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ON THE FOURIER COEFFICIENTS OF MODULAR FORMS

BY DOUGLAS L. ULMER (1)

ABSTRACT. - The goal of this paper is to discuss a Newton-Hodge inequality for modular forms. More precisely,
for a prime number p and an integer N prime to p we consider the characteristic polynomial of the Hecke operator
Up on the space Sk-^-2 (^i (^" N)) of cusp forms for the congruence subgroup Fi (j»" N) of SL'z (Z). The main
theorem bounds the Newton polygon of this polynomial from below by an explicit polygon denned in terms of the
genus and number of cusps of the modular curve Xi (N). The main technique is a motivic variation of theorems
of Mazur, Ogus, Illusie and Nygaard on the Katz conjecture (according to which the Newton polygon of Frobenius
on crystalline cohomology is bounded in terms of dimensions of Hodge cohomology groups) and a computation
of these Hodge groups using logarithmic schemes. We get new information because the relevant Hodge nitration
is not of type (k + 1,0), (0, k + 1) as usual, but rather of type (k + 1,0), (k, 1), ..., (1, k), (0, k + 1).

Introduction

The goal of this paper is to discuss a Newton-Hodge inequality for modular forms,
i.e., a theorem giving lower bounds for the divisibility of Fourier coefficients of modular
eigenforms by primes which divide their level. More precisely, for a prime number p and
an integer N prime to p we consider the characteristic polynomial of the Hecke operator
Up on the space Sk+^i^N)) of cusp forms for the congruence subgroup T^^N) of
SL2(Z). The main theorem bounds the Newton polygon of this polynomial (with respect
to the p-adic valuation of Q) from below by an explicit polygon defined in terms of the
genus and number of cusps of the modular curve Xi(7V). Concretely, this means that only
so many of the eigenvalues of Up can be j?-adic units; if the maximum possible number
are units, then the rest are divisible by p and only so many of those are exactly divisible
by p, etc. The main technique is a motivic variation of theorems of Mazur, Ogus, Illusie
and Nygaard on the Katz conjecture (according to which the Newton polygon of Frobenius
on crystalline cohomology is bounded in terms of dimensions of Hodge cohomology
groups) and a computation of these Hodge groups using logarithmic schemes. We get new
information because the relevant Hodge filtration is not of type ( f c + l , 0 ) , ( 0 , f c + l ) a s
usual, but rather of type (fc + 1,0), (fc, 1), . . . , (1, fc), (0, k + 1).

It is worth taking a moment to explain the origin of this theorem. If p is a prime number
congruent to 3 (mod 4) and K denotes the field Fp(j), where j is an indeterminate, then
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130 D. L. ULMER

there is an elliptic curve E defined over K so that the Hasse-Weil jL-function of E satisfies

L(E/K^)=1[[(l-ap-s)
a

where the product ranges over all eigenvalues a of the Hecke operator Up on
S^(To(p), ( p ) ) , the space of cusp forms of weight 3 and character ( - ) (the Legendre
symbol) for the congruence subgroup To(p) [Ul]. The values and derivatives of the
L-function at 5 = 1 are then powers of log? times rational numbers whose valuations at
p are bounded below in terms of those of the a. On the other hand, if r denotes the order
of vanishing of the L-function at s = 1, then the Birch and Swinnerton-Dyer conjecture
predicts the following formula for the value at 1 of its r-th derivative:

1 r ^ ( F / K n wr
^ (wl)=^)^

where vertical bars indicate the order of a group. Here 111 is the (conjecturally finite)
Tate-Shafarevitch group attached to E, R (the regulator) is a power of logp times a
rational number integral at p and r (the Tamagawa number) is an explicitly computable
rational number. Thus the right hand side is (log?)7' times a rational number and one can
estimate the power of p occuring in this rational number. Comparing this estimate with the
estimate above for the denominator of the left hand side, and using that similar results hold
with K replaced by its finite extensions K (g) Fg, one finds a Newton-Hodge-style lower
bound on the valuations of the a. In particular, roughly speaking at most 1/4 of them can
be units at p. We prove this prediction of the conjecture of Birch and Swinnerton-Dyer
and extend it to a wide class of modular forms.

