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0. Introduction

Let G be a real reductive Lie group of Harish-Chandra's class, a an involution of G
and H an open subgroup of the group G0 of fixed points for CT. The purpose of this
paper is to study the principal series of the reductive symmetric space G/H. This is a
series of representations Ind^(^ ® e~^ ® 1), induced from a parabolic subgroup P, which
one may expect to contribute to the "most continuous" part in the Plancherel decomposi-
tion of L2(G/H). The actual contribution to a Plancherel formula has to be described
in terms of the (finite dimensional) spaces ^'(P:^:^)" of H-fixed distribution vectors
for Ind^(^®^~^(g) 1). The main result of the present paper is that the spaces
^(P: ̂ : ̂ )11 can be provided with Hermitian inner products which are preserved by the
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360 E. P. VAN DEN BAN

actions of certain normalized intertwining operators (Theorem 9.2, Corollary
9. 3). Since these inner products are not (and cannot be) restrictions of l^-inner prod-
ucts, this result is by no means an easy consequence of unitarity of normalized intertwining
operators. As we will show in a second paper ([Ba 88 II]), Corollary 9.3 has an important
consequence for the asymptotics of Eisenstein integrals related to the principal series: it
implies that these integrals behave asymptotically like a finite sum of vector valued plane
waves, whose amplitudes have a common absolute value (when ^ is imaginary). This is
analogous to the situation in the case of a group G = G x G/diagonal; in that case this
common absolute value determines part of the Plancherel measure (cf. [HC76II]). In
fact the consequence just mentioned has been one of our primary motivations for writing
the present paper.

We shall now describe the contents of our paper in somewhat more detail. There
exists a Cartan involution 9 of G which commutes with CT. In order that the induced
representation Ind^(^ OOe'^OO 1) contributes to the Plancherel decomposition, it must
have H-fixed distribution vectors. More precisely, let C°°(P:^: —X) be the space of
C00-vectors for Ind?(^ (g) e~^ ® 1) and ^'(P: ̂ : ̂ ) its topological anti-linear dual. Then
the space 0)' (P: ̂ : ̂ H of H-fixed elements in 0)' (P: ̂ : X) must be non-trivial. Now this
can only be true for generic ^ if P is (jG-stable. The contributions to the "most
continuous" part of the Plancherel decomposition are expected to come from minimal
oO-stable parabolic subgroups. This is known to be true firstly in the group case by
Harish-Chandra's work (cf. [HC 581, II], [HC 75], [HC 76 I, II]) and secondly in a
number of rank one cases ([Str 73], [Ro 78], [Fa 79], [D-P 86]). In Section 2 we classify
the K Pi H°-conjugacy classes of minimal cG-stable parabolics. We also introduce a
(finite) set ^y(A^) of special representatives of these conjugacy classes. Elements of
^y(Aq) have the same MA-part in their Langlands decomposition.

In Section 3 we investigate the further conditions to be imposed on the induction
data. For ^'(P: ̂ : ̂ H to be sufficiently rich we require that ^ be contained in a linear
subspace a^ of a* and ^ in a certain set M^ of finite dimensional unitary representations
of M (cf. Lemma 3.3). The resulting series of representations is called the principal
series for G/H (cf. Definition 3.4). It is unitary for imaginary values of 'k.

If Pi, P^ e ̂  (A^), then there exists an intertwining operator A (P^: P^: ̂ : K):
CW)(P^:^:'k)->C(x)(P2:^:'k) defined as in [K-S 80]. The fact that 'k varies in the
(generally) lower dimensional subspace a^ of a* forces us to study its existence and
meromorphic dependence on X, in some detail. This is done in Section 4 where we also
study its extension to distributions.

