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HIGHER G-INDICES AND APPLICATIONS

BY JONATHAN ROSENBERG (1) AND SAMUEL WEINBERGER (2)

0. Introduction

Suppose a compact Lie group G acts on a closed, connected, smooth manifold M, in
such a way that the classifying map/: M -^ B n, where n = 71 ̂  (M), can be made equi variant
(for the trivial G-action on BTI). This is equivalent to assuming n^(M)->K^(M/G)
splits, and turns out to be automatic if the action is semifree with non-empty fixed set,
and if G acts trivially on n. A G-invariant elliptic operator D on M defines a class
[D] e K^ (M), and we call /„, ([D]) e K^ (B n) = K^ (B n) ®z R (G), or sometimes its Chern
character in H^(TC,C) ®^R(G), the higher G-index of D. It generalizes the ordinary
G-index (which corresponds to the case n={ 1}), and in section 1 below, we shall show
that it can often be computed by methods arising out of Kasparov's work on the Novikov
Conjecture [16]. Then in the rest of this paper, we shall study a number of applications
of such higher G-indices, as well as a few closely related topics.

In our applications, D will always be either the Dirac operator on a spin manifold or
the signature operator on an oriented manifold, though potentially our theory might also
be useful when applied to the Dolbeault operator (3+3*) on a complex manifold. We
begin in section 2 with the case of the Dirac operator. Browder and Hsiang [7] have
already pointed out the vanishing of the higher G-A-genus, which is the rational higher
G-index of the Dirac operator, for actions of G=S1 on spin manifolds. However, there
is a more subtle analogue of this invariant, living in KO^ (BTI), which appears in the
problem of trying to determine when a spin G-manifold has a G-invariant Riemannian
metric of positive scalar curvature, a problem first studied by Berard Bergery [5]. In
Theorem 2.5, we show that this higher "G-j^-genus" is sometimes an obstruction to
existence of such a metric. On the other hand, in Theorem 2.3 and the examples of
(2.7), we show how equivariant surgery can often be used to construct such metrics in
the case where the obstruction vanishes. Most interesting is probably Example 2.7 (2),
where we construct invariant metrics of positive scalar curvature on n-spheres, for Zp-
actions with a knotted (n—2)-sphere as fixed set.
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480 J. ROSENBERG AND S. WEINBERGER

In section 3, we consider the application of our methods to the higher G-signature
(f. ^., the higher G-index of the signature operator). One general consequence (Theorem
3.8) is a proof of a version of what one can call the Equivariant Novikov Conjecture,
which is the equivariant homotopy-invariance of the higher G-signature. When G is
cyclic and acts trivially on cohomology (with local coefficients), we obtain a "higher"
version of the Atiyah-Singer G-signature formula of [4], which relates the higher signature
of M (in the sense of Novikov) to the "twisted" higher signature of the fixed set— see
Theorem 3.1 below. Similar results, weaker in some respects but stronger in others,
were previously found by the second-named author, using different methods ([31], [32]).

The original version of this paper also contained a number of applications of the
Teleman signature operator on a Lipschitz manifold (see [28], [29], and [12]) and of its
higher G-index theory. However, since this section eventually grew to be much longer
and more complicated than the whole rest of the paper, we have decided to publish it
separately.

Much of the work described here was done while the first-named author was visiting
the University of Chicago. We would like to thank the Chicago mathematics department
for its hospitality, and the Centre for Mathematical Analysis of the Australian National
University for its support and hospitality during revision of the manuscript. We also
wish to thank (in alphabetical order) Michel Hilsum, Jerry Kaminker, Jim McClure,
John Miller, Mel Rothenberg and Georges Skandalis for helpful suggestions about the
subject of this paper. In particular, we thank John Miller, Michel Hilsum, and Georges
Skandalis for detecting errors in preliminary drafts.