Here are the contents of the paper. In addition, the reader can find a sketch of the proof
of the main theorems at the end of Section 1.
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1. Statement of the main theorems

Throughout the paper, we view the field of algebraic numbers Q as a subfield of the
complex numbers C. Recall that the conductor ofaDirichlet character ̂  : (Z/MZ)X —^ C
is by definition the smallest positive integer M9 such that ^ factors through the natural
map (Z/MZ)>< —^ (Z/MfZ)x. If M = M' then ^ is by definition primitive; in general,
there is a unique primitive character ^/ : (Z/M /Z)>< —> C through which ^ factors.
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VALUATIONS OF HECKE EIGENVALUES 131

Now for any positive integer M and non-negative integer k, let S = 5^+2 (TO (M), ̂ ) be
the (complex) vector space of cusp forms of weight fc+2 and character ̂  : (Z/MZ)X -^ C
for the congruence subgroup F()(M) of SI^Z). Recall that a form f ̂  S is primitive if it
is new (i.e., is orthogonal under the Petersson inner product to all forms coming from lower
levels), is an eigenform for all Hecke operators T^ for primes t /M, and is normalized
(i.e., has first Fourier coefficient equal to 1); in this case, / is automatically an eigenform
for all U^ with i\M. For any / G S which is an eigenform for all Tn with i ){M there is a
unique primitive form of some level dividing M with the same Hecke eigenvalues as /;
by definition, the level of this form is the conductor of /.

We recall a result summarizing what is known about these Hecke eigenvalues. Suppose
p is a prime number and / is a normalized eigenform of weight k + 2 and conductor p^M
(with M prime to p) which may not be primitive, but which is "primitive at p" in the sense
that the largest power of p dividing the conductor of f is p1^. Suppose further that the
character ^ of / has conductor ^m ' M' with M' prime to p. If m = 0 and Tpf == a/, write
1 - aT + Wp^T2 = (1 - aT)(l - f3T) with a,f3 G C; if m > 0, write Upf - af.
Then we have the following result which combines work of Deligne (for m = 0) and of
various authors starting with Hecke (for m > 0); see [Dl] and [Mi], 4.6.17 for proofs.

PROPOSITION 1.1. - The complex number a is an algebraic integer and

ad = p^1 ifrn=m/

a2 = ̂ /(p)pk if m = 1, m' = 0
a = 0 if m > 1, m > m'

Here ^/ is the primitive character attached to ^.
This result says a lot about the possible valuations of a: in particular, the archimedean

valuations of a are completely determined and at any finite prime of Q not dividing p, a
is a unit. Moreover, for any valuation v of Q dividing p, v(a) is completely determined
in the last two cases and in the first case, 0 <, v(a) < k + 1 (where v is normalized so
that v(p) == 1). Noting that if Upf = af then the complex conjugate form / satisfies
Upf = af with / G ^^(FoO^M),^), we can say that when m7 > 0, at most half of
the eigenvalues of Up on S^^oO^M),^) C 5^+2 (Fo^M),^) are units.

This trivial observation has a smooth rephrasing in terms of Newton polygons. We
define the Newton polygon (for a valuation v) of a polynomial with algebraic integer
coefficients P(T) = 1 + • • • + a^ = r^=i(1 - ̂ T) where ^i) ^ • • • ^ v{ad)
as the graph of the function defined on the interval [0, d] whose value on integers is
defined by the formula i ̂  Z - i ^ 0 ^ ) an(! which is extended by piecewise linearity.
We also define the Hodge polygon of a collection of non-negative integers (^ • • • ^ l s )
as the graph of the function F defined on the interval [0,^^] with F(Q) = 0,
^(Z^=o^) ^ Z^=o^j' an(^ ^tended by piecewise linearity. The Hodge polygon takes
its name from the fact that the numbers lj often arise from geometry, as the dimensions of
certain Hodge cohomology groups. (See Katz [Kl] for a readable introduction to Newton
and Hodge polygons.) Then the observation becomes that when p divides the conductor
of '0 (i.e., m' > 0), then the Newton polygon of the characteristic polynomial of Up
on S^lTo^M)^) © Sfc^^Fo^M),^) lies on or above the Hodge polygon of
the collection (d ,0 , . . . ,0,d) where d is the dimension of ^^(rt^j^M),^) and 0 is
repeated k times.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



