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BIFURCATION OF CONTRACTING SINGULAR CYCLES *

BY RAFAEL LABARCA

Dedicated to the memory of Professor R. Chuaqui (R.I.P.)

ABSTRACT. - The aim of this work is to continue the analysis of a new mechanism, the singular cycles, through
which a vector field, depending on parameter, may evolve when the parameter varies from a vector field exhibiting
simple dynamics into one having non-trivial dynamics. Specifically; if we start with a Morse - Smale vector field
and move through a generic one - parameter family of vector fields to a contracting singular cycle and beyond,
we reach a region filled up mostly with hyperbolic flows. In fact, the Lebesgue measure of parameter values
corresponding to non Axiom A flows is zero. Moreover we provide a complete description of the bifurcation
set that appear in these families.

1. Introduction

The aim of this work is to continue the analysis of a new mechanism, the singular
cycles, introduced in [3] and [1] through which a vector field, depending on parameters,
may envolve when the parameter varies from a vector field exhibiting simple dynamics
into one having non-trivial dynamics.

Let M be a (7°°,m-dimensional, compact, connected, boundaryless, riemannian
manifold. Let X e X^M) be a C^-vector field on M.

DEFINITION 1. - A cycle for the vector field X is a compact, invariant set T C M formed by:
(i) a finite number of singularities and periodic orbits Fo = {ao, • • • , On};

(ii) the complement I\ = (T \ Fo) is a set of non-periodic regular trajectories of the
vector field X that satisfies:

(CC)\ for any trajectory 7 C I\, there exists 0 < i < n such thatuj{^) C cr(i+i)mod(n+i)
and 0(7) C (Jz\

(CC)^ given 0 < i < n there exists a trayectory 7 C I\ such thatuj^} C o'(i-\-i)mod(,n-^-i)
and 0(7) C o-i.

Here ^(7) (respectively o^)) denotes the c<;-limit set (respectively the a-limit set) of
the trayectory 7.

* Partially supported by Fondecyt grants # 0449-91, # 1941080 and Direccion de Investigaciones (Dicyt)
USACH.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-95 93/95/06/$ 4.00/© Gauthier-Villars



706 R. LABARCA

A cycle will be called singular if it contains a singularity; hyperbolic if all the critical
elements in F are hyperbolic.

In this article we will deal with a 3-dimensional, hyperbolic, singular cycle, F C M3,
that contains a unique singularity, ao(X), and periodic orbits o-i(X), • • • , (Tn{X), n > 1
(F^. 1).

^X)

Fig. 1

We will assume the following regularity conditions:
(1) r = {^W^oW^iW^K^^i'W^-'^.W^^W^^W}, where

w^ = ̂ (x) intersects transversally ^+i)^d(n+i) ̂ S the orbits ̂ lWu^(X),i =
l , - - , n .

We let ao(y),ai(y), ,-• •,ay,(y) denote, respectively, the analytic continuation of
ao(X),ai(X), • • • ,an(X); for any Y ^ Ux' Here Z ĉ denotes a small neighborhood
of X in Xr(M^ with the usual C^ -topology, r > 3;

(2) For any Y e Z^x, the eigenvalues of D^y^Y) : 7^(y)(M3) ^ r,,(y)(M3) are
real numbers -\3(Y) < -\i(Y) < 0 < \2(Y) and satisfy a fc-Sternberg condition, k
big enough to guarantee that we have C3-linearizing coordinates which depend C2 on
V G Z^x m a neighborhood of 0-0 (V);

(3) For every p G 70 (X) and every invariant manifold of X, passing through ao(X) and
p, W(cro(X)), and tangent (at ao(X)) to the space spanned by the eigenvectors associated
to -Ai(Z) and A^X), we have T^W(a^X))) + ̂ (IV^) = T^M3;

(4) r is isolated: that is, there exists an open set U D F such that ^tXt(U) = F; here
Xt denotes the flow defined by the vector field X;

(5) Let Qi C M3,! < i < n, be a transversal section at ^(V) e ^(V). We let
Pi(Y) : Vi C Qz —> Qi denote the first return map defined in a neighborhood of qi(Y),
any Y e Z^x. We assume the eigenvalues of £^P, : Tq^V,) -> r^(Q,) are real numbers
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BIFURCATION OF CONTRACTING SINGULAR CYCLES 707

and satisfy a fc-Stemberg condition, k big enough to guarantee that we have C3 -linearizing
coordinates which depend C2 on Y G Ux in a neighborhood of q , ( Y ) '\ /Y\ 1 \ ^

(6) The number a(Y) = ———• is greater than one and
A 2 ( Y )

^=)^l)>a^+2•
A cycle F as above is called a contracting singular cycle.
We let r(V, U) C M denote the set n^(E/), for Y ^Ux (that is, the maximal invariant

set in the neighborhood U for the vector field V).
We let 7o(y),7l l(^),7l2(^),•••;7^(^),7^(y) denote, respectively, the analytic

continuation of the trajectories 70 W, • • • ,7^W for any V G Ux. These trajectories
are included in the unstable manifolds WU(o•o(Y)), • • ' , WU(an(Y)) respectively.

Comment: It is easy to see that there exists a codimension-one submanifold,
J\f C ^(M), containing X such that:

(i) V G A/" implies r(y,[7) = {ao(y),7o(Y), • • • ,7^(^)};
(ii) (Ux \ A/") has two connected components and one of them,

which is denoted U~, is such that Y e U~ implies T(Y, U) =
{ao(y),al(y),7l l(y),7l2(^),•••,^(r),7^(n,7^(n};and

(iii) Bifurcations for the maximal invariant set F(Y, U) may appear only for Y e U^ =
(Z^\ (A/"U^-) ) .

UH is defined to be the set of Y e U^ such that r(V, £/) consists of Fo, a transitive
hyperbolic set and a denumerable number of isolated hyperbolic periodic orbit, and U\
as the set of Y e U^ such that F(Y, U) consists of ^(V), a transitive hyperbolic set,
a hyperbolic attracting periodic orbit (which is contained in the closure of the trajectory
7o(^)), and a denumerable number of isolated hyperbolic periodic orbit.

Under the above conditions we have the following :

THEOREM 1. - a) U^ \ (UH UZ^) is laminated by codimension-one C1-submanifolds
of the following type:

ai) those laminas that present a saddle-node or a flip bifurcation for periodic orbits;
a^) those laminas that present a contracting singular cycle;
a^) those laminas that present a homoclinic behavior for the singularity; and
04) those laminas that present a recurrent behavior for the analytic continuation of the

trayectory 70 (^).
Moreover all elements in the same lamina have the same dynamics in the neighborhood U

(that is, given a lamina L CU+\ (U^ U^) and Y^Y^ G L, there exists a homeomorphism
h : U —)• U that is a topological equivalence between Y^\u and Y^\u\

b) Any Y G U^ U U\ is structurally stable.
c) For any Y G (U~^ \ (U~^ UZ^)), F(Y, U) decomposed into a chain recurrent expansive

set, a denumerable number of isolated hyperbolic periodic orbits plus the closure of the
trajectory 70 (Y).

Now let {X^,} C Ux be a one-parameter family of vector fields such that X^Q e Af
and {X^} is transversal to At at [L = 0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



708 R. LABARCA

THEOREM 2. - There exists v = ̂ (^) > 0 such that :

m({^;0<^<^^ ^(^U^)})=0

(T^r^ m(A) denotes the Lebesgue measure of the set A C R).
Following [3] we may now state a corollary for Theorem 1.

COROLLARY. - Let {Y^} be another one-parameter family transversal to J\T at 11 = 0.
There exists a reparametrUation p : [0, v{X^}} —^ [0, y(Y^}} and, for each ̂  G [0, ̂ (X^)], a
homeomorphism h^ : U --> U that is a topological equivalence between X^\u and Yp(y\\u'

Remark. - a) A particular case of Theorem 2 was proven by Pacifico and Rovella in
[2]. In their case, F is given by {ao(X), 70(^)5 ̂ i(^0?7i(^0} and the associated first
return map preserves orientation. A more general case of the Pacifico-Rovella result was
proven by San Martin in [8].

The techniques they use to prove their result do not apply in our case.
b) For the case a{X) < 1 (an expanding singular cycle), theorems 1 and 2 and the

above Corollary 1 were proven by Bamon, Labarca, Mane and Pacifico in [1].
c) The main difference between the unfolding of expanding and contracting singular

cycles is the following: the unfolding of contracting singular cycles must have saddle-node
and flip bifurcations whereas the unfolding of the expanding singular cycles does not.
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2. Proof of Theorem 1

This Chapter is organized in the following way : In section 2.1 we make the necessary
change of coordinates to obtain a simpler form of the First Return Map. Section 2.2 is
devoted to give a characterization of the elements in U^ U^". Sections 2.3 - 2.11 are
devoted to the study of the one dimensional dynamics associated to a contracting singular
cycle. In particular we obtain the proof of Theorem 1.

2.1. CHANGE OF COORDINATES AND THE FIRST RETURN MAP
Let X G ^(M3) be a vector field having a contracting singular cycle, F, with isolated

neighbohood U C M. For the sake of simplicity we will assume F contains a unique
periodic orbit, and later on in Section III.5 we will make comments on the general case.
Here F is the union of a singularity o-o == cro{X), a periodic orbit cri = ^{X), an orbit
/yo = ^fo(X) C W^ of nontransversal intersection between W^ and W^^ and two orbits
of transversal intersection between W^ and W^^]^ = ̂ i(X) and 7^ = 7^(X).

4® SfiRIE - TOME 28 - 1995 - N° 6



BIFURCATION OF CONTRACTING SINGULAR CYCLES 709

Let Q be a cross section to the flow X at q e o\ parametrized by {(x,y)/\x\, \y\ < 1}
and satisfying W^ D {(^0);|^| < 1} and W^ D {(0^); H < 1}.

Let p = p(X) be the first intersection between 70 and Q. Then p = (a:o, 0) = (a;o(X), 0)
and we assume XQ > 0. It is clear that a first return map, F = F(X), is defined on
a subset of Q. Moreover if gi = (0,^i) = (O^i(X)) and q^ = (0,^) = (0,^W)
are such that their cj-limit set is <TO, then there are horizontal strips J?i = R\{X) and
J?2 = ^(^O such that F is defined on R^ U Jt^- Here a horizontal strip is a closed set
C C Q bounded (in Q) by two disjoint continuous curves connecting the vertical sides of
QJ(-1^)/M < 1}, and {(l^}/\y\ < 1}.

Since F is isolated, we have that F H Q C { { x , y ) / y > 0} and that :

F(^iUl?2)c{(.r^)/2/<0}

(^^ F .̂ 2).

Fig. 2

If V G ^r is near Z, then W-^a^Y)) intersects Q at a curve c(Y), and the first
intersection of W^'^ao^Y)) with Q is a point p(V). Note that both c(V) and p(Y)
vary smoothly with Y. The implicit function theorem on Banach spaces implies that the
condition p(Y) G c(V) defines a C^-codimension one submanifold, A/', in a neighborhood
of X^U C A^, such that (Z^ \AQ has two connected components: one of them, which
we denote by U~, is characterized by p(Y) e Q and lies below c(V); we let U^ denote
the other component.

Clearly, Y e U- implies T(Y,U) = {ao(Y),a^Y),^{Y),^(Y)} and hence the
dynamics of the vector field Y in U is simple.

If Y G U^, then (T\(Y) has transversal homoclinic orbits and therefore Y does not have
simple dynamics in U. As before we note that there exists a first return map Fy defined
on a subset of Q, every Y G U^ .

Since r(V, [/) is the saturation of r(V, [/) n Q by the flow V,, and T(Y, U) H Q is the
maximal invariant set of Fy, it is necessary to describe the dynamics of Fy to understand

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



710 R. LABARCA

the dynamics of Y on r(y, U). For this we choose coordinates (x,y) on Q, that depend
C2 on V, such that:

(i) {(^0)/|rr| < 1} C ^(^(V));
(ii) {(0,2/)/M < 1} C T^(ai(y));
(iii) r(y,[/) n Q C Q+ = {(^^)/rr > 0^ > 0}; and
(iv) the analytic continuation of the point p = p(X) = 70 (X) H Q is a point

^(V) = (rr(y),^(y)), with 0 < x(Y) < 1.
Note that Y <E U^ if and only if ^/(V) > 0.
Moreover r(V, U) % {^{Y\^{Y\^{Y)^{Y)} if and only if y{Y) > 0.
For V G ^ such that y(Y) > 0, let q,(Y) = (^yi(Y)) (resp., q^Y) = (^y^Y)))

be the analytic continuation of the point gi (resp., ^2). Since ^(^(V)) = ao(Y) and
^(^(^)) ^ ^i(Y),i = 1,2, there are horizontal strips R{r 3 q,(Y) such that the positive
orbits of points at Ry first pass near ao(Y) and afterwards return to Q. On the other
hand, the positive orbits of points at a horizontal strip Ry containing W^a^Y)) nQ goes
around the closed orbit a^Y) and then return to Q (see Fig. 3).

