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ANNEALED LYAPOUNOV EXPONENTS AND LARGE
DEVIATIONS IN A POISSONIAN POTENTIAL II

BY ALAIN-SOL SZNITMAN

ABSTRACT. - We derive a large deviation principle for the position at large times t of d-dimensional annealed
Brownian motion in a Poissonian potential in critical scale td/d+2, d > 2. The rate function is one of the
Lyapounov norms constructed in the previous paper. Our large deviation results have a natural application to the
study of Brownian motion with a constant drift in a Poissonian potential. They enable to study the transition which
occurs between the "small drift" and "large drift" regime.

0. Introduction

The present article is a continuation of [11]. Our principal motivation here is the derivation
of a large deviation principle in the critical scale td^d+2 for the position at time t of an
"annealed Brownian motion" moving in a Poissonian potential or among Poissonian traps,
in dimension d > 2. Namely, if Z. denotes a canonical Brownian motion, and Po the Wiener
measure on (7(R+, R^), P the law of the Poisson cloud of constant intensity y > 0, on the
space f2 of simple pure point measures on Rd, the annealed weighted measure is

(0.1) Qt{dw,d^) = 1 exp{- ( V{Z,{w)^)ds} Po{dw) P{du) ,
^t l Jo }

(soft obstacle case) ,

= — 1{T > t} Po(dw) P(cL;), (trap or hard obstacle case) ,
St

with St the normalizing constant, V(x^ u) = V^ W{x — Xi) the Poissonian potential. Here
i

W >_ 0, the shape function, is bounded compactly supported not a.s. equal to zero, and
uj = V^ 6x, is the typical cloud configuration. In the hard obstacle case, T denotes the

i

entrance time of Z. in the obstacle set M B{xi^ a), a > 0. In fact, the hard obstacle case
i

corresponds to the singular shape function Wh.o.(^) = oo l{\x\ ^ a}.
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^ A.-S. SZNITMAN

The special role of the scale t^+2 is linked to the asymptotic behavior of Sf
(Donsker-Varadhan [2]):

(0-2) St = exp{-c(d, v) ̂ +2(1 + o(l))} ,

where c{d^) is an explicit constant. It is also reflected, as shown in [II], Theorem 2.4,
in the asymptotic behavior as t —^ oo:

(0.3) r(t, 0, y{t)v) = exp{-c(d, z.) ̂ /^(l + o(l))}, <^) = 0(^+2^ ̂  ̂

= exp{-/?o(^ ^)(1 + o(l))}, if t^2 = o(<^)), ^t) = o(t} ,

provided r(t,x,y) = E[r(^a;,?/,o;)], with r the kernel of the Schrodinger semigroup
et(? A-y) (soft obstacle case) or Dirichlet heat kernel on Rd\[jB{xi,a) of e^ A (hard

obstacle case). Here, /?o(^) is one of the Lyapounov exponents introduced in [11]. The
(3\{x), X > 0, x € R^, are norms in the x variable which for instance in the soft obstacle
case measure the exponential decay in the ^-direction of the P-average of the A-Green

( 1 \function ( - . A + A + V(-, a;) (0, •). Our main purpose in this article is
\ z /

THEOREM. - d > 2.

(0.4) Zf/t^^2 satisfies under Qt a large deviation principle at rate ^^+2 ̂ ^ ̂ g
function /?o(') .

In the hard obstacle case, (0.4) improves our previous results in [6], where upper and
lower bounds with different rate functions were derived. As an application of (0.4) we find
the asymptotics in (0.3), for the critical (p(t) = ̂ ^+2:

(0.5) r^ 0, t^2 v) = exp{-(c(d, z.) + /?o(^)) ̂ /^(l + o(l))}, t-> oo .

A natural application of the large deviation results obtained in [11] and here, is the study
of the long time behavior of "annealed Brownian motion with a constant drift K\ in a
Poissonian potential or among Poissonian traps, that is when Qt is replaced by

(0.6) Q?(dw, do;) = ̂  e^ Q,(dw, ̂ )
^t

with S^ the normalizing constant. This question in the trap case appeared in the physical
literature (Grassberger-Procaccia [5]) with special interest for the transition of regime which
occurs between the small h and large h situation. This was later investigated in Eisele-Lang
[3], where it was shown that below a certain threshold {\h\ ^ /^), S^ has no exponential
growth in t, whereas above this threshold S^ has indeed an exponential growth in t.

We showed in [6] (trap case) that when \h\ is small

(0.7) S^ = exp{-c(ri, v) ̂ /^(l + o(l))}, d ̂  2
= exp{-c(d, v - \h\) ̂ (l + o(l))}, d = 1, \h\ < iv = critical threshold ,
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(the one dimensional case is special for reasons which further below will become clear). Here
we are able to give a finer description of the transition which occurs in both the trap case
and soft obstacle case. Namely if h = \h\ e, h -^ 0, the critical threshold in the direction e is
(0.8) /^(e) = mf{/?o(a:), x ' e > 1} = l/sup{x ' e, /3o(aQ = 1} > 0 .
In fact in the trap case or when W(-) is rotationally invariant, this threshold is independent
of e. Among various results, we describe the large deviation principle satisfied by Zf/t
under Q^, h € R^, d >, 1, and characterize the rate of exponential growth in time of 6^,
which is strictly positive when \h\ > /^(e). When d >_ 2, and \h\ < ^c(e), we show that
the first line of (0.7) holds and

(0.9) Zt/^/^2 satisfies a large deviation principle at rate fV^2 with rate
function fto{x) — h • x under Q^ .

We shall now give some indications on the proof of (0.4). The lower estimate was already
proven in [11]. The upper estimate is the most delicate part. We have to prove with a
suitable uniformity in x estimates of the type:

(0.10) limr^2 log fE x Eo\H{xtd/d^2) < t, exp { - ( V{Z,^)ds\\\t^oo \ L I JQ )U
^-c(^)-A)Or),

where H{y) stands for the entrance time of Z. in B(y) ^ B{y^ 1).
The proof strongly uses the "method of enlargement of obstacles", see [12] for a review.