1. The higher G-index theorem

Let M2 k be a closed, connected, smooth even-dimensional manifold with fundamental
group K on which a compact Lie group G acts by diffeomorphisms. We suppose that
D:r(E°) -^r(E1) is a G-invariant elliptic pseudodifferential operator between sections
of two G-vector bundles E°, E1 over M, and wish to discuss the higher G-index of D,
taking both the G-action and the fundamental group into account. For this to make
sense, G must act trivially on 71, in the sense that there should be a splitting to the map

7ii(M)-^(M/G).

This, of course, is equivalent to the existence of a commutative diagram of G-maps

(1.1) M -̂  BTC,
\ ^

M/G

where BTI is a K(n, l)-space with trivial G-action and/is an isomorphism on n^. This
condition already made its appearance in [I], [31], and [32]; a few conditions that
guarantee this are given by the following proposition. Note that if G acts freely, it no
longer makes sense to say G acts trivially on K^(M) (since M has no G-invariant
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HIGHER G-INDICES AND APPLICATIONS 481

basepoint), but existence of a splitting (1.1) reduces to a simple algebraic condition on
the exact sequence

TCi (G) -> TCi (M) -> 71:1 (M/G) -> KQ (G) -> 1.

1.2. PROPOSITION. — Suppose G, a compact Lie group, acts semi-freely on a connected,
not necessarily compact manifold M, \vith nonempty fixed set F and G acting trivially on
n ̂  (M). If either F is connected or n^ (M) has no subgroups that are non-trivial homo-
morphic images of KQ(G) (this is no condition at all if G is connected), then
Tti (M) -> Tii (M/G) is an isomorphism.

Proof. — Assume F^M without loss of generality. It is obvious that
n^ (M) -> n^ (M/G) is surjective (choose a basepoint in F and note that one can lift
paths from M/G to M), so it's enough to construct a splitting
Tii (M/G) -> Tii (M). Differentiation of the action at a point of F yields in the direction
normal to F a semifree linear representation V of G, which is positive-dimensional. Now
it is enough to prove the proposition assuming the codimension of F in M is at least 3,
since otherwise we can replace M by M x V2 (in which the fixed set is F x {(0,0)}, which
is of codimension at least 3) and use the diagram

M -> M x V 2

M/G-^MxV^/G

to obtain a splitting n^ (M/G) -> n^ ((M x V^/G) -> n^ (M x V2) ̂ n^ (M).
Assuming that codim (F c= M) ̂  3, we observe that

7ii((M-F)/G)^(M)x7to(G).

This can be seen as follows. By a general position argument (or direct calculation with
Van Kampen's Theorem), Tii(M-F) ->K^(M) is an isomorphism. The action of G on
M—F, which is assumed to be free, makes M — F into a principal G-bundle over
(M—F)/G, yielding an exact sequence

K, (G) -^ n, (M - F) ̂  K, ((M - F)/G) ̂  n^ (G) -> L

The map n^(G)->n^(M—¥) is trivial, since its composition with the isomorphism
7ti(M—F) ^TCi(M) is given by the inclusion into M of an orbit, and can be computed
from the orbit of any point, in particular, from the trivial orbit of a fixed point. Let S
be a G-invariant sphere in M linking a component of F, as provided by the equivariant
tubular neighborhood theorem ([6], Theorem VI. 2.2). There is a similar exact sequence
computing 7Ci(S/G)^7io(G) (recall dim S^2), so that the inclusion S/Gc;(M-F)/G
splits the above exact sequence. To deduce the splitting of T^(M-F) ->n^ ((M—F)/G),
it suffices to know that the action of KQ(G) on n^(M—¥) is trivial, which follows from
the assumption that G acts trivially on n^(M)^n^(M—F). [The two actions of TC()(G)
are easily identified using covering-space theory.]
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482 J. ROSENBERG AND S. WEINBERGER

Now we have to compute K^(M/G). Choose disjoint equi variant tubular neighbor-
hoods N, of the components F^ of F. By repeated application of Van Kampen's theorem,

7ii(M/G)=7Ci(((M-F)/G)UFiUF2U . . .)
=7i,((M-F)/G)^^/G)^i(Fi)^(^/G)^i(F2)*. . .

^(7Ii(M)x'n;o(G))^(F,),^(G)7li(Fi)^(F,),^(G)7Ci(F2)*. . .

