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AUTOMORPHIC REPRESENTATIONS AND
LEFSCHETZ NUMBERS

By JurRGeN ROHLFS (') anp Bircit SPEH (%)

Introduction

Classically, automorphic functions are holomorphic functions on the upper half plane
X =SO(2)\SL, (R) together with a prescribed transformation rule, i. e., an action of a
subgroup I' of SL,(Z) on holomorphic functions on X. Given such a space of auto-
morphic functions there is the problem of determining its dimension. This problem can
be solved using the Riemann-Roch theorem. The formula for the dimension thus
obtained depends on topological invariants of the space X/I" and on an integer which
characterises the transformation rule. A more conceptual explanation of the connection
of the dimension with the topology of X/I' is given by Eichler-Schimura’s
isomorphism [Sh].

There is a well known generalisation as follows. Let G be a semisimple non compact
Lie group and I'=G a discrete subgroup of finite covolume, i.e. G/I" has finite volume
with respect to some left-invariant measure dg. Let L?(G/I') be the space of square
integrable functions with respect to dg. If now = is some irreducible unitary representa-
tion of G, then w is said to be automorphic with respect to I', if n occurs discretely with
finite multiplicity m (r, T') in L2(G/T"). Of course here L?(G/T') is considered as unitary
representation of G where G acts by left translation on functions. The classical situation
now can be recognized as follows: If G=SL, (R), if ' =SL,(2Z), and if = is a discrete
series representation having a certain lowest SO(2)-type which is determined by the
transformation rule, then m (n, I') coincides with the dimension of the space of auto-
morphic function with given transformation rule. Back in the general setting, we now
assume that w is some given unitary irreducible representation of G. Then the following
questions arise: '

Is ® automorphic with respect to I, i.e. is m (n, I')>0?
Is m (w, ') related with topological invariants of G/I"?
What can be said on m (n, T), if " shrinks to {1}?
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(2) Supported by N.S.F. grant Nr. DMS —8501793.
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474 J. ROHLFS AND B. SPEH

There are some unitary irreducible representations of G which are intimately connected
with the topology of G/I'. These are the representations m of G such that
H (g, f, t®V)#{0} for some V. Here g is the Lie algebra of G, f is the Lie algebra of
a maximal compact subgroup K of G, V is a finite-dimensional irreducible representation
of G and H (g, I, t®V) denotes the relative Lie-algebra cohomology of n®V. A
connection of multiplicities and topology is then provided by Matsushima’s formula

H (KNG, V)= }, H (g, }, n@V)"® D

neG

Here we assume for simplicity that G/I" is compact and that I'" is torsionfree. On the
left we have the cohomology of the space K\ G/I' in the sheaf of locally constant
sections —again denoted by V—of the vector bundle over K\ G/I" associated to the
representation V. On the right we sum over all classes of irreducible unitary representa-
tions of G.

To exploit Matsushima’s formula one has to find at first a method which gives some
insight on the topological side. In  particular methods which yield
H (K\GJT, V)#{0} are desirable. One can deduce H (K\G/T, V)#{0 }from
Harder’s Gauss-Bonnet-Formula [Ha 2] if and only if rank K=rank G, see [R—S1, 2]
for applications to multiplicities. In this paper we want to establish a method which
also works if rank K #rank G.

The method we use is inspired by the observation that H' (g, f, n®V)={0} unless =
is equivalent to ®w and V is equivalent to ®V. Here 0 denotes the Cartan involution of
G corresponding to K and the left upper index 0 at a representation indicates the new
representation where ge G acts as 0(g) on the old representation space. So one can
hope that generally H (K\G/I, V)#{0}, if 0 also acts on the geometrical side. A
similar idea occurs first in [H 1] for SL,(C). To make this precise, let G, K, 6, V be as
above. Moreover we assume that G is connected, that I" is 0-stable arithmetic, torsion-
free, and that 0 acts linearily in a compatible way on V i.e. 8(gV)=60(g)0(V) for all
g€G, veV. Then 0 acts as 6 on H(K\\G/T, V) and we define a Lefschetz number

L6, T, V)=Y (—1)'tr6
i=0

Here tr @' is the trace of 6. We do not require that G/T" be compact. Our main result
now is as follows:

THEOREM. — If T is small enough (definition 2.8) and if V has a highest weight A
satisfying h€ Py (definition 3.1.1) then

L(6, T, V)=x((K\G/T)?).tr(8] V) #0.