Fig. 3

Therefore Fy is defined on Ry U R^ U R^ , and the restriction of Fy to Ry coincides
with the Poincare map, Py, associated to cr^Y). We further assume Py is linear on Ry.

Let ^y > 1 and Ty < 1 be the eigenvalues of ^Py(0,0). We have jR^ = { ( x , y ) / x >
0,e^(rr) < y < 61},^ = {(^r^)/^ > 0, 62 < y < Q^x)}, where Qy(x) = @\Y,x)
is a smooth real function satisfying {{x, Qy{x)),0 < x < 1} C W^ao^Y)) and
(0,6y(0)) = ^(V)^ = 1,2. Moreover if 4(a;) = S^Y.x) is such that {(a;,ey(^) +
(-l)^1^))^ < ^ < 1} C Fy l({(^0);0 < x < 1}) C ^'^(^(V))) i = 1,2,
then there is e > 0 such that 61 - e > @^(x) + 6^(x) and 62 + e < Q^(x) - S^(x),
every x.

Making a linear change of coordinates we may also assume that
(v) [(©yy(^)| < _ and that Sy goes to zero uniformly in the C2-topology when

Y approaches Af.

4'̂  SERIE - TOME 28 - 1995 - N" 6



BIFURCATION OF CONTRACTING SINGULAR CYCLES 711

Clearly Ry = { ( x , y ) / x > 0,0 < y < ̂ ©y^x)} and F y ( x , y ) = (ryx^yy), for
(x,y) G ^y.

To obtain the expressions of Fy[x, y) , for (x, y) e R^ U R^y , we proceed as follows:
Let -AsCY) < -Ai(V) < 0 < \^Y) be the eigenvalues of DY(ao(Y)Y We set^= ̂  - ̂ '= ̂
For V G Z^, let (.ri, 3:2, .1:3) be (73-linearizing coordinates, in a neighborhood

^o 3 ^o(D, that depend C2 on V. We let £ and L denote the planes x^ = 1 and
^ 2 = 1 , respectively.

For (^ y ) ^ R y , we have Fy(^ 2/) = ^3 o ̂  o 7rl(^ ^/) = {fy(x, y^g^x, y)) where:
(a) 7r{ : Vi C Q^ -^ L is a diffeomorphism such that 7ri(a;, Q^(a;)) = (^3,0), for

0 < ̂  < 1, and ̂ 1^^) = [^^^ ^^^j where ̂  < |a,(^)|, |d,(^^)| < ̂ ,

and fci,^i are positive real constants. Up to replacing {(x, O^^x))^ e [0,1]} with
some negative iterate of it (and shrinking U) if necessary; we may assume that there are

\Cj{x,y)\
< rj, every (x,y) G R^ and V G ^/+;0 < rj « 1 such that

\di(x^)\
(b) 7r2 : L -^ L is given by ^2(^3^2) = (^3 = x^x^ ,x^ = x^);
(c) 7r3 : L —> Q is a diffeomorphism such that

ra(f3,.ri) 6(^3, .ri)
[0(^3^1) J(^3,fi)DTT^X^.X^

with ^2 < |a(^3^i)|Jrf(^3^i)| < ^2, some positive constants k^,K^. Moreover, by
replacing p(Y) with some positive iterate of it (also contained in WU(ao(Y)) D S),
if necessary, we may assume that the quotient \b\/\d\ is small enough, and hence that
H/l^l < ^ some small rj > 0.

We now state a very useful lemma that establishes the existence of a C3 -invariant stable
foliation for Fy that depends C2 on V. The proof follows from the tecniques in [4]; e.g.
as may be found in [1] and [5].

LEMMA 1. - For every Y G U, there exists an invariant C3 stable foliation for Fy ,
Ty, that depends C2 on Y.

After a C3 change of coordinates, this lemma implies that @y(x),Sy{x) and g y ( x , y )
are maps that do not depend on x.

For the sake of simplicity, we assume that 0^(x) = 1 and that Q^{x) = 1 - 8. We
also have Ci(x, y) = 0. Since ^\{x, y) is a diffeomorphism, we have that a^rc, y) / 0 and
that di(x,y) ^ 0, every (x,y). Thus we conclude that there are real positive constants
C and K such that:

(d)
r\

0^ -Q^fY^^y) <^Kx^+r{(x,y),

and

—/y0r,y) =Kxr~l+ri(x,y)

^gW^Cx^-'+r^y)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



712 R.LABARCA

where, respectively, \r\{x,y)\ ^ (constant) • x^~1, \r\ (a;, y)[ ^ (constant) • x^ and
1^3(2/)1 < (constant) • x°^. In the above inequalities we replace 3-2 with y - (1 - 8)
or 1 — y , according that i = 1 or 2.

Moreover,
(e) f^(x, 1 - 6) = XY = /y(a-, 1), for x <E [0,1], and ffy(l - 6) = yy = ffy(l);
(/)

^(a; , l -^+^)c{(a- ,0) ,rcG]0, l[},
,/ 'y(;r,l-4)c{(a;,0);;r€]0,l[}, any ^€[0,1],

and (?y(l - ̂  + <?y) = 0 = gy(l - 5y).
Conditions (d), (e) and (f) imply (?y = Ay^y70^, where Ay is a positive constant

for i = 1,2.
Finally, by making another C^-change of coordinates, we obtain Fy(x,y) =

(.fv{x,y),gY(y)), with
Uvy, for ye[0,<Cy 1 ]

ffr(2/) = \ VY - J(Y, y){y - (1 - 6))^, for y (= [1 - 6,1 - 6 + 6^}
[ yy - K(Y, y)(l - y)^, for y e [1 - ̂ , 1] .

Here J{Y, y) and K{Y, y) are C'2-maps on V, whereas C^-maps on y for y 7^ 1,1 - 6.
Furthermore using (d), (e) and (f), we obtain:

9 9
(8) Q-9Y {x) k C\l - y^-1 or ,-ffr(y)K C'|y - (1 - S)^-1 according,9y~ 9y

respectively, that y e [1 - ̂ y, 1] or that y e [1 - 6,1 - i? + <?y].
Also

9 9
(i) —^(y,y)^ Ko and ,-^(y,y) is small;

9Y'
9

9y
9

(ii) \—J(Y,y)\< Ko and k.7^,2/) is small;9Y9y
(iii) J(X, 1 - 6) > 0 and K(X, 1) > 0.

9 ^
W 0 < g-fy(x,y) ̂  K\l - y^- or 0 < ,-/y(rc,y) ^ ^|y - (1 - 6)^, and

03;'

9 9
g-fv(x,y) k ATll-yl^-^r —/y(.r,y) < ^[^-(l-i?)!"1'-1; according, respectively,

9y'9y'
that y £ [1 - ̂ y, 1] or that y 6 [1 - 6,1 - <$ + <$y].

We do not lose generality if, in the sequel, we assume that, for Y e U : a{Y} =
a,/3(r) = /3,$y = ^ and ry = T.

Furthermore since the map Y —>• yy is a C^-submersion, we can find C2 -coordinates
(f, p.) in the neighborhood U(n, e R) such that:

(i) {(v,p,)/fi = 0} C M^U;
(ii) F(y^{x,y) = (rx,^y) if 0 ^ y ^ ̂ -\

F(v,^)(x, y) = (x(fi, v) + f2^, ̂ ; x, y), p, - K(v, p.; y)(l - y)01)
for l-62(v,fl) <^y ^ 1,

F(f,^)(a;>y) =(x(v,/j,)+ ^(v.^x.y}^- J(v,i^;y)(y- (1 -5))°), for

l - ^ < y < l-5+^(v,^).

4° SfiRIE - TOME 28 - 1995 - N° 6



BIFURCATION OF CONTRACTING SINGULAR CYCLES 713

r\ t ^

Under these conditions we obtain S^v^) = A^v)^^, with —— small numbers
9v '

for % = 1,2.
We will use the notations a{v, fi) = 1 - ̂ (v, /^) and b(v, ̂ ) = 1 - 8 + S1^,^).
2.2.
For a proof of Theorem 1 we first give a characterization of the elements in U~^ U U\.
Choose /^i > 0 and no G N such that ^^i = 1,1 > 1.

LEMMA 2. - For (i;, ^) ^.U such that ^-no < ̂  < ̂ , we have that

A(v, p) = {{x, y ) / F ^ ^ e R(v, p) U R^v, ̂  U R^v, p), n G Z}

;5' <2 hyperbolic transitive set.

Proof. - See Lemma 2 in [1].
We next assume 0 < fi < ^-no = /^o.
Set I,(v^) = [O^-1],^!^^) =]r1,! - ̂

A(^, ̂ ) = [1 - ̂  b(v, p.)],I^(v, ̂  =}b(v, ̂ ), a(v, ̂ )[ and
h(v,ji) = [a(v,^),l].

For (^^) G ,̂ let L(v,^ •) : U?^(^^) ^ [0,1] be the map L(v,^y) =
^ ° F(^^)(:2;^) = second component of the first return map F^^(x,y).

Define L^(v, ̂  y) = L(v, ̂  y) and L^i(v, ̂  y) = L(v, ̂  Ln[v, ̂  y)) for n > 1.
Let

A(^) = {^/ G [O,!]/^^,/,;^) C U?^(^^)^ > 0}

r o = { ( ^ / ^ ) e ^ : l^A(^)}
and

FI ={(v,^) G Z^ : 1 G A(^,^) and t/iere e.rz.s^ a hyperbolic attracting
periodic orbit for the map L(v^^')}

LEMMA 3. - For {v, p.) G ro we have that A(v, p.) is a hyperbolic set for the map L(v, ̂  •).

Proof. - Let (v,^) G Fo and n = n(v,p) be the integer such that Ln(v,^l) G
Joi(^,^) U Ji2(zs/^). Due to the continuity of the map {v,^y) i—^ Ln(v,^y) we can
find neighborhoods £/i_^ c h{v, IJL),U^ c I'z{v, fi) of the points 1 - 6 and 1, respectively,
such that y G U^s U t/i implies £^('y, /^; y) e Joi(^, /^) U I^{v, ̂ ). This, in turn, implies
that A(v, /^) is a compact invariant set with all its periodic points hyperbolic repelling and
without critical points. Hence, by applying a result proved by Mane [6] to the restriction map

^(v,^;.)/(Jo(v,^)uJi(z;,^)UJ2(v^)\?7i_^U?7i)

the result now follows. •

DEFINITION 2. - Let I C J be two intervals. We will say f G ^(J, J ) , k > 1, satisfies
Axiom A if:

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE



714 R. LABARCA

(i) / has a finite number of hyperbolic, attracting periodic orbits and no other attractors,
(ii) Let B(f) denote the basin of attraction of the attracting periodic orbits for f. The

set ^.{f) = I \ B(f) is a hyperbolic set for f.

LEMMA 4. - For (i6, fi) G Fi we have that L{v^ ^; •) satisfies Axiom A.

Proof. - We note that L{v^\ '}\i^v^}ui-2{v^) has negative Schwarzian derivative. By
Singer's theorem we obtain that the attracting periodic orbit attracts all the critical points
(since that all critical points eventually have the same orbit).

Since L(v^ /^; •) has a hyperbolic attracting periodic orbit, we have that it does not have
saddle-node or attracting flip bifurcations. Since these are the only non-hyperbolic periodic
orbits that appear in our family (see sections 2.3 through 2.14), we conclude that A(^,/^)
does not contain non-hyperbolic periodic orbits. In particular, all the periodic points in
(A(z>,^) \ B{L{v^ii^ •))) are hyperbolic. This implies that (A(v,/^) \ B{L{v^\ -))) is a
hyperbolic set (see [dM, pg. 128]). •

Using the techniques of [3] or [I], it is easy to see that (v,/^) C To if and only if
{v^ li) G U^ and (v^ fi) C Fi if and only if (^, ji) C U\. Part b) of Theorem 1 now follows.