We construct a certain coarse grained picture of the cloud configurations, which enables us
to single out "big holes" or "clearings" of size ~ f1/^2 which occur within the cloud. We
thus have a description of the space in terms of forest and clearings. The first reduction
step follows [6] (and also [9] for the P-a.s. or "quenched situation"). It shows that by
adjusting parameters coming in the definition of the coarse grained picture, we need only
consider situations where a fixed number of clearings occur within distance t of the origin.
These clearings are used as "resting places" by the process which spends most of its time
there (^ (1 — rj) t) and does not perform too many excursions between clearings and forest
(^ rJtd/d+2). The cost attached to the time spent in clearings is responsible for the term
—c(d, v} in (0.10). Let us also mention that since d ^ 2, in contrast to the one dimensional
situation, the scale of the clearings (~ ^V^2) is negligible with respect to the scale of the
"big excursion" (~ ^V^2) which is produced at some point by the process.

The main novelty here is that in contrast to [6] or even [9], we have a fine control on
the cost attached to the excursions. This cost is responsible for the term (3o{x) in (0.10).
Here we extract from the sequence of excursions out of the clearings into the forest a
sequence of excursions which never visits twice the same clearing and eventually ends up
near x t ' 1 / ^ 2 . We then "piece together" these excursions performing what might be called
"reconstructive path surgery", and produce a Brownian path that goes from 0 to somewhere
near xtd/d+2. In this process we obtain an upperbound on the cost attached to excursion
which is given, up to correction terms by:

^(o^/^2)

E ® ^ o [ e x p { - y V[Z^ds}\ = exp^o^^l + o(l))},
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374 A.-S. SZNITMAN

where the last equality comes from Theorem 1.3 of [11].
The piecing together of this extracted sequence of excursions is delicate. One needs to

control "joining costs", where an excursion arriving to a clearing is linked to the excursion
departing from the clearing. Let us briefly explain the nature of the difficulty. For the
simplicity of the argument, let us consider the trap case, although the same problem exists
for soft obstacles. The difficulty is that if one brutally performs the linkage between this
extracted sequence of excursions, the involved cost can very well be infinite. Indeed it can
very well occur that the arriving point and the departing point do not belong to the same
component of the complement in the clearing of the obstacle set (M B(a^, a)). So any path

i
linking the arriving point to the departing point is killed by the obstacles and corresponds
in this case to an infinite cost.

I. Critical large deviation principle

We shall use in this section the notations recalled in the introduction, and in any
case follow the notations of [11] (see section I). Let us simply mention for the reader's
convenience that HA, A CRd closed set, (resp. Tu,U CKd open set) stand for the entrance
time of Z. in A (resp. exit time of Z. from U), and we shall also use the special notation
recalled in (0.10). In most cases we shall use the soft obstacle notation, the trap case being
recovered by using the singular shape function Wh.o.(^) = oo l{\x\ < a}. Finally, we recall
that in the soft obstacle case a = a(W) > 0, is the minimal choice such that W(') = 0
outside B(0,a). Our goal is now the

Proof of (0.4). - The lower bound part of the large deviation principle is proven in
Theorem 2.1 (see (2.9)) of [11]. We are therefore only concerned here with the upper bound
part. Observe that /3o(') has compact sublevel sets (it is a seminorm on R^), and by (2.10) of
[11] we have exponential tightness. So we need only prove that for A compact in R^, 0 ^ A

(1.1) limr^2 logfEx^o^e^^A, exp{- / V{Z,^)ds}}}
t-^OO \ L I JQ ) \ )

^-c(d^)-mfA/?()(•) •

Now covering id•ld-Jrfl A by a number at most polynomially growing with t of closed balls
of radius 1, our claim (0.4) follows from

THEOREM 1.1. - (d >, 2) For 0 < TI < r ' z , in the hard and soft obstacle case

(1.2) lim sup {r^2 log fE 0 EQ {iKxt^^2) < t,
t-^00 ri<l^-|<r2 l v L

exp{- / V{Z^uj)ds\[\-^ c(d^)+/?o(^)} ^ 0 .

(the term "exp{...}" means "1{T > t}" in the hard obstacle case).
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ANNEALED LYAPOUNOV EXPONENTS (II) 375

Proof of Theorem 1.1. - As pointed out in the introduction, the proof hinges on a coarse
grained description of the cloud which enables to define forest and clearing parts. We first
introduce our notations for this coarse grained picture. We partition R6' in large boxes of
size ^l/d+2: for t > 1, and m e Z^, we define

(1.3) Cm = [z C R^ mi t1^2 <Zi< {m, + 1) t1^^ i = 1,.., d} ,

(the t dependence is dropped in the notation).
To describe what we mean by clearings and forest, we shall need three parameters 6,5, r.

We pick b>a,0<6<l. For a; = V^ ̂  e f2, a cloud configuration, we say that Xi G Cm
j

is good (at level t), if for all balls C = ~B{x^ 10^+1 6), with 0 ^ i, 10^1 b < 1 ̂ +2,

(1.4) |^ncn( |j B{x^b))\^-\Cm^C\^
xjeCm

I • I denotes the volume.
Observe that the actual soft or hard obstacle plays no role here. Then Goodm stands for

the set of good points in Cm at level t, and Good = M Goodyn. The good obstacles are
mC^

in the precise sense given above well surrounded by obstacles. We also chop identically

each segment [m, t1^^2, (m^ + 1) ̂ +2] in at most — ^/c(+2 + 1 segments of length

b
—=, except may be for the "last one".
y d

We now introduce our third parameter r G ( 0, . ). We can now define what clearing
\ L )

boxes and forest boxes are in the following fashion.
We first define the event dm "there is a clearing of size r i^l^2 in the box Cm\ via:

(1.5) Cim = [^ C ̂  \UmW | > 2-^ ^(O^/^2)!} ,
-̂  0

where Um (^) denotes the open subset of Cm obtained by taking the complement in the
interior of Cm of the closed subboxes which receive a good point of Cm- We define Um{^)
in a analogous fashion, except that "good point" is replaced by "point". Then using a
covering lemma (see (2.14) of [6]),

(1.6) |^J^|^n|+^/d+2.