Here y,(K\\G/T)% denotes the Euler-Poincaré characteristic of the fixpoint set (K\G/T')®
of 0 acting on K\ G/T and tr(0|V) is the trace of 8 on V.
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AUTOMORPHIC REPRESENTATIONS AND LEFSCHETZ NUMBERS 475

Applications are given in Proposition 4.8. In particular we prove

PropoSITION. — Let G be a complex Lie group and V a representation having a regular
highest 0-fixed weight such that tr (9[V)¢O. If T is cocompact and small enough then
there is up to equivalence exactly one irreducible unitary principal series representation T
of G which contributes to H (K\G/I', V)#{0}. The multiplicity m(n, T';) of = in
L2(G/T'y) grows at least as |(T'/T'1)®|if Ty is 6-stable and normal of finite index in T.

Here, of course |(I'/T)°| is the number of fixpoints of 6 acting on I'/T;. We have
similar results for SL,(R), SL,(H), SO(n, 1), see 4.8.

Next, we explain roughly how the main result is proved. Essential is a Lefschetz
fixpoint formula

LG, V)= ¥ x(Fmt(©,|V),

yeH! (8, )

see 1.6. Here (K\G/T)°=F(y) is a finite disjoint union of connected components
F(y) parametrized by the classes ¥ of the non abelian first cohomology H! (8, I') of 6
acting on I We denote by % (F(y)) the Euler-Poincaré characteristic of F(y) and by
tr (6, | V) the trace of 0 acting ““y-twisted” on V.

In 1.4 we prove that F(y) is a locally symmetric space of equal rank type, so in
particular ¢ (F (y)) #0 and the sign of x(F(y)) is determined by the dimension of F(y)
mod 4, seel.5.

In 2.8 we introduce the notion “I" is a small enough”. In particular a congruence
subgroup is small enough if in the definition of the congruence there occur enough prime
divisors. If I' is small enough we can show, that all 3 (F(y))>0, see 2.10 and that
tr (0 | V)=tr (8, | V) is independent of yeH! (0, I'). To prove that x (F(y)) >0 we associ-
ate to ye H*(6, I') and all places v of Q a certain quadratic form B,(y) over Q,. Here
Q, is the completion of Q with respect to v. These quadratic forms have certain
invariants satisfying a product formula due to Weil. If now I' is small enough this
product formula forces a congruence mod 4 on the dimensions of the F(y), yeH! (8, I),
and therefore ¥ (F(y))>0. At the end of paragraph 2 we give a sharp estimate of the
growth of L(6, T, V) if I" shrinks to{1}.

In paragraph 3 we compute tr(0 | V). If O is inner this is done using Weyl’s character
formula. If 0 is outer we use Kostant’s character formula for disconnected groups and
reduce the computation of tr(6|V) to an application of Weyl’s character formula to
certain representations of G%. Here G°0={geG|90g=g} where 0, is “the diagram
automorphism” induced by 0, see 3.1. Our main result is tr(6|V);é0 if V has an
extremal weight which satisfies a mild extra condition, see 3.2.5.

In 4.1 we finally can state our main result on the non-vanishing of L (0, I', V). Next
we define Lefschetz numbers for 0 acting on H' (g, f, t®V), compute these Lefschetz
numbers in 4.3, and prove the connection of L (8, I', V) with multiplicities in 4.7. In
analogy to Matsushima’s formula we obtain for cocompact I" the equation

L, T, V)= m(8 n INdimH (g, I, ®V).

neG
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476 J. ROHLFS AND B. SPEH

Here m(®, n, ') is up to some sign conventions the trace of 6 acting on
Homg(n, L2(G/T)). We have to sum over all equivalence classes of irreducible ne G
such that  is equivalent to ®x. In 4.8 we give examples of groups G and representations
V such that at most one neG contributes to the above sum. In particular complex
groups G and representations V with 8-action and a regular extremal weight have this
property. Combining this with the main result on Lefschetz numbers 4. 1 the Proposition
stated above results.