If F is connected, we have only F^ to deal with and we get

7li(M/G)^(7li(M)X7lo(G))^^,^(G)7li(Fi)^7li(M).

If F is not connected, one must keep track of the way each n i (3Nf/G) is identified with
Tti(Ff) XTI()(G), and unfortunately the various copies of 7io(G) may not all coincide with
the selected factor of 71:0 (G) in 71:1 ((M - F)/G). However, if n^ (M) is as in the hypothesis,
this cannot cause trouble, and the proof is complete.

1.3. Remarks. — 1. All actions of the cyclic groups Zp of prime order are semifree.
2. This proposition can be extended to many non-semifree group actions, if one has

suitable hypotheses on fixed sets of subgroups. However, even in the semifree case,
some hypotheses are needed to eliminate the (projectivized linear) involution on RP2

with fixed set IRP1-^ IRP°, which satisfies all the hypotheses of the proposition except
for connectedness of the fixed set and lack of a homomorphism Z^ ->n^(W2), yet has
quotient the 2-disk.

3. See [7] and [32], Lemma 2, for an analogous statement when G=S1.

1.4. DEFINITION. — Assume D is as above and one has a diagram (1.1). The stan-
dard procedure, involving replacing D by an operator D" of order 0 whose symbol is in
the same K-theory class (e.g., D/=D(1+D*D)-1/2) and considering D' as a bounded
G-equivariant Fredholm operator L^E0) -> L2(E1), associates to D a class

[D]eK^(M)=KKG(C(M),C)

independent of the choices of D" and of smooth measures ([14] or [10]). The higher
G-index of D is defined to be/^([D])eK^(B7i;). [Note that since BTI is not necessarily
locally compact and is only defined up to homotopy, K^(BTI) should be interpreted to
mean

lim Kg(X)=( 1m Kp(X)) ®^R(G).

where the inductive limit is to be taken over finite subcomplexes X of BTI.]
The name higher G-index is motivated by the case G^ { 1}, M oriented but not simply

connected, and D the signature operator, in which case the Chern character of the higher
index is

ch/^ ([D]) = 2^ (^ (M) U [M]) e H^ (B 71, Q),
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HIGHER G-INDICES AND APPLICATIONS 483

which when paired with an element of H* (B TI, Q) is one of the higher signatures of
Novikov. Here J^f is the Atiyah-Singer modification of the Hirzebruch L-class, differing
from Hirzebruch's polynomial only by certain powers of 2 [4], § 6.

Next we need to recall a number of constructions from [15] (see also [15], [10], [II],
[13], and [23]). Let A=C*(7i) be the group C*-algebra of n [in fact the reduced C*-
algebra C* (71) would work just as well and from some points of view is more satisfactory],
and form an A-vector bundle ̂  over M by

Mx^C*(7Q,

where M is the universal cover of M and n acts on C*(7i) by left translations. Since
[by (1.1)] the classifying map /:M-^BTT for the principal Tc-bundle M-^M is
G-equivariant, the action of G on M lifts to an action on ^. Thus we may form the
operator D^, D "with coefficients in ̂ ", which is a G-invariant elliptic pseudodifferential
A-operator in the sense of [21]; as such, it has an equivariant A-index in
K^(A)=Ko(A)(x^R(G).

1.5. THEOREM (higher G-index theorem). — Under the above hypotheses,

ind^ D^ = [T} ®c (M) [D] = P (/* (PD).

"where ®C(M) ls tne Kasparov pairing between [D]eK^(M) and

[V]eK^(M;A)^K^(C(M,A)),

with values in K^(A)=Ko(A) ®2R(G), and p is the Kasparov map K^(BTT) ^K^(A),
extended to the equivariant case by tensoring with the identity map on R(G). (This makes
sense since G acts trivially onBn and on A.)

