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TAMELY RAMIFIED SUPERCUSPIDAL REPRESENTATIONS

BY LAWRENCE MORRIS (*)

ABSTRACT. — Let G be a connected reductive group defined over a complete local non archimedean field -F, and
let G denote its F-valued points. Let (TT, V) be an irreducible admissible representation of G, and let (cr, W) be a
representation of a parahoric subgroup P which is trivial on the prounipotent radical U of P. We say that (TT, V)
contains (a, W) if, when restricted to P, the cr-isotypic part Va- is nontrivial. Assume that ((T, W) is irreducible
cuspidal on the finite group of Lie type P / U , and that Vcr 7^ 0.

We show that (TT, V) is supercuspidal if and only if P is maximal; in this case TT is compactly induced from
the normaliser of P. We then classify supercuspidal representations containing unipotent cuspidal representations,
provided G is an inner form of a split adjoint group, following a conjecture of G. Lusztig.

Introduction

Let G be the group of rational points of a reductive group defined over a local
non archimedean field P. In [M] we described the structure of the intertwining algebra
7i (cr) = Endc (c — Ind^ (cr)) when a- was an irreducible cuspidal representation of the
Levi component of a parabolic subgroup P; it is closely related to a standard affine
Iwahori-Hecke algebra.

Let P^~ denote the normaliser in G of P, and suppose that P is maximal in the sense
of Bruhat-Tits. In section 1 of this paper we show that if p is an irreducible smooth
(hence finite dimensional) representation of P^ which contains a on restriction to P then
c — Ind^+ (p) is an irreducible supercuspidal representation of G. Previously, results of
this type were known only for (hyper)special parahoric groups. Such groups are easy to
treat because of the associated Cartan decomposition; in the general case one is obliged
to use the affine BN-pair structure and the associated Bruhat decomposition for P^. For
this we rely on the results of [M] Section 3. In Section 2 we show conversely that any
irreducible supercuspidal representation of G which contains a, must be of this form. All
of these results generalise and amplify those of [Ml].

Now suppose that P is not maximal. In Section 3 we show that any irreducible smooth
representation of G containing a can never be supercuspidal. This generalises a result
proved for GL-n in [Kl], and the underlying principle is similar: the structure of ^(cr)

(*) Research partially supported by NSF Grant DMS-9003213.
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640 L. MORRIS

implies the existence of many invertible operators, which in turn implies the existence of
matrix coefficients with non compact support. This result was believed to be true for groups
other than GL^ for some time; another proof of it is given in [M2] using Jacquet functors.

In Section 4 we examine the special case when a is unipotent cuspidal and G is
split simple adjoint. In this situation one can describe the algebra T~i (a) in more detail: it
contains a (generally) large affine Iwahori-Hecke algebra which can be explicitly described,
and a (small, but typically non trivial) group algebra arising from diagram automorphisms.

We then proceed in Section 5 to consider more particularly the case where G is simple
split adjoint, a is unipotent cuspidal and P is maximal. The preceding results guarantee that
any irreducible admissible representation of G which contains a must be supercuspidal,
and induced from P^~\ according to Langlands' philosophy as refined by Lusztig, there
should be a bijection between such representations and a certain subset of those triples
(5, TV, p) where s is a semisimple isolated element in the dual group LG?, N G Lie^G?)
such that Ad (s) N = q N and p is an irreducible representation of the group

(Z.G^^/Z^^^Z^G)).

In fact the relevant triples correspond to irreducible admissible cuspidal complexes [L31
on LG which have trivial central character. (Such complexes were originally introduced
and studied in [L3] to account for the missing component representations in the Springer
correspondence.) These have been classified by Lusztig, and we help ourselves liberally
to his results to produce a bijection. We emphasise that this is all we do; we hope that
the bijection we produce is natural, in some yet to be determined sense. As one might
expect, our result is obtained via a case by case analysis. There is some overlap between
our investigations and some recent work of M. Reeder [R]. For example, in the case of
C?2 he computes the corresponding L-packets and shows that the formal degrees in each
packet are integer multiples of a unique generic representation; he shows that the multiple
is always the degree of the corresponding p. These L-packets always contain both non
supercuspidal square integrable representations, and supercuspidal representations.

In Section 6 we pursue this further, by sketching how the analogue of Section 5 works
for inner forms: for each non split inner form of a split adjoint group G we produce
a bijection similar to those in Section 5 between irreducible unramified (=level zero,
containing a unipotent cuspidal representation) supercuspidal representations of the inner
form and certain admissible homomorphisms of the Weil-Deligne group.

The results in Section 5 and 6 support some recent conjectures of D. Vogan [V] which
refine Langlands' philosophy. In this particular case they were directly motivated by a
lecture of Lusztig, given at the institute for Advanced Study in November 1988; see also
[LO] and [L2]. It is also worth noting that the bijections in Sections 5 and 6 can be
interpreted as bijections between orbits of certain isomorphic finite groups, which arise in
more refined versions of Langlands' philosophy. This will appear elsewhere.

Added in proof: A version of this paper has been available since August 1992. In the
meantime the preprint "Classification of unipotent representations of simple j?-adic groups"
(1995) by G. Lusztig has appeared in which the author proves his conjecture completely.
Finally, it is a pleasure to thank the referee of this journal for a careful reading of the
original manuscript.
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TAMELY RAMIFIED SUPERCUSPIDAL REPRESENTATIONS 641

Notation and Convention

In general the notation and conventions in this paper continue that of [M]; we have also
attempted to keep the reference listing compatible.

In particular, F will always denote a non archimedean local field with ring of integers
o and prime ideal p; we denote its residue field by Fg. We write F for a fixed algebraic
closure of F and r == Gal ( F / F ) for the Galois group.

If V is an algebraic variety defined over F, we write V = V (F), in particular if G
is a connected reductive P-group, G is naturally endowed with the structure of a second
countable totally disconnected locally compact Hausdorff group.

^•Let G be a connected reductive F-group. From Section 4 on we shall need the identity
component of the Langlands dual group of G; we shall denote it by LG. This notation
is not conventional.^

In Sections 6 and 7 we shall employ Galois cohomology sets/groups; we denote them
by 7P(F,-) = iP(r,-).

The symbols N, Z, Q, R, and C have their customary meanings.

1. Some supercuspidal representations

1.1. We begin with a lemma which first appears in [Cy] and which by now is well
known. To state it we retake the notation and framework of Section 4.1 of [M]; thus the
group G is locally compact, totally disconnected and unimodular. We denote by Z the
centre of G. Let P be an open subgroup of G which contains Z, and which is compact
mod Z\ let a be an irreducible admissible representation of P. Just as in [M] 4.3 we can
define the representation c-Ind^ (a), except that the functions in question must now have
compact support mod P. As in [M] 4.2 we choose a base of neighbourhoods Pi (i G N)
of the identity, such that each Pi is normal in P, and compact open in G. The analogue of
[M] 4.2 in this situation then asserts that a\Z is a quasicharacter, and then that a is finite
dimensional; this follows from a well known version ([Ca] 1.4 (c)) of Schur's lemma. The
analogues of [M] 4.3 and [M] 4.4 then follow; in particular c-Ind^ (a) is smooth.

Let H be a closed subgroup of G and let p be a smooth representation of H; we then
have the following Mackey decomposition formula (cf. [K])

(1.1.1) Home (c - Ind^ (a), Indg (p)) ^ Q^Qomp^H {xa, p)
x

where x runs through a set of double coset representatives for P\G/H. In particular take
G = H in the above; we obtain Frobenius reciprocity for compact induction:

(1.1.2) Home (c - Ind^ (a), p) ̂  Romp (a, p\P).