In Section 5 we begin the study of Q' (P: ̂ : ̂ H. We define a finite dimensional vector
space V(y and for — R e ( X ) — p p strictly P-dominant a linear map;(P:^:^) from V(y
into ^'(P:^:^)" which is bijective for generic X and then provides a parametrization
for ^'(P:^:^)". Moreover, ;(P:^:^) depends holomorphically on \ in the above
mentioned region (Lemma 5.7). The necessity to cover imaginary values of \ (corre-
sponding to the unitary principal series) forces us to show that the map j ( P : ^ : ' k )
admits a meromorphic continuation in ^ (cf. Theorem 5.10). The existence of such a
continuation was essentially announced in [Os 79], proved for symmetric spaces G/Kg by
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[0-S80] and for spaces G/H with H=G0 by [0186]. Both proofs depend on [B-G69]
or [B 72]. Our proof is entirely different, using an a priori estimate of dim^ ̂  (P: ̂ : ̂ )"
(Corollary 5.3) and results of [S71] and [K-S80] on the meromorphic continuation of
intertwining operators.

In Section 6 we are finally prepared to study the actions of intertwining operators on H-
fixed distributions. More precisely, if Pi, ?2 e^(A^), then the equation A (?2: Pi: i;: X)
oj (Pi: ̂ : X) =j (P^: ̂ : ^-) ° B (P^: Pi: ̂ : ̂ ) uniquely determines an endomorphism
B(P^: Pi: ̂ : X) of V(^) which depends meromorphically on .̂ The basic result of our
paper is that V(^) carries a Hermitian inner product (independent of X,) such that
B (?2: Pi: ̂ : ̂ )* = B (Pi: P^: ̂ : - X) (Theorem 6.3). It is proved in the course of Sec-
tions 7, 8 by means of a a-split rank one reduction. In the final Section 9 results are
reformulated in terms of normalized operators.

In a slightly different form the endomorphism B has for the first time been introduced
by Oshima and Sekiguchi for spaces G/Kg (cf. [0-S 80]). Then Mp^ consists of only the
trivial representation and the matrix B(P^ : P ^ : l : ' k ) admits an explicit computation (cf.
[loc. cit. Lemma 4.14]). Moreover, it plays a crucial role in the theory of the Poisson
transformation for the above mentioned spaces.

Acknowledgements

I thank Henrik Schlichtkrull for offering his valuable criticisms to an earlier version
of this paper.

1. Preliminaries, root systems and Weyl groups

In this paper, G will always be a real reductive Lie group of Harish-Chandra's class,
CT an involution of G, and 9 a Cartan involution commuting with a (for its existence, cf.
[Be 57], [Ba 87 II]). Let H be an open subgroup of the group G° of fixed points for
CT. We call G/H a reductive symmetric space of the Harish-Chandra's class (cf. [Ba 87
II]).

In the course of the proof of our main result, Theorem 6.3, we shall also need the
following assumption on G:

(A) Every Cartan subgroup of G is abelian.

[Vo 81] works under the same assumption; notice that we do not require G to be
linear. Recall that (A) is inherited by Levi components of parabolic subgroups of G.
Therefore the usual induction arguments may be applied to our class of groups. It
should be noted that much of the theory of this paper holds for groups of the Harish-
Chandra's class not satisfying (A); in fact it is not until Lemma 6.16 that we do require
(A) to hold permanently. The above assumption is explicitly used only in the proofs of
Lemmas 5.4 and 6.16. Its necessity for Lemma 5.4 to be valid was pointed out to me
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362 E. P. VAN DEN BAN

by H. Schlichtkrull. This is illustrated by the following example, due to him and R.
Lipsman.

Let F = { — 1 , 0 , 1 } be the field of three elements. Then, being a finite group,
G=SL(2,F) is of Harish-Chandra's class; however, G is not abelian, hence does not

satisfy (A). Let a: G -> G be conjugation by ( ), then its group of fixed points

is H = { — I , I } . Let Jf^ be the 3-dimensional complex linear space of functions
IP1 (F) -> C whose average value is zero. Then the natural representation ^ of G on ^fp
is irreducible, and all of its vectors are H-fixed. In the notations of Lemma 5.4 we
have: M=G, ^eM^, and dimjf^0"^.

Notice that the above also provides an example of a reductive symmetric space of
Harish-Chandra's class whose discrete series are not multiplicity free.