132 D. L. ULMER

We are now going to present our theorems on the valuations of coefficients of modular
forms, which are strengthenings of the observation above. For a fixed prime number p,
non-negative integers k and m, a positive integer N prime to p, and a Dirichlet character
^ modulo p ^ N , introduce the Hecke polynomial

(det^-UpT^w^p^N)^)) if m > 0
E(k^m,N^)= {

[det(l-^^+^(p)p fc+1^2 |^+2(^o(^)^)) if m=0

Note that these polynomials will in general have eigenvalues of non-primitive (i.e., old)
forms among their inverse roots; however, if p^ divides the conductor of '0, then all
forms contributing to E(k, n, N, -0) are primitive at p. Now the theory of newforms (i.e.,
an analysis of the various maps Sk-^2{To(prn~lN)^) ̂  Sk^(To(prnN),f^f;)) reduces
questions of valuations of eigenvalues of Up and Tp on all modular forms to the case
of ^-primitive forms. Note also that Proposition 1.1 gives a formula for the valuation of
the eigenvalue of Up for any ^-primitive form whose conductor is divisible by a higher
power of p than the conductor of its character is (i.e., m > m1). Thus we will only be
concerned with those forms for which m = m' and thus only with those E ( k ^ n ^ N ^ )
where p^ divides the conductor of ^.

The first result concerns the case when N > 4. In the theorem below, (f) is Euler's
function: (f)(m) = the order of (Z/mZ)x.

THEOREM 1.2. - Fix an arbitrary prime number p, integers k and n with 0 < _ k < p , n > 0
and an integer N > 4 prime to p. Let g be the genus of the modular curve Xi(7V), c the
number of cusps on this curve, and set w = g — 1 + c/2 (which is an integer as N > 4).
Then the Newton polygon, with respect to the p-adic valuation of Q, of the polynomial

J] J] E(k^m^N^)
0<m^n 1/,:(Z/p7T^7VZ)><^C

p^cond^)

(where the second product is over characters modulo p^N whose conductor is divisible
by p ^ ) lies on or above the Hodge polygon associated to the integers

,,,= )̂(̂ )-̂ {; ̂
l^...=l^, =^pn)w(pn - 2)

,̂ (,0(,,-̂ )-̂ {; ̂
Moreover, these two polygons have the same endpoints.

Remarks. - 1. - While the theorem can be refined somewhat (see below), in general our
method does not allow us to prove a theorem on the Newton polygons of the individual
E(k, m, N, '0). This restriction, as well as the need to take k < p, will be explained below
when we sketch the proof.

2. - Using the remarks immediately preceding the theorem, one can deduce a
Newton-Hodge inequality for the characteristic polynomial of Up on the whole space
^WIWAQ).
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VALUATIONS OF HECKE EIGENVALUES 133

3. - Our method applies also to the case where n = 0, but the result is just the trivial
observation above. This is also the case when k = 0.

4. - As we are taking a product over various non-trivial characters, the theorem really
concerns modular forms on F^^N). Recall that the ^^(pnN) moduli problem is the
product of the problems F^) and T^(N) (see [KM] 3.5.1). In Theorem 1.2, r^(N) can
be replaced by any representable moduli problem of finite level prime to p, e.g., r(7V) for
N > 3 and ( p , N ) = 1. The formulae for the lengths of the sides of the Hodge polygon
are the same except that g and c are now taken to be the genus and number of cusps of
the curve associated to the new moduli problem.

We can obtain finer results, where the product of Hecke polynomials ranges only over
certain characters: if (Z/pm7VZ)x is written as a product of cyclic groups of prime power
order, then we can take the product only over those characters with fixed restrictions to the
various factors Z/^Z (where i is a prime / p). The next result makes this explicit for the
direct factor (Z/pZ)x of (Z/j^A^^. To this end, fix a p-adic valuation v of the field of
(p-l)^ roots of unity Q(^p_i), normalized so that v{p) = 1. Let \ : (Z/pZ)" -^ C be the
unique character such that v(x(^) - x) > 0 f01" all re G Z prime to p. (Throughout the paper,
^ will be identified with the Teichmtiller character via the embedding Q(^p-i) —^ Qp
associated to v.) Then any Dirichlet character ^ : {Z/prnNZ)x -> C can be written
uniquely as )car1e with 0 ^ a < p - 2, where T) : (Z/7VZ)X -^ C and 0 : (1 + pZp) -^ C
are characters of finite order.