In addition there is also Frobenius reciprocity for ordinary smooth induction
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642 L. MORRIS

(1.1.3) Home? (^ Indp (a) ^ Homp (p|P, a)Home; (p, Indp (a) ^ Horn? (p|P, a)

T^, ]G ' /_ \ . ^-l-- • - -—--^.l- „ - „ - - _ - .In (1.1.2) take p = c — Indp (a); this is a smooth representation, and we then have
the following results.

LEMMA (cf. [Cy], 1.5). - //dim (Home (c - Indp (a), c - Indp (cr))) = 1, then
c — Indp (a) is irreducible.

Proof. - Suppose that p = c - Indp (a) is not irreducible. Let V be the space of p\ we
can then find an invariant subspace U fitting into a short exact sequence

0 -> U -. V -^ W -^ 0

of smooth G-spaces. There is then a non zero map of G-modules

U -^ V -^ V

where V denotes the space of Indp (a), hence (1.1.3) implies a non zero map

U\P ->V

where V denotes the space of a. By semisimplicity of smooth representations on P, this
implies that V occurs as a direct summand in U\P.

There is also a non trivial projection map V —^ W —> 0, so by (1.1.2) we obtain a
non zero map V —> W|P, and by semisimplicity again this implies that V occurs as a
direct summand of >V|P.

Again by semisimplicity we have V|P = U\P Q >V|P. It follows from this and the
above that a- occurs in V\P with multiplicity at least two. By (1.1.2), this contradicts the
hypothesis of the lemma.

1.2. For the result below recall that if (TT, V) is an irreducible smooth representation of
(7, we say that it is supercuspidal if its matrix coefficients have compact support mod Z.

COROLLARY. - With the assumptions of the lemma, c — Indp (a) ;>s' admissible and
supercuspidal.

Proof. - The representation under consideration is smooth and irreducible; by Jacquet's
theorem ([M] 4.10) it is admissible. On the other hand, it plainly has some compactly
supported mod centre matrix coefficients (one produces them via the functions fy of [M]
Sect. 4.5); by an irreducibility argument all its matrix coefficients must be compactly
supported mod the centre, hence it is supercuspidal.

1.3. We now continue with the notation and conventions of [M] (esp. Sect. 3.12, 3.14).
Let Pj = P be a maximal parahoric subgroup with pro-unipotent radical Uj = U and
Levi component M; then M is a finite group of Lie type, and we let a be a cuspidal
representation of M.

Suppose that (TT, V) is an irreducible admissible representation of G such that (7r|P, V)
contains a non zero [/-fixed vector. The space Vu is then non zero and provides a
representation of the group M; we shall suppose that this representation contains an
isotypic part corresponding to a. We shall abbreviate all this by saying that TT contains

4° s6Rffi - TOME 29 - 1996 - N° 5



TAMELY RAMIFIED SUPERCUSPIDAL REPRESENTATIONS 643

a; from [M] 4.7 this implies that TT corresponds to an isomorphism class of irreducible
(unital) T~i (cr^-modules, where a* is the contragredient to a.

Next, let P^~ denote the normaliser of P; this is a compact mod centre, open subgroup of
G. Moreover, P contains a neighbourhood base consisting of compact open characteristic
(in P) subgroups (for this, see e.g. [P-R]), hence the remarks of 1.1-1.2 apply to P+. In
particular, let p be an irreducible admissible representation of P"^; we wish to study the
smooth representation c — Ind^+ (p).

1.4. The following fact generalises 5.3 of [Ml].

PROPOSITION. - Suppose that p\ U is trivial, and that p\P is a sum of cuspidal
representations. Then c - Ind^+ (p) is an irreducible supercuspidal representation.

Proof. - By Lemma 1.1 it is enough to show that the dimension of Home (c-Ind^+ (/?),
c - Ind^+ (p)) is equal to 1. Again by a variant [K] of the Mackey decomposition formula
(I.I.I), it is enough to show that Romp+^p+ ^ P , p ) is zero unless g is a representative
for the coset P^. Since there is an injection (of vector spaces) Homp+nffp+ (9?, p ) to
Homp+nffp+ (^p|P, p|P), it is enough to compute this last space which again is equal to

Hom^n^pn^p^l^ P\P)'

Thus we are reduced to an intertwining number calculation for finite groups. Let \, ̂
denote the characters of p, 9 p respectively. Then we find

/ X^)X^(^= / X' (^) f / x(ux)du)dx
Junsu^nsp Jpn9U\pr\sp w^n^^Pn^l/ /

where the integrals are all finite sums. Now consider the inner sum on the right hand
side. We show that the function x \-^ \p (hx) dh is identically zero on P H g?

J p n ^ u
when g ^ P^.

We may assume that g == n is a distinguished double coset representative projecting
to w. By [M] 3.19-3.20, the image of P H p? in U\P is equal to the image of Pjnwj
in [7\P, and U . P H ̂  = E/jnwj. By [B-T2] 4.6.33, the image of Pjnwj in U\P is a
parabolic subgroup. On the other hand, up to a constant the integral/sum above is equal
to the integral over

u n ^[/\P n ^v ^ u\(U. P n ^t/).
Since p\P is a sum of cuspidal representations we see that the integral in question is

zero unless U = U . (P H ̂  or Pjnwj = P = Pj (loc. cit.). This means that w J = J .
It then follows as in [M] Appendix 1 that n actually belongs to the group P4'. This
concludes the proof.

The aim of the following sections is to provide a converse to this result.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



644 L. MORRIS

2. Supercuspidal representations (continued)

2.1. We now let P denote a maximal parahoric subgroup; (TT, >V) will denote an
irreducible admissible representation of G. Further, let (cr, V) denote an irreducible cuspidal
representation of P contained in (TT, W). (See 1.3) We also write P4' for the normaliser of
P; this is a totally disconnected group, which is compact mod centre. If U = H^ denotes
the (non zero and finite dimensional) space of U fixed points, then U is stable by P^ and
it is a finite direct sum of spaces U^, where if ^ is a quasicharacter of Z, U^ denotes
the subspace of U transforming by ^. Applying e.g. [Ca, Corollary 1.1] we see that U is
a finite direct sum of irreducible representations of P4'. It follows that the representation
(a, V) must occur in one of these, say p (and then that p is generated by V). Moreover,
just as for finite groups, p\P is a finite sum of conjugates of a.

2.2. In particular, p is admissible and finite dimensional. Since p\P is a sum of conjugates
of cr, it is a sum of cuspidal representations. It follows from 1.4 that c — Ind^+ (p) is
irreducible and supercuspidal. Again by construction there is a non zero intertwining map
from c — Ind^+ (p) to (TT, W); since (TT, W) is irreducible we see that this map is an
isomorphism. This proves the following result.

PROPOSITION. - Let (TT, W) be an irreducible smooth representation of G. If (TT, W)
contains the cuspidal representation (a, V) ofP then there is an irreducible representation
p of P"*" such that (-TT, W) is isomorphic to c — Indp+ (p). Furthermore, (TT, W) is
supercuspidal.

Remark. - In contrast to what happens for GLyi a maximal parahoric subgroup P in
a reductive group may have a normaliser which is strictly larger than ZP. This already
happens for GSp4.

3. Principal representations

3.1. In this section, we shall prove that if P is not a maximal parahoric then an
irreducible admissible representation which contains a upon restriction to P can never
be supercuspidal. The philosophy behind the proof is not new, and is based on a general
result in Kutzko's paper [Kl] which we now recall.

3.2. Let G be a locally compact totally disconnected unimodular group; we write Z for
the centre of G as usual. Let K be a compact open subgroup of G, (cr, V) an irreducible
admissible representation of K as in [M] 4.5. In what follows we shall write T~i (a) for
the intertwining algebra Hom^ (c — Ind^ (a), c — Ind^ (a)) and V for (the space of)
c-Ind^(a).