2.3.
Since X C Ux we have X = {vo, 0) some VQ.
In the sequel we will deal with ( v , ^ ) G Ux such that : -^-(^-^ < /^ < ^-(no-l);

Ih — ^o 1 1 < TO 5 some ro > 0 small, and no e N choosen such that the number :

Qo = mfM(Al(^)-l^(l - 6 - F1), a(A2(^)-l^(l - S - F1);^ e V}

satisfies Qo > 2, „ , L . . . < 1 and, F^Oo > 1.yo(i - c, 1)
Throughout, we will consider fco G N such that ko > no-
Let B(ko) be the set {(v^) G U / l - 8 < ̂ °-1/^ < l',\\v - VQ\\ < To}.

For (^) G B(fco) denote by D^^v^) C Ii{v^) ^M(^) C ^(^^)))
the interval satisfying :

Lf^^^f'V^^^r^'^r^i-^i], for j > i , z = i , 2 .
\ \3 } )

/ i\
£)( ](v^) C Ii{v^u) will denote, the interval satisfying :

L^^^^^^^r^0-1^!-^^0-1^^ ^1,2.

Note that

^(^(^r^0"1^! - 6)) ={1-8} and that D(2} (^r^-^l - <?)) = {1}.
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For j > 1, we let ̂  . Uv,^),y^ \ j (v,p.) ̂  denote the boundary points of the
I \J / \J / )

I 7 \
interval D^ . j(z^). These two points are denned by the equations

\ J /

L^v^;z(\\v^)\ = ̂ -(^-1)^(1 _ 6) and

L(v,wy(\}(v,^}=^-1)^.

For j = 0, we have that I)( Hv,;u)= 1 - 5 , z ( l ( u , A ( ) and that D^Uv^)

[ /9\ 1 / ^ ' \ \
2M(z^);l where ^(^wz) J(^^))= r^0"1^! - ̂ ), z=l ,2.^i 1^)1
We note that":

9z[ Qz
lim -(v , / z ) = +00 and lim -{v ,^) = -oo""-, ^ \^ 5 r"/ —— I s^~• CCAAVA XJ.J.J.J. .————^^-(fco-i)(i-<$) ^ ^^-(^-i)^-^) (9^

The proof of the following lemma is easy and left to the reader.

LEMMA 5. - Given e > 0 we can find jo G N such that

9z(1}
max^ sup^ b{v, p) - z ̂  . H^,^) , -^-(v, ̂  - w /(^, ̂ ) ,

., 9^ . ,^(.,.)-^2(.,.)}'^/ ( i

9y(
sup^ &(i;,^)-y^ . K V , A < ) , -^-{v^)~—-—^{v^)

l̂ -̂ -'ll}.
f /2\ 30 ^( • j

sup<1 (a(v,^)-^^.Kv,^) , —(^)-—^-(^) ,

^
9ô,,)-^Z(^,

1^}\\ { 1
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9y
sup^ a(v^)-y[ .)(^), -^(v,p,)~ '3 / {v,

L \j / °^ u^ -(^^)

. ^2-
^ .
^(^) 1; (z;^)eB(fco)l<^(9a

a^-

for any j > JQ : that is, the sequences of maps ( z( } } , ( y ( } }
' v u//

(resp. ̂ ( . ) ) ^ ( ^ / l . ) ) ) converge to b(v,ii) (resp. a(v^) ) in the uniform
\ \ \ J / / \ \ J / / /
C^topology in B(fco). •

/i\We also note the following fact: for any j > l,y G D( )( 'y,^) and y ' e
U/

^^ • , 1 ) ^ ^ ) we have

9L. ,.
^^^^
9L.
9y

(v,^y)
> A, > 1,

where the sequence (A/) satisfies lim A. = 1
j-^oo

We now have the following result for (z^) G B(fco).

LEMMA 6.

-^ ̂ .'••''(i)'".'". ^('.".''(Oc'.'-) }^sM-?-l<'
Pwo/: - Since L^{v,^y) = ̂ -^(v.^y), for (v^) e B(feo),2/(.)(v^) < y <

/2\
b(v^fji) or a(v^ii) < y < y^ ](v^) we have

^(^^^(i)^^))

= -^-Wf^^^f1)^^ f^f1)^/.) - (1 - ̂
a-l

(*)

l+
, J(.^)-(l-^)^

W^aJ(v,^,?/
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For ^K^) we have : AA - ̂ (^^^( ) ) (^/( )-(! - ^)) = F^0 and

1 - 6 < y ( 1 \v^) < l-8+Al(v)^a.
1
1

^-{ko-

-8 < y^j(v^) < l-^+A1^1/".

Since ^-(^-^(l - S) < ^ < ̂ o-i) ^ we obtain

^-(^(l- 5)1/- </.l/a<^?)

and hence (^1/Q)-1 > ^^11.
Therefore

a^0-1./^/^

Using this fact in equation (*) the result follows for y [ ) ( ' y ,A A ) . The proof for

——°- ( v, /^ y ( )('?;, /^) is analogous. •

COROLLARY 1. - For (v,fi) € B(fco) and y e D (i.) (v, 1.1) J > 1, w^ tov^ ?/i^

9£,
9y

(v,^y)\>^^~^~Qo,fory^D( , (^^),

anJ that

9Lko

I ^^/

and any j > 2.

^/^)|> Ar-Aj- i^ - Qo.foryeD^ .j(v^)

2.4. Associated to | . ) we next define the one-dimensional map
U/

/i\ fi\ fi\
g[ ){v^,') : D^ .)(v^) - ^ [ 1 - 8 , 1 ] by g^ .](v,^y)= Lk^j{v,^y).

\J / \J / \J /

Applying Corollary 1 we have that

9 9

9y v.^y)\>^^~~~Qo=P^ foryeD { , }(v^)

and that

9,';
v^ (v,^y) >^Ai...A,_i^^^-Qo=p^fo^eZ? .]{v^)

9y

any j > 2.
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/^\
From these estimates we get that the maps g [ . ] ( v , ^ y ) ,i = l,2j > 1, are C°°-

expanding diffeomorphisms onto their images (that are [1 - 6,1]). Moreover, for i = 1
all the maps g ^ . )(^^) reverse orientation, and for i = 2 all the maps g( }(v,fi)

u/ V/preserve onentation.

Now given any sequence of two symbols, f ( . J , |.1 ) , • • • ) , let us define a sequence
f A A vv(v v1^ )ot nested sets and map5:

Dh}^) 3D(('°), (••'))(„,,) 3. .^flrf"),...,^))^,) 3...
VO/ VVO/ Vl// \VO/ Ur//

and

€•:)•(;•:))<-•).••€•:)• C;)--C:))<-'-
as follows:

"(©•CO^^^^O'-'-O'—^COt-'}-
For -D( ( ° ) , ( .1 ) )( 'y, /^) 7^ 0 we associate a map

\ \^>J / \J ^- / /

€•:)•C•;))<-';C(C:)•C;))'->-'1-8.1'
defined by

((i»\ (ii\\, . (ii\ ( (io\\, ,<(J' Ur-^=9^) ̂ ^^J)^^^-
For r ^ 2 and D ( (^\, . • • , f^"1)) {v, p,) ^ 0 , we define

^©.©•-C^^^-^O-.C::;))-/
/^o^ ^i\ ^-i^ ^ n^M

^ , . . . • • • . . }{v,^y} (ED . p>.
Wo/ Vi/ Vr-i// Vr/J

Associated to those ̂  ( ( ° ) , " • , ( .r ) ) ('^, /^) that are non-empty define the map
\ VO/ \ 3 r j )

^••^^^(©••••C:))^'1-^
by

<©, •••.G:))(«.-)-C.:)(",-(C.:),-C::;)^(—).
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d̂r,
Remark 1. - Given any finite set of two symbols, ^ (

jk > 1, for k = 0,1, • • • , r , by Corollary 1 we have that:

^o
^0,

0 ^o
<^

v^^y) ^P,o-P^
9y

any ^/ G D ( ( . ) , • • • , ( . J ) (v, /^ ) . From this inequality we conclude
Wo/ \3r} )

719

such that

D 'IQ

\3o/

tZr

\3r,

, -1
^)| < (P,o•••P^)- lP(;)(^M)

and hence

E E - E °
(»0,Jo) Oljl)
J'0>1 J'1>1

<(^,J.)
Jr>l

f %o \ ^ ̂
uoy 5 ' " ' ^ K^^) |<^ . ^i(i-^-1).

that is, for any (v,/^) e B{ko) we have :

COROLLARY 2. - 77^ ^^r of points

y e fJi(^/.)\^Lj(^/.) lufj2(^^)\^(^^

r/z<3^ satisfy
(i) L/i(v^^y) is defined, all i > 1 , an f̂

(ii) ^r^ ^ ^o %o € N >yMc/? r/zar L^ (v, /^; ̂ ) G D ( ) (v, /^) U D ( ] (v, ̂ ).

^ a hyperbolic set of zero Lebesgue measure. •

Remark 2. - Let denote the set above by C ( ( ) , ( ) ) (^ , ̂ ). As a consequence we
obtain that its closure is a Cantor set of zero Lebesgue measure.

2.5. Let us now consider any sequence of two symbols

ik = 1,2 and jk > 1, all k G N.

^o %i
<W ? W ?

where

Let

Z r { v , p ) = z (
^0^

<Jo^
|('y,^), yr(v ,^) = y[ ^o

U'o,

denote the boundary points of the interval D [
respectively, by the conditions

Ar (V , ̂  , Zr {V ,/^)) = g( ( ° ) , • • • J . ) ) ( V,^; ̂  |

< % 0

Uo^

^0^

<Jo> ^r^

1,'J)"""
\{v,p,) defined,

}(v^)}=l-6
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and

^'—-"-(©'••^^(—(©••••C:))'-')-1
From these relations we obtain

<9A,
9Zr, . --^-(v,^,Zr{v,fl))
——————(?J / / I —— ________________________________

Q^^^- 9A^ . ..
-g—{v^,Zr{v^))

Q, -^(^/^(^))

a^^^A-————————
-^—(?;,^,^(^,^))

Let us compute inductively the derivatives in the right-hand side.

( i \
Since A^,/^) = g r ) (v,/^; Ar-i(v,^y)) , we have

Jr/

. ̂ A
51 • )

-^(v, p,; y ) =—^^-(v' <"' A•-l(l'' ̂ ; 2/))

a ( i r}
+ —^(v^^r-i(v^,y)) • ̂ ^(v^wy) =

. fir\
9 \ 7 )=-^(2/,^A,_i(^^;y))

^(^) a/2:-1)
+ —^-{v,^A^(v,n;y)) . ^-1/ (j/,/z,A._2)

a /^1^ a ^'--i\"ffl • I ^l . )
+ ̂ ^-(^^^.^(^wy)) • ——^——^(^A,^)

^f^-3)
• ^-^(^^A^^^y))

. ̂ ^
51 " J

+ • • • + Q3^ (v, fi; A,_i(u, ̂ ; y))

9 f'^
• • • ———(^ <"; ̂ (v, w y)) • ̂ (^^ w y)

We have a similar relation for ——(v,fJ,;y) by replacing — for — wherever it
A;u Qfi Qv

corresponds in the above formulas.
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The other derivative yields

»0Qg^8A g{ • } 99

^(v,wy)=—^(v^^r-i(v,wy))---—^{v,i.-,y)

Denoting by gr the map g[ r ) , , we have:
\3r]

[ -f^(^;A,..i(^))+...

^ { +^-(^wA,_l(^))...^l-(^/,;Ao(^))•^^(^,,/^;^)1
—^(^j n^ — —————-————_______v-________________-L^~'r / \

^'^= rt <~»

———(^ ^; A^_i(^)) • • . -——{V, ̂  Zr)

and

9zr ( \
-^('^)=

[ ^»
- -^-{v,^^-l{Zr}}+---

Ofl

+-^(?;, ̂ ; Ar-l{Zr)) • • • -^-(^^ ̂  ̂ 0^r))-g-°-(v, ̂  Zr)

-j^- (^ ̂ ; A^-i(^)) • • • ^°(^5 ̂ ; ̂ r)

Now, for any ( ° ] , we have
W

9g

9g

w
\3o/
9v
(i^
Vo^
9y

'(^'^52/)

v 1 7 ? ^l') y )

QL
-Ov^^
QL
-gy^^)

and

Qg do
^3o^
9p, -(v,iJ,;y)

QL
^^y)

%^^y) 9L
gy^^y)
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722 R. LABARCA

We note that the sequence (zr{v,^)) converges uniformly in the C7°-topology to

/ -^ (Y^ ^zl^ \^ \z^^=\^)\,^-)^^
i.e.,

Inn sup{|^(^^) - Zr(v^)\',(v^) G B(feo} = 0.