Put K=G9, and let i and p (I) and q) denote the +1 and — 1 eigenspaces of 9 (a) in 9
respectively (as usual groups are denoted by Roman capitals; their Lie algebras by the
corresponding lower case German letters). We extend the Killing form on 91= [9,9] to
a non-degenerate bilinear form B on 9 which is positive definite on p, negative definite
on t and for which center (9) HI) and center (9) Oq are orthogonal. Then the joint
eigenspace decomposition

9=( inq)e( in t ) )e (pnq)e(pnt ) )
for 9 and CT is B-orthogonal. Fix a maximal abelian subspace doq of p F} q and extend
it to a cr-stable maximal abelian subspace do of p. The restricted roots £(9, do^) of OQq
in 9 constitute a (possibly non-reduced) root system (cf. [Ro 79]), which we denote by
£. Let So=S(9,ao). If 2^ and ^+ are compatible systems of positive roots for Eo
and E respectively, we agree to write Ao and A for the associated fundamental
systems. The reflection groups of So and S are denoted by Wo and W. Notice that
Wo^NK(cio)/ZK(cio). Now let Wo^^weW; ( jw=wa on %}. Then clearly
Wo^NK(ao)nNK(ao,)/ZK(ao). Put 2^={ae2:o;a| Oo,==0} and let W(2:o) denote
the associated reflection group.

LEMMA 1.1. — Restriction to OQ q induces a natural surjective map Wo y -> W with kernel
W(^o).

Proof. — The first assertion follows from ([Schi 84], Proposition 7.1.7). The assertion
on the kernel follows straightforwardly by application of ([Va 74], Lemma 4.15.15). •

LEMMA 1.2. — The map N^(0o g) —> End (do J, k —> Ad (k) | do q induces an isomorphism
NK(ao,)/ZK(ao,)^W.

Proof. — Let M^ be the centralizer of do^ in G. Then do is maximal abelian in
m^r\p. Moreover if ^eNfc(cio^), then k^ normalizes M^ and Ad(fei)ao is maximal
abelian in ntiOp. It follows that Ad(k^)aQ==Ad(k^)ao for some k^eM^F^K. Let
fe^^fei. Thenfe£NK(ao)nNK(ao^)andi t fol lowsthatAd(fei ) |ao^=Ad(k)[ao^W
(use Lemma 1.1). By Lemma 1.1 the map NiJdo^-^W is surjective, whence the
result.
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Let Wo K n H (WK n n) denote the image of N^ , H (%) (NK n H (%,)) in Wo (W). Then
obviously Wo K n H ^ Wo ^ and the restriction Wo <y -^ W maps Wo K n H mto W^ ^ H-

LEMMA 1.3. — The natural map Wo y -> W induces a bijection between the coset spaces
W(^) Wo ,\Wo K n H and W/W^ , H.

Proof. — By Lemma 1.1 we have W(S{9\Wo^W as groups. Hence it suffices to
show that Wo K n H niaps onto WK ^ H- Let k ie NK n H (^ q)' Then k i normalizes m^ Pi t)
(cf. the proof of Lemma 1.2) and do P» I) is maximal abelian in (m^ 0 % Pi P. Hence
Ad(fei)((to 0 I)) =Ad(^) (do 0 % for some fc^(Mi 0 H U K)°. Let k=k^1 k,. Then
^eN^^^) and Ad(fe) | do has image Ad (k 1)^0 4 under the natural restriction map. •

Let g+ denote the +l-eigenspace of <j9 in 9. It admits the Cartan decomposition
g+ =(101)) © (p H q). Let £+ =S(g+, ao^). Its reflection group W(S+) is contained
in WK ^ H- The following result is proved in [Ba 87 II].

LEMMA 1.4. - We have H=H°Z^H(%,) ^W(£J=WK,H.
The group H is said to be essentially connected if it satisfies the equalities of the above

lemma.