Let (TT, W) be an irreducible smooth representation of G; write H^ for the (finite
dimensional) space of vectors which transform according to a. There is a canonical
isomorphism Wo- = V 0 Hom^ (V, W) and by (1.1.2) this is canonically isomorphic
to V ® Hom^ (V, W). Since V is canonically a left unital 7^ (a)-module, we see that
Hom^ (V, W) is canonically a right unital T~i (cr)-module and then that Wo- is canonically
a right unital T~L (a)-module.
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TAMELY RAMIFIED SUPERCUSPIDAL REPRESENTATIONS 645

3.3. The following is one of the main results in [Kl].

PROPOSITION (cf. [Kl], 1.5). - Suppose that K, a, V, are as above; let (TT, W) be
an irreducible smooth representation of G, such that there is a non zero vector v in H^.
Suppose that there are distinct elements $j G T~i (cr) wth support Sj (j = 1, 2,...) such that
the sets ZSj are disjoint and that y ^>j -^ 0 for each j. Then (TT, W) is not supercuspidal.

3.4. Remarks. - (i) The proof of 3.3 proceeds by constructing matrix coefficients for
(TT, W) which do not have compact support mod Z. It is based on an idea of Matsumoto.

(ii) In [Kl] representations (cr, V) with the property:

14̂ . ^ {0} implies YV cannot be supercuspidal,
are called (G, K}-principal.

3.5. We shall apply 3.3 to the case where G = G (F) is the group of rational points of a
reductive group over a local non archimedean field, K = P is a parahoric subgroup which
is not maximal, and (a, V) is a cuspidal representation of P / U . We show that we can
produce many elements of T-C (a) satisfying 3.3 in general. Indeed, consider theorem 7.12
of [M]. If P is not maximal, then we have W (a) = R (a). C (a) by [M] proposition 7.3.
If R (a) 1=- 1 then it is an infinite reflection group, and the elements Ty are invertible,
by [M] 7.12 (c), (d) (cf. [M] 6.8). It then follows from the definition in [M] 7.8 that the
elements Tw are invertible in 1-i (a), for w G R(a).

Suppose that R(a) = 1, so that W (a) = C (a). As in [M] 7.3 let T(J) denote the
(infinite) group of translations arising from the split centre ZM. Consider the elements
Td where d € T(J). By [M] 7.12 (a), (b) we see that these elements are invertible in
H(a). (In fact the cocycle of loc. cit. is trivial on T(J) by the remark following the
statement of [M] 7.12.)

In either case, we have an infinite family of elements ^>j satisfying the conditions of
3.3, provided H^ + {0}.

COROLLARY. - Let (TT, W) be an irreducible smooth representation of G, containing
the cuspidal representation (a, V) of P. If P is not maximal, then (TT, W) cannot be
supercuspidal.

Remark. - In [M2] another proof of this is given which uses Jacquet functors, and a
"Casselman type lemma".

4. The unipotent cuspidal case

4.1. In this section we suppose that the group G is simple. We begin with a couple
of results that are analogues of results in [C] 10.10. For this we return to the notation
of [M] section 2; thus we take a subset J C II. We suppose that |II - J| > 2 as usual.
In addition, we shall assume that for each a G II - J, the longest element WK in the
spherical Weyl group corresponding to the root system arising from K = J U {a} satisfies
WK J = - J ' We shall abbreviate this by saying that J is self opposed. (This is adapted
from the definition for spherical systems in [C].) Now recall the groups 5j, Rj of [M]
2.2, 2.6 respectively. The next few results are analogues of those in [C] pp. 351-352.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



646 L. MORRIS

LEMMA. - Assume that J is self opposed. Then Sj = fij Rj.

Proof. - We have Sj = RjX, where X is defined as in [M] 2.8. Let w e Sj.
By [M] Lemma 2.5 we may write w = pv[a,r^ Kr\'"v[a-^^ K-^} where each Ki C II,
v [a^, Ki} Ki = A^+i, for 1 < i < r, pKr+i = J and ^ G 0 (where 0 is the stabiliser
of the chamber corresponding to II). Since J is self opposed, it follows immediately by
induction that Ki == J for each %, and then from [M] 2.6 that each ^[a^, Ki} G Rj.
The result follows.

4.2. The same argument shows that if J is self opposed then each element of 11 — J
provides an element of the set Q defined in [M] 2.7. Let B = A'/AQ be the space
defined in [M] 2.7. By definition, this space is spanned by the images of the elements of
II — J, and these images are linearly independent; on the other hand each such element
provides an element in the quotient system Q ' . From [M] 2.7 we then deduce that the
elements a themselves provide a basis for the affine root system Q' in [M] Theorem 2.7.
We summarise all this in the following result.

LEMMA. - If J is self opposed, then the elements a G 11 — J provide a basis for the
quotient root system Q' defined in [M] Theorem 2.7.

4.3. Now suppose that J is self opposed and that (a, V} is a cuspidal representation
which is stable under all automorphisms of the group M.j which arise from conjugation
by representatives of W(a).

LEMMA. - With these assumptions, we have W (a) = Oj Rj.

Proof. - This follows from the preceding results and the definition of W (a).
4.4. We now show that the preceding results apply whenever a is unipotent. This will

follow from results of Lusztig [L4] on finite groups of the Lie type, and will enable us to
describe the algebra Ti, (cr) somewhat more explicitly in this case.

In the first place, if we limit our attention to finite groups of Lie type, the following
is known ([L4] p. 33): if a is unipotent cuspidal and occurs in the Levi component of a
standard parabolic P then the subset J corresponding to P is the unique ^-stable subgraph
of its type occurring in the (absolute) Dynkin diagram of G. (Here, F is some chosen
Frobenius element for the algebaic closure of the appropriate finite field.) In particular, if
G is split, J must be the unique subdiagram of its type.

Returning to the situation at hand, and applying the above facts to the groups
UK\PJ c UK\PK we see that our set J will indeed be self opposed.

To apply 4.3 we note that any unipotent cuspidal representation is invariant under
all automorphisms of Mj which arise from algebraic automorphisms of the underlying
algebraic group. (See [DM] proposition 13.20.) If g represents an element of R(cr) then
it normalises A4j, and then it must normalise the group scheme underlying M.j. This
implies that it acts as an algebraic automorphism of Mj. From 4.3 we can compute the
group R(a). Applying the recipes in [M] Section 6, together with the tables on p. 35
of [L4], we find that the numbers pa are never 1 so that R{a) == Rj. From 4.3, the
complement C (a) = Oj. This proves the following result.

PROPOSITION. - Ifa is unipotent then W (a) = Rj Oj.
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TAMELY RAMIFIED SUPERCUSPIDAL REPRESENTATIONS 647

From 4.2 we see that the root system r of [M] 7.3 is described by an extended
Dynkin diagram whose vertices correspond to the complement of J . (Further, the Dynkin
diagram of the system T can be determined completely with the help of 10.10.3 of [C] if
|II - J| > 2. Otherwise, it must be of type Ai.)

In other words the algebra T~C (a) is described by elements Tw (w G P(J)),
T^ {uj G Oj (a)) subject to the relations 7.12 (a)-(d).

4.5. Remark. - (i) The groups Qj (a) can be computed explicitly from the extended
Dynkin diagram, and the tables on p. 35 of [L4]. For example, if G is split of type EQ
one finds that the parahoric P with subdiagram D^ has a (unique) unipotent cuspidal
representation. The group f^ = Zs is a homomorphic image of the normaliser of P and
it follows by uniqueness that Oj (a) = Q. A similar situation occurs for G split of type
ET with f^ = Is. Similar case by case arguments show that in general, flj (a) = 0, or
{1}, unless G is of type Dn.

The group Oj (a) may be non trivial, even if P is maximal. We refer the reader to
sections 5 and 6 below for examples of this nature.