There are many other results on multiplicities of representations in L2(G/I"). Without
any attempt to be complete we mention some of them and some typical methods of
proof. Often the connection with topology is exploited using an index theorem in the
sense of Atiyah and Singer. Here one applies the theorem of Riemann-Roch (classical:
G=SL,(R)), the Gauss-Bonnet theorem [R—S1], [R—S2], [Sa] or Dirac operators
[B—M] (rankg (G)=1), [DG—W] (G/T" cocompact). The results obtained in this way
are mostly on multiplicities of discrete series representations. These methods give no non
trivial information if rank K #rank G. If rank (K) #rank (G) the methods of Lefschetz
numbers can be applied. There are results in [H 1], [R 2], [Le —S], [R —Sp 3]. A different
approach to multiplicities is provided by the Selberg trace formula. Some typical
applications are in [L1], [L2], [J—L}], [Cl1], [C12], [La—S]. An application of the
twisted trace formula due to Clozel, Delorme and Labesse has been announced in[La].

Notation

0.1 We use the standard notation N, Z, R, C, H for natural numbers etc; H denotes
the quaternions over R. If v is a place of Q then Q, is the completion of Q@ with respect
to v. In particular R=Q_,.

0.2 If M is a set then |M| denotes its cardinality. If a group H acts on M we denote
by ME={meM|hm=hforall heH}. If H=(h) is generated by one element we write
M"=MH", A left action of H on M is denoted by h(m) or hm or "m.

0.3 We say that a group H acts on a group G if it acts as a group of automorphisms
of Gi.e h(g,g,)="g,"g, for all heH, g;eG. If H acts on G we denote the first non
abelian cohomology set of this action by H' (H, G), see [Se]. If H={h) we write for
the cohomology H!(h, G). A cocycle then is an element ge G such that g"g=1 and
cocycles g,, g, are equivalent if there is an ae G such that g, =a~'g,"a. By definition
H! (h, G) consists of equivalence classes of cocycles.

0.4 If V is a representation of a group G we write the action of geG on veV as
vi—>gv. Let 0 be an automorphism of G. We say that V is a representation with 6-
action if there is given a CoeGL(V) such that Cy(gv)=0(g)Cov for all geG,
veV. Often we also write 0 instead of C,.

0.5 If G is a Lie group then always g denotes its real Lie algebra and go.=g® C its
R

complexification. The complexification of an automorphism 0 of g always is again
denoted by 6. For roots, weights, Weylgroups etc. we always use standard notation
and give some explanations when a symbol appears for the first time.
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1. Fixpoints of 0 and Lefschetz numbers

We use the notation given in the introduction. In particular G denotes a connected
non compact semi-simple Lie group, 0 a Cartan involution on G with set of
fixpoints K. Let X=K\G be the associated symmetric space and I'=G a 6-stable
arithmetically defined torsion free subgroup. We do not require that X/I" be
compact. Let V be a finite dimensional complex irreducible representation of G on
which 0 acts in a compatible way. With the same letter V we denote the associated vector
bundle over X/I" and the sheaf of locally constant sections of this vector bundle. Then 6
acts on the sheaf-cohomology

0: H(K\G/T, V) » H(K\G/T, V)

and by definition L(6, T, V):=) (—1)'tr6’ where tr6' is the trace of 6. Since
i=0

dim H (K\\G/T, V) <o this definition makes sense and L (6, I', V)eZ. Itis well known

that there is a 0-equivariant isomorphism

H (K\G/T, V) SH'(T, V)

where on the right we have abstract group cohomology, [B—W].

In this paragraph we explain how L(0, I, V) depends on the fixpoint set (X/I')® and
give a useful parametrisation of the connected components of (X/I')? is terms of the non
abelian cohomology H!(0, I). For G=SL,(R) resp. G=SO(n, 1)(R)® this has been
done in [R 1] resp. [R —S 3].

1.1. Construction of fixpoints. — If yeT is a cocycle for H!(0, I') then Y*y=1. We
have a y-twisted action on G and T given by 6,(2)=v0(g)y ™', g€G, and a y-twisted
action on X given by x—°xy~!, xeX. Therefore 0, induces on X/I' the action of
0. Define X(y):=X% and I'(y):=I"%. Then X(y) is connected and non empty, see
[He:1.13.5, 13.3]. We get a natural map

X ()T (v) > (X/T)".

Since I is torsionfree this map is injective. Its image is denoted by F(y) and depends
only on the cohomology class determined by y in H!(6, I). We note that F(y) is a
closed submanifold of X/T.