From this fact and the above computation for the derivatives of the maps Zr(v^ 11), and

since all the g ^ I , jr > 1 are C^-diffeomorphisms, after a cumbersome computation,
^r

we obtain

LEMMA 7. - The sequence (zr(v^)) satisfies the following property: Given e > 0 there
is an ro G N such that

r\ r\

SUp{|^+p(^) -Zr{v^)\, -^^(V^)- ———(V^) ,

r\ r^

-l^O^)- ^7:(v^) 5(^^) eB(fco)} <^ /o r r> ro , ,p G N;

^/^ ,̂ ̂  sequence (zr(v^)) is a Cauchy sequence of maps in the uniform C1-
topology. •

In particular we have that the map {v, ji) \—> z^(v, p) is a C^map on B(fco).
Let us now denote by

G(v, ̂ , •) : Uti fu,>i£» ['.) (u, /.)) ̂  [1 - S, 1]
\ \«^ / /

the map defined by G{v, ̂  , y ) = g ̂  . j (v^,y) , for y G ^ ^ . j ( v , / ^ ) .
Let <0,m)(.,.)

denote the set of points y e y( ) ( u , ^ ) , y [ )(v,^) such that it is denned

Gk(v,p,,y)(Gk+i(v,p,,y') = G(v,/j,,Gk(v,p,,y)) ,G^{v ^y) = G(v,p,,y)) for all

k G N and Gk(v, p,, y) G y ( - j (v, fi), y ^ j (v, ̂ ) .

Associated with any point y e C'( ( i ) ; ( o ) )(1''^) we may define a sequence
f /A 1

r(v^) -.N ^ { (\};i=l^;j^l\ by

r(v^)(fc)= s

\3^
G^^eD^}^,^.
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^ ^V. ,^(^)^This defines a map c ( ( 1 } , f^V^^Ei,
\ \1/ W /

s, = {r ;N^{ (;.);.= 1,2;, >i}}; z = l , 2 ; j >

which is, as usual, a homeomorphism and satisfies

r(v, 11} o G{v, ̂ ) = ai o r(-y, ̂ ) ,

where Si^Si denotes the shift map ai(r)(fc) = T{k + 1).
For r G ^i we denote pr(v^) = (r^'L',^))"1^). As in Lemma 7 we may prove

the following:

COROLLARY 3. - The map Bl^ko)^ 1 - 8,1 ], (v, p.) i—> pr{v, ̂  is C1. •

We observe that the closure of the set C ( ( ] , ( ) ^(v,ii) contains the points

b{v^ IJL\ a(v^ p) and all their preimages under the map G ( v , ^ , - ) which are contained

in the interval h/ ( -. ) (^ A^) ,V ( -. ) C^) •
Denoting by s(v , 11) any of these preimages it is clear that the map B(ko)—>[ 1 — ^ , 1 ] ,

(v , p,) i—> s(v , /^)is a C1 map and can be approximated, in the C1-uniform topology, by a

sequence of maps z ( ( ) , . . . ( r ) ) (v , p) (or y [ ( . ) , . . . ( r } ) (v , /^)) as in lemma 5.
\\W Vr/7 \Vo7 Vr/7

In this sense we will say that the closure of the set C ( ( ) , ( ) ) (v, /^) is a C1 -Cantor

set of Lebesgue measure zero for any (v^fi) € B(ko).

2.6. Let us now consider the surface

So = {(^, ̂  ̂ °~1^ (^ ̂  e B(fco)} C U x [1 - ̂  1].
/^\ r /^\ i

Since 5o is transversal to Y ( } = {{v^\y[ ) (v, /^); (v, /^) G B(ko) ̂  , we have that
,.. W I Y^ J/ 1 \ — 1 1 \the intersection S'o H V ) defines a (71-surface, V . ) , parametrized by
v7 v7

I^C^V^),^0-1^^^^^
v \ \J / \J / / )

(^\ (1\This defines a C^-map C[ . ) : V -^ [0,/^o]^ '—^ G( . )(^) that satisfies
\J / \«^ /

^(^^^(•'CX^C)"))1
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724 R. LABARCA

This implies that the vector field x[ . } (z>), associated to the point ( v, c[ J (v) } G
w7 V \3} )

B{ko) C U^ will satisfy the homoclinic condition

70 Ux^^cW-Lfx^ (.))).
\ \ \J / / / \ \ \J / / /

/^\

The same will apply to the intersection SQ r\ Z( } where
V/

z('\ = ( (v,^z('\v^)\ ; (^) G B(ko)\.
\«^ / V. \ \J / / )

Next we consider

^((^'(^^(^{(^^^(O'C))^^)5^^65^}
= {(^;pr(^));(^AO eB(fco) , re Si}.

For any given C^-surface {{v,^pr(v,f^))', (v,^) C B(ko}} == Pr 5 we have that Pp
is transversal to So and hence the intersection 5o H Pp will define a C1-surface, Cr ,
parametrized by {(z», C7r(^); -Pr(^? C'r(^)); v e V} . We denote by Xr(zQ the vector field
associated to {v,Cr{v)) C B(ko) C U. This vector field must satisfy one of the following
conditions:

(i) the point pr(v,Cr(v)) represents a periodic point of the map G{v,Cr{v)). In
this case denote by a{pr{v^ Cr{v))) the hyperbolic periodic orbit of the vector field
Xr{v) associated to pr{v, Cr(^))- Under these conditions we must have 7o(^o(^r(^))) C
IV^cr^r^ Cr(v)))) , that is, the vector field Xr(v) presents a contracting singular cycle
or

(ii) the point pr(v,Cr{v)) has recurrent behavior with respect to the set

(7( ( ] , ( ) )('y,Cr(z')) under the map G(v,Cr(v)). In this case the trajectory

7o(^o(^r(^))) has recurrent behavior in the neighborhhod V\or
(iii) the point pr(^Cr(^))is eventually periodic under the map G(^ Cr(v), •) ( that

is there is s e N such that Gso{v,Cr{v) ,pr('^Cr(zQ)) is a periodic point of the map
G?(z?, Cr{v) , •). In this case the situation for the vector field Xr{v) is analogous to (i) above.

Now take any preimage,5('y ,/^),of the points b{v ,/^) or a(z»,^),in the closure of the

set Ci ( ) , ( ) ) {v^ 11). Since the C1 surface 5" = {(v , ̂ , s(v , /^)); (v , ̂ ) C B(fco)} is
W7 V^//

transversal to 5'o then the intersection 5'nS'o define a C1 surface Sb ( resp Sa) parametrized
by {(v ^b(v) ,s(v ^b(v))'^v e V} ( resp. {(v ,a(v) ,5(v ,a(v));z; C ^}). Let denote by
X^{v} ( resp. Xa{v) )the vector field associated to {v , 6) e B{ko) ( resp.('y , a) e B(ko)).
This vector field satisfies that :

7o(<To?M))cWS(al(^(^))).

(resp.7o(^o(^))) C l^((7i(X,(^)))).
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2.7.
In general let us consider the set of bisequences

^=(r:N-.U'Yi=l^j>0\\

and the map

G(^ / . , • ) : U (^D C) (^ ̂ )) - [1 - ̂  1]
i=i ^ v/ /

given by

fi\ fi\G{v^,y) = g^ ^(v,^y),y G £^ J(^)
\«-' / v*7 /

and {v,p) G J3(fco).
Denote by M(z>, /^) the set of points y € [ 1 - <5,1 ] such that it is denned Gk(v, ̂ , y )

for all fc G N.
Associated with any y C M(z>, /^) we can define a bisequence T(v, ̂ ){y) ^ So by:

(r(^)0/))(fc) = f^) ^^ G,(^^^) G pf^V^/.)
Vs/ Vs/

Clearly r(z>,^) : M(v,^i) —> Si is continuous and satisfies F('y,^) oG{v,fi) =
ai o r('y, ̂ ). Here (TO : So -^ So is the shift map ao(r)(fc) = F(fc + 1).

DEFINITION 3. - We will say that the bisequence T G So is admissible at the level (z^ /^)
ifY{v^}-\T) / 0.

Remark 3. - 1) We note that r^,^"^0"^) is a surjective map, for any (z^"^0"^) G
B(fco).

2) From 1) we conclude that, given F G So, we can find a first parameter value
^rf^);^"^0"1^! - 6) < ̂ r(^) < $-(feo-l) such that F is admissible at the level ( v , ^ ) ,
any ^ > ^r(^) [ for instance /^r(^) = ̂ -(^-^(l - 5), any F G Si ].

DEFINITION 4. - A.s'5'Mm^ (^, p) G B{ko) is a parameter value that satisfies {1 — 6^1} C
M(v, iji). In this case we will call the bisequence (To(T(v, /^))(1) = ao(T(v, ̂ ))(1 - 6) the
itinerary of the map G(v^ fi, • ) , and we will denote it by 0(z», /^). We will say a bisequence
r C So is realisable if there is a parameter value {v, IJL) C B(fco) such that Q{v, 11} = F. We
will denote the bisequence T(v , /^)(1) ( resp. T(v , ̂ ){1-8)). by r^{v , /z)f resp.T^-^ , fi)).
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Remark 4. - The only bisequence that satisfies r = ( ( ) , • • • ) and is realizable is

the bisequence ( ( j , ( ) , • • • ) . From here we conclude that there are bisequences
which are not realizable.

Denote by Per(ao) C Eo the set of all periodic bisequences F C So. It is clear that
Per(ao) is a dense subset of Eo. Let Eg C Per(ao) be the set of all periodic bisequences

r G (Per(ao) \ Ei) such that F = ((^Y . . } or F = (P} , . . Y

Given F e E2 we let Fo denote its period (i.e., F = (To,ro,ro, • • • ) . ) We have the
following proposition:

PROPOSITION 1. - For those F G Es which satisfy that o~o(r) is realizable and

the number of ( . ) that appears in Fo is odd, we can find values of the parameter
f

Wo(^) < ^roM < A^roM such that:
i) for any (z^) ^ -B(^o) ^^o('y) < ̂  < A^o(^) ? ^le assoclatea one-dimensional map

G ( v ^ f J L ^ ' ) has an attracting, hyperbolic, periodic orbit whose period is ((Fo). Moreover,
one point of this orbit is contained in D((T^(TQ)){V^ ^i) , any 0 < k < l)(ro) — 1.

ii) for any (v , p) G -B(fco), /^^ (v) < [i < ̂ ro (v) ? t ne associated one-dimensional map
G(v^ p,, •) has an attracting, hyperbolic, periodic orbit whose period is 2J(ro). Moreover,
two points of this orbit are contained in D(a^(ro))(v^ 11), any 0 < k < (((Fo) — 1.

iii) for (z' ,^ro(^)) € B{ko) we have that D(a^(To))(v,ii) is a single point, and the
associated one-dimensional map G{v^ IJL , •) satisfies

G^{y. /.)(^(^(ro))(^ /.)) = D{ak,(r^ ^)),

any 0 < k < ^Fo) -1^ = ̂ W'
iv) for (v,^) C B{ko) the associated one-dimensional map G(v^jjL^) has a flip

bifurcation of the attracting periodic orbit. Moreover, one point of this orbit is contained in
the interior of D(^(ro))(^,^), any 0 < k < jj(ro) - 1.

v) for (v ,A62^o(^ ')) ^ B{ko) the associated one-dimensional map G^z^/^roM -> •)
satisfies

G^Wa^r^v^^)) = ̂ (^(FoX^ro)
and interchanges the points in 9jD(a^(ro))(^, ̂ 2^) ? ^ .̂V 0 ^ ^ ^ tt(^o) — 1 -^ in particular

forTo = ( ( o ) . • • • ) • l^^- ro = ( (o) ' •")) ^e have that G^r^(v ̂  ̂  - 6) =
1-8 (resp. G2tt(ro)(^ ^-51 - 8) = 1) , ^ = ii^J.

vi) for ^roW < I1 < AA2^o( ^ ' )? tne pre-image ^(^',^)-l(a^(^)) ^ ^ interval
D(^(r))(^).

vii)/or <2n^ ('y,A6) G B(fco) ^MC/Z r/zar ^ > /^rc^) ? ^^ ̂ ^ that n'y,^)"1^^)) ^
a hyperbolic repelling fixed point of the map G^(ro)(^/^ •). Moreover D{a^{T))(v^) is
exactly this repelling fixed point and

viii) all the maps v —^ ?0(^)5v '—^ A^o^) ^ ^n^ ^ '—^ AA2^o('y) ^^ C'1 •
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Proof. - Without loss assume F = (Fo , Fo , . . . ) where To = ( ( ] ]. Later we will
make some comments on the general case.