(ii) Let LG denote the (complex) dual group of G; it is simply connected if G is split
adjoint. In [L2], Lusztig has suggested that there should be a natural bijection between
irreducible smooth representations of G containing a unipotent cuspidal a as above, and
triples (up to LG conjugacy) (s, N, p), where s G LG is semisimple, N is a nilpotent
element in Lie (^G) with Ad (s) N = q N , and p is an irreducible representation of the
group of components of the simultaneous centraliser ZLQ^S^ N) on which the (finite)
centre of LG acts trivially. We shall consider this problem when P is maximal in the
next section.

(iii) It is easily seen that the algebra H constructed in [L2] is the part of the algebra
H (a) arising from the group Rj above; this follows from the description of H in [L2]
and our description above.

4.6 We now specialise the above to the case where the parahoric is maximal, and G is
an inner form of a split adjoint simple group. In this situation we can make the results of
sections 1-3 more precise. The group P^~ / P is always finite abelian since G is adjoint,
and W (a) = Oj = P ^ / P . This last assertion follows from 4.4 and [M], Appendix. Thus
the Hecke algebra in this case is a group algebra possibly twisted by a 2-cocycle ^.

Furthermore we know from Section 2 that any supercuspidal representation of G which
contains a must be of the form c — Ind^+ (p) where p is an irreducible admissible
representation of P^ which contains a.

PROPOSITION. - (a) The cocycle ^ is trivial.
(b) The representation a extends to a representation of P^~.
(c) There are \P^/P\ distinct irreducible representations of P+ which contain a.
(d) There are \P^~ / P \ distinct irreducible supercuspidal representations of G which

contain a.

Proof. - Suppose that (b) is true. From [M] 6.1-6.2 there is a projective representation
extending a on the group denoted N (J, a) there which defines the 2-cocycle /^. In fact
this projective representation is inflated from one on P^ /U\ indeed, there is an obvious
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648 L. MORRIS

projection of N (J, a) onto P ^ ~ / U . (In the split case this last group is just a semidirect
product of M = Mj by Oj since Oj is a subgroup of the group of outer automorphisms
of M.) The projective representation is just that arising from the intertwining operators
induced from elements of P ~ ^ / U . Thus if (b) holds then the projective representation is
trivial and (a) also holds. Moreover, (c) follows from (b) by a well known result; see [CR]
Corollary 11.7 for example. Finally (d) follows from (c), 1.2, 2.2, and 3.5.

It remains to prove (b). Write M^ = P^~ / U . In all cases of interest to us the quotient
M^/M is either finite cyclic or the non cyclic group of order-4. In the former case
the representation a will extend by standard results; see [CR] 11.47 for example. In the
latter situation there are three cases of interest, and they are all of absolute type Dn. (See
Sect. 6.2 below). We treat each of these cases in the following three subsections.

4.7. We begin with the split adjoint form of Dn. Then n = 2t2 where t is even; the
maximal parahoric of concern is that which corresponds to omitting the middle node in
the local Dynkin diagram. It then has index 4 in its normaliser, and the quotient is the
2 x 2 group.

Let P (resp. P^~) denote this parahonc (resp. its normaliser), and U its pro-unipotent
radical. Passing to M = P / U , we have the exact sequence

0-^M^M-^n^O

where 0 denotes the component group (non cyclic of order 4). In fact M is a central direct
product, isogenous to SO^ i x SO^ i (and the sequence above splits as a semidirect product
since all groups being considered are split). One of the generators T of 0 can be taken
to be an element r in M~^~ which acts as an outer automorphism on each factor SO^i
simultaneously. In fact r can be taken to be the projection of an element r which lies in
PSO^n such that r = r\ x r^ with r\ = TZ. The other generator v can be taken to be
an element which interchanges the 2 factors.

Let a (g) a denote the unique (up to isomorphism) unipotent cuspidal representation
of M. (Note that unipotent representations are trivial on central elements, so that the
central product has an action on the tensor product.) The descriptions of r, v imply that
this representation can be extended to M4". Indeed as an intertwining operator for v we can
choose the operator S which switches the factors in the tensor product. On the other hand
we may choose an intertwining operator T = Ti = T^ for TI which extends a; then we take
T 0 T for the intertwining operator for T. We evidently have 5o (T 0 T) = (T (g) T) o 5.
It follows that a 0 a extends.

4.8. For non split inner forms of a simple split adjoint group we shall also need to know
that the analogous cocycles (maximal parahoric) are trivial. From the tables and recipes
in [T] one sees that the cases of interest are 2D^ and ^D^ (notation of loc. cit.; see also
Sect. 6 below). In this first case the maximal parahonc in question corresponds to omitting
the middle node of the relative local Dynkin diagram; in the second case each maximal
parahoric subgroup has index 4 in its normaliser, unless one omits a special vertex. In
either case the appropriate parahonc has index 4 in its normaliser and the quotient group
is the non cyclic group of order 4.

Consider the case of a group G of type 2D^\ then G is isogenous to a quatemionic
orthogonal group (with involution). If we omit any non special vertex from the relative local
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Dynkin diagram (corresponding to an orbit of the Galois group in the local index) we obtain
a maximal parahoric subgroup whose Levi component is a central direct product, isogenous
to SU^i x R(SO^k)' Here SU-^i denotes the unitary group in 21 variables, R denotes
restriction of scalars from Fq2 to Fq, and SO^k denotes the special orthogonal group.

Now write 0 —^ M —^ M^ —> 0 —^ 0 as before. One of the elements in ^ corresponds
to an element in the group of similitudes which can be taken to be v = TT^ I in the
standard matrix representation. (Here D denotes the quaternion algebra denning C?.) Under
reduction mod p it amounts to the action of a Frobenius element v. The other generator
r can be taken to be an element which is trivial on the unitary factor and which provides
the non trivial diagram automorphism on the other factor.

Now suppose that k, I are such that SU^i, R(SO^k) each admit a unipotent cuspidal
representation. (There is only one for each group if it exists.) We then proceed to imitate
the argument in 4.7; we shall use analogous notation. One must exercise a little more
care however, in the present situation, in showing that the representation a = a\ 0 (YI
(they are not the same!) extends to the group 0. Let Vi be the space of ai and let Ty
be the operator such that

T^ a (^a, &)) (vi (g) V2) = o (^ b) T^ (^i (g) ̂ ).
There is also an operator Tr : V^ -^ V^ such that

(1 (g) Tr) a ^(a, &)) (vi 0 ^2) = a (a, b) (^i 0 Tr ^2).
Now, we can choose Ty = Ti (g) T^ where Ti is an intertwining operator on Vi such that

TiOi^{a)(wi)=a,(a)Ti(w,)

where Wi is in Vi and ^ corresponds to Galois action on the coordinates on the appropriate
factor.

An easy computation shows that everything reduces to showing that we can arrange
T2 Tr = Tr T<z but this obvious from our choice for these operators.

4.9. The remaining case to consider is that of groups of type 2D^. The group G in
question can be represented by the adjoint group of similitudes of a quadratic form q which
has an anisotropic part of dimension 4. For this case one can argue in a similar fashion to
that for the split orthogonal groups in Section 4.7.

The relevant parahoric subgroup can only be that obtained by omitting the middle node
of the relative local Dynkin diagram. The Levi component is a central direct product
isogenous to 2 copies of the non split special orthogonal group over the residue field,
and we suppose that this group admits a unipotent cuspidal representation a. (There is at
most one.) We then get a unipotent cuspidal representation a 0 a on the Levi component
just as in Section 4.6. The group ^ can be described by 2 generators r, v where v acts
on each component simultaneously. The element r can be taken to be a pure diagram
automorphism, interchanging the two factors.

One may now imitate the argument in 4.7. The essential point is that we may extend
r by the switch operator S and that we may choose Ty = T 0 T where T intertwines a.
Thus S o (T (g) T) = (T (g) T) o S.