2. crG-stable parabolic subgroups

The purpose of this section is to classify K 0 H°-conjugacy classes of minimal o9-
stable parabolic subgroups. We first consider the Langlands decomposition MAN of
any a9-stable parabolic P. Its 9-stable Levi component M^ =MA=Ppi 9(P) is a-stable
because o and 9 commute. Since a = center (m^) PIP and m=mi Pia1 it follows that
A and M are a-stable as well (use that M=(Mi PlK)exp(mrip)). Finally
N = 9 (N) = CT (N). The following lemma is now obvious.

LEMMA 2 .1 .—Let P be a parabolic subgroup mth Langlands decomposition
P=MAN. Then the following conditions are equivalent:

(i) P is aQ-stable;
(ii) A is (jQ-stable and S (n, a) is cjQ-stable as a subset of the a-weights in 9.
If P is a a9-stable parabolic subgroup with Langlands decomposition P==MAN, then

A splits as a direct product A=A^A^, where A ^ = A H H and A ^ = { x e A ; cr(^)=x~1}
are closed subgroups of A. Moreover, M(,=MA/, is a reductive group of Harish-
Chandra's class, and we have a decomposition

P=M,A,N,

called the a-Langlands decomposition of P.

LEMMA 2.2. — Let P be a aQ-stable parabolic mth a-Langlands decomposition
P= My Aq N. Then M^=M^Aq is the centralizer ofAq in G, and dq = center (m^) Pi p H q.

Proof. - Put a^=ap|t). Then a=a^©a^. If aeS(n,a), then a^e^n.a), hence
a09 -^ — a. It follows that a | dq -^ 0. Using the direct sum decomposition 9 = n ® m^ © n
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364 E. P. VAN DEN BAN

we deduce that m^ equals the centralizer of a^ in g. Now let M^ denote the centralizer
of a in the complex adjoint group G^. Then M^ is connected and has Lie algebra
m^. The centralizer of a^ in G, is also connected, hence equal to M^. Hence
ZG(a,)=Ad^(M^)=Z^(a)=M,. •

We now turn our attention to K 0 H°-conjugacy classes of aO-stable parabolic
subgroups. If P is a parabolic subgroup of G, we denote its Lie algebra by the
corresponding German capital ^B. Let 9=g+ ® g _ be the decomposition of 9 in the
+1 and —1 eigenspaces for the involution oO. Notice that 9+ is a reductive subalgebra
with Cartan decomposition Q+=(iri t)) ©(? Pi q). Given a a9-stable subspace b e g
we often write b+ ==b P) g+ and b_ ==b 0 g_.

LEMMA 2.3. — Let P be a aQ-stable parabolic subgroup ofG, ̂  its Lie algebra. Then
^+ is a parabolic subalgebra o/g+.

Proof. — Since n and ^ are aQ-stable we have a direct sum decomposition
g + = n + © ^ + . If ae2:(n,a), then a|a^0 (cf. proof of Lemma 2.2). Hence if
Y en+\{ 0}, there exists X e dq such that [X, Y] en+\{ 0}. This implies that ^+ equals
its own normalizer in g+. •

COROLLARY 2.4. — Let P be a aQ-stable parabolic subgroup ofG. Then there exists a
keK pi H° such that P^ contains A(^ (and is of course still aQ-stable).

Proof. - Since doq is maximal abelian in pPiq, there exists a feeKptH 0 such that
^ contains aoq. •

The description of K Pi H°-conjugacy classes of oO-stable parabolics will be completed
in terms of standard parabolics. For the remainder of this section, let £^ and S4' be
compatible systems of positive roots (notations as in Section 1).

If F c= AQ, we let ^PF denote the associated standard parabolic subalgebra of 9,
S PF=mF©aF©nF its Langlands decomposition, and PF^MpApNF its normalizer in G
(cf. [Va 77]). Moreover, we write ?o for P^, etc.

LEMMA 2.5. — Let P be a aQ-stable parabolic subgroup of G, containing A() . Then
P contains Ao. Moreover, there exists a feeNiJcio) ONi^cio^) such that P^ 15 a (06-
stable) standard parabolic.