In this situation /^ro = ̂ ^"^(l-^). For {v , /^) G B(fco) and T/ e .D ( ) {v , /^) define :

E(v,^y) =G{v,p,,y) -y .

We have ; E^v^-^-^^l - 6) , 1 - 8) = 0 and

9E , Jiy=i-6y=l-6
^^-(fco-i)(i_<$)9y (^;2/)

/^l^By applying the implicit function theorem we can find a C^-map y = y{v^ fji) G D (

such that E(v^^y(v^)) = 0.
That is, G(v^,y(v,ii)} = y(v^).
For fixed ^ such that (v,ti} G -B(fco) we have

Q ^^y{y^))
^^=-—QG—————

1- ^-(^;2/('^))d2/
Q^ /-j \ /:)/^

Since —(v,^y) > 0;(z>^) ^: B(ko) ,y e £^ j ( -y ,^ ) , and —{v,^y) < 0, for
/ -< \ r\

(T; , /z) € B(ko) ,y G I? ( ) {v ̂ ), we conclude that —^(^ /^) > 0, {v ̂ } e 5(fco) and
\(J/ Ofl

9y 9y
^(^)<^(^)

^=^-(fco-i)(l-6)

_ ^o-l

Since
c^ ^ ^^-^-{v^,y{v^))

^==^-(fco-i)(l-6)

we conclude , for /^ near ^"(^"^(l — ^) such that {v ,/^) G B{ko) that ?/ = y(v ̂ ) is
an attracting fixed point for the map G^,/^,-) .

Now a cumbersone computation will show that

^f9^^^^)))! <o.
9^\9y ^\y=y^

Moreover, for ^ > ^-(^--^(l - ^) we have :

9G ^-^-y(v^)\9J, , . aJ1^^
-^-{v ̂  ,y(v , /z)) = -^7——^—^v 17^^ ̂  ̂ ) + —-——J ( v , p , , y { v ^ ) ) ^9y ' ' ^o- i^-^^J '
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So, there exist a unique value [L = /^(^) such that

9G
^(^^^)^(.)=-l•

Now it is not hard to see that :

93
y=y{v^^W ^ o.

^^)
g-s{G(v^,y{v^)))

Under these circumstances we may consider the C^-map

( G^(v^,y}-y
y / y{v,^)y -y(v^)H{y^,y)=! ^ - y ^ ^ }

\ -g-{G2{v^y)) - 1 , y=y{v^}

Clearly H(v,^(v) ,y{v ,^(v))) = 0 and

91? ^=^ (^ 9 / 9 \——(v,^y) p ̂  ) = j.-[-jr(G^v^,y)\
°^ y=y{v^f W OIJ'\oy )

^o^ ^0.
y=y(v^ (v))

In this case there is a smooth map ^ = ^(z», y) such that ^(v, /^(z', y)^ y) = 0.
For y ^ y(v^) we have G^(v^^y) = ^/ which is a period two point for the map

G ( v , p . , ' } .
It is easy to see that

^(v y} v=y^^ -o
ay^^' ^-(.) -u

and that

u ^ y=y(v ,At)

Qy1 /x=^(v)
>0 .

We note that, whenever defined, the interval {(v,^)} x [0,1] intersects the graph of
the map {I = ^(v^y) into two points: (v,/^;^/i) , (v^\y'z). These two points satisfy
G{v^{v,yi),y^) = y^G{v,^(v ,y^) .y^) = yi, and y^ < y(v^) < y 2 ' Since

QG,
9y

{v ^,y(v ,^)) > 1,

for p, > ^ (r), and since this absolute value is equal to one only for ^ = /^(i;),
we have that

QG.
9y

(v^(v,y^),y^\ < 1,

any p, > ^^(v) wherever y^ is defined.
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Since the graph of the map p, =-- f^{v^y) intersects transversally the graph of the map
(v,f^) i—> G(v , /^1 - 8), their intersection defines a C^-map (JL ==. /^rn^) and thus the

^ /^ \proof of Proposition 1 is now complete in the case Fo =
In the general case we can proceed as follows:

^l\fiA ( i ; -

^ ' VO,

Clearly we have G^ro^ , ̂ , 1 - 8) G D(To)(v , /^).
Let /^roM = inf{/^; {v , /^) G B(fco), ©(v , /^) = cro(r)}. For /^ = ^ro(^) we must have

G^(ro)('y , ̂  ^ 1 - 5) = 1 - ̂ ( and therefore D(To){v , /^ro(^)) =1-5).
Now we define the map E { v , p , , y ) , y G D(TQ)(V,^) , (z; ,^) G B(feo) such that

^ > ?0^) by:

-E(^ ̂  ̂ ) = G?tt(^o)(v ̂ ^y) -V

Now the proof of the proposition 1 follows as in the previous case.

2.8.
Let r G £2 and denote by Fo its period.

PROPOSITION 2. - For those F G Ea such that ao(T) is realisable and the number of { \
V/

that appears in To is even, we can find values of the parameter ^r(v) = l^^(v) < A^roM
such that:

i) for (v , f^y^(v)) G B(ko) , the associated one-dimensional map G(v , l^^(v) - , ' ) has
a saddle-node bifurcation whose period is j t(ro). Moreover, one point of this orbit is
contained in the boundary of the interval D(a^(T))(v, fi) , any 0 < k < ((Fo) — 1.

ii) for (v , p.) G B(ko) ; ^F(^) < [L < ^^o('y)5 ^ne associated one-dimensional map
G(v^ 11, •) has an attracting, hyperbolic, periodic orbit and a repelling, hyperbolic, periodic
orbit contained in the interior of I^(r)(^,^)UJ9(ao(r))(7;,^)U-• •U2?(a$(^o)-l(^))(^^).

Moreover one point, of any of the two periodic orbits, is contained in D(a^(r))(v, p.) ,
any 0 < k < ^(To) - 1).

iii) for (v , ̂  = f^r^^v)) G B(ko) , the associated one-dimensional map satisfies

G^)(v^,9D(^(T))(v,^ = 9D(^(T))(v,p,).

Under these circumstances the points in the boundary are fixed points for the map G^(ro)-

Note that the boundary 9D(T)(v, p) contains 1 — 8 or 1 depending on To = ( ( ) ? ' ' ' )

or ( ( Q ) ^ • " ) ^ respectively.
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iv)for (v.^ji) e B{ko}',^{v) < [L < ^2ro(^) the pre-image ^/^"'^(r)) is the
interval D(a^(r)){v^).

v) for any {v,ii} G B{ko) such that ^ > AA^o('^;) ̂  ̂ ^ that IX'1^)"1^^)) ^ a
hyperbolic, repelling fixed point of the map C?^0^,^)^). Moreover D(a^(T))(v^) is
exactly this repelling fixed point.

vi) The maps V —> [1 — 6 ,1]; v i—> ^^(^) ? ̂ ^ v i—^ /^rc^) are C1.

//2\ /2\ \
Proof. - Assume To = ( [ ) , I ) ? • • • ) • Later we will comments on the general case.

In this situation /^r^O = ^-^0-1\
/2\

For {v, 11) G B{ko) and y G 2? ^ j (^ /^) define the map: E{v, ̂  y) = G(v, ̂  y) - y .
We have :

E { y ^ ^ y ) = ^ o - l [ ^ - K { v ^ ^ y ) { l - y r } - y .

c)W
and, hence, ——(v,/z;^) |y=i = ^fco-l / 0, for any {v^) G B{ko). Therefore, by the

CfLI}

implicit function theorem we obtain a C^-map, twice differentiable in the ^/-variable
IJL = ^{v,y) such that: We solve the equation E(v,^y) = 0 for (v,^) G B(ko),y €

/2\
D^ j(i^) if and only if [i = ^(v,y).

From the relation E{v^{v^y)'^y) = 0 we obtain

Q ^-^-^(^^^^-^-^(^^^^-^"'l-l
,/-^^) = ——-i——y——————_.————————————————J—— ,
dy ^-^{y.^y^-yr

r\

and from this relation we have that: —(v^y) = 0 if and only if
oy

r)TCH^. y) = -^-(^ ̂ . ̂ ); ̂ )(1 - ̂ a + aA:^. ̂  ̂ ); ̂ )(1 - ̂ )a~l - ̂ ko~l) = ° •dy

Since [1 — 2/| is small, K ( v ^ ^ y ) -^- 0 and

Q TT r ^)2 ly

-^{v, y) =(1 - y)0-2 -^{v, ̂ {v, y); y)(l - y^+

f^TC "I
+ 2a——(v, ̂ {v, y)', y)(l - y) - a{a - l)K{v, ̂ {v, y),y) L

9y J
arj-

we have ——(v^y) ^ 0. any (^,2/) such that H(v^y) = 0.
dy

Hence by the implicit function theorem we find a C^-map, y = y{v) , that simultaneously
satisfies equations E(v^i(v,y(v}}\y(v}) = 0 and —{v,y{v)) == 0.

€/
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Figure 4 shows the above relations obtained for the maps fji{v,y) and y(v).

Fig. 4

Denote by /^ = p,{v ,^/(zQ). For this map we have:

QG.
C?(^ ̂  ,^)) = y{v) ; ——0;, ̂  , y(v)) EE 1

(9^/

and

?^(^^0

That is ; the one dimensional map G{v ,/^ , •), has a saddle-node at the point
y = y{v) G 2?Q(^^).

Now assume (v,^) G -B(fco) satisfies ^f^ < ^ < /^^o('y)• I11 Ais case the interval
{('y, /^)} x [1 — 5,1] intersects the graph of the map ii{v , y) into two points (^, ̂ ; ^/i) and
(z^;?/2). These two points satisfy G(v,^y^) = y^ and G{v,^y^) = y^ with ^/i < y^.f\/^ f^/^
Again, an easy computation shows —(v^ji\y\} > 1 > —(v^^y^) : that is the map

oy oy
G{v^ [i\ •) has a hyperbolic, attracting periodic orbit whose period is ko , at y = y^ and a
hyperbolic repelling , fixed point at y = y ^ .

Observe that, for {v , p) G B{ko), [L < /^ , the one dimensional map G{v , ̂  -);does not
have fixed points in D (^). This complete the proof of proposition 2 in this particular case.

In the general case we can proceed as follows :

Let Fo = f t ) , I n . . . , ( ) V here r = #(Fo) - 1. Let us consider
VVV Vi/ V'r//

7A fii\ fir\\. , _ ^//2\ fiA (i^-\o)•U•••••ur•f') c "w-U'-^D

D

(^) C

2\
' v , ^ ) . Clearly we have G^(ro)(^/^l) C Z)(r)(?;,^). Let ^ro(^)

sup{^; (v , /^ ) C B(ko), 0(^,^) = ao(r)}. For /^ == AA^o('^;) we must have
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G^ro (^ ̂  1) = 1- Now we define the map E(v, ̂  y) , y e ^(ro)(^ ^), (zs ̂ ) ^ B{ko)
such that /^ < ^ro{v) by:

^(^ ^; ̂ ) = G^(ro)(^ ̂ ; 2/) - y '

Now the proof follows as in the previous case. •
As a consequence of proposition 1 and 2 we get the following :

Remark 5. - Asumme ri(v, /^) or Fi-^, /^) is a periodic itinerary. In this situation the
associated one dimensional map G(v^^ •) satisfies one of the following:

(i) D(T-^{V,IJL))(V,II) (or D(ri_^(z',^))(v,^)) is an interval which contains, in its
interior, a hyperbolic, attracting periodic orbit or

(ii) D(r-^{v^)){v^) (or I5(ri_<§('y,/^))('r,^)) is an interval which contains a flip or
a saddle-node periodic orbit or

(iii) D(T-i(v, ̂ ))(^ p.) (or D(T-i-s(v, A^X^ A6)) is an interval and /̂ = 1 (or /̂ = 1 - 6)
is an attracting periodic orbit or

(iv) D(ri(^))(^) = {1} (or P(ri_,(^))(^) ={1- 6}).