It is may be helpful to say here that the natural probabilistic estimates are derived for
\Um\. and (1.6) roughly says that "if \Um\ is big, then \Um\ is big".

We now let A(uj) (here again the t dependence is dropped in the notation) stand for the
closed set which is the union of closed cubes Cm, m G Z^, where "there is a clearing
of size r^/^2", that is

(1-7) ^){z)= ̂  l^)lc^).
mC^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



376 A.-S. SZNITMAN

We let A1^) stand for the open set of points in R^ at distance smaller than ^l/d+2 from
A(UJ), {A1 is empty if A is empty). In the sequel we shall mainly be concerned with what
happens within distance t of the origin. To this end, we introduce for t > 1:

(1.8) T=(-^V^^+V, ^(_^i/^ ̂ 1/^2^^^

Let us mention now that the point of the above construction directly coming from
the "method of enlargement of obstacles" is that one has a good lower estimate of the
principal Dirichlet eigenvalue A _ ^ ̂ (T) of -J A + V{^u) in T (soft obstacles) or

^-jA^IJ B{xi,a}) (hard obstacles) in terms of the principal Dirichlet eigenvalue
i

A _ ^ ^(Qb) of - . A in the coarse grained open set

^•Q) Q^THA^ \J ~B{x^b).
Xi^Good

We shall use these estimates further below^under the form of uniform exponential
moments. We also introduce the open sets U{uj) (resp. U(uj)) as the complement in
Tn ( (J Cm)0, of the closed subboxes included in some Cm with Cm rU1 (a;) ^ ^,

CmUA1^)^

which receive a good point (resp. a point) of C^. U(w) will be easier to handle than Q^)
and satisfies:

(1-10) Qb(u) C U[uj) .

Our next purpose is to describe excursions of Z. in and out of the clearings. We shall only
be concerned with trajectories of Z. which do not leave T, and therefore the knowledge of
the restriction of A(uj) to Ti will be sufficient for our purpose. However the various possible
shapes of the restriction of A or A1 to Ti can still be quite complicated, and to alleviate the
task of describing the excursions of the process Z. between forest and clearings, we shall
do some regrouping and embed each component of A1 H T in a system of three concentric
balls B^\ B, B^\ the various balls B^ being pairwise disjoint, each component of^nT
being contained in some B^. To this end we prove

LEMMA 1.2. - Let G(1),...,C'(7V), be closures ofN > 1 distinct boxes of type (1.3).
There exist an integer L E [1,7V], and a sequence {B^\ Bj, B^)^^, such that for
each j, B^, Bj, ffj^ are concentric closed balls, obtained by successively doubling the
radius of B^, and

(1.11) the B^\ 1 ̂  i <, L are pairwise disjoint,
(1.12) the set of points at distance smaller or equal to (\/d + 2) ̂ V^2 from

some C(%), i e [1,N] is contained in I ) B1^ ,
1<J<^

(1.13) the B^ have radii no larger than 4 x Q^-1 (3 Vd + 2) ^^+2 .

4" sfiRffi - TOME 28 - 1995 - N° 3
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Proof. - Without loss of generality, we assume t = 1. We then first consider the closed

balls ̂ nt, j G Ji = {!,..., N}, with same centers xj as the C{j) and radius R = —— + 2.

We then construct by successively doubling the radii the various Bj, B^, j e Ji. If (1.11)
holds, we are finished since (1.12)-(1.13) is automatic.

Otherwise we pick ji ^ j^ such that B^ D Bj^ / (j). Then the mutual distance of the
respective centers is no larger than 8R. We now discard the concentric balls corresponding
to j2, that is we define J^ = Ji\{j2}, and for ji we pick the triplet of closed balls
with centers x^ and respective radii 9R, 18R, 36R. Then (1.12) is fulfilled, and if (1.11)
hold we are finished. Otherwise we proceed inductively, picking ji / j'2 in J^ such that
B^ H B^ / (f), the radii of the triplets of balls of index '̂i being larger than those with
index j'2. We delete j2 from J^, and multiply by 9 the radii of the triplets associated to ji.
Obviously, this procedure stops after at most ( T V — 1 ) steps, yielding the desired sequence
of triplets of concentric balls satisfying (1.11), (1.12), (1.13). D

From now on we assume t > 1 large enough so that Z?(0, td^d~{~2 7-2) C T, 7-2 the constant
appearing in (1.2). For each u G ^, we consider the collection of cubes Cm c ̂ i, where
Clm{^) occurs ("there is a clearing of size rt1/^2 "). To this collection of cubes if it is
not already there we add the closed cube containing ^^/d+2 (see (1.2) for the notation).
We denote by n(uj) + 1, (^(^) > 0), the number of cubes in this collection. Thanks to the
lemma just proved we construct a collection of triplets of concentric balls (B^(uj\ ̂ (^
B^^^-i^j^L^) where L{uj) <, n(uj) + 1, which satisfy (1.1!)-(!.13), with respect to the
above mentioned collection of cubes. We assume the labelling is picked in such a way
that B^^ contains ^^/d+2, and therefore all points at distance less than (Vd + 2) tV^2

from the cube Cm containing ^^/d+2.
We are now ready to describe the excursions of the path Z. . We let ̂  = 0 a(Zu,

€>0

0 <: u < s + e), s > 0, stand for the canonical right continuous filtration on C{R+, IR^),
and recall that (fta)n^o denotes the canonical shift on C^IR^R^). We are now ready to
define two sequences of (^")-stopping times, namely the "returns" to B^(uj) and the
"departures" from Bj(u}\

(1.14) Ri = mf{u >, 0, Z^ G |j B^^)} < oo ,
Kj<L(o;)

(1.15) Di =mf{u> R^ Zn G |j 9Bj(u})} < oo ,
l<j<:L{uj)

and by induction for k > 1,

J?fc+i = Ri o OD, + Dk, Dk^i =D^o OD^ + Dk, so that
0 <, Ri < D^ < R-2 ^ D^ < ... ^ Rk < Dk <, . . . <, oo ,

and except for the first each inequality is strict if the term in the left member of the
inequality is finite. We then introduce

(1.17) Lt = - • ̂  (RW A t - Di A t), with the notation Do = 0 ,
t i>o

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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(L18) ^ = E w ^ Q '
i>l

So M measures in a sense the number of excursions between I J B1^ and ([ J B -)0 up to
3 J

time t, and Li the fraction of time spent in "returns" to I J B^.