This concludes the proof of Proposition 4.6.
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5. Unramified supercuspidal representations

5.1. Let G be a split adjoint group defined over F. Let P be a maximal parahoric
subgroup of G with prounipotent radical U. From Sections 1-3 we have seen that if
a is a cuspidal representation of P/U then c - Ind^ (cr) is a finite sum of irreducible
supercuspidal representations.

From Langlands' philosophy one expects that these induced representations will
correspond to certain admissible homomorphisms of the Weil-Deligne group. In this
Section we shall examine this in case a is unipotent, following a conjecture of Lusztig. For
this we use Lusztig's classiciation of irreducible admissible cuspidal complexes in [L3];
much of what we need can be found in [L5] sections 20, 21, and 23.

5.2. Let G a complex semisimple group. Recall that a conjugacy class C in G is isolated
if the centraliser of the semisimple part of any element in it has semisimple rank equal
to that of G. (The number of such classes is finite.) Now let P be a conjugacy class of
parabolic subgroups in G; let P e P with Levi component L and unipotent radical U. If
I e L and C is an isolated conjugacy class in G, let

6=6(1, P)= dim (C) - dim (L) + dim (ZL (0).
We recall that an irreducible cuspidal local system on G consists of a pair (C, £) where

£ is an isolated conjugacy class in G and £ is a G-equivariant irreducible local system
on C with the following properties.

(i) £ admits a central character.
(ii) For all P, L, I as above H^ {I Up H C, £) = 0.
Such systems have been classified implicitly in [L3]; we shall make use of the results

freely. (In (ii) the cohomology is with compact supports, with coefficients in £.)
For the classical groups we shall proceed as follows. First we enumerate the set CT of

conjugacy classes of irreducible cuspidal systems on LG. In doing so we shall also describe
another (combinatoric) set CT which is closely related to ^T'-essentially it describes the
support of elements in £T'-and (implicitly) a finite-to-one map (^ : CT' —^ CT. In this
way we obtain all irreducible cuspidal systems on LG which have trivial central character.

Put another way, we are able to describe all triples (^ /, u, p ) where s ' is semi simple
and isolated, u is unipotent and centralised by s\ and p is an irreducible representation of
ZLQ (s^ u)jZLQ Z^Q (s^ u) such that the condition (ii) above is satisfied. Proposition 2.8
of [L3] guarantees that Z°,^ (s^ u) contains no non trivial torus, and then Proposition 2.5 of
[LO] guarantees that the pair (s^ u) corresponds to a unique pair {s, N) with the properties
that s is semi-simple, TV is a nilpotent element in the Lie algebra of G, Ad (s) N = q N ,
and there is no non trivial torus centralising both s and N.

Corollary 2.6 of [LO] says that ZLQ (s, N) is finite and the discussion there also implies
that

ZLG (s, N) ̂  Z.G ^^u)/Z°^ (s\u)
whence an isomorphism

ZLG (5, N)/Z^ ^ Z.G (^ U)IZ.G^G (^ u)
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as well. In this way we can identify irreducible cuspidal complexes on LG with trivial
central character, with a subset of those triples (^, TV, p) where (s, N) is an -Z^-pair in

G in the sense of [LO], and p is an irreducible representation of ZLQ (5, N ) / Z L Q . Such
a triple describes an admissible homomorphism from the Weil-Deligne group to LG.

On the local side we describe the set T of conjugacy classes of pairs (P, a) where P
is a parahoric subgroup of G, and a is a unipotent cuspidal representation of the Levi
component of P. We remind the reader that the Levi component is the group of rational
points of a reductive group defined over the residue field Fq of F. For each group of
classical type we exhibit an explicit bijection T —^ CT. We remark that almost identical
bijections to these, and those in Section 6 below, have been used by Lusztig in [L5] to
establish that the set of cuspidal character sheaves is the same as the set of irreducible
cuspidal complexes.

Given an element (P, a) G T we form the smooth representation c — Ind^(cr).
Proposition 4.6 implies that this always splits into a finite sum of distinct irreducible
supercuspidal representations. Let A G CT correspond to (P, cr) under the bijection above;
for each group of classical type we find that (p~1 (A) contains as many elements as there are
supercuspidal pieces in the decomposition ofc—lndp (cr). (In many cases this number is 1.)

For the exceptional groups we shall describe the irreducible cuspidal complexes more
or less explicitly, as well as the supercuspidal representations, and match them. (The
analogues of the underlined statements above do not hold for these groups.)

In what follows we shall use repeatedly the fact that there is a bijection between the
set of irreducible unipotent cuspidal representations on a finite group of Lie type and the
corresponding set on the group of adjoint type. (See [C], 12.1, p. 380.)

5.3. To begin we consider the case where G is split adjoint of type Bn, with local diagram

(n + 1 vertices)

The two left end nodes are hyperspecial. Let P be a (standard) maximal parahoric
subgroup of type

o
\ X^ o o - - - - - - o o = o

0 ( b nodes) (anodes)

where "x" means that the corresponding vertex and nodes are omitted, and n = a + 6.
The Levi component of P has a (unique) unipotent cuspidal representation precisely when
a == t(t + 1), and b = s2 where s is even.
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Let T denote the set of ordered pairs

{(s2, t (t + l))\s, t G N U {0}, s even, n = s2 + ̂  (^ + 1)}.

Let CT denote the set of imordered pairs of triangular numbers {^, w} such that
n = v + w. We have a bijection T —^ £T given by the rule

(s\ t (t + 1)) ̂  {(5 +1) {s + ^ + 1)/2, (5 - t) (5 - t - 1)/2).
The inverse map is given by the rule

{ ^ + l ) / 2 , f c ( f c + l ) / 2 }

^ r ^ + f c + l ) / 2 ) 2 , ( Z - f c - l / 2 ) ( Z - f c + l / 2 ) ) J u s t o n e o f Z , ^
1 ((Z - fc)/2)2, (Z + fc) (Z - k + 2)/4), otherwise

: + 1/2)), just one of Z, fc even

Here we take I > k, as we may.
For each ordered pair (^ w) == (/ (I + 1)/2, fc (fc + 1)/2) with w ^ z/ there is a unique

cuspidal local system on Sp2n (C) with trivial central character. This can be obtained as
follows. Since v, w are triangular, [L3] tells us that there are unique cuspidal local systems
£y, <?w on Sp2z; (C), Sp2w (C) respectively. Since we are interested in complexes which
have trivial central character on the centre of Span (C) (the diagonal part of the centre
of Sp2n (C) x Sp2w (C)), we require these to both have trivial central character, or non
trivial central character. The table in [L3] then implies that v, w are both odd or both
even. The complex £y,w = Sv ^ Sw corresponds to the desired complex. (Compare [L3]
2.10). It is parametrised by a triple (s, u, p) where

Z(s)=Sp^(C)xSp^(C)

and u is a certain unipotent element in Z (s) which can be explicitly described: on each
factor it will have distinct Jordan block widths of even block width. Furthermore [L3] 2.10
implies that all irreducible cuspidal local systems with trivial central character are obtained
in this fashion. Thus to each Mnordered pair of triangular numbers {v, w} as above we
obtain two irreducible cuspidal local systems.

It also follows from this discussion that there is a "forgetful" map

(p : CT' -^ CT.

On the other hand an element (s2, t(t + 1)) of T corresponds to a unique unipotent
cuspidal representation a of the Levi component of a uniquely specified parahoric
subgroup P. Since G is split adjoint, the normaliser of P has index 2 over P unless
s = 0, n = t(t + 1). From section 4.6 we see that when we inflate a to P and compactly
induce to G the resulting (supercuspidal) representation TT splits into the sum of two
irreducible supercuspidal representations, unless s = 0, n = t(t + 1) (in which case it
remains irreducible).

(It is not clear to the author how one matches the two cuspidal systems with the two
corresponding supercuspidal representations.)