Proof. — The first identity is almost exactly the same as Theorem 3.1 of [23], the
only difference being that everything is G-equivariant. The second identity follows as
in the proof of Theorem 3.3 of [23], using functoriality of the Kasparov product and
the fact that by construction, the bundle i^ is pulled back from the universal bundle
E n x ^ C* (n) over B 71, via the G-map /

For purposes of applications to spin manifolds, we shall also need the analogue of
Theorem 1.5 in real equivariant K-theory. In the only case of interest, M" will be a
manifold with a G-invariant Riemannian metric and spinor bundle, and D will be the
Dirac operator. There is no longer any point in assuming n is even, since KO-index
theory is interesting even in certain odd dimensions.

1.6. THEOREM (higher G-S index theorem). — Let M" be a closed Riemannian spin
G-manifold (with G preserving both the Riemannian metric and the spinor bundle) with
G-equivariant classifying map f: M -> B K as in (1.1). Let

[D] e K^ K0° (C°5 (M), R) = KO^ (M)

be the KO-fundamental class defined by the real Dirac operator D, and V as above (now
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484 J. ROSENBERG AND S. WEINBERGER

mth A =C^(n) as in [39]). Then

HKUD^)=[-r] ®c^(M)[D]=|3(/,([D]))eKO?(A),

where P: KO^ (B 71) -> KO^ (A) fs the Kasparov map in KO-theory as defined in [25], extended
in the obvious way to the equivariant case (for trivial G'action).

Caution. — For A a real C*-algebra with trivial G-action, it is not necessarily true
that KO^ (A) ̂ KO^ (A) (x^ RO(G). See [27] or [3], § 8, for the correct substitutes and
for calculations of KO^ (pt).

Proof. — Again, except for insertions of the G's, one can carry over verbatim the
discussion in [25], Theorems 3.3 and 3.4.

For the applications to higher G-indices, we really want an index theoretic interpret-
ation for /^([D]) and not for P(/^([D])). Thus it is important to know when P is
injective (either integrally or after tensoring with Q). As explained in [15], [16], [13],
[10], [II], [23], and [25], the injectivity of P is intimately linked to the Novikov Conjecture
and certain L-theoretic refinements. At least at present, it seems that for most groups
for which the Novikov Conjecture can be proved by any method, one can also prove
something about injectivity of P, which is what we want to exploit. We recall in
particular the following two results. The proofs obviously carry over to K^ and KO^
(with G acting trivially on both sides).

1.7. THEOREM (Kasparov-[15] and [16]; see also [10], [II], and [25]). — I f n is the
fundamental group of some complete Riemannian manifold of nonpositive sectional curvature
(not necessarily compact or of finite volume), then P is a split injection

K^ (BTI)-^K^ (C*(TI)), KO^ (BJT)-^KO^ (Cg(Ji)).

1.8. THEOREM ([23], Theorem 2.6 and [25], Theorem 2.8). — Ifn is a solvable group
having a composition series for \vhich the composition factors are torsion-free abelian, then
P is an isomorphism K^ (B 71) -> K^ (C* (n)) and KO^ (B 71) -^ KO^ (Cg (71)).

Using Theorems 1.7 and 1. 8, one may view Theorems 1. 5 and 1.6 as giving explicit
interpretations of the higher G-index/^([D]) in terms of the A-index of a certain elliptic
A-operator [A=C*(7i) or Cg(7i)], assuming n is reasonable and torsion-free. For a
somewhat larger class of groups n (see [23], Proposition 2. 7), we get such an interpretation
for/^ ([D]) viewed rationally in H^ (B 71, R (G) ®z Q) = H^ (n, Q) (x^ R (G). In the remain-
der of this paper, we shall give some sample geometric applications of the index
theorems. Undoubtedly there are others involving, say, the Dolbeault operator applied
to holomorphic actions on complex manifolds.

Before we get to the applications, it is useful to give a homological formula for the
(rational) higher G-index, which reduces to the formula of [4] in case n is trivial.