Let us start with the estimate of the quantity under the logarithm in (1.2). For 0 < rj < 1,
and no > 1, we have:

(1.19) E^E^IKxt^2) ̂  ^ exp{ - ( t V{Z^du}~\ ̂  P,[Tr < t}

+E0Eo[rr>^ exp{- ( V{Z^^)du^ \An Ti| ^ n^^\

OTLt ^^orM ^ [y?^^2]]

+E0Eo[rr>^ exp{- /> V{Z^u)du}^ H^xt^^2) ̂  ̂  \AnT,\
' J o )

^ n^l^\ L, ^ ̂  M < [r^^4-2]] ̂ Ai +A2 +A3 .

The first term Ai is easy to control, indeed, by standard Brownian motion estimates:

(1-20) lim r^+2 log PO[TT < t} = -oo .
t-»-00

So for our purpose of proving (1.2), Ai is negligible. Now the term A^ was essentially
studied in Theorem 2.1 of [6] in the case of hard obstacles, and in appendix A of [9] for
soft obstacles. The method employed yields here:

(1.21) lim lim lim lim r^^2 log A^ = -oo .
r—>0 no—>oo 6—>oo,6—»-0 t—>-oo

Let us simply mention for the reader's convenience that the control on \A D Ti | comes from
the fact that there is jm, at most polynomially growing in t, number of possible choices
for no boxes Cm C Ti. Moreover, for m -^ m' Cim and dm' are independent, and in
view of (1.6), by a counting argument

P[Clm} ̂  P[|^| ̂  ̂ ^-^(O^)! -<?)] < 2(^l/d+2+l)d

exp{-^/^/d+2(2-d |B(0,r)| - 6)} .

As for the controls involving Nf and 2^, the main ingredients in (1.21), are the fact that it is
"costly" to perform excursions in the forest, that is A°, because, with an "adequate choice
of parameters", for z G A0^), uniformly in a;:

r r /• ̂ 4.11/^+2 ^-i
E^exp^- V{Z^uj)du^ < 1 - c,{d)

4® SfiRIE - TOME 28 - 1995 - N° 3
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(see (A.7) of [9]), with He = mf{u ^ 0, \Z^ - ZQ\ > c}, and by an exponential estimate
(see (A. 10) of [9]), it is "costly" to spend too much time without reaching the clearing
set A(u).

Let us denote by £ the event

(1.22) £ = [Tr > t, Nf < [rj ^/d+2], L, ̂  ̂  ff(^^+2) ^ t} .

As mentioned above, there is an, at most polynomial in t number of possible choices for at
most no distinct boxes Cm in Ti. To prove (1.2), it therefore suffices to check that:

(1.23) lim lim lim lim lim sup sup
^0 r-^O no^oo 6-.oo,6^0 t-^oo #M^no r^<\x\<r^

t-d/d+2 log^ATTTi =AM^ ^o[f, exp{ - ( V(Z^}ds^) + c(d^)

+ A)(^) < o ,

here M stands for a possibly empty subset of Z^ D [-2[t^], 2[^^] - 1]^, and
AM = |j Cm' Now the method of enlargement of obstacles (see Theorem 1.1) of [7] for

mCM
hard obstacles, and Theorem A.I of [8] for soft obstacles), yields the following exponential
estimate: for M > 0,p > 0,

(1.24) liin sup lim sup E^[H] < K(d,M,p) < oo, with
r-'0 fc>a,0<6<! t-^00 Z,LJ,T

H = exp{A(T A Tr)}, for hard obstacles,

H = [ V(Z^u;) exp^- [ V(Z^uj)du+\s\ds

(1.25) . r^T 0

+ exp^- y V(Z,^)ds+\Tr}

/>TT r y^5 ^
=1 + j Xe^ exp ̂  - j V(Zu^)du^ds, for soft obstacles,

(1.26) with A = (\_^(Qb) A Mt-2^^ - ̂ r2/d+2)+ .

In fact in what follows, we shall use (1.24), with A replaced by A <, A, and the choice
(from now on)

(1.27) M=c(d^ )+ l

(1.28) A = (A_^(Z7) A (Mr2/^2) - pt-2/^ ,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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where U has been introduced before (1.10), and A <_ A, follows from (1.10). Let us now
study for some uj such that A{^} 071= AM. (# A^ <, no)» the expression under the EQ
expectation in (1.23). On the set <f, the condition Li < r] implies that:

(1.29) ^ Di/\t-RiM>, ( l - r ] ) t .
i>l

We define

(1.30) J = inf{z > 1, Z^ e B'^} ,

where we recall that B1^ is the ball B^ which contains Bixt^^2,2), and that the {B^\
Bj, B^^-i^j^L ar^ deterministic functions of AM ( == A(uj) n 7i) and ~xtd^d+2. Observe
that for t ^ const(no^i). as we shall now assume, 0 ^ B^.

Our goal is now to split "excursion costs" and "resting costs" for the process. Observe
that {H^xt^^2} ^ t} C {Rj ^ t}, so using (1.29),

\e exp { - / V{Z^^)du\ <, exp { - A(l - T]} t + A V (A A t - R, A t)
1 ^ J L ^i

- / V{Z^)du\ l{Rj < t < Tr} U
Jo )

J~l r^
(1.31) ^exp{-A(l-^}.expU.]^(I5A7r)o^- / V(Z^^)du)

i=l Jo

Nt

x 1{1 ^ J ^ Nt < [r?^+2]} • exp { A . ̂  {D A Tr) o 0^ A (t - ̂ )+
fc=j

- / V{Zu,u)du} ' l{Rj <: t < Tr}, with the notation D = T i i ^ .
7J?J i<^. j

Let us now define G?, by replacing in the definition of H in (1.25), Tr by D A Tr and A
by A (^ (1.28)), so that 1 <, G ^ H. From (1.31) follows:

(1.32) Ie exp{- [ V{Z^uj)du\

r~ J~l (RJ

< exp{-A(l -rf)t} exp^A V D/\TroOR. - / y(Z^,a;)^^
1 1=^ <70 J

[^/d+2]
x 1{1 ^ J < [^^/d+2], ̂  < Tr} • n G ° ̂ A^ ° ̂  •

fc=i
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Now thanks to the enlargement of obstacle estimate (1.24), and the fact that we wish to
prove (1.23), with the successive lim sup operations indicated, with no loss of generality,
we can restrict ourselves to values of the parameters p, r, 6, 8, t, for which:

(1.33) sup E,[G] < K{d,M,p) (with M = c(d^) + 1, from (1.27)) .
Z,UJ

If we now use the strong Markov property to the Eo expectation of (1.32), as well as
(1.33), we obtain:

Eo[le exp{- ( V{Z^^)du^\ ̂  K^M.p)^'^2 . exp{-A(l - rf)t} '

Eo[Rj <Tr, 1 ̂  J ^ [^+2], exp{A ̂  {D A Tr) o 0^ - I J V{Z^)du\~\ .
i=l VQ

This is already a partial split of costs as promised. It now follows that our claim (1.23)
will follow if we prove:

lim sup sup t-^^2 log (E [^nTi = AM, exp{-A(l - r]) t}
#M<:no n<|^|<r2 v L

Eo[Rj<Tr^ J<[77^+2],
(1.34) j-i R,

exp {A • ̂  {D A Tr) o0R^- V(Z.^)^}]]) + c(d, ̂  + (3o{x) ̂  0 ,

provided lim stands for " lim lim lim lim lim lim . "
p—>0 77—>0 r—>0 IZQ—>oo b—>oo,6—>0 t—>oo

We are now going to extract from all the excursions in the forest, a sequence of excursions
which never visits twice the same ^nt, and eventually leads to B1^ containing x t d / d ' } ~ 2 .
Namely we pick a; € 0, such that A H 7i == AM' Recall that this and xt6'^^2 completely
determine the sequence {B^^Bj^B^}^^.

Consider now the expression under EQ expectation in (1.34). On the set 1 <, J < [r] t^/^2]
and Rj < TT, we have the sequence 0 < R^ < R^ < ... < Rj-\ < Rj, and the equality
R^ = 0 occurs only if 0 G UI^<L» ^T (in fact for t ^ const (^0,^1), 0 ^ B^). For
each trajectory of Z., we can define ji(w) the unique ball B^ to which Z^ belongs,
zi(w) the last index % in [1, J(w)} for which Z^ G B^\^ j2(^) the index of the next ball
visited namely the unique j for which Zp^ ^^ G ^nt, i^w} the last index i in [1, J(w)]
for which Zp, E B1^^ and so on until j^w)(^), ^(w)(w) = JW - 1, j^^)+i(w) = L,
^(w)+i(w) = J, with 0 < £{w) < HM.xt^^2) - 1.

So there are no more than L < no + 1 possibilities for j, moreover 0 < i < L and
1 ^ %i < %2 < • • • < if. < ̂ +1 = J <. [r]td^d^2}\ consequently the number of possibilities
for the sequences (%i,ji)...(^,^) grows at most polynomially with t. Our claim (1.34)
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then follows if we prove:

(1.35) lim sup sup sup sup sup
#M<no r^<,\x\<,r^ 0<e<L(M,xtd/d+2)-l l<,i^<...<i^<[rJtd/d+2} ji^...^€[l,L-l]

t-d/d^-2 ̂  (E[:4?T7T = AM. exp{-A(l - r j ) t}

xEo\exp!~ f £+ V{Z^uj)du\

it

xexp^A ^(£»ATr)o0Rj, Q\^ + c{d,v} + fSo(x) ^ 0, with
i=l

(1.36) Q = [Zn^ Z^ € B^\ Z^^ Z^ e B^\^Zn^ e B^\ R^ < Tr}
(in the case i = 0, G = {Zp, e B^\ R^ < Tr}).

With the notation %o = 0, the term under £'0 expectation in (1.35) equals

(1.37) ( J] exp {A . ^ {D A Tr) o 0^ - I lk V(Zn^)du}
k=l i=Zfc-i+l ^^(zfc-i+i)

exp^- I fc+ y(Z^,o;)^l) • e x p { - f V(Z^^)du\ ' IQ .

We can now define for i >_ 1, Di the first exit time from N B^ after P,, (recall the
^<:3<L

^ext .̂̂  pairwise disjoint):

D, = T | ^ ext o 6^ + D, ^ oo, % ^ 1 .
Uj j

Obviously A^ < D^ < 7^+i = ^i o 0g + D^ for 1 ̂  k < ^ on ^. So the £0
expectation of the expression in (1.37) is smaller than

r r /IR1 ^ £ r~ ik

(1.38) ^o^- / y^^^n^Pt^- E {D^Tr)o6^
vo k=l z=Zfc-i+l

/lDlfc ^- / V{Z^^)du\
.̂-i+i J

r /lJR^fc+l -i -i
exp{- / V(Z^uj)du}^Q\ .

1 <7D^ ; j

Denote by qj(x,y) for 1 ̂  j ^ L - 1, .r G ^xt, ^/ G 3^^, the Poisson kernel, that is
the density of Zro under P^, with respect to the normalized surface measure dsj(y)

on 9B^\ that is
I 1 2 I l2

f j ( r y } - ( n Y ~ 2 {y ~ x j { ~ p ~ x j { if »ext _ 0^ . \
V j ^ j y } ~ \ P j ) \ _ \d ' J ~ D\X3'>P3) ?I1/ ^l
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Then we can find 0 < /^i(d) < 1 < /^(cQ < oo, such that for any j:

(1.39) ^(d) < ̂ Jn^ Qj{x,y) < sup^ q^x.y) ̂  ^(d) .