5.4. Next consider split adjoint groups of type Cn. In this case conjugacy classes of
pairs (P, a) as above are parametrised by ^ordered pairs {s (s + 1), t (t + 1)} such that
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n = s (s + 1) +1 (t + 1); let T denote this set. Let £T denote the set of unordered pairs
{v2, w2} such that 2 n + 1 = v2 + w2. There is a bijection T -^ £T given by the rule

{s {s + 1), t (t + 1)} ̂  {(^ + t + I)2, (^ - ̂ )2}.

Given {v 2 , w2} one can associate
(a) one irreducible cuspidal system on Sph^+i (C) if v . w / 0;
(b) two irreducible cuspidal systems on Spin^+i (C) otherwise.
Consider case (a). We shall argue as in the previous paragraph. Omitting a non

special node from the completed Dynkin diagram corresponds to an isolated semi-simple
conjugacy class in SpnL^+i (C). The centraliser of this element is H = SpnL^ (C) x
SpiiL^+i (C)/((£, £')). Here e denotes the kernel of the map SpnL^ (C) -^ SC^ (C)
and e' denotes the analogous element for SphL^+i (C), while (s, £') denotes the element
in Z(Spm2fc (C) x SpHL^+i (C)) whose components are given by e, £' respectively. In
this identification the centre of SpnL^+i (C) is generated by the image of e. We seek
complexes in H which are trivial on this last group. Let u be any unipotent element in
Sph^fe x SphL^+i, with image u in JFf; then Z {u) \-> Z (n) is onto and it follows that

Z { u ) / Z ° ( u ) ^ Z ( u ) / Z ° ( u )

is also onto with kernel either ((£,£ ')) or {1}. From this we see that we only have to
construct complexes on SpuL^ (C) x SpnL^+i (C) whose central characters take the same
values on e, e ' , and then that they must be trivial on the subgroups generated by these two
elements. (Just consider what happens as one passes to the group generated by the image
of e in H.) The Table in [L3] implies that the only possibility is that 2 fc, 2; + 1 are each
squares and the resulting admissible complex on H then has the form TI^ (E-zk ^ £21+1).
where TT denotes the quotient map to H. (See [L3] 2.10.) The support of the system is
the closure of a class su where ^Spin^+i (C) 0) doubly covers §0^2 x §0^2 and u is an
explicitly describable unipotent element in this group. The arguments for case (b) are the
same except that there are now two conjugacy classes of semisimple elements provided
by the two elements of the centre of SpnL^+i (C).

This matches the behaviour on the local side: if {s {s + 1), t(t + 1)} corresponds to
(P, a) then the compactly induced representation splits into two irreducible supercuspidal
pieces precisely when s = t, which corresponds to v . w = 0; otherwise we obtain a unique
irreducible supercuspidal representation.

5.5. We may argue in a similar fashion for split adjoint groups of type Dn. Passing first
to the group SpnL^ (C) we consider unordered pairs {v2, w2} such that v2 + w2 = 2n;
we suppose that 4|n.

The technique for obtaining the possible irreducible cuspidal local systems is similar to
what has gone before. One first describes the possibilities via the simply connected (double
covering of a group of the form Z {s) where s represents a semi-simple conjugacy class
in Spin2^ (C); using the results in [L3] one then obtains the actual cases that can occur.
All such systems are obtained this way. We omit the details.

Given {v2^ w2} one can associate
(a) four irreducible cuspidal systems on Spin2^ (C) if v . w = 0;
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(b) two irreducible cuspidal systems on Spn^ (C) if v . w / 0, and v / w;
(c) one irreducible cuspidal system on Spn^ (C) if v . w 7^ 0, and v = w.
The complexes in case (a) are supported on the closure of the conjugacy class of an

element su where s runs through the centre and u is a certain (fixed) unipotent element.
(The representation p is the same in each case).

Next consider case (b); there are two conjugacy classes of semisimple elements with
centraliser of type D^ x D^\ each gives rise to one complex. (Compare case (b), 5.4.)

In case (c) the complex is supported on the closure of a conjugacy class su where s has
centraliser of type Dy2 x D^\ it is analogous to case (a) of 5.4.

Let CT denote the set of unordered pairs {v2 , w2} such that v2 + w2 = 2n (4|n). Let
T denote the set of unordered pairs {s2, t2} such that s2 +12 = n, where s, t are both
even. There is a bijection T —^ CT given by the rule

{^^^-K.+t) 2 ,^ -^ 2 }
Each element of CT gives rise to one, two, or four (explicitly describable) irreducible

cuspidal complexes on Spu^ (C) corresponding to cases (c), (b), or (a) above.
Note that since n is even ^spin^ (c) ^ 2 2 x 1^ ^ 71-1 (G). It is useful to note how the

latter acts on the completed Dynkin diagram. In this context there are three non trivial
elements po, pi, pn. Here pi interchanges the two left hand nodes, interchanges the two
right hand nodes, and fixes the rest; pn interchanges the extreme bottom nodes, interchanges
the extreme top nodes and swaps node % with node n — i for the rest (numbered left to
right); finally po = pi pn.

Returning to the local group G = PS02n (F), we know that for each unordered pair
{s2, t2} G T there is a unique (up to conjugacy) pair (P, a) just as before. We form
c — Ind^ (cr) as before and consider how it splits.

(c) If s or t = 0 (omit an end node) the induced representation does not split. In fact
P is hyperspecial and is self normalising. This corresponds to case (c) for complexes
on the dual side.

(b) If s / t, P has index 2 in its normaliser (corresponding to the element pi above).
This implies that the representation splits into two irreducible pieces. This corresponds to
case (b) for complexes on the dual side.

(a) If s = t, P has index 4 in its normaliser (corresponding to the full group 1^ x 1^
above). This implies that the representation splits into irreducible pieces. This corresponds
to case (a) for complexes on the dual side.

Again there is an ambiguity with respect to matching individual representations with
the individual complexes (triples).

5.6. We pass to exceptional split groups of adjoint type; we shall treat the groups of type
G?2; F^ ES first since they are also simply connected. In any case it is worthwhile to note
that the only maximal parahoric subgroups that can play a role here are hyperspecial; this
follows by inspection of the possible Levi components. In particular any unipotent cuspidal
representation will (compactly) induce irreducibly to a supercuspidal representation on G;
this follows from Sections 1-2 after noting that a hyperspecial parahoric subgroup is self
normalising in an adjoint group.
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Consider a group G of type G^ with hyperspecial parahoric subgroup P. The Levi
component of P is of type G^ as well. There are four unipotent cuspidal representations in
this case denoted by G-z [-1], G^ [<9], G^ [<92], G^ [1] in [C] 13.8. Each one of these inflates
to a representation of P and then compactly induces to an irreducible supercuspidal
representation of G. According to op. cit. each representation C?2 [. ] corresponds to a
certain pair (^, p) where gi is an element of order % in ©3, the symmetric group on three
letters, and p is an irreducible representation of Z@3 (gi) (= (gi) if 1 / 1). Write e for the
non trivial character of Zs ^ 63/^3 and let 0 denote the complex number e2771/3; we also
write 0, 02 for the character of 1^ whose restriction to gs is 0, 02 respectively. We can
then describe this correspondence by the table below.

Representation
G2[l]

G2[-l]
G^[6\

C?2 [02]

Pair (^ 0)
(1^)
(^2, s)
(^ 0)
(^ 02)

The pairs in the right column can be interpreted in another way. Indeed the triples
(Y, N, p) that correspond to irreducible cuspidal complexes in 63 (C) (cf. 5.2, where we
take s^ centralising N) can be described by the following table.

Z { s ' ) N ^ H = Z ( s f ) ZnW/Z^W P
G^ subregular ©3 £
§04 regular 1^ £
SL3 regular 1^ 0, 02

In fact the N in question is always a subregular element of G2. We see that there are
four such triples and then that there is a correspondence between the two tables: G^ [1]
corresponds to the first row of the second table, G^ [—1] corresponds to the second row, and
G^ [0], Gs [02] correspond to the last row. (This depends on the choice of generator for 13.)