Proof. — Let m ^ ® a ^ © n be the o-Langlands decomposition of ^3. Then
^1=^0®^ equals ^nO^), hence contains doy Hence Oo^ is a maximal abelian
subspace of m^ Pi P 0 q. It follows that there exists m e M ^ such that Ad(m) dy c= do^
Since M^ centralizes c^, this implies that doq contains c^. Hence Ii, the centralizer of
Ooq in 9, is contained in m^ (use Lemma 2.2). In particular do c= m^, whence the first
assertion.

If a e So, put ^a = 901 n ^P. Then

^=OPnmo)©ao© S®^,
ae£o
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where nto denotes the orthocomplement of do in its centralizer. Moreover, if ^"^O,
then^^. LetT^aeSo^eg^c^.S^aeZo;^-^^""^ Then

So = T U S U (- S) (disjoint union),

and clearly T is the set of roots in ̂  r\ 9 (^P). If a e S, then ̂  c: n, hence <j (9,) n ^P = 0,
whence era e — S. It follows that o leaves T invariant, maps S onto — S and vice
versa. Fix a o-compatible system T'^ of positive roots for the root system T, i.e.
oceT^ oaeT'^ =5>ora=a. Then T'^ US is a a-compatible system of positive roots for
Zo. Hence T + U S=w- l(So') for a unique we Wo with w o o = a o w (cf. [Schi 84],
Proposition 7.1.7). Let fceN^cio) be a representative for w. Then /ceN^cio^) and
A d (k) ̂  is a parabolic subalgebra containing ^o- Using Lemma 2.1 we infer its a9-
stability. •

In the following we complete the description of oO-stable parabolic subgroups by
classifying the standard ones: they correspond 1 — 1 to subsets of A.

LEMMA 2.6. — Let F c: AQ. Then the following conditions are equivalent:
(i) PF is aQ-stable,

(ii) F contains { a e Ap; a (a) = a } and So p = ̂ o 0 ~S- F is a-stable,
(iii) there exists a subset ^F of A SMC/I ^af-

F^aeAoialao.eWU1?}.

Proof. — Let Ag = { a e Ag, a | % ̂  = 0}. Then there is a permutation a -> a' of order 2
of the set Ao\A^ such that

aa=-a'- ^ n(a,P)P
P6A^

for all a e Ao\AS. Here n (a, P) e N = { 0,1,2, . . . } (cf. [Schi 84], Lemma 7.2.3). Let
f=SA, and ? i = f t { a e A o A^a'^a}. Then the elements of A() may be enumerated
oci, . . . , a^ so that

oc;.=a, (1^;-;,),

^•=^+4 (l-li<J^\

and A^ = { ^ + ̂  +1, . . ., a^}. Moreover, A = {o^. | % ̂ ; 1 ̂ j ̂  ?} ([Sch. 82], Lemma 7.2.4).
"(O => (iiy\ Since a(nF)=9(nF)=nF, a maps So'\^F into -(2;o'\I^F). So if

aeAo\F, then <ja<0, hence a^A^ and we infer that A()\F c: A()\A^, whence
F => A^. Moreover, if aeAo\F, then aae —(So'\^l F), and by the above description
of the action of CT on A()\A^, we infer that a'^F. We deduce that aeF<s>a'eF
(aeAo\A^). Hence Z()F 1s cr-stable.

"(n) ^> (iiiy\ From (n) it follows that F ̂  A^, and that aeF^a'^aeAo^^).
Henceifwedefine lF={a^|ao^ 1^'^;, a^eF}, thenF={aeAo; a |ao^{0} U^}.