THEOREM 1.3. - Fix an arbitrary prime number p, integers k, n, N, and a with 0 ^ k < p,
n > 0 , N > 4 prime to p, and 0 < a < p - 2. Let g be the genus of the modular curve
Xi(7V), c the number of cusps on this curve, and set w = g - 1 + c/2. Let a' == 0 if a = 0
and let a' = p - 1 - a if a -^- 0. Then the Newton polygon, with respect to the valuation
v fixed above, of the polynomial

H(k, n, N , a) = ]̂ [ ]^[ E{k, m, N, ̂ )
0<m<n ̂ (Z/p^.^'^C

^=X0^
p171 |cond(i^)

(where the second product is over characters modulo p^N whose conductor is divisible by
p^ and whose restriction to (Z/pZ)x is ^a) lies on or above the Hodge polygon associated
to the integers

_ I (P271"1 - P + ̂ y2 - P^c/2 + 1 if k=a=0
\ {p271-1 - p + 2 + 2kpn~l + 2a)w/2 - pn~lc/2 otherwise

^2n-i _ ^"-i - p + 2)w if a = 0
l , = ' " = l k = <

^ ^2n-i _ 2^-1 ̂ .^ if a ^ Q

_ \ (P271"1 - P + 2)^/2 - P71"1^ +1 if k=a=0
~ \ O9271"1 - P + 2 + 2fcpn-l + 2a /)w/2 - pn~lc/2 otherwise.

Moreover, these two polygons have the same endpoints.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



134 D. L. ULMER

Remarks. - 1. - Remarks 3 and 4 following Theorem 1.2 also apply here.
2. - Theorem 1.3 is the basic result: Theorem 1.2 is obtained as a corollary by summing

over the various powers ^a of the Teichmiiller character.
3. - Of course the theorem depends on the choice of v. changing v changes the valuations

of the inverse roots of each E and it changes the value of a in the decomposition ^rjO
of a character ^. This dependence can be made less apparent by working with modular
forms with coefficients in Qp.

4. - The values of lo give upper bounds on the number of forms whose eigenvalues for
Up are j?-adic units, i.e., v/hich are ordinary in the terminology of Hida. In fact, comparing
the theorem with Hida's results, one finds that in many cases the Newton polygon of the
Hecke polynomial lies strictly above the Hodge polygon defined here. We will return to
more precise versions of this point in another paper.

When p > 3 one can also obtain results (although with different formulae) for the cases
TV < 4 by the methods used to prove Theorem 1.3. At the suggestion of the referee, we
have included a statement of these results, and indications of their proof, in Section 7.

We give an example to illustrate the difference between the trivial observation and the
theorem. The most attractive case i s n = 7 V = l , f c > 0 and a ^ 0. Then the Hecke
polynomial H(k, 1,1, a) is just E(k, 1,1, ̂ a) and all of the forms contributing to it are
new at p. Below is a diagram of the case p = 11 (mod 24), k = 1 and a = (p — 1)/2.
The numbers above the segments indicate the length of their projections to the x axis; the
numbers below indicate tlieir slopes. The diagram illustrates the remark in the introduction
that in this situation, roughly speaking at most 1/4 of the eigenvalues of Up can be units.
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VALUATIONS OF HECKE EIGENVALUES 135

We conclude this section with a sketch of the proof of Theorems 1.3 and 1.4. In
Section 2, we construct a smooth project! ve variety X over Fp, the field of p elements,
and a projector II e Qp[Autpp X] such that the characteristic polynomial of Frobenius on
the part of crystalline cohomology of X cut out by II is the polynomial H appearing in
Theorem 1.3. The coefficients of II lie in Zp if and only if p > 2 and k < p and in this
case we think of (X,H) as a "motive with p-integral coefficients." The argument here is
a small variation on that of Scholl |[S], combined with previous cohomology calculations
of the author [U2]. In Section 3, we prove a variation of the Katz conjecture, saying
that the Newton polygon of Frobenius on the part of crystalline cohomology cut out by
a projector is bounded below by a Hodge polygon, defined in terms of the dimensions
of Hodge cohomology groups cut out by the same projector. Because we are applying
our projector to vector spaces over a field of characteristic p, it must have p-integral
coefficients and this is the source of the restriction in the theorems that k < p', it is also
the reason we must take a product of Hecke polynomials rather than working with the
individual E(k, n, N, ̂ ). (Moreover, it forces p > 2; we give a different proof for the case
p = 2, k = 1 in Section 6.) The argument in this section is an essentially formal variation
of Nygaard's proof of the Katz conjecture.