Now we can describe the fixpoint set (X/I")® as follows

1.2. PropPoOSITION. — We have a decomposition

XM= U F(y)

yeule, n
into a finite disjoint sum of connected components.
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478 J. ROHLFS AND B. SPEH

Proof. — The argument given in [R 1] for G=SL,(R) extends to our situation.
QED.

We want to understand X (y) for yeI'. Consider y as an element of G. If aeG and
E=a"'y%a, X(§):={xeX|°xE '=x} then X(§)a '=X(y). ThereforeX(y) depends
up to translation in X only on the image of y in H! (8, G).

Let T be a maximal torus in K and denote by Wy the Weyl group of T in K. Since
0 acts trivially on T we have H* (6, T)=,T:={teT|t*=1}. Of course W acts on ,T.

1.3. ProposiTiON. — The inclusions T g K G induce bijections

,T/Wy S HY (6, K) 5 HL (6, G).
Proof. — The argument given in [R1:1.4] extends verbatim and yields

H'(6, K) S H!(, G). It is well known that K consists of conjugates of T and that
two elements of T which are conjugate in K are conjugate by an element in the normalizer

of Tin K. Therefore H! (6, T)/Wyx > H! (6, K).
QED.

Let teG be a cocycle, i.e. t°t=1. We denote the involution g - t0(g)t™ !, geG, by
0, Introduce X (f):={xeX/’xt '=x}.

1.4. CorOLLARY. — If te,T then 6, preserves K and X (t) —K°®\G*. Moreover G®
contains T and T is a compact Cartan subgroup of G*.

Proof. — We have an exact sequence of pointed sets with 6,-action

1-K->-G-X-1.

Hence we get an exact sequence

15 K% G% - X () > H! (8, K) - H! (8, G).

Using 1.3 and twisting we see that the last arrow is a bijection. Hence the first claim
holds. Since 6, acts trivially on T we get TcG* Now G*%={geG/t0(g)t '=g}.
Therefore 0 acts on G* as a Cartan involution and this action is given by conjugation
with te TcG% This means that 0 is inner on G*. From [He], IX, 5.7, we deduce
that G% has a compact Cartan subgroup. Since TG and since T is maximal in K
we see that T is a Cartan subgroup of G*.
QED.

We now can apply Harder’s Gauss-Bonnet formula [H 2] and get

1.5. CorOLLARY. — The Euler-Poincaré characteristic x(F (y)) of F(y), yeH' (6, I),
is not zero. If d(y):=dim F (y) then d(y) is even and (—1)* ™2 is the sign of x (F (7)).

Proof. — Since I'(y) is an arithmetically defined subgroup of G% the claim follows
directly from [H 2] provided that G% is semi-simple. In general G®% is reductive. Since
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AUTOMORPHIC REPRESENTATIONS AND LEFSCHETZ NUMBERS 479

1.4 holds, the center of G* is compact. Therefore we can view X (y) as a symmetric
space associated to a semisimple group and [H 2] also applies to this situation.
QED.

Recall that 0 acts on the representation V in a compatible way i.e. 0 (gv)="g°, veV,
geG. If yeTl, y°y=1 we can define an action of 6, on V by 0,(v)=v7.0(v). We write
'T" for the group I' with the 6 -action given by 6, 0)=7yy" %, yeI. Then 'T and 0,
act on V in a compatible way. Observe that the action of 6, on V depends up to
conjugacy on the class represented by y in H! (6, GL(V)) only. In particular the notion
tr (6, | V) for the trace of 6, on V where yeH' (6, ') makes sense.

We recall the following result which is contained in [R —S 3, R 3].

1. 6. ProposiTION(Lefschetz fixpoint formula). — With the notation introduced above we
have

LB, L V)= ¥ x(FMtr(d,]|V)

yeH! @, )

2. Nonvanishing of Euler-characteristics

In this paragraph we show that the Euler-Poincaré-characteristic of the fixpoint set
(X/T)® is positive if I' = G (Z) is small enough. For this we write

(XM=Y  x(F(y)

yeH! 0, )

and show that all y(F(y)) are positive. Using 1.5 we have to prove that
dimF(y)=0mod4 for all yeH!(y, I). To obtain this we associate to y a quadratic
form B(y). One can do this also locally over Q, and one gets invariants satisfying a
product formula due to Weil. At the infinite place the invariant we obtain is the
signature mod8 of B(y). If now I' is a sufficiently small congruence subgroup the
product formula forces a fixed signature mod 8 to B(y) from which we can read off our
desired congruence for dim F (y).