Now if we use in (1.38) the strong Markov property, the bound (1.33) for the terms
involving A, and (1.39) between time D^ and D^, 1 ̂  k <, i, we see that the expression
in (1.40) is smaller than:

K^M^pr^2 ^(d^-1 x Eo[exp{ - [R l V(Z^^)du}^ Z^ G ̂ nt]
(1.40) , ^ °

11 / „ Ey[exp{-J ' V(Z^u)du]^ ZH, G B^]ds^y) ,
fc=l 3k

with j^+i = L, and J?i < oo implicit in each expression.
Denote by U^(^} the open set complement in T H (Uc^n.41 9^ ^^ of the closed

subboxes included in some Cm with Cm H >A3^ 7^ ^, which receive some good point of
Cm. Then on the set AnT1^ AM. U(u) j= ^(o;), and A(o;) = A^(^), if A.M is
defined as A in (1.28), with U replaced by z7^. So from (1.40), we see that the claim
(1.35) follows if we prove:

(1.41) lim supr^+2 log(E[exp{-A.M(o;)(l-7^}

x£o[exp{ - ( 1 V(Z^u,)du},ZR, e B^]
- ' Jo ) -l

x 11 / ^Jexp{- f ' V{Z^}du\,
k=i J^ L l Jo ^

z^ e ̂ i] ̂  (^)]) + c^ ̂ ) + /3o(^) ^ 0 ,

where sup denotes the various suprema which appear in (1.35). Observe that A^(ci;)
is measurable with respect to the a-field generated by the restriction of the cloud to
the Vdt1/^2 neighborhood of AM' On the other hand, the other terms under the E
expectation in (1.41) are measurable with respect to the restriction of the cloud to a closed
a-neighborhood of ( |j B^Y. Now as soon as ^V^2 > a, these two a-fields are

l^j^L
independent under P. Therefore our claim (1.41) follows from:

(1.42) Inn sup t-^2 log E[exp{-A^(o;)(l - r]) t}] < -c(d, ̂ ), and
#M<,no

(1.43) lim supt-^+a log (E [£'0 [ exp { - / ' V(Zn^}du), ZR, e ̂ nt] •

11 I, . ̂ [^Pt - / ' V(Z^)du}, Zn, e ̂ ]^,(y)]) +f3,(x) <, 0 ,
_-i J o1B • JO J J/
—1 3k
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We have now really split apart the "resting cost" and the "excursion cost". We begin with
the proof of (1.43). The proof of (1.42) is in a sense classical, and essentially follows the
argument to prove (2.16) in [7].

Define a sequence Ri, D^ i ^ 1, exactly as in (1.14) - (1.16), except that the role of
jDi is replaced by that of D\, that is:

R,=Rl^ :Dl=T| , ^ext0^+^l(=5l)
\Jj 3

^ 44\ RW = RI ° ̂  + Di, 1 < i
'D,+i = 7?i o 0^. + ~Di, 1 <i, so that

0 < Ri < 2?i < ̂ 2 < ~DI ^ ... < oo .

We are considering returns to B^{uj) and departures from B^^) instead of departures
from Bj{cj). We shall now piece together the excursions and reconstruct a Brownian path,
namely the expression under the E expectation in (1.43), thanks to (1.39) is smaller than:

^(d)-6 ^ofexp{ - / ' V{Z^)du}^ Z^ e B^ ,
L l Jo '

/ f /•-Rfc+i ^ i
n exp { - / V(Z^)du}, Z^ £ B^\ <,
fe=l ^ JDk } J

M(d)-^ofexp{- / 1 V(Z^)du\ • 1{Z^ € B^} •
(1.45) L ' Jo _ '

n exp{-.L,(l-e-^w(z"-^')d^l) - F" V(Z^)dn}
k=l v VDk

K .̂ ^ ̂  ̂ i < °°)] • rK1/,,,."1^ % [^p{-./dy
1 ^ 3k ' y 3k v

(i-e-r^^-^")}]^^.^,
provided E^ , for a: G K^, ^/ G ^ffj^ denotes Brownian motion starting at x, conditioned
to exit B^ at y , and T^ is the exit time from B]^.

Observe now that the last term B is smaller than:
i

(1.46) J] (l/ min^t ^ ̂ ^i % [exp{-^ | % |-}])
i

<( sup _ max l/^o^[exp{-^|^^|}])no^B,
^t^^+^^^c^no)*1/^2 a;eB(0,f),y€^B(0,7?) v ' / /

where we recall that with the notations of (0.1) of [II], S^ = |j ~B{Z^d} is the
0<s<,u
/ 0 \

Wiener sausage of radius a in time u, and c{d,no) = 4 x 9710 x ( - \/ri+ 2 ) , comes
V z /

from (1.13) in lemma 1.2.
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Observe that B does not depend on uj. Moreover, from the "positive correlation inequality"
(1.16) of [II], and its corresponding version for hard obstacles

(1.47) E[A] ^ M(d)-^o[exp{ -v ( ^(l - e-^11^-^) },

^ ^ ̂  - ̂  ^ ̂ " ̂  ^ ̂  ^+1 < oo]

^i(d)-^o[exp{-^ [ d y ^ l - e x p ^ - ( BLnt IV(Z, - y)du^},

Î gint < CO .

Observe that ^nt C B^^/^2, 2c(d,no) ^l/d+2), where c(d,no) is as in (1.46), and
that B^ can be covered by a collection of (^(c^no)^^2 balls of radius 1 with
centers in B(^^+2, 2c(d,no) ̂ l/d+2 + ̂ ^B^). Recall from (0.6) of [11] that
with H(x) = H^^y

/o(;r) = Eo [exp { - v f d y ( l - e~ ^Hw ̂ ^--^^^ 11 (soft obstacles)

= Eo[exp{-i^ S^^ |}] (hard obstacles) .

It follows that the right most member of (1.47) is smaller than c\d,no) ̂ y^2 . ̂ (d)""0

sup{/o(^). x ^ Bt(x)}. Using Theorem 1.3 of [II], which relates /?o(') to the exponential
decay of /o('). we have

(1.48) lim sup (t-^^2 log E[A] + f3o(x))
t—>00

< lim sup t-^^2 sup{log fo(x), x G Bt(x)} + 0o(x) < 0 .
t^00 n<|^|<r2

So our claim (1.43) will follow from the

LEMMA 1.3:

(1.49) lim f-^^2 sup
t^00 t^+^.R^c^ncOt1/^2

sup log(l/<^ [exp{-z. | 5^^ ^ |}]) = 0 .
,r€B(0,f),yeaB(0,J?)