1.9. THEOREM. — Let G be a compact Lie group acting smoothly on a closed, connected,
smooth G-manifold M2 k, let D be a G-invariant elliptic pseudodifferential operator over
M, and f: M -> X any continuous G-map mth X a trivial G-space [i. e., any continuous
map factoring through M/G; in particular, one may take X=BTI in the situation of
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HIGHER G-INDICES AND APPLICATIONS 485

(1.1)]. View the Chern character of /^([D]) as a map G-^H^(X,C), by identifying
elements of R (G) mth their characters on G. Then for g e G,

ch/,([D])(g)=E(-D^f{ ., chlf!^ ^(M?)ln[TM?]^H,(X,C),\(.ch?i_i(N?(2)RC)(^) J /

w/^r^ r^ SMm 15 ^afe^n oiw the various components Mf o/ the fixed set M9. Here
^.=dim(Mf), N, denotes the normal bundle of Mf m M, i*(u) is ̂  restriction of the
symbol class of D to TMf, and ST denotes the Todd class of the complexified tangent
bundle.

Proof. — Without loss of generality, we may take X compact. Let E be any complex
vector bundle over % (with trivial G-action) and consider D/.,^)? the operator D "with
coefficients in/*(E)," defined using a suitable connection on/*(E). Since/"(E) has
trivial G-action ([4], Theorem 3.9) gives

(mdD^)(g)=E(-l)^< chl*(^)l*ch^(E) ^(M?),[TM?]>,/ ( ) f ch?i_i(Nf®g,C)(^)

which says exactly that the two sides of our desired equality agree when paired with
(ch E) e H* (X, C). Since ch: K° (X) ®^ C -^ H^6" (X, C) is an isomorphism, this proves
the result.

2. The higher G-j^-genus and invariant metrics
of positive scalar curvature

In this section, we shall apply the results of paragraph 1 in the case of a compact Lie
group G acting on a closed spin manifold M. We assume the action of G lifts to an
action on the spinor bundle, so that the theory of paragraph 1 applies to the Dirac
operator. As explained in [2], Proposition 2.1, this is not much of a restriction if G is
connected; it is also no restriction if G is finite of odd order.

We begin by showing how Theorem 1.9 gives a result of Browder and Hsiang [7]. We
emphasize that this is not intended to be a particularly convincing application of our
theory, since none of the deeper aspects of paragraph 1 (these include the Miscenko-
Fomenko index theorem and Kasparov's results on the Novikov Conjecture) are involved
here, and furthermore, we don't see any way to simplify the hardest aspect of [7], which
is to get rid of the assumption of a splitting of the map on fundamental
groups. Therefore, we only state the elementary case to point out the relation between
our methods and their result.

2.1. THEOREM (Browder-Hsiang [7]). —Let M be a closed, connected spin manifold
admitting a non-trivial action of the circle group G=S1, and suppose a splitting (1.1)
exists for the classifying map f: M —> B n of the universal cover of M. Then the higher
A-genus f^ (A (M) C} [M]) e H^ (B 71, Q) vanishes. (Here A denotes the total A-class of M.)
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486 J. ROSENBERG AND S. WEINBERGER

Proof. - Because of [2], Proposition 2.1, it is no loss of generality to suppose the
action is of even type (i. e., preserves the spin structure). Then specializing Theorem
1.9 in the case of a generator ZQ of S1 with positive, very small imaginary part gives a
formula for ch/^([D]) (zo) (D the Dirac operator for an S^invariant metric on M) which
is essentially identical to the one appearing in [2], §1.5, except that it takes values in
H^ (B 71, C). Hence the Atiyah-Hirzebruch proof goes through unchanged.

We turn now to a more serious application of our theory, to the following problem
first studied in [5] by L. Berard Bergery: Suppose M" is a closed, connected, smooth
manifold admitting both a metric of positive scalar curvature and an action of a compact
Lie group G. When does M admit a G-invariant metric of positive scalar curvature?

In the case where G is finite and acts freely, this is equivalent to asking when M/G
admits a metric of positive scalar curvature, a problem studied in detail in [24], § 3, and
in [25], Theorem 1.3. On the other hand, when G contains a non-trivial connected
semi-simple compact Lie group, this is always possible (a result of [18], quoted in [5])
and when G=S1 acting freely, M admits a G-invariant metric of positive scalar curvature
if and only if M/G admits a metric of positive scalar curvature [5], Theorem C. Hence
we concentrate here on the case where G is finite or G=S\ but where the action isn't
free. (The case G=S1, M 3-dimensional is completely settled in [5].)