To carry out the arithmetical argument, we describe in 2.0 how arithmetic subgroups
I' of connected Lie groups G actually arise. We construct I' as a subgroup of a
semisimple algebraic group G defined over Q such that G is a quotient with compact
kernel of G(R)°, the connected component of the real points of G. In G we work with
an involution @ defined over Q which induces our Cartan involution 6 on G.

2.0. PreLiMINARIES. — (i) Let G/Q be a semisimple algebraic group defined over
Q. Choose a rational embedding G G SLy for some NeN. Then we write G(Z) for
G(@ NSL,(Z). Al groups commensurable to G(Z) are called arithmetic
subgroups. It is known, see [B 1] that this notion does not depend on the embedding
G s SLy.
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480 J. ROHLFS AND B. SPEH

(i) Let U be an R-linear compact normal subgroup of the connected component
G(R)° of G(R). Then we have an exact sequence

1-U-G(RP°SG -1

where G is a R-linear connected Liegroup. If T=G(R)° is an arithmetic subgroup,
then p(I') =G also is called arithmetic. Observe that if I is torsionfree then UNT'={1}
and we can identify I" and p(I).

(iii) Let G be connected, R-linear and semisimple and 6 a Cartan involution on
G. We want to establish the existence of 0-stable arithmetic subgroups I'cG. For
this we use a contruction due to Borel [B3]. To construct G as in (ii) it suffices to
work on the level of Lie algebras. Let g be the Lie algebra of G. Then there exists a
6-stable Q-subalgebra g, =g such that g,®@R=g, see [B3]. Let {,®p,=g, be the Cartan
decomposition of 6 on g,. Let E be a totally real number field with [E: @]=2. Choose
ueE that o (u)<O0 for all except one embedding o, of E into R. Put L:=E( \/L_l).

0. =f, ®E®_/up, ® Ecg,®L.
E oQ \/_330‘nz 90

gg is a Lie algebra over the field E, g ® L=g,®L and gy ® Rxg® ) I®ip. On g
E e

LEX )
we have an E-rational involution 85: X@® /uY —» X@® — _/uY, which induces the Cartan
involution 6 we started with on the first factor of gz ® R and “conjugation” on the
Q
other factors.

Let H be the simply connected group defined over E corresponding to gz. We denote
by 0g:H —»H the involution corresponding to 6 on gg and we put G=Resg gH,
8=Resg | 0 where Res denotes Weil restriction. Then 6 is a Q-rational involution of
G. We have as in 0.2 an exact sequence

1-U->GR°SG-1

The involution given by 8 on G (R)° factors through p and induces the Cartan involution
6 on G.

Since 0 is defined over Q there exist O-stable arithmetic subgroups of G(Q), in fact,
I' N 8(T) is O stable arithmetic if =G (Q) is arithmetic. If I' is O stable and arithmetic,
then T contains a O-stable torsion-free congruence subgroup. Minkowski shows [M],
that in the setting of (i) a congruence mod 4 suffices.

Borel shows [B 3] that the groups I' constructed above are cocompact. We will use
this in paragraphe 4. The classical groups and their most obvious realisations over Q
usually give rise to non cocompact 6-stable arithmetic groups.

(iv) Let G be any semi-simple algebraic group defined over Q and assume that
o:G(R) - G(R) is an involution of the real Lie group G(R). Then o acts isometrically
on the space of maximal compact subgroups of G(R). Using [He], 13.5, we see that
there is a maximal compact subgroup K = G (R)° stabilized by . Let U be the maximal
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AUTOMORPHIC REPRESENTATIONS AND LEFSCHETZ NUMBERS 481

compact normal subgroup of G(R). Then o preserves U and induces an involution on
G:=G(R)°/U. Observe that if 6, is the Cartan involution corresponding to K then o
and 6, commute.

2.0 (v). DeFINITION. — Let 0: G — G be an involution defined over Q. If the involution
induced by 8 on G [G as in (iv)] is a Cartan involution we call § Cartan-like.