2.9.
Let us now define an order relation among the elements of So.
We initially define

/1\ /1\ /1\ / 1 \ / 2 \ /2\ /2\
( o ) < ( l ) < • • • < U < ( „ + l ) < • • • < ( n + l ) < U < • • • < ( o ) •

Let FI 7^ Fa be any two bisequences. Assume that

((^\ (^\\ _ ((^\ ^^andthat^^ ^ ^+1^
l^J -- VJ) ~ WJ "" L2^ ^J / L îJ •

- If there is an even number of ( . ) among ( ̂  ) , • • • , ( ̂  ) and ( ̂ +1 ) > ( ̂ +1 ) ,
V/ Vo/ Vfc/ Vfe+i/ Vfc+i/

we will say Fi is greater than Fa and we will denote Fi > I^.

- If there is an odd number of f .) among f % 0 ) , • • • , ( %fc ) and ( z f c + l ) < ( % f c + l ) ,
i / ) / V ' l — / \ i I \ i I V i /V/ Vo/ Vfc/ Vfc+i/ Vfc+i/

we will say Fi is greater than Fa and we will denote Fi > 1^2 .

LEMMA 8. - 77^ map r(v,^) : M{v,p) —^ So ^ order-preserving.

Proof. - Let r^i, 3:2 € M(v, 11) be two points such that x^ < x^. If rci G I? ( ° ) ('y, A6)
Vo/

and X2 G ^(il) with f ^ 0 ) ^ f ^ ) , the result follows.31 vo7 ui7
Assume r(v,^)(a;i) --= Fi, and r(z',/^)(rr2) = T^ are such that

((i10} ('lk}} - ((^\ (il}} and (ilk^} ̂  (iw}
[ U ? ' " ' U J ~ I ̂ J ? ? l-jJ J and ^J ̂  ̂ iJ •
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( 1\ f fil\ fil\\If there is an even number of Y s among the ( ( ° ) , . . . , ( k } } , then the
3 ) Wo/ \ 3 k ) )

restriction of the map Gk{v^) to the interval that contains [^1,^2] preserves orientation.
/^i \ /^2 \

This implies that Gk{v,p){x^) < Gk(v^){x^) and therefore ( .^+1 ) < ( .^+1 ) . By the
Vfc+l/ Vfc+l/

definition of the order relation in So this implies I\ < IV
/^i\ /ril\

If there is an odd number of f1) among the ( ° ) , • • • , ( k ) , then the restriction
3 ' V 'i — / \ i ~ IVo/ Vfc// / ^ 1 \ /z1^

map Gk{v^){') to the interval 2)( ( ^ ) ? " ' ? ( •U )(^'^)? ^ich contains [a;i,a;2],
\Vo7 Vfc/ /

reverses orientation. This implies that Gk(v^)(x-^) > Gk(v^)(x'z) and therefore

(^i \ /^2 \
fc+l ) > ( fe+l ) . By the definition of the order relation in So we obtain Fi < I^ .i I \ i iJfc+i/ Vfc+i/

Let us now consider two bisequences r^Fs G So such that r(z^)(rri) =
ri,r(^)(:T2) = F2, some rci,^ € Af(^).

LEMMA 9. - 7/' Fi < F2 , then rci < 3:2 •

Proof. - The proof is easy and left to the reader. •
Let r € So be any realizable sequence and denote by /^r = inf{/^; @{v, p) = r}. Let

T'2 € So be any admissible bisequence at the level (z^r(^)) such that I^ > F.

LEMMA 10. - F2 is realisable.

Proof. - Denote by a;i(v,/^) € M{v, ̂ )^x'z{v^) € M(v^) two points which satisfy
r(i^)(rri(-^)) = r and T(v,^){x'z{v,^i)) = F2. We have ^i(zs^) < x^{v,^)
and ^i('y,/^r(^)) == ^ f co - lAA^(^)• Since [L i—^ ^ko~l^Ji is an increasing map we can
find a parameter value ^2 > A^r^) such that x-z{v, ̂ 2) = ^fco-1^2• This implies
^2(^2) = r(^^)(G(7;^2,l - ^')) = (TOO (r(^2)(l - ^)) = ©(^2). That is r2
is realizable. •

Remark 6. - 1) Let F C So be any realizable sequence and /^r(^) = inf{/^ 0('y,/^) =
r}. Let F2 € So;F2 < r be any bisequence which is not realizable for ^-(^-^(l - 6) <
^ < AA^(^) then I^ is not realizable at all, that is there no exists ^-^o-i)^ _ ^ < ^ <
^-(fco-i) such that e(^) = F2.

2) Assume (v,^),{v,^) € B(fco) satisfy ^o-l^l G M(v^i), ^0-1^2 e M^,^).
If A4 < ^2 then we have 6(^ ^i) - r(^ ̂ i)(^°-1^) < e(^, ^2) = r(^ ̂ 2)(^0-1^)

3) Assume {v,^\{v,^} e B(fco) satisfy ^o-l^l G M(^^i), ^0-1^2 e M{v,^
and 6(?;,/^i) < 6(^,^2) then we have /^i < ^2.

2.10.
Let r € S2 be any periodic bisequence which is realizable.
Assume ^r(^) == in^/^; Q('y,^) = r}.
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(A) Let Ffc = cr^(r), for 1 < k < ((Fo) -1. Suppose Fj> T , for some j. By Lemma 21
we have that Tj is realizable. In fact denote by Xj(v^ fi) C M(v, /^) a point which satisfies
T(v,li}{xj(v,ii)} = Fj. By (2.11) we know that D(Tj)(v,fi) is a hyperbolic, repelling,
fixed point of the map G^(ro)(^S ̂ ) , for ^ > ^2ro{v) or ^ > /^ro(^)- Since the C^-surface
CT, = {(v,^Xj(v^))/in > ^ro(^) or /^ > /^ro^M^^) ^ -8(^0)} is transversal to
5o = {(^, /^; ̂ ko~l^)/{v, fi e B(fco)} we have that So HCr,, define a C1 surface contained
in U x [1 - 6 , 1] and parametrized by {(v,Cr,(v),Xj{v,Cr,{v)))-,v C V}.

Let us denote by Xr,{v) the vector field associated to (v, Cr^(zQ) G B(fco).
Let (7(^(^,<7r^(^))) C (7 be the hyperbolic, periodic orbit associated to the point

Xj(v, Cr\,('y))- ^e nave

7o(^o(^.(^))) C ̂ ^(^(^^M))),

that is, the associated vector field Xy^ (v) represents a contracting singular cycle.
(B) Let X G ^o ̂ X > r be any admissible bisequence, at the level (z^r(^))? such

that a^(X) = r, some k G N.
Let us denote by x^(v,^) G M(v,fi) a point which satisfies r(v,^)(x^(v,p,)) = X.

We have: a^ o r(^)(^(^)) = ^(^) = F. That is: r(^^)Gfc(^^)(^(^^)) =
r(v,ii)(pr(v,^)) ( here pr(v,^) denotes the fixed point of the map G^o{v^) which
satisfies pr(v^) e P(r)(^,/^). In particular, Gk{v^)(x^(v,i^)) G J9(r)(i;,^). That is
x^{v,ii) e G-A;(^,^)(D(^)(^',^)). From here we conclude that, for [L > /^r^) or
IJL > AA^o('y) ? tne point ^^(v,/^) is a pre-image of the hyperbolic, repelling, fixed point
pr{v^)' So in particular

Cx = {(v,^x^{v^)Y,{v,fi) C B{ko}^ > ̂ 2ro(^)^ > ?0^)}

is a (71-surface transversal to SQ . Therefore the intersection SQ n C^ defines a C1 -surface,
C^, contained in U x [1 — 8^ 1] and parametrized by

{(^^(^),^(^^(z;)));^y}.
Denote by Xx(v) the vector field associated to (v^C^(v)) G B(fco).
Let a(pr(^? ̂ (^))) C U be the hyperbolic, periodic orbit associated to the point

pr(v,C^(v)) G M(v,C^{v)). We have

-yoMX^))) C TV^a^r^,^^)))),

that is, the vector field X^(v) has a contracting singular cycle.

2.11.
Let r G So be any realizable bisequence. Assume /^r = /^r(^) is the parameter value

which satisfies ©(v, /^r(^)) = r and xy = xy{v^ p,) G M(z>, ̂ ) be a point which satisfies

rM(rrr(^)) = r.

(A) Assume F G Per(a). In this case we have F G Si or F e £2 or there is k e N
such that a^(T) e £2. In all the cases, as we have seen in (2.6), (2.7) (2.8) and (2.10), we
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known that associated to F we can find a C^-surface C^ = {(v, (7r(^)); v G V} c B(ko)
such that: the vector field Xr(v), which represents the point (v,Cr(v)) G C^, presents
a contracting singular cycle or a homoclinic orbit for the singularity o~o(Xr(v)) or a
saddle-node or a flip bifurcation.

(B) Suppose that F ^ Per (a) and that there is fc G N such that a^(T) G Per(a). In
this situation, as we have seen in (2.6) and (2.10), we know that associated to F, we can
find a C^-surface C^ = {(^CrM);^ e V} C B(fco) such that: the vector field Xr(v),
which represents the point (^Cr(z')) G C^ presents a contracting singular cycle.

(C) Suppose r ^ Per (a) and cr^(r) ^ Per (a) , for any fc G N. In this case we can find
a sequence of realizable sequences FA. G Per(o-o), F^ < I\ such that

(i) Urn Fk = F
k—>oo

(ii) A4\(^) -^ /^r(^),^r,(^) < f^r(v) and
(iii) (^r^*)) is a Cauchy sequence of maps in the C1 -uniform topology (this can be

proved as in (2.9)).
In this case, associated to F, we find a C^-surface {(v , Cr(v))',v G V} such that

the vector field which represents the point (z^Cr(v)) G C^ satisfies that the trajectory
7o(^r(^)) has recurrent behavior in the neighborhood U.

(D) Let now s(v,ii} be any pre image of the points b{v,p) or a(v,fi) in the closure
of the set M(v,^), such that s ( v , ^ ) > ^ko~l^l for some ^-(^-^(l - 6) < p, < ̂ -(^o-1.
In this situation the C^-surface {(v^ fi^s(v^ fi))} = S is transversal to So and,
therefore, the intersection S H 5o define a (71-surface 5^ (resp 5a) parametrized by
{{v,b{v),S{v,b{v)));v C V} (resp. {(v,a(v), S(v,a(v)))',v e V}). Let X^v) (resp.
X^(v)) denote the vector field associated to (v^b{v)) G B(fco) (resp. v,a('?;)) G B(feo)).
This vector field satisfies that

7o(<ro(^))) C ^(ai(X,(z;)))

(resp. ^o(ao(X-a(v))) C lVS(c^l(Xa-(v)))). That is presents a contracting singular cycles.
This completes the proof of Theorem 1. •
An easy consequence of the results in (2.7) through (2.11) is

COROLLARY 4. - Fo U Fi is a dense subset of B(ko), any fco > no. •

3. Proof of Theorem 2

Without loss of generality, we may assume that the family {X^} such that X^=o ^ A/'
is given by {( 'y, /^); —£o < ^ < £0} for some v G V and £o > 0 small.

We let L(^y) denote the map L(v^^y) given by

{ ^, 0 < ^/ < ^-1

L(/.; ̂ ) = /. - J(^; ̂ )(^ - (1 - ̂ )a , 1 - 8 < y < b(^)
^ - K { ^ y } ( l - y Y , a ^ ^ y ^ l ^

where a(^) = l-S2^)^^) = 1 - 6 + S1^),^^) = A^^)^^ = 1,2; J and A: are
C^-map in the /^-variable, C3 in the ^-variable for y / 1 - ̂  1 and whose derivatives
are small with ^ small.
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Also J{p.,y) > 0 and K(^y) > 0 for any {^y),0 < ^ < ^o = ^ -no;^ e
Jl(^) U J2(^)..

Given 0 < ^ < ̂  we define A(/^) = {y e [0,1]/^(^/) G ujLo^), for all n > 0}.
Let Fo = {p. G [0,^o]/l ^ A(^)} and Fi = {/^ <E [0^o]/l e A(^) and there exists an
hyperbolic attracting periodic orbit for the map I^(-)}. Here L^(y) = L{^y).

As we have seen in Chapter II, ^ G Fo U i\ implies that the associated vector field
X{v, ̂ ) is structurally stable in U. Let H = Fo U I\ and B = [0, /^o] \ H.