Proof. - Using Jensen's inequality, the quantity we study is smaller than

(1.50) vE^^^\] ^|B(0,3a)|+ .——, f dz
L l ' J J Q R [ X ^ y ) JB{0,R}\B{y,3a)

^[^B(^a) < ^(O^R), qR^Zn-g^ ̂ ,y)} ,
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if te('?') stands for the Poisson kernel relative to B{0,R). Observe that when
z € B{0,R)\B{y^a):

max „(,,) ^ R^ l '̂̂  ^ 2^R^ 2R^—— .
B(z,a) (|?/-^|-a)^-1 b-^-1

Consequently,

(1.51) lim JZ"^ / (_max q ( ' , y ) ) d z <, const(d) < oo, and
i^00 JB(0,^)\B(y,3a) v B(^,a) ^

(1.52) lim JT^ sup / jnax ' q { ' , y ) d z = 0 .
R^00 xCB(0^),yeaB^R) J B [ x , ^ ) B(z,a)

__ D \
Now exactly as in (1.39), for R > 0, x G B 0, - ), y e 9B(0,R), q{x,y) ^ /^i(d). So
in view of (1.51), (1.52) our claim (1.49) will follow from:

(1.53) lim _ sup Px[H^ ^ < ̂ (o^)] = 0 .
H^00 .r€B(0, f ), z^B^R)\B(x, ̂ )

But this last point follows from:

^[^0(^0) < TB{0,R)\ < ̂ [H^^^ < TB{Z^R)]

^ g(\x - z\) - g{2R) ^ g{R/ log R) - g{2R)
g{a)-g(2R) - g{a) - g{2R)

with R > e, and g(u} = uL~d, when d ^ 3, g(u) = log 1/n, when d = 2, for u > 0. D
The last point to prove is now (1.42), which essentially follow as in the proof of (2.16)

of [7]. Namely, we first observe that there are at most 3d no cubes Cm which intersect A\^.
Moreover, if UM is defined analogously to Uj^ (before (1.41)), except that "good point"
is replaced by "point", out of (1.6), we find

(1.54) \UM I <. \UM I + 3d no St^2 .

It then follows by estimating the number of possibilities of Uj^ and Uj^i C Uj^ for a
fixed M that

(1.55) E[exp{-AM(o;)(l-7^}]

< ^ exp { - (\.,^UM) A (Mr2/^2) - pt-2/^2)
^ C^ J^ 1<1^ 1+3^ no <^l/d+2

x (1 - rf)t) • PWM) = 0] ^ exp{2 • 3dno(log 2)^vd t1/^2 + lY

- inf [V\UM\ - 3d no St^2 + (\.^(UM) A (Mt-2/^2) - pt-2^2} (1 - n) t}
UM l v 2 /+ J
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From this it follows that

lim sup i-^IW log E[exp{-Wo;)(l - rj) t}}
^^^M^no

<2.3d( log2)nof-d)d+3dno^+P -llm mf#M<na ̂  {M{ l - r j ) }
v 0 / t-^oo ~ M

A Hr1/^2^! + (i - ̂ ) A_^(r1/^ ̂ )}.

From this follows that the quantity in the left member of (1.42) is smaller

(1.56) - Urn {M(l - rj)} A mfuW + (1 - 77) A_ i „(£/)} ,
7^0 2

where U runs over all bounded open sets of R^ with negligible boundary. Using the Faber-
Krahn inequality, as in Donsker-Varadhan [2], balls are optimal in the infimum, which
appears in (1.56). Since M == c(d, v) + 1 = inf{^|(7| + A_ i ^{U)} + 1, it is routine to see
that the quantity in (1.56) is -c(d, v\ This finishes the proof of Theorem 1.1. D

REMARK 1.4. - Let us mention that the method "we used to prove Theorem 1.1 can also
be used to study how an excursion at distance t d / d ^ 2 is produced. For instance, it is an
easy variation on the proof given here, to show using the lower estimate (2.31) of [II],
that for e > 0, x -^ 0,

(1.57) lim lim lim r^^2
r-»0 b—>oo,6—>0 t—roo

log^^f^2) ^ t, y\U\ + t\_i ^(U)
~2 •

^ (c(d^) + e ) t d / d + 2 / H ( x t d / d + 2 ) ̂  t]) < 0

and a similar statement for hard obstacles.
So by picking r, 6,6 adequately, given an excursion leading to B^^/^2) occurs before

time t, the Qt conditional probability that

(1.58) \_ ̂  ̂ (r^2 U) + ̂ r1^2^! <, c{d, v} + e

tends to 1 as t goes to infinity.
This last condition (1.58) for instance prevents the existence of more than one "big

component" of t~l/d~}~2U (i.e. of volume ^ c > 0), if we pick e small. D
We can now derive the asymptotic behavior of r(^, 0, f^/^2 v) described in (0.5) (soft

and hard obstacle case).

THEOREM 1.5. - (d ^ 2)

(1.59) for v C R^ lim r^2 log r(t, 0, ̂ +2 v) = -c{d, v} - /?o(v) .
t—»00
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Proof. - We recall that (2.33) of [II], with the soft obstacle notation, says that for
0 < u < t, p > 0, x G R^:

Eo[exp { - 1^ f (l - exp { - f W(Z, - y)ds))dy} pa(.,2,)(^ Z^x),

Z^eBCr^e-^W0)!