5.7. Consider the case of a split simple group of type F^. The completed Dynkin
diagram for this group over F or C has the form

1 2 3 4 2
0——0 ——0 ——0 ——0ai d2——as a4

The number above each node refers to the order of a semisimple element s whose
conjugacy class is isolated (over C). Then Z {s) is a semisimple group whose type is
obtained by omitting the corresponding vertex and connecting edges. There are seven
irreducible cuspidal local systems on F4 (C); we shall list them as we did for 62. Some
preliminary comments are in order.

If In is a cyclic group of order n we shall describe a character by the value it takes
on a generator. (In particular, % has its customary meaning as a primitive 4th root of
unity.) We write Dg for the dihedral group of order 8. The representation e on Za x 1^
is simply the tensor product of the non trivial representation on each copy of Zs. Finally
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if ©n denotes the symmetric group on n letters, we write \3 for the j-th exterior power
of the reflection representation.

The left column below denotes the isogeny class of Z (V). (For the first and last entries,
"isogeny" can be replaced by "isomorphism".) Under the column marked 'W we have
described the nilpotent element in Z { s ' ) using Jordan block size for the classical groups
where appropriate. "-F4 (03)" refers to a particular conjugacy class, using notation that is
standard. (See [C] chapter 13, for example.)

Z{sf) N ^ H = Z { s f ) ZH {N)/Z°H (N) p
F4 F4(aa) ©4 ^

SLz x Spe regular x (2, 4) 1^x1^ e = £ ' 0 e"
SLa x SL-3 regular 1^ 6, 62

Si,4 x §1-2 regular ~S_^ %, —i
Sping (1,3,5) Dg e = e / ^ £ f f

(The last entry in the right hand column is via the map Dg —> 1L^ x Zz.)
On the other hand, up to conjugacy there is a single hyperspecial parahoric subgroup P

of the local group G = F4 {F) whose Levi component has type F4 over the residue field.
The split group of type F4 over a finite field has seven unipotent cuspidal representations.
We can inflate these to P and compactly induce to obtain seven distinct irreducible
supercuspidal representations. We may describe these representations by means of pairs
{9m p) where gn is a certain element of order n in the symmetric group 64 (cf. G^).
In this case the appropriate elements of 64 are 1, g^ (transposition), g^ (cycle type 22),
93 ? 94' (These are representatives of the conjugacy classes in 64.) The centralisers in 64
of these elements are respectively 64, J.^ x TL^ Dg, Is, ~S-^. As above we write X3 for
the j-th exterior power of the reflection representation of 64. The labels for the other
representations follow previous conventions.

Representation
^[1]
F4[-l]

F^F^[e2}
F^F^-i]

FiW

Pair {g^ 0)
(1,A3)
{92, e)

(^ 0), {93. e2)
(^4, %), {94, -l)

{92. ̂

Comparing the rows of each table we see that indeed we have a correspondence between
the irreducible (unipotent) supercuspidal representations in the second table and the triples
in the first table.

5.8. The completed Dynkin diagram for a split group of type Es over i7' or C is given
as follows

2 6 5 4 3 2 1

0
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Again the number above a given node is the order of an element in an isolated semisimple
conjugacy class over C; the isogeny type of the centraliser of such an element is given
by omitting the node and connecting edges.

There are thirteen irreducible cuspidal local systems on Eg (C); we shall list them below.

Remarks. - We employ conventions similar to those used in Section 5.6 and 5.7; in
particular we write A4 for the 4-th power of the reflection representation on the symmetric
group 65, 6 has its previous meaning, and C will denote a primitve 5-th root of unity (or
the corresponding character on Zs following our previous convention).

Under the column "ZH (N)/Z^ (N)" we have written a group which is a quotient of
ZH { N ) f ' Z ^ (TV); in most cases this is an isomorphism. To the right of each such group
"p" denotes a representation of that group. In row 2, "e" denotes the sign representation of
63; in row 3 it denotes the non trivial representation of Zs; in the last row it is the tensor
product of the non trivial representation of each of the factors.

Z { s ' ) N e H ^ Z ^ ) Z H { N ) / Z ° H ( N ) p
Es 2A^=Es(a7) ©5 A4

£'7 x AI E7 (05) x regular ©3 x Zs -^
EQ x A2 EG (03) x regular 1^ x 1^ Oe, O^e
Ds x A3 (3, 7) x regular 1^ i, -i
A4 x A4 regular Zs C^ 1 < m < 4

A2 x AI x As regular IG -0, -O2

Ds (1 ,3 ,5 ,7) Z 2 X Z 2 e
It is perhaps worth describing briefly how this table is obtained. Consider for example

the row marked "1)5 x A3". There is a semisimple element of order four in Es whose
centraliser is isogenous to Spin^ x §14. (It is the central product of this group.) According
to [L3] there are two cuspidal systems on Spin^o supported on the closure of the unipotent
class indicated and the centre Z4 acts via a faithful character in each case. Similarly there
are two cuspidal systems supported on the closure of a regular unipotent class in §1-4
and the centre also acts via a faithful character in each case. Using [L3] 14.2 one finds
ZH { N ) / Z ^ (N) ^ Z4. Using [L3] 2.10.1 it follows that we must produce a (tensor)
representation on Z4 x Z4 (each of whose pieces corresponds to the appropriate cuspidal
complex) which is trivial on (the central) Z4 part so that it factors through Z4. One finds
easily that the only possibility is the representation described in the right hand column. The
other entries can be obtained by similar arguments. (See preceding paragraphs, or section
6 below, for more computations of this nature.)

Again, the nilpotent elements not described by block sizes are labelled according to
standard conventions.

There are also thirteen unipotent cuspidal representations on a finite group of Lie type £'8.
They can be listed by pairs (^n, p) where gn is a certain element of order n in the symmetric
group ©5 (cf. F^). In this case the appropriate elements of ©5 are 1, g^ (transposition),
g^ (cycle type 22), ^3, g^ ^5, gc- (These are representatives of the conjugacy classes in
©5.) The centralisers in 65 of these elements are respectively ©5, ©3 x Z2, Dg, Z3 x Z2,
Z4, Zs, ZG. As usual we write \3 for the j-th exterior power of the reflection representation
of 65. The labels for the other representations follow previous conventions.
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Representation Pair (^, 0)
^[1] (1,A4)
Es[-l] (g2.-e)

Es[e}^Es[e2} (g^eO)^g^ee2)
Es [i], Es [-%] (g^ i), (p4, -z)

Es^ K n < 4 (^C71)
^[-0],i?8[-02] (^_^(^_02)

^i[l] (P2^)

Again we have arranged matters so that row k in the two tables correspond.
5.9. Finally we treat the cases EQ and £"7. Matters are slightly more subtle on the dual

group side because simply connected groups of this type have centres of orders 3 and 2
respectively, and we only want complexes which have trivial central character. Apart from
this there are fewer cases to discuss.

The simply connected group Eg (C) has fourteen irreducible cuspidal local systems; only
two of these have trivial central character. They can be described as follows. There is an
isolated semisimple conjugacy class in the adjoint group whose elements have order 3;
their connected centraliser is isogenous to SB-3 x SL.3 x SD-3 corresponding to the branch
node of the completed Dynkin diagram for EQ. In the group EG (C) there is a corresponding
group H isogenous to SL.3 x §1-3 x Sl-3; this group has centre isomorphic to J.^ x H^ and
if a:, y , represent generators for the two copies of Z3, the centre of Eg (C) is the cyclic
group given by {(rr, y)). It follows from this and the description of cuspidal complexes
on SLn that there are just two complexes on Eg (C) which have trivial character on the
centre and they can be labelled by the two faithful characters of 13; their support is the
closure of the conjugacy classes of xu or yu where u is a regular unipotent element in H.
(Since u is regular in H we have ZH (^V^E (c) ^^H (u) ̂  ^3-)

Now pass to the adjoint group EG (F) and the Levi component of the (unique
up to conjugacy) hyperspecial parahoric subgroup. There are two unipotent cuspidal
representations for the split group of type EQ over a finite field, labelled EQ [0], EQ [02]
in [C]. We can match these to the above complexes in the same way as before (and
subject to the same caveat).