Theorem 2 will follow from the following

THEOREM 2'. - m(H D [0, /^o]) = AAO- f^^ ̂  denotes the Lebesgue measure.)
Using the Lebesgue density theorem it is enough to prove that given 0 < ^ < IJLQ we have

^^m{Bn[^^^^ <1 .

3.1.
For /^ G [0,/^o], define L^) = L(^ 1) and 2^+i(^) = L(^L^)).
We have I/z+i(^) = ^z(^), for any 1 < % < no and L^+i(/^) = ^n0^. Hence these

maps satisfy:
a) L^) > 0 and L'{(p) = 0,^ G [0,^o], 1 < ^ < no + 1,
b) J^(/,) < ^(0),0 < /^ < ^o,l < ^ < no + 1.
For any k > no + 2 , let 4 = J^ U . • • U 1^ be the domain of definition of the map Lj,.
Let 1{ = [^0^1] be a component of the domain Ij, that satisfies L^) / 0, for

1 < % < k — 1 and any /z C J^.

LEMMA 11. - 77^ m<2/? £fc satisfies one and only one of the following possibilities:
(i) there exists a unique v G 1^ such that L^) = 0 and L'^(p} < 0 or
(ii) 2/^) ^ 0 and L^/n) = 0 for any ^ e l{ or

(iii) L^) / 0 and I/^) < 0 for any ^ G l{.

Proof. - See the appendix. •

COROLLARY 5. - Let I = [^05^1] C I3^ be an interval and assume L[{ii} / 0 for
^ ^ I , l < i < k . Then for any a, (3, VQ < a < /3 < v^ we have L'^a) > L^((3).

Proof. - Let X{p) = ̂ ^-^ G I . We have X(^) = 1.
^k^o)

If L^fi) < 0 , then X'^ = f c ( / / > 0 and X is an increasing map. So X{a} < X((3)
^k^o)

and hence L'^a) > L^).

If L^) > 0, then X^fi) = -7^-'^ < 0 and X is a decreasing map. In particular,
^k^o)

X{a] < X((3) and hence L^(a) > L^(/3). •

3.2.
We note that [O^o] - {0} U U^-^-^l}.
Let k > no be a given number and Ij, = ^-fc ] ̂ -1, 1 ] . For any given ^ e Ik we have

^-1 < <^ < 1. Clearly that it is enough to prove that m(B D 4) = 0, for any k > no.
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Given p G Ik let D(^)(p) and G ^ ( ' ) denote the interval D^.^v^p) and the map
G(v,p) as defined in (2.11).

Let Jo = ^~k[^ ~ 8, 1] and go : JQ —^ [1 — 8^ 1] be the map go{p) = ̂ p.
Let us define, inductively,

Jr = {? G Jr-l/gr-l(p) ^ U°lo ^=1,2 ̂ fj(^)}
I V/ J

and Qr : Jr -^ [1 - U] by ^(/^) = G^(gr-i(p)),r > 1.
Let J^ = [^o, ^i] be a component of the domain Jr such that ^(/^) / 0 , for 0 < i < r— 1

and any p G J^.

COROLLARY 6. - For ̂  map gr \J^ ̂ e tov^ one and only one of the following possibilities:
(i) there exists a unique v G J^ 5MC/Z ?/za^ ̂ (^) = 0 anrf ^(/^) < 0, any ^ G J^ or
(ii) ^(AA) / 0 and g'^^) < 0 for any p. C J^.

Proof. - The proof follows from Lemma 11. •

COROLLARY 7. - Let J = [^0^1] C J^, C Jr be an interval such that ^(/^) / 0, for
0 < i < r and JJL G Jr' Let a,/3 be the parameter values such that i^o < a < /3 < v\
we have g^{a) > ^(/3).

Proof. - Similar to Corollary 5. •

3.3.
Let us now consider a parameter value ^ G Jr that satisfies: there is an interval

[a,/3] C Jr such that ^ G]^/^ and g\(y} ^- 0,0 < i < r,v G [a,/3}.
(Ai) Let us assume g'r{y) > 0,z/ G [a,/?];

[&(^),a(/3)] C]^(a),^(/3)[ and ̂ (^) e Ji(^)

PROPOSITION 3. - r/z^r^ exists fi e]^, /3[ ^MC/Z that —-——? < 1/3 ,for k big enough.p.- ^
Proof. - Denote by p < ii\ < p-^ < /3 the parameter values which satisfy gr(pi) = b(0) ,

r p ' 2
and gr{p2) = ^(/3)- We have gr(p2) - 9r(pi) = / g'(^)d^ ^ ^(A6l)(AA2 - pi) and

J^i
rp'i

9r{pi) - gr(p) = / g'^}^ > ^(^i)(mi - p).
J ii

Since gr{pi) - 9r(p) < b(pi) - (1 - 8) we have

m{B H [^,^2]) . 1 ^ 1 - 1 ^ ^ b(p^) - (1- 8)
p2- p ~ P2- pi ~ ^(/5) - ^(/3)

which can be taken smaller or equal to 1/3 for k big. •
(A2) Assume g^) < 0^ G [a,/3]; [6(/3), a(/3)] c]^(/3)^(a)[ and ^(^) G Ji(/^).

PROPOSITION 4. - 77^r(? ^^^ p G [0,/z] ^MC/Z r/zar —•—————— < 1/3, for k big
p — p

enough.
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Proof. - The proof is similar to that of Proposition 3. •

(As) Assume there is ( J , j / 0, such that D ( J (z/) c [^(oQ^rC0) ].
- ' / .\ w /

Given ^ G [a,/3] denote by Ji ( J(^) the interval contained in D[.\(v) such that
/ / '\ \

G^,J,(')(^) = W, iovt - 1,2.
\ \J / /

fi\(A3i) Assume that ^(^) G h [ . ] (^) ;^ = 2 and ^(^) > 0, for v e [a,/?]. Denote

by IJL < ̂  < ̂  < /3 the parameter values which satisfy G^i^r^i)) = b(/3) and
G[^2i9r{l^2}) = ^(/?)? respectively. We have

m(B n f/z, /^l) 1
PROPOSITION 5. - —^——"'^ ^ -.fork big enough.

,42 — /^ °

Proof. - The proof is similar to that of Proposition 3. •
/i\

(A^) Assume that ^(/^) G Ji [ J (^) ;% = 2 and that ^(^) < 0, for v G [a,/?].
\«/ /

Let denote by a < ^2 < f^i < ^ the parameter values which satisfy C?(/^i,^r(/^i)) =
&(/?), 0(^2,^(^2)) = a(/3), respectively.

We have:

PROPOSITION 6. - v n[/z2^D < 1/3 y^^ fc big enough.
^ - ^2

Proof. - The proof is similar to that of Proposition 3. •
/i\

(Ass) Assume that gr(^) G h [ . j (/^), % = 1 and that ^(z^) > 0 , for v e [a, /?]. Denote
\«^ /

by IJL < ̂  < /z2 < 0 the parameter values which satisfy G(/^i,^(^i)) = a(/9) and
G(^2^r(/^2)) = ^(/?), respectively. We have

PROPOSITION 7. - v ^^^^J) ^ ^/3 ^ ̂  ^ ̂  enough.
^2 - ̂

Pw6^ - The proof is similar to that of Proposition 3. •
/^\

(As4) Assume that gr(p) G h [ . j (/^), % = 1 and ^(z/) < 0 for z/ G [a, /?]. Let denote

by a < ^2 < A4 < /^ the parameter values which satisfy ^(^25^(^2)) = &(/?) and
G(^i,^(/^i)) = a(/3), respectively.

We have:

PROPOSITION 8. - m(Jgn[^^]) < 1/3,^^ fc big enough.
^ - /^2

Proof. - The proof is similar to that of Proposition 3. •
/A(Ass) Assume that gr(jji) G ^2 ( . ] (/^), % = 2 and that g^) > 0, for v G [a,/3] and,

additionally, ^Q)(/?) ̂ (̂ . 2 ̂  (/?)] C]^(a),^(/3)[.
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/2\
Denote by 11 < ̂  < ^2 < /3 the parameter values which satisfy ^r(^i) = 2/( . )(/^) ?

v*^ /
/ 2 \

^r(^i) = ^ . 1 (/3). respectively.
V -1 /

We have

PROPOSITION 9. - v — — — " ' ^ ^ < 1 / 3 , for k big enough.
^2- ^

Proof. - The proof is similar to that of Proposition 3. •

( i \
(Ase) Assume that i = 2; ̂ (/^) G 2̂ . ) (/^) and that g^) < 0 , for v e [a, /3] and

.̂  /

KD(/3)> 2 G21) ( / 3 ) ] c ] ffr(a)'ffr(/3) ['
( 2 \

Denote by a < ̂  < ̂  < IJL the parameter values which satisfy ^(^2) = ^ • _ 1 ) (^)?

j //2\
9r{^i) = V M(/^ respectively.

We have

PROPOSITION 10. - ̂ (^^^l) < 1/3^ for k big enough.
^- 1^2

Proof. - The proof is similar to that of Proposition 3. •

(Asr) Assume that i = l;^r(^) € h (jO^);^) > 0, for ^ G [a,/3] and
\r /

L^V^^f.1^/?)"] C]^(a),ff.(/3)[.
L \v / v*' — -' / -i \

Denote by ^ < ^i < ^2 < P trie parameter values which satisfy ^r(^i) = ^[ . )(/?)
\— /

and ^(^2) = ?/( • , i ) C 0 ) ' respectively.
We have

PROPOSITION 11.- ̂ ^^D < 1/3 ^ ̂ ^fc fc^ ^^^g/z. •
^ - ^ .-

(Ass) Assume that % = l;^r(^) ^ At^^/^);^^^) < 0 for ^ G [a,/3] and

L^V^^^V/?)] C]^(Q)^.(/3)[.

Let denote by a < ^ < ^ < p. the parameter values which satisfy ^(^2) =

? / ( . , J/3) and 9r{^i) = z ( . ) ( / ? ) , respectively.
We have

PROPOSITION 12. - Î 1!5^ ]̂) < 1/3^ fe ^/g ̂ ^. •
A6 — ^2

(A4) Assume that [^Q)(/?). ̂ (Q^)] c]^(a).^(/3) [ and 9rW e ̂ (^)(^) •

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



740 R. LABARCA

(A4i) Assume that ^(^) > 0 for v € [a, /?].

Let denote by ^ < /^i < ^2 < /? the parameter values which satisfy pr(^i) == ^ ( ^ ) (/5)

and ^r(^) = ^ / ( . ) ( /3 ) , respectively.
We have

PROPOSITION 13. - ̂ ^l^l^ < 1/3^ for k big enough
^2 - ̂

Proof. - The proof is similar to that of Proposition 3. •
(A42) Assume that g^) < 0, for v € [a,/3].

Denote by a < ^2 < ^i < ^ the parameter values that satisfy ^(^2) == ^( i ) W anc^

^(^2) = ^(o)^) 5 respectively.
We have

PROPOSITION 14. - ̂ ^ll^ldl < 1/3^ for k big enough
^-^2

Proof. - The proof is similar to that of Proposition 3. •

(3.4). Consider a parameter value fi e Jo which satisfies: there exists TO G N that

( 00 / "\ \

G^)€ [1-U]\U U ^ J ^
j=0z==l,2 v/ /

In this case we have ^ 6 Fo or G^^^i) == &(^) or G^^p) = a(/z). It is clear that
assertion (*) is true in any of the cases above. Let

T = L G Jo/^) e U^o Uz=i,2 -of')^), for any r > 0\
\. v./ /

For a given ,̂ e T we have three possibilities for the itinerary F^ :
(1) r^ is a periodic itinerary;
(2) r^ is an itinerary which is eventually periodic and
(3) r/, do not satisfies (1) and (2) above.
Assume 1̂  is periodic. In this case we know (see (2.11)) that there is an interval

[a, ft] C T such that I\. = 1^, for any v (E [a,/3];^ e [a,/3] and B H [a,/3] is a finite
number of points. So for these parameter values assertion (*) is true.