< r(t^x) < £o[exp{ - v I (l - exp { - { W{Z, - y)ds)dy} p{^Z^x)^

with p ( ' , - , •) (resp. p u { ' , •, •)) the usual heat kernel (resp. Dirichlet heat kernel relative to U)
of - . A. It suffices to consider v ^ 0, (else see Theorem 2.4 of [11]). For the lowerbound
part of (1.59), we pick u = 1, p = 2 + 2\v\, and use (2.31) of [11]. As for the upperbound,
exactly as in (2.34) of [II], we conclude that for e > 0, with u = 1 above

^r^+2 log r(^0,^+2^) < Urn t-^2 log Qi[Z^ e B(^+2^, ef^2)]

+ log Sf}
< -mfB(^) A)0 - c(d^) ,

which yields (1.59), letting e tend to zero. D

II. Annealed Brownian motion with a drift in a Poissonian potential

The large deviation results we derived here and in [11] have a natural application to
the study of annealed Brownian motion with a constant drift in a Poissonian potential, as
already mentioned in the introduction. In particular we shall derive here a characterization
of the (direction dependent) threshold for h, which separates the "small /i" regime from the
large h regime. Let us simply recall that J(-) with the notations of [11] is the rate function
governing the large deviation property at rate t of Z t / t under Qt:

(2.1) J{x) = sup(A(;r) - A) .
A^O

So with the notations of the introduction (see (0.6), (0.8)), we have:

THEOREM 2.1. - {d > 1, hard and soft obstacles)
Under Q^, Z t / t satisfies a large deviation principle at rate t, with rate function

(2.2) ^M = J(x) - hx + svipy(h' y - J{y)), moreover
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(2.3) lim 1 log S^ = sup ( h ' y - J ( y ) ) = 0, for \h\ < A.(e)
t—»-00 t y

> 0, for \h\ > K(e) .

Proof. - The proof is entirely analogous to the proof of Theorem 3.1 of [10] in the
quenched (i.e. P almost sure) case for soft obstacles. The transition of regime in (2.3), using
the variational formula is related to the behavior of J(-) near the origin, namely

(2.4) for yeR^ lim J(m/) = A)O/), see (3.10) of [10]. D
u—>0 U

The large deviation results derived in section I enable to precise the description of what
happens when \h\ < /^(e). The next theorem not only covers both the hard and soft
obstacles situations, but it also goes up to the critical point /^(e) and extends our results
for small \h\ in [6].

THEOREM 2.2. - (d > 2, hard and soft obstacles)
For \h\ < /^(e)

(2.5) lim r^^2 log S^ = -c(c^), and
t—>00

(2.6) Zf/t^'^'^2 satisfies underQ^ a large deviation principle
at rate td^d~}~2 with rate function (3o{x) — h ' x .

Proof. - The only point to prove is the exponential tightness result

(2.7) lim lim r^^2 log E 0 EQ [exp { h ' Zt - / V{Z,^}ds \,
L-^oo t^oo [_ ^ JQ )

h'Zt^Lt^2^ =-oo.

Indeed, (see for instance Ellis [4], p. 51 or Deuschel-Stroock [I], p. 43 and p. 51), it
follows from (0.4) and (2.7) that

lim r^+2 log E^ [exp{h • Z,}\ = sup (h ' y - /?o(2/)) = 0 ,
t^OO y^d

since \h\ < ^(e), (see (0.8)), as well as (2.6).
As for the proof of (2.7), the term under the logarithm in (2.7) equals

(2.8) exp^/^2} E 0 £o [exp [ - ( t V{Z^}ds\ e . Z, > L- t^2}
L I Jo ) \fl\ J

r00 [ ( ( i \ 1
+|/i| / exp{\h\u}E(^Eo exp ^ - / V{Z,^)ds ̂  e ' Zt > u\du .

J__ fd/d+2 L I ^0 J J
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Now from Corollary 1.8 of [II], we can pick 7 e (|/i|, /^(e)) such that for large n

\ ( /it 1 1
E 0 ̂ o exp ^ - / y(Z,,o;)d5 ^ Zf • e ^ u\ ^ exp{--yu} .

L I Jo ) J
/"/From this for large enough t, the expression in (2.8) is smaller than ———

7- \h\
exp { - ( -J-. - l} Lt^^2 }, and our claim (2.7) follows. D

I V P l 7 J

REFERENCES

[I] J. D. DEUSCHEL and D. W. STROOCK, Large deviations (Academic Press, Boston 1989).
[2] M. D. DONSKER and S. R. S. VARADHAN, Asymptotics for the Wiener sausage (Comm. Pure Appl. Math.,

Vol. 28, 1975, pp. 525-565).
[3] T. EISELE and R. LANG, Asymptotics for the Wiener sausage with drift (Prob. Th. Rel. Fields, Vol. 74, 1,

1987, pp. 125-140).
[4] R. S. ELLIS, Entropy, large deviations, and statistical mechanics (Springer, New York, 1985).
[5] P. GRASSBERGER and I. PROCACCIA, Diffusion and drift in a medium with randomly distributed traps (Phys.

Rev., Vol. A26, 1982, pp. 3686-3688).
[6] A. S. SZNITMAN, On long excursions ofBrownian motion among Poissonianobstacles, in Stochastic Analysis,

M. Barlow and N. Bingham, eds. (London Math. Soc., Lecture Note Series, Cambridge University Press,
1991, pp. 353-375).

[7] A. S. SZNITMAN, Brownian survival among Gibbsian traps (Ann. Probab., Vol. 21,1, 1993, pp. 490-508).
[8] A. S. SZNITMAN, Brownian asymptotics in a Poissonian environment (Probab. Th. Rel. Fields, Vol. 95, 1993,

pp. 155-174).
[9] A. S. SZNITMAN, Brownian motion with a drift in a Poissonian potential {Comm. Pure Appl. Math., Vol. 47,

10, 1994, pp. 1283-1318).
[10] A. S. SZNITMAN, Shape Theorem, Lyapounov exponents, and large deviations for Brownian motion in a

Poissonian potential {Comm. Pure Appl. Math., Vol. 47, 12, 1994, pp. 1655-1688).
[II] A. S. SZNITMAN, Annealed Lyapounov exponents and large deviations in a Poissonian potential I {Ann. Scient.

EC. Norm. Sup. 4" Serie, t. 28, 1995, pp. 345-370).
[12] A. S. SZNITMAN, Brownian motion and obstacles. First European Congress of Mathematics, Ed. A. Joseph,

F. Mignot, F. Murat, B. Prum and R. Rentschler, 1994, pp. 225-248, Birkhauser, Basel (preprint).

(Manuscript received June 11, 1993.)

A.-S. SZNITMAN
Departement Mathematik,

ETH-Zentrum,
CH-8092 Zurich,

Switzerland.

4s SERIE - TOME 28 - 1995 - N° 3


