers the morphism:

S^ x . . . x S^ ̂  P1', N= ^n (n+3)

given by (p (Di, . . ., D,)=Di + . . . +D,, D.eS^ for all L It is known (e. g., cf. [12])
that the general point of the image corresponds to a nodal curve of genus
e=(^hi)-s+1, i. e., Im (q>) c=V^. If D is a general curve of an irreducible component

V\ of V^ containing Im ((p), we may choose a set of nodes S of D, of cardinality h-e,
such that if S'={P/P is a node of D and P^S}, then D-S' is connected. Then
[cf. [8], (3.1)], the "assignment" of the points of S' determines an irreducible component
V^ of V^ § (8= card (SQ) with irreducible general member E(i.e., this component is
S^ §), such that ViCiV^. An easy calculation shows: g (E)=h, i.e.,
^ ki Ci e Im ((p) c: S^ § = S .̂ This proves the Lemma.
i

(2.5) LEMMA. — Let C be any integral curve of degree m in P2, with g (C)=0. Then,
for any integer k > 0, k C e S .̂

Proof. - If k= l , this is classical (one considers the m-tuple embedding of P1 in P"1,
via (XQ : Xi) - > ( . . . : x^ ~l x\:...), r c: 1̂ . Then any integral plane curve of genus zero
is a projection of F, and a general projection will be nodal). If k > 1, one uses the result
just gotten and Lemma (2.4), with C^=C, i=l , . . ., k==s, ^.=0 (all Q and h=^h,.

i

(2.6) THEOREM. — Let C be an integral curve of degree m and genus g>0, 1 an integer,
h=kg-k+\. ThenkCsS^.

The proof of (2.6) will be presented in paragraph 3.
5

(2.7) Proof of Theorem (2.1). - Given B= ^ k,C, as in (2.1), by (2.5) and (2.6) we
1=1

obtain k,C,£ S^ if i>r O^P-68^ ^=fcf^- f e f+ l . if l ^ r)- Then' Lemma (2.4),
with h=g, hi=0 if i>r, h^k,g,-k^\ if i ̂  r, implies the result.

3. Proof of Theorem (2.6)

In this proof we need several known facts, which we recall next.

(3.1) Given a family pX ->S of smooth curves, admitting a section, and a positive
integer d, there is a morphism n:^(p)->S, where each point ae^(p) naturally
corresponds to a triple (L, A, a), where L is a line bundle over C=p~1 (n (a)), A is a
three-dimensional subspace of H° (C, L) [i. e., (L, A) is a "g2^} and CT is a basis of A, up

4'1 SERIE - TOME 20 - 1987 - N° 3



GENERA OF CURVES 471

to homothety. Let ̂  be the open subset of ̂  of points corresponding to gj's without
base points. Then, a point of ̂  can be identified to a morphism q>: C -> P2 whose
image (as a cycle) (p* (C) has degree d (cf. [2], §2).

(3.2) Fix g> 1. Let C be a curve of genus g, PQ its corresponding point in the moduli
variety My Then, there is a neighborhood U of PQ in My a finite ramified cover
T| : S -> U, with S smooth, a family p : Z -> S of smooth projective curves of genus g, such
that T{ (s) is the moduli point of;?"1 (s) for each seS, also/? admits a section ([2], §4).

(3.3) It is known that each irreducible component of i^j (p) [with p as in (3.2)] has
dimension at least 3d+g—l (here, g>l). We briefly recall the proof, essentially given
in [2]. Let ̂  (p) be the space parametrizing triples (s, L, A), with ssS, L a line bundle
on p ~ 1 (s) and A a 3-dimensional subspace of H° (p~1 (s), L). Then, there is a natural
fibration ̂  ->• ̂  (we omit "7?"), whose fibers have dimension 8. So, it suffices to see
that each component of i^j has dimension ^3d+g—9. But ^j is covered by opens as
follow. If He4 (p)->S parametrizes pairs (5, L), scS, L a line bundle of degree d on
p ~1 (s) then Pic^ (p) can be covered by affines U such that on each one there is a

morphism of free sheaves ^-^^, where m—n=d—g+\, with the property that for
each M==(s, L)sU, the induced map a (u): K"" -> K" (K is the base field) has cokernel
isomorphic to H~1 (p~1 (s), L). Thus, a induces a morphism P: U -> M = [n x m matrices
over K}, and we have p x i d : U x G - ^ M x G , G being the grassmanian of 3-planes in
K". Let

V={(A,A)£MxG/Ac:Ker (A)} .

V is defined by 3n equations in MxG, and (pxid)"1 (V) (defined by 3n equations in
U x G) is isomorphic to an open ^U of ^; such opens cover ̂ . Thus, each component
of ̂  has dimension at least dim (UxG)-3n=(3^-3+g)+3 (m-3)-3n=3d+^-9,
as claimed.

(3.4) In case g=\, there is a similar construction. In this case we take S=A1 and
X -> S to be the classical family with (affine) equation:

^=x(x-l)(x-^), (cf.[6]).

We may find a lower bound for the dimensions of the irreducible components of i^j (p)
as in (3.3), the only difference is that now dim U=dim S+^= 1 +1=2; hence the dimen-
sion of each component of ̂  (p) is no less than

2+3 (m-3)-3n=2+3 (m-n)-9=3d-1;

hence each component of i^j {p) has dimension ^ 3^—7+8=3^+1.