The real work takes place in the next two sections where we compute the relevant
Hodge cohomology groups. Specifically, in Section 4 we construct a logarithmic scheme
Xx (in the sense of Kato [Ko]) which is closely related to X and on whose cohomology
11 acts. The main theorem of the section gives the relation between the II-part of the
Hodge cohomology of X and the II-part of the (log) Hodge cohomology of X^. The
main tools are the theory of log structures as developed in [Ko], some formal use of its
predecessor and cousin mixed Hodge theory, and a computation based on the theory of
toric varieties. In Section 5 we compute the II-part of the Hodge cohomology of Xx in
terms of sections of certain sheaves on an Igusa curve and find the dimensions of these
groups, yielding Theorem 1.3.

Section 6 contains a somewhat different proof of Theorem 1.3 for weight 3 and any
p based on a formula of Milne; this resolves the only relevant case of Theorem 1.3 for
p = 2. In Section 7 we consider the cases N < 4, which involves a slight modification of
the projector 11 and the computation of invariants under the action of the Galois group of
a certain covering of modular curves. This group has order divisible by 6, which forces
the restriction p > 3.

2. ScholPs projector

The goal of this section is to find a piece of cohomology on which Frobenius has
characteristic polynomial equal to the Hecke polynomial H ( k ^ n ^ N ^ a ) of Theorem 1.3.
We find this cohomology by applying a minor variation of the projector of Scholl [S].

We retain the notations of the introduction: p is any prime, N is an integer prime to p and
>_ 5, n and k are integers; we do not need to assume k < p, but to avoid constantly making
a special case, we assume k > 0; only trivial modifications in the discussion are needed
for k == 0. Let X-i(N) be the modular curve over Fp parameterizing generalised elliptic
curves with a ri(7V)-structure (i.e., a point of exact order N) and let I = Ig^p^N) be
the Igusa covering of level j?71 over Xi(7V); I parameterizes generalised elliptic curves E
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136 D. L. ULMER

with a FI (^-structure plus an Igusa structure, i.e., a point of "exact order j/1" on E^^
the range of the n-th iterate of the relative Frobenius of E. See [KM] Chapters 3 and
12 for more precise definitions and properties of these curves. We have a universal curve
£ --"-̂  I which is the pull-back of the universal curve £ -^ Xi(7V). We call the points
of I representing singular elliptic curves cusps and the points representing supersingular
elliptic curves the supersingular points', other points of I will be refered to as ordinary.
The map TT is smooth away from the cusps and the fibers of TV over the cusps are Neron
M-gons where M\N.

Let / : X —» I be the fc-fold fiber product of £ over I . When k > 1, the variety X is
not smooth over Fp: there are singularities arising from the product of double points in
the fibres of TV. For k > 1, let X denote the resolution of these singularities defined by
Deligne ([Dl], lemme 5.4 and lemme 5.5); this resolution is explained in detail in [S], §2
and, from another point of view, in Section 4. For k = 1, we set X = X\ in all cases
we have a map f : X —^ I .

Let C C I be the reduced subscheme of cusps and set 1° == I \ C, X° = /"^(P).
The fibers of X° -^ 1° are fc-fold self-products of elliptic curves. We obtain an action of
G = (Z/7VZ xi ^2)^ x Sk on X° by letting the Z / N Z ' s act by translation by the canonical
points of order TV, the ^ ' s act by inversion in each copy of the elliptic curve and the
symmetric group Sk act by permuting the factors in each fiber. This action extends to
X and X and covers the identity action on I . We also have the action of the diamond
operators (d) = (d)p for d G (Z/_pZ)x on I: {d) sends the geometric point representing
(£, P, i) (where E is an elliptic curve over Fp, P G E is a point of exact order N
and i : (Z/^Z)" -^ E^ is an Igusa structure of level p") to (E,P,^(d)i) where
\ is the Teichmuller character; the same recipe gives the action of {d) on X and this
action lifts to X.