Assume F^ is eventually periodic. Under these circumstances it is easy to see that we
can find an interval [a,?] C Jo and an index r € N such that

(i) ^ e]a,/?[;
(ii) g^) -^ 0,0 < i < r for any v G [a,/3] and

(iii) g r / [ a , /3] satisfies the conditions of one of the Propositions specified in (3.3) above.
It is clear that we can find a sequence of intervals [an, Pn} C l^n-i, /3n-i[ and a sequence

of indexes Tn > Tn-i such that (i), (ii) and (iii) hold for any of the given n € N.
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Therefore we can conclude the following

LEMMA 12. - There exists a sequence p.n —^ ^ such that

m(Bn[/^/^|) l m(5n[/^/z]) l————————— ^^ —, of ————————— ^^ —
fin- ^ - 3 ^- ^n ~ 3

for k big enough. •
In particular, for any of these parameter values assertion (*) is true.
Assume F^ satisfies (3) above. In this case we can find a sequence f^n —^ A6 suc^ ^at

I^ satisfies (1) or (2) above. For these parameter values assertion (*) holds, therefore
we conclude that it (*) is true for fi.

This completes the proof of Theorem 2. •

(3.5) Comments on the general case

Let us now consider the general case for contracting singular cycles. In his paper
San Martin [8] introduces a nice idea with which to work in this case. Let us
consider the periodic orbits 0-1 (X), • • • ,<7v(X) that belong to the singular cycle F.
Let Qi(X) 6 o'i(X) be a point and Qi C M be a transversal section associated to
Qi(X)^ i = 1, • • • , n. Assume this cross section is parametrized by {(^, ̂ ); \xi\, \yi\ < 1}
satisfying W^ D {(^0);|^| < 1} and W^ D {(0,^); |^| < 1}.

Let p\ = p\ (X) be the first intersection between 7^ (X) and Qi-^-i ,i = 1,2, • • • , n— 1; j ==
1,2. We have p{ = {x^(X),0) and assume x{^ > 0. Denote by q{ = gf(X) =
(0,^(X)) the first intersection of the backward orbit of p\ with Qi.

We will assume y{(X) > 0, % = 1, • • • , n - 1'j = 1, 2.
Since j^ and ^ are in the same orbit we can find horizontal strips R^X) 3 q3^ and

neighborhoods U[ 3 p3^ so that tlie positive orbits of points at R^ intersect U^. This
procedure define Poincare maps Pf : R^ —> U[\ i = 1,2, • • • , n — l;j = 1,2.

On the other hand, the positive orbit of points at a horizontal strip Ri{X\ containing
WS(o'i{X)) n Qi^ turns around the closed orbit c^(X) and then returns to Qi. This define
a return map Pi : Ri —> Qi, i = 1, • • • , n.

Denote by q^ = q^(X) the last intersection of the orbit ̂ {X) with Qn^j = I? 2. Since
w{q^} = o-o(X) and a(^) = (Tn{X), there are horizontal strips R^{X) 3 q^ such that
the positive orbit of points at R^ pass first near ao{X) and afterwards intersect Qi. This
define maps PJ1 : W] -^ Q^J = 1,2.

Therefore the first return map Fx is defined on U^i(J^ U R} U R'j) with values on
U^-^Qi and its restriction to Ri coincides with the Poincare map associated to cr^(X).

The same construction applies to vector field Y, near enough to X in the C^ -topology,
r > 3.

From now and on the proof follows as in chapters II and III (3.1)-(3.4), that is: Give
an explicit formula to the map Fy; show that there is an invariant stable foliation for Fy;
change coordinates in the neighborhhod U and prove the result for the one-dimensional
map associated to -Fy.
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4. Appendix

In this paragraph we prove Lemma 13. Let L{p,',y) denote the map given by

f ̂  0 < y < F1

L(w y)= \^- J(^ y)(y - (1 - ̂  l - S < y < &(/,)
{lJi-K{^y)(l -yY^ a(^<y<l,

where a(/^) = 1-^(^),&(^) = 1 - 6 + ^(^);^(^) = A^/^A1 > 0, for i = 1,2; J
and J^ are C^-maps in the /^-variable, C3 in the ^/-variable y ^ 1 - 8,1 and whose
, . . 9J QJ 92J 92J 92J QK 9K 92K 92K 92K
denvatives —, —, -^—^-, -^-,, -^—,, -^—, -^—, ,, ^ , -^-^-^ -^—r are small numbers,c^/ oil Q^iQy 9y2 9fi2 9^ 9y Q^Qy 9y2 9^2

with ^ small. Moreover J(/^; 2/) > 0 and K(fi; y) > 0, any (/^; ^/), 0 < fi < f^o = ̂ -no.
Define £i(/^) = L(^; 1) = /^ and £n+i(^) = L(^;£n(/^)),n > 1.
We have L,+i(/A) = ^Li(fi), 1 < i < no and L^+i(/^) = ^n0/^. Hence these maps satisfy:
(a) £^) > 0 and L'^p) = O,/^ G [0^o],0 < % < no + 1 and
(b) L^) < ^(0),0 < /. < /.o.
For any A; > no+2 , let If, = JfcUJju- • -UJ^ be the domain of definition of the map L^.
Let J^ = [^0,^1] be a component of the domain Ije that satisfies L[{p,) / 0, for

0 < z < k - 1 and ^ e J^.

LEMMA 13. - For the map L^ we have one and only one of the following:
(i) there exists only one v G 1^ such that L^(i^) = 0 and L^{p) < 0 or
(ii) L^) ^ 0 and L^) = 0 for ^ G J^', or

(iii) £^) / 0 and I'^fi) < 0 for ^ G J^.

Prw/ - For £fc-i(A> < ^-1^ G J^, we have £fc(/^) = ^fc-i(/^) and the result
follows by the induction hypothesis. Otherwise let us consider A = || [{/^} x A(/^)]

^e[o,^o]
and 5 = |j ({/.} x J^)).

^€[0,/Ao]

We must have A H (Graph{Lk/li)) ^ 0 or B H {Graph(Lk/li)) / 0 (only one of
these intersections in non-empty).
I) Assume L^_i(/^) < 0 for ^ G J^.

(i) We have £fc_i(^o) = 1 and Lk-\(i^\) = a(^i).
Under these conditions £fc(/^) = L(^ Lk-i{^)) = p. - K{{JL\ £fc-i(/^))(l - £A-l(^))a.
So

07^

L,(^) =1 - -Q-(W ^-i(^))(l - ̂ fc-i^))0

[ Q7^+ —g-(wLk-iW)(i-Lk-^)r
+ aK(^ £fc-i(^))(l - Lk-iW1} •^-i(^)a-l
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and
LW =(1 - Lk-^r-'l-^ - W., •)(^_i(^))2

- ̂ (-,.)(! - Lfc_i(.))2 + 2aK,{; -)L'k.,W - L^.))
-^(.^(l-^-iO)2^-^))2

+a^(., .)(l-£fc_i(.)) .L"fc-i( .)
^^(•^(l-L^.))2.^.)
+2a^(.,.)(l-^_i(.))(^_i(.))2

-^(.^(l-I.^lO)2.^^.)].

Since
Lk-iW = fiLk-2^) = • • • = ̂ -1^-^)

= f-1^ - ̂ (w £,-,-i(-))(l - Lfe-.-i^))"]
if a(^) < £fc_j_i(/x) < 1

= f"1^ - J(w^-fe-i(-))(^-,-i(^) - 1 - 6)r}
if l -^£fe_j_i(^)<6(^).

Therefore we have

L'k-iW =^~1^ - ̂ (-, ?-,-10") - (1 - 5))°
- J,(., •)(£fc-,-i(^) - (1 - ̂ )£l • ̂ -,-i(^)
- aJ(, )(Lfc_,_i(^) - (1 - ̂ ))a-lL,_,_l(•)]

or
£fe_i(^) =^-l[l - ̂ (J(l - ̂ -i-i(-))°

-^(,)(l-^-,-iO)"Lfe_,_i(-)

+a^(,)(l-L,-,-l())a-l£fc_,-l(•)],

depending on 1 - 8 < Lk-j-i(p-) <: b(p,) or a{p) <, Lk-j-i(^) < 1, respectively. Since
-^t._i(^) < 0 we have

i - w(Lk-,-^) - (i - 8)r
k-j-iw - (1 - W-1^) + ̂ (,)(£fc-i-l

,-/ / x ______i - j^^, ;^fc_j_i^ -1,1 - ojr______
fe_,_iW > [Lk_,.^) - (1 - ̂ "-^a^,) + J,(,)(£fc_,_i(^) - (1 - 6))}

or
_./ / . .______l-K^l-Lk-^W______

fc-i-iW ^ (i _ ^^_^(^))a[^(,) - ̂ (,)(1 - ̂ -,-i(/x))]

depending on 1 - 8 < Lk-j-\{p.} < b(p,) or a(^) < Lk-j-i{p.) < 1, respectively. In any
case we get \L'k_j_i(p.)\ » 20, for ^ £ 1^.

Now consider the map p(^) given by

?(/,) =J^;Lk-j-iW)(Lk-j-iW - (1 - ^))CT

+ [Jy(^; Lk-j-i(p,))(Lk-j-i^ - (1 - ̂ ))° + aJ(., -)(Lk-j-iW
- (1 - 5))«-1] x £L,_i(^
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or
p(^) =K^;Lk-j-iW){l - Lk-j-iW

+ [Ky{^Lk-,-iW)(l - Lk-j-iW

- a^;Lfc_,_i(^))(l - Lk-j-iW1} x ^-i-i(/^),

depending on whether 1—6<; Lk-j-i{p,) < b{p) or a(/t) < Lk-j-\{^) < 1, respectively.
In the first case an easy computation, using the facts that L'^_ ,_i(At) S> 20; L'^_ _i(^) < 0
and Lk-j-i(p.) — (1 — 6) > 0 gives p ' ( l - i ) > 0, for VQ < p, <; v\.

Similarly in the second case we get p'(p,) > 0.
Since L'k_^) = ^-l[l - p{^}\, we have:

Lk(p,~) =[1 - L,_l^)]Q-2[-a(a - 1}{K{^L^(^-\\ - p(^))]2

- K^;Lk-i(p,)){l - Lk-iW)2

+2aK^•,Lk-lWj-l(l -p(^)(l - Lk-iW)
- Ky^Lk-^m - Lk-iW)2 - ̂ -\1 - p^)))2

-aK{,)(l-Lk-^})^p'W
- 2K,,(; •)(! - Lk-^W-^l - pW)
+ 2aKy(;.)(! - Lk-i^Wil - p(^)))2

+^(•,•)(l-£fe-l(^))2f-l^(/.)];

which is clearly a negative number.
We note that L'^(i>o) = 1. Let us compute Z4(^i).
We have

L'M = 1 + ̂ -l/a ̂ K^L^,) - ̂ .L^M^ - ̂ ^/a] .

Since ^_i(^i) < 0 and Lfc-i(^i) = a(^i), we get L'^{v^) < 0.
Since L^{p,) < 0, we find only one ^ G [^05^1] such that £fc(^) == 0.
(ii) Assume Lfc-i(^o) < 1 and Lk-i(i^i) = ^(^i)
Similarly, as in (i) of above, we obtain L^(fi) < 0 for 11 G 1^. If ^^(^1) ^ 0 then there

exists only one v G 1^ such that L'^{v) = 0. If L'^{y\} < 0, we have L^fi} < 0 for ^ G ̂ .
(iii) Assume Lk-i{^o) = 1 and Lfc-i(^i) > a(^i).
As before we get L'^i) < 0 for fi e J^. If £fc(^i) > 0 then L^) > 0 for /z G ^. If

^(^i) ^ ^ tnen there ls only one v ^ ^ sucn tnat -^A;^) = ^•
(iv) Assume £^-1(^0) < 1 a^ Lfc-i(^i) > a(^i).
As before we prove that L^{^) is a decreasing map and we get the result.
(v) Assume Lk-i(yo) = &(^o) and £^-1(^1) =1-5.
We proceed as in (i) to prove L^p.) < 0 and hence we obtain L^(ii) > L^(^) = 1,

any p. G I],.
(vi) Assume Lfc-i(^o) < &(^o) and Lk-i(i^i) =1-8.
In a similar way as in (i) we get L^[fi) < 0 and then L^p.) > L'^(y^} = 1, any p, € 1^
(vii) Assume Lk-i(^o) < b(i/o) and Lk-i(i^i) > 1 — 6.
As before we get L'^(fi} < 0 and L'^fi} > 1, any p, G J^.
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(viii) Assume L^-if^o) = b(yo} and Lfc-i(^i) > 1 - 6.
As before we get the result.

II) Assume L^^) > 0 (non-constant) for fi e 1^
As in Case (I) we have eight possibilities. We proceed as in (I)(i) to get the result

in all of the cases.
Ill) The case Z4_i(^) = constant, i.e., VQ = 0 G 1{ satisfies L^_^) > 0 and L^(ii) = 0,
for p. G l{. •
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