(3.5) Recall that given a smooth curve C, a point QeC and an integer q>0, then
there is a bijection between isomorphism classes of finite etale covers /: E -^ C of degree
q and conjugation classes of subgroups N of n^ (C; Q) of index q. From this one easily
concludes that the collection of such isomorphism classes of covers is finite, and that
given such a C, there is always an etale cover of it of degree q (if g (C) >0).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



472 A. NOBILE

(3.6) Recall the following theorem of Zariski (cf. [12]). Consider in
P^ N=(l/2)rf (rf+3) (parametrizing plane curves of degree d) an irreducible sub-
variety V, whose points generically correspond to reduced curves of geometric genus g.
Then, dim V ^ 3 r f + ^ — 1 , and if equality holds then the general member corresponds to
a nodal curve.

(3.7) Proof of Theorem (2.6). — Consider our integral curve C of degree n and genus g.
Let us consider an etale cover (po: Eg -> C (where C is the normalization of C) of degree
k. By Hurwitz' Theorem, the genus of E() is g^kg—k+1, and the linear system of
linear sections of C pulls back to a g^j on Eo, d=kn, without base points. In other
words, using the construction of (3.2) or (3.4) (with Uc=^^ centered at/?o=moduli point
of Eo, in case g> 1), we have (Eo, (po) e^2 (d=kn, (po: EQ -> P2 induced by (po).

We have a naturally defined morphism \|/: -T2 -> P^ (N=(1/2) d (d+3)), where \|/ (E, cp)
is the point corresponding to the divisor (p^ (E) c: P2. Let X be an irreducible component
of V} containing (Eo, (po), X'=^f (X)^?^ Clearly, \|/ (Eo, (po)=kC; if we prove that
the general member of X" corresponds to a nodal curve of genus g", then we are done.
Let ^o=vl/|x• ^e consider two cases separately.

(i) g ' > 1. Then we claim that \|/o is generically finite-to-one. In fact, if (E', (p') e ̂ 2 is
such that \|/ (E', cp') =\|/ (Eo, (po), then (p^ (E') =k C, i. e., q/: E' -> C is generically k-to-
one. Since also g (E')=g\ by applying Hurwitz" formula to the maps ^>Q:EQ->C and
cp: E' -> C induced by (po and q/ respectively, we see that q/ is also etale. Hence,
Remark (3.5) (on etale covers), the finiteness of the group of automorphisms of C [note
that necessarily g(C)>l] and the finiteness of the morphism S-^Uc^(3,2) imply
that there are finitely many such pairs (E', q/), i. e., that v|/~1 (v|/ (Eo, q>o)) is finite.

From this, we'll see next that the general point of v|/ (X) =X' corresponds to a reduced
curve. Were it not the case, i. e., were it of the form qD, D reduced and q> 1, then the
correspondence q D -> D sets up a birrational equivalence between X' and an irreducible
subvariety V of P1^ [where M==(l/2) (d/q) (d/^+3)], the space parametrizing plane curves
of degree d/q. Since ^D=P* (E^), for some (E^, P)eX, by Hurwitz' formula the genus
g^ of D satisfies g^ ^ g\ But then, according to a Theorem of Zariski [cf. (3.6)],
dim X^dimV ^ 3 (d|q)-^-g^—\<3d-^-g/—\. Hence, since generically the fibers of \|/o
are finite, d imX<3r f+^ / —l, a contradiction [cf. (3.3)]. Thus, for (E, (p) generic in
X, (p: E -> P2 is birrational onto its image A. That A must be nodal is checked with a
dimension count similar to the previous one: were A not nodal, then again by (3.6),
dim X = dim X / < 3 d + g ' — 1, contradiction. This concludes case (i).

(ii) g'=\. Here, g=\ and 3d+g'—\=3d. In this case, we have:
dim\|/~1 (\|/ (EQ, (po)) = 1. This is obtained by the same argument as in Case (i), the only
difference now is that Aut (C) is one-dimensional. As before, were the general member
of X' a point corresponding to a multiple curve qD, D of degree d/q, we'd
get: dimX^dimV, where Vc:?1^1 parametrizes curves of degree d/q, generically of genus
^ 1. By Zariski's Theorem, dim ^ 3 (d/q)<3d, if q> 1. So, the dimension of X will be
<3d+1, a contradiction [cf. (3.4)]. Hence, the general member of X' corresponds to an
integral curve, of genus 1. As before, it must be nodal, otherwise Zariski's inequality
would imply: dim X < 3 d +1, a contradiction.
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GENERA OF CURVES 473

(3.8) In case f e= l , Theorem (2.6) gives another proof of the theorem that says that
any integral plane curve of degree d is a specialization of a nodal plane curve of the
same degree and genus (cf. [8], §4).

(3.9) In paragraphs 2 and 3, we haven't made essential use of the "irreducibility
theorem" (i. e., the existence of a unique component of ¥„ 5 whose general point
corresponds to an irreducible curve). Minor modifications of the given arguments (which
makes them somewhat more complicated) allow us to bypass that theorem, if we prefer.
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