Fortunately, the problem is not completely hopeless because of the following two
positive results.

2.2. THEOREM (Berard Bergery [5, Theorem 11.1]). — I f G acts on M preserving a
metric of positive scalar curvature, and if M' can be obtained from M by an equivariant
surgery of codimension at least three, then M' has a metric of positive scalar curvature
invariant under its G-action.

This enables one to reduce, for group actions "without codimension-two complica-
tions," the problem of invariant positive scalar curvature to the consideration of cobord-
ism classes. To make matters simple we shall consider only G=Zp (p a prime) and
simply connected manifolds, although the general result (see Remark 2.4 below) can be
proven in virtually the same way.

2.3. THEOREM. — Assume Zp acts smoothly on a simply connected manifold M", -where
n^5, preserving a spin structure, and such that no component of the fixed set F has
codimension 2. If M is equivariantly spin cobordant to another (not necessarily connected)
spin Zp-manifold M\ and if M' has an invariant metric of positive scalar curvature, then so
does M.

Proof. — Consider an equivariant cobordism W in two stages (see Fig. 1). To begin
with, W restricts to a cobordism of the fixed sets F and F' along with their "fixed-point
data" (determined by the equivariant normal bundles). In this way (see [9], §§40-43)
the equivariant spin cobordism group Q^1"'^ maps to a direct sum of groups of the
form ^spm2(kl+ . . . +fc,) (KU^i) x . . . x BU(fe^)), where k, are the complex dimensions of
the eigenbundles of the Zp-action on the normal bundles. Any such cobordism between
F and F' is the result of spin surgeries on F' preserving maps to the appropriate classifying
space. Thus, they can be thickened to Zp-equivariant surgeries on all of M'. Any
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HIGHER G-INDICES AND APPLICATIONS 487

surgery in this step is on a sphere of dimension less than that of the fixed set, and hence
is of codimension at least three in M', so that this produces a new manifold M" with an
invariant metric of positive scalar curvature and F as fixed set. There is an equivariant
spin cobordism of this manifold M" to M. Now all surgeries are taking place in the
free part, which by the codimensionality hypothesis is simply connected. Actually, we
work on the quotient and observe that n^ =Zp and we have a spin cobordism over Zp of
the free parts, so that all remaining surgeries can be taken of codimension at least three,
as in the proof of [24], Theorem 2.2.

Fig. 1. — An equivariant spin cobordism. The first step puts an invariant metric
on the "upper boundary" M" of the shaded region.

2.4. Remark. — For the case of general compact G, one should assume that whenever
H <= H" <= G are closed subgroups, the codimension of each component of M11 in the
relevant components of M" is either zero or at least three. For nonsimply connected
manifolds, one must, of course, also take the fundamental group into account in the
bordism group. We shall see some examples later.

The following theorem gives our main necessary condition for existence of an invariant
metric of positive scalar curvature. It follows from the higher G—S index theorem
(Theorem 1.6 above) precisely as in the proof of [25, Theorem 3.4].

2.5. THEOREM. — Suppose M" is a closed spin manifold and G acts smoothly on M,
preserving the spin structure. Assume that M admits a G-invariant metric of positive
scalar curvature. Also assume n==n^ (M) -> K^ (M/G) splits (see Proposition 1.2). If[D]
is the fundamental class in KO^(M) defined by the real Dirac operator, the higher
G-S-class (3 (/^ ([D])) vanishes in KO^ (Cg (71)). If P: KO^ (B n) -> KO^ (C$ (n)) is infec-
tive, f^ ([D]) vanishes in KO^ (B 71).

2.6. Remark. — For n^ (M) as in 1.7 or 1.8, this gives vanishing of the higher G-S
index. Even if P is only rationally injective. Theorem 2.5 gives vanishing of the higher
G-A-class in H^ (n, Q) ®z R (G) (just as in the Browder-Hsiang situation), and one can
do many explicit rational calculations by restricting to fixed sets as in Theorem 1.9.
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