"(Hi) => (f)". From the description of the action of a on A()\A^ we deduce that a
leaves Sop invariant. Hence 0(111^)= nip and 0(01,)= dp. Moreover, since F =3 A^, it
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follows that CT(AO\F) c= -Zo-, and hence that a maps So^17 onto -(^o'\^F).
Therefore a(nF)==riF=9(nF), and ^Pp is crG-stable. •

We conclude this section with a description of the minimal aO-stable parabolic
subgroups of G. First, by Corollary 2.4 and Lemmas 2.5, 6 we have:

COROLLARY 2.7. — Let F={aeAo;a | ao^=0} . Then the standard parabolic subgroup
PF is minimal aQ-stable. Moreover, if? is any minimal cjQ-stable parabolic subgroup then
there exist k e K 0 H°, w e N^ (%) Pi N^ (do „) SMC/I that

(pfc)w^p^

Let ^(AQ^) denote the set of oO-stable parabolic subgroups whose split component
contains A()^. If Pe^(Ao^), then P => Ao and P^ is standard for some
weN^cio) nN^cio^) (cf. Lemma 2.5). The split component of Pw contains AQ^, so
P^ is the standard minimal o'9-stable parabolic subgroup (Lemma 2.6). It follows that
^a(^oq) consists of all minimal oG-stable parabolic subgroups containing Ay. The
action of N^(00^) by conjugation induces an action of W on ^(AO q) (use Lemma 1.2).
For Pe^(Ao^), let S(np, OQ^ denote the set of do ̂ -weights in Up, the nilpotent radical
of ^P. The following is now obvious.

LEMMA 2.8. — The map Pi-^£(np,ao^) defines a bijection from ^(Ao^) onto the set
of positive systems for S and commutes with the action ofW. In particular, W acts simply
transitively on ̂  (A() ^).

Remark. — In particular, the K 0 H°-conjugacy classes of minimal a9-stable parabolics
are in bijective correspondence with W/W^ ^ H-

3. The principal series for G/H

If P is a parabolic subgroup with Langlands decomposition P=MAN, we define
ppea* by pp(X)=l/2tr(adX|n). Let ^ be a unitary representation of M in a Hilbert
space ̂ , and 'ke a*. Then by C00 (G: P: ̂ : ̂ ), or more briefly C°° (P: ̂ : ̂ ) or C00 (^: X)
we denote the space of C00-functions G -> e^ satisfying

(3.1) /(manx)=a^P;;(m)/(x),

for x e G, (m, a, n) e M x A x N. The right regular representation of G on this space is
denoted by Ind? (^ ® ̂  ® 1). We define a pairing C°° (^: X) x C°° (^: - X) -. C by

<f\g>=[
JK

(3.2) <f\g>=\ (f(k\g{k)\dk,
JK

where ( . , . ) ^ denotes the unitary structure of Jf^ and the vertical bar in the left hand
side of the equation indicates that the pairing is anti-linear in the second variable. It is
well known that the pairing (3.2) is G-equi variant. In particular, if ^ is purely imaginary,
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it follows that Ind^(^ ® e^ ® 1) is unitary (for these and other standard facts concerning
parabolic induction, we refer the reader to [K-S 80]).

Let C°° (P: ̂ : —X) be endowed with the usual structure of Frechet space. Its topologi-
cal anti-linear dual is denoted by

(3.3) ^(G:P:^),

or, more briefly, ^ ' (P :^ :^ ) or ^'(^:^). Naturally, the group G acts on this
space. Moreover, the pairing (3.2) induces a G-equi variant and complex linear embed-
ding

(3.4) C°°(P:^)c;jr(P:^).

To ensure that the space

^(P:^)"

of H-fixed elements in ^ ( P ' . ^ ' . ' k ) is sufficiently rich, we assume from now on that P is
a9-stable.

LEMMA 3.1. — Let P= MAN be a aQ-stable parabolic subgroup. Then pp==0 on a Pi t)-
Proof. — Since a6 stabilizes a and n, we have pSI^pp. On the other hand, on an I)

we have pp° = pp = — pp. •
We now restrict our attention to induction from parabolics Pe^(Ao^) (for the

definition and properties of this finite set, cf. the end of Section 2). All elements of
^(AQ^) have the same CT— and 9-stable Levi component M^=MA. Here

(3.5) a=0{kera; aeSo, a|ao,=0},
(3.6) A=expa,
(3.7) MA=Ze(ao,)

(cf. Lemma 2.2). From now on we reserve the notations M and A exclusively for the
objects defined by (3.5-7). Thus we have a^ = a C} q = % q, and

^q=^oq-

The following lemma is easy to prove.