Following Scholl, define a character e : G —> {±1} by setting e\^ = id, e|z/7vz = 1 and
e\Sk = sgn; let II be the associated idempotent in the group ring Z[l/2Nk\][G}. We note
that 11 has p-integral coefficients if and only i f j ) > 2 a n d f c < j ? . I f y i s a Z[l/2Nk\}[G}-
module, we write V(e) for HV. Recall that \ : (Z/pZ)x -^ Qp is the Teichmuller character
which we have identified with a character (Z/^Z)X —^ Q(^p_i). Fix a prime i / p and a
place A of Q(/^,_i) over i\ we deduce an embedding Q(^p_i) c—^ Q^(^p_i) and we can
identify ^ with a character \: (Z/pZ)x -^ Q^p-i)^ If V is a Q^p_i)-vector space
with (Z/J)Z)X action, we write V^) for the ^a eigenspace.

PROPOSITION 2.1. - a) There is a canonical isomorphism

H^(X 0 F;, Q,)(6) ^ H^(I 0 F;, Sym^ ^TT^Q,)

compatible with the actions of (d), d (E (Z/J)Z)X and Gal(Fp/Fp).
b) We have an equality of polynomials in T with coefficients in Q(/^_i);

det (1 - Fr T H^I (g) F;, Sym" .R^Q^.i))^)) = H(k^ n, TV, a).

Proof. - b) is a reiteration of the main theorem of [U2], broken down into eigenspaces
for the {Z/pZ)x action; see p. 706. For a) we need to introduce another variety: let
X* —^ I be the (open) variety whose fiber over x e I is the connected component of
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VALUATIONS OF HECKE EIGENVALUES 137

the Neron model of X° -^ J°. The fiber of X* over a cusp is G^, and the inclusions
X° —^ X* —^ X are isomorphisms away from the fibers over the cusps. We also introduce
the subgroup Gk = ̂  xi Sk of G and the character ek : Gk -^ {±1}, ^ = ^G^'

Consider the long exact (Gysin) sequence ([M2], VT.5.4b, p. 244):

-> W-\C x G^)(-l) - IF(X*) -. H\X°) -. H^-\C x G^)(-l) -

(where we write HJ(V){n} for H^(V (g)F^ Q^(n)) and ^(V) for HJ(V)(O)). We apply
the idempotent associated to e^ to this sequence. According to Scholl ([S],1.3.1),

H^-\C x G^)(-l)(6fc) ^ ̂ -^(CX-fc - 1).

Recall that the fiber of TT over any cusp x of I is a Neron M-gon with M|A^, so the action
of G on the fiber of / : X —^ I over x factors through the quotient (Z/MZ xi ^2)^ x 6'^.
As the character e also factors through this quotient, the proof of Scholl's Theorem 3.1.0
applies verbatim (with M replacing his n) and we have an isomorphism

^•(X*)(6,)-^(X)(6).

On the other hand, a standard computation, using the Leray spectral sequence, the Ktinneth
formula, and [KM] 14.3.4.3, shows that

H^X°)(ek) ̂  [ H^10 0 F^ symfc R17r^) if j=k+l
\ 0 otherwise

Collating these results, we have

^'(X)(e) = 0 unless j = k + 1, k + 2

and an exact sequence

0 ̂  ff^X^) ̂  ̂ (r^F^Sym^Tr.Q,) -> ^°(C7)(-fc-l) ̂  ff^X^) ̂  0.

But a consideration of weights shows that the last map is zero, so ^"^(X^c) = 0 and

^^X^e) = Ker (ff^(r 0F;, Sym'^TT.Q,) -. H°(C)(-k - 1)).

Now Sym^ Ji^Tr^Q^ restricted to C is Q^(-fc), so applying the Gysin sequence for the
pair ( I , C ) and Sym^ ^TT^Q^, we find

Ker (J4(J° 0 F;, Sym' R1^,) -^ H°{C)(-k - 1)) = H^I 0 F;, Sym' ^TT^Q,).

This gives the isomorphism of the theorem. As all of the maps used in the proof are
equivariant for the actions of Galois and (Z/^Z)^ the proposition is proved. D

Now combining the proposition with a result of Katz and Messing ([KMe], Theorem 2),
we find a piece of crystalline cohomology on which Frobenius has characteristic polynomial
equal to the Hecke polynomial H:
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