We note that involution constructed in (iii) is Cartan-like. Obviously an involution
conjugate in Aut G to a Cartan-like involution is Cartan-like. If G is Q-simple and if
G (R) contains a nontrivial compact normal factor, then no Cartan involution of G(R)
is defined over Q. However, as (iii) shows, it can happen that there exists a Cartan-like
involution over Q. A detailed ‘investigation of Cartan-like involutions will appear
elsewhere.

(vi) For the rest of paragraph 2 we assume that 0:G—>G is a Cartan-like
involution. Let K= G (R) be a maximal compact subgroup with corresponding Cartan
involution 6, such that 6 and 6, commute on G(R). Put X=K\G(R). We denote
the Cartan involution induced by 6 and 6, on X by 6.

2.1. Next we define global and local invariants for classes in H! (8, G(R)). For this
let F be one of the fields @, R, Q,. It teG(F) represents a class in H' (8, G(F)), i.e.
t°t=1, then we have the t-twisted action 8, on G (F) given for ge G (F) by

0, (g)=t0(g)t™*

and this action induces an action denoted by the same symbol on the F-Lie algebra g(F)
of G(F). Here of course g(F)=g ® F where g=g(Q) is the Q-Lie algebra of G. Since
@

0, acts as an isometry of the Killing form B, the eigen spaces of 6, in g(F) are orthogonal
with respect to B. Denote by g(F)(t) the set of O-fixed elements in g(F). Then
B | g(F) (¢) is a non degenerate bilinear form. If t'=a~!t0(a) represents the same class
in H' (0, G (F)) then conjugation with ae G (F) induces an isometry

Ad(a): g(F) () - g(F) ().

Hence the isometry class of the quadratic space Bg(t):=(g(F)(¢), B|g(F) (t)) depends
only on the class of t in H! (9, G (F)).

2.2. LeMMA. — The inclusion K = G (R) induces a bijection

H'(6, K) 5> H' (6, G(R)).

Proof. — The argument given in [R 1] holds in our situation.
" Q.E.D.
Recall that a quadratic form g on a Q-Vector space V can be diagonalised over R
with r factors 1 and s factors —1 on the diagonal. We write sign g=r—s and call r—s
the signature of g. The signature depends only on the isometry class of g®R in VQR.
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482 J. ROHLFS AND B. SPEH

2.3. LeMMA. — Let teG(R) represent a class in H!(0, G(R)) and let
X(@®):={xeX/0(x)t"*=x} be the set of fixpoints of 8, on X. Then

2dim X (f) = dim g(R) (¢) + sign (Bg (2)).

Proof. — Using 2.2. we can assume that teK. Then 6, and 0, commute, see
2.0(iv). Hence we have an eigenspace decomposition

(R O=1+po

of g(R)(¢) with respect to the 6,-action on g(R)(t). Since 8, is the Cartan involution
corresponding to K we have that B|f, is negative definite and B|p, is positive
definite. The result now follows immediately.

QE.D.

Let W(F) be the Grothenendieck-Witt ring of quadratic forms over F, see [Sch].

2.4. DEFINITION. — Denote by Bg: H! (6, G (F)) —» W (F) the map sending a cohomology
class t to the class of Bx(t)=(a(F)(2), B|g(F)(¥)). If F=Q we write B instead of Bg
and if v is a place of Q we write B, instead of Bg and B, instead of Bq,.

We observe that the inclusions Q g Q, induce obvious Hasse maps h in cohomology
and of the Witt rings. Therefore we have a commutative diagram

H'(8, C_}(@))LI_IHI(Q, G(Q,)
|® ’ | 1By
w@ S [Iw@)
Next, we recall Weil’'s product formula for invariants of quadratic forms, see
[Sch: Chap. V].

2.4. Suppose that (g, V) is a Q-rational quadratic space. Then for every place v of
Q there is defined a GauP sum v,(q) with values in the eight’s root of unity. If v=o00
then v, (q) =& ™*9" @ where £= (1 +1i)/ \/f is “the” primitive eight’s root of unity. Weil’s
product formula says

[Tv.@=1.

Here v,(q) depends only on the class of (q®Q,, V®Q,).

2.5. LeMMA. — Consider the Hasse map

[Th,=h:H'(6, G(Q) > [[H' (8, G(Q)).

If t, t € G (Q) represent classes in H* (8, G(Q)) and if h,(t)=h, (t') for all v# o then
dim X (f)=dim X (') mod 4.
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