LEMMA 3.2. — Let vel^^(aq). Then v normalizes M^, M^, M and A P\ H.
Thus N^(0^) acts in a natural fashion on representations of M by the rule

v^(m)=^(v~lmv), for ^ a representation of M, i^eN^ci^), and meM. Since
^K^q) ^K-n M I = K H M this induces an action of W on the unitary dual My of M.

Let now i; be an irreducible unitary representation of M on a Hilbert space Jf^ (in
the sequel we abbreviate this as R]eMy, or by abuse of notation, as ^eMJ. Let J^
be the space of C°°-vectors endowed with the usual structure of Frechet space and let
Jf^~ °° be its topological anti-linear dual. By unitarity we have equivariant embeddings
Jf^° c= j^ c, ̂ -00. Let G=(9(P) denote the union of the open double cosets in
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P\G/H. If ^r is a set of representatives for W/W^ n H in NK(C^), then

(3.8) ^(P)= U PwH
weir

(c/ Appendix B).

LEMMA 3.3. —Let Pe^(A^), ^eMy, and ^-ea*. If there exists a non-trivial right
H-invariant function f: ̂ P(P) -> Jf^"00 transforming according to the rule (3.1), ^n
^ | a Pi t) = 0 and there exists a v e N^ (c^) such ^a( (J^00)1^1 n H ̂  0.

Proo/. - Let ̂  be as in (3.8). If/fulfills the above conditions then/(w)^0 for
some we^. Moreover if a e A O H then ak+ppf(^v)=f(\v\v~law)==f(w) (use Lemma
3.2). Hence ^=^+pp=0 on aC^i) (use Lemma 3.1). Finally, if m e M H H then
[w~1 ̂ (m)/| (w) =/(wm) =/(w) and the last assertion holds for i;=w~1. •

Let M^ denote the set of n eMy for which there exists a weW such that ^^00

contains non-trivial (M C} H)-fixed elements. Then by the above lemma, a representa-
tion Ind^?(^(g)^(g) 1) can only be expected to have H-fixed distribution vectors with
non-trivial restriction to ^P(P) if ^eMp, and ^|apit)=0. This motivates the following
definition.

DEFINITION 3.4. — Let PeP^(A^). We call the series of representations
Ind^(^ ® ̂  g) 1), R] e M^ Xe a .̂, t^ (non-unitary) principal series for G/H.

Remarks. — Via the form B we view a^ as a subspace of a*. Thus
a^={^ea*;?i=0ona^=ant)}.

If Qe^(A^), then Q=P" for some MeNi^) (Lemma 2.8). The operator
L(u): C°°(P: ̂ : ?i) -. C^Q: u^: uk) defined by

(3.9) (LO^O^/^-1^

defines an equivalence between Ind{?(^®^® 1) and Ind^(u^(g)^® 1). Thus up to
equivalence the above series is independent of the choice of P. Of course a similar
argument shows it to be independent of the choice of the maximal abelian subspace a^
of p Pi q.

The following lemma gives, among others, a different characterization of the set
Mp,. We write K^ = K Rl M.

LEMMA 3.5. — (i) Let K] e My. Then [Q e Mp^ if and only if there exists w e W such
that w [^] belongs to the discrete series of M/M n H.

(ii) 1ft, is a discrete series representation of M/M H H, then dim(^) < oo, ^ [ (m n p) =0
and ^ | KM is irreducible. Restriction to K^ induces a bijection between the discrete series
of M/M n H and those of K^/KM Ft H.

Proof. — We first prove (ii). Since Oq is maximally abelian in p r}c\ we
have m r i p = = m r i p r i t ) . Since M = K^ exp (m 0 p) it follows that
exp(mnp)=exp(mnpn()) acts trivially on L^M/MHH). Moreover, the map
KM -> M induces a bijection (p: K^/K^ 0 H -^ M/M H H and by pull-back an isometric
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