There is a similar discussion for the group of type £'7. This time there is an element of
order 4 in the adjoint group over C corresponding to the branch node of the completed
Dynkin diagram. Arguing as before one finds two irreducible cuspidal complexes; the
relevant unipotent element u is again regular in a group H isogenous to SIL-4 x §1-4 x Sl-2
and one has ZH (u)/Z^ /^ Z^ (u) ^ J.^. The cuspidal complexes are parametrised by the
faithful characters of 14. Correspondingly there are two unipotent cuspidal representations
on the finite group of Lie type E^\ these give rise to two irreducible supercuspidal
representations. We can match them to the complexes just as before.

5.10. Remark. - The preceding analysis for the exceptional groups makes it easy to predict
the size of the L-packet (cf. [Ko]) containing any one of the supercuspidal representations
we have exhibited. For example in the case of £"7 just discussed, the philosophy of
L-packets predicts that the two supercupisdal representations we have exhibited will be
contained in one L-packet which in addition should contain two further (square integrable
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representations). Similarly for the split adjoint EG there should be an L-packet containing
both the supercuspidal representations and one further (square integrable) representation.
For C?2. one can write down the ly-packets explicitly; this is essentially contained in [LO].
For this case (and some others) M. Reeder shows in [R] that the formal degrees of the
representations in each packet are all integer multiples of a "generic" representation (which
is never supercuspidal). In each case the multiple is the degree of the representation given
by the matching triple on the dual side. Reeder's methods apply more generally but for
the present are difficult to use.

6. Non split inner forms

6.1. In this section we shall sketch some analogues of the results of section 5 for inner
forms of split simple adjoint groups. We shall emphasise the new phenomena that can
occur; we remind the reader that Pq denotes the residue field of the local field F. The
results in this section were suggested by a remark made by Lusztig during a lecture at
the Institute in the Fall of 1988.

6.2. To start we remark that the recipes in [T] 3.51.-2 enable us to determine the
type/index of M from the table in [T] if a standard P is given. Furthermore [T] 2.5 enables
us to determine that part of P4' arising from diagram automorphisms, and [T] 3.5.3 enables
us to determine th^ rest of P^.

We shall suppose our group G is simple, split, adjoint. We are interested in H1 (F, G);
this set can be identified with the set of "F-forms" f : G —^ Gf over -F such that for each
element a € Gal(F/F), the automorphism f~1 o a j is inner, modulo the equivalence
relation obtained by conjugating by elements of G(F). In the discussion that follows,
"equivalent" will mean equivalent in H1 (I\ G).

The diagrams of equivalence classes of inner forms of G can easily be extracted from the
table in [T]. We shall begin by reproducing them below in Table 6.3 by type, together with
their local Dynkin diagrams; we ignore the split case. In section 6.4 we shall differentiate
among equivalence classes of forms which have the same type, name, and (local) index.

> Warning. Table 6.3 below omits the description of the local index: the reader who
wishes to verify our later assertions concerning the type of a particular M will have to
consult the table in [T]. ^

In what follows we write the index of G (defined as in [T2]); the name (as in [T]), and
under the name, the affine root system [T]; and the relative local Dynkin diagram (as in
[T]). We remind the reader that the index corresponds to an absolute Dynkin diagram [T2]
together with a Galois action (the ^-action of [T2]), and a set of distinguished vertices', in
case the form is inner, the *-action is trivial. The label for the echelonnage includes the
type of the split affine root system: when it is hyphenated, the left label gives the type,
otherwise it is given by the label (omit any superscripts). In particular, the local Dynkin
diagram encodes the parameters describing the standard Iwahori-Hecke algebra attached
to G; forgetting the arrows tells the type of the affine Weyl group involved, while the
integer d (a) above each node (corresponding to a simple root) defines the parameter qa
by q^ = qd^a\ (The rest of the Hecke algebra comes from diagram automorphisms.)
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6.3. Table

Index
I A W
^md^m-l

d>. 2, m>. 3
IA^
^-1,0

IA^)^-1,1

^.n-l
n>.3
p(2)
^2m-l,w-l

W > 3

C^

p(2)
^^w
w ^ 2

c^i

^^^
n ^4
ir.(2)

L'2w,w
w > 3
ln(2)U2w + 1 ̂ i - 1
w ^ 3
iri(2)
^5 ,1

^iS

E79,4

L.

Name
AW-I
A.-i
0

^-i
AI

^
C-B^i
2p
^m-l

C-BC^-

^3

C-BC^
2p
^w
^

^
AI

^
C - B » 2

^
B-C^

^m+l

C-BC^,-

^5
C-Bdi

Ĝ^

^7

Fi

MORRIS

Local Dynkin diagram
cycle of length m, all
nodes special; d (a) = d

-

e) <J

8 C

f"s <^p—o ••• Q—^\r')

3 ,2 2 Z % Z
XCE3^.D—0 • •* 0—<*nt-a

1

x
$ s

, 2 Z 2 2 2
<>1 f>——0 < • • Q——rt-l^s ^s

2
s «

2 .̂ , Z
Q3U3——0* - *0——<3 "> 0

Z

I'^^t'''—0 • • * 0——u

^ s

3 Z Z Z 2^ ^
X ^ \Q—-0 • • * 0—-Q^Q

.1 s

3 ^
x S S

<^Z)——o

. 2 Z 2

S
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6.4. Some remarks about the preceding table are in order. First note that the equivalence
class of (adjoint) groups corresponding to the name in 6.3 is unique except in the cases
of type dAmd-l, ̂ m+i, ̂ '^ and ^e. In the first case fix a positive integer n and
let d\n. Central algebras of degree n are classified by H2 (F, fin) ̂  Brn (F) ^ Z/n Z. If
r is invertible in Z/n Z the corresponding central algebra is a division algebra of degree
n; otherwise, selecting 0 < r < n - 1 and writing r = Id, n = md, where d = (r, n)
we obtain 1 < ; < d - 1, whence an invertible element of 1/dl which corresponds to a
division algebra of degree d. Thus fixing n, we see that there are (p (n) equivalence classes
of anisotropic forms of An-i and the remaining inner forms are of type Mm {D) where
D is a division algebra of degree d and md == n.

For the case 4D^rn-^l we proceed as follows. Let Z denote the centre of LG. There is
a natural isomorphism of functors Z^ ^ H1 (F, G). (See [Ko] 6.4-6.5) Applying this to
Spm4^,2 (C) we see that there are four equivalence classes of inner forms of PS04^+2
(including the split form) corresponding to the four four characters of Z ^ 1^ in this case.
The trivial character corresponds to the split form; the character of order two corresponds
to the name/type ^2^+1. To see this note that the tables in [T] tell us that this latter
type is isogenous to SO {q) where q is a quadratic form in 2 r' + 4 variables (r7 being the
Witt index) with discriminant one. Let §04^+2 denote the special orthogonal group of
the quadratic form with maximal index; then q provides an element in H1 (T, §04^+2).
The anisotropic part of the form q can be taken to be the norm form of the non trivial
quaternion algebra of degree 2. If we consider the bijection H1 {T, §04^+2) —^ Br^
induced by the map from the simply connected cover to §04^+2 this means that the
isomorphism class of q maps to the non trivial element. On the other hand the character
of order two vanishes on the kernel of the map

Spin4^+2 (c) -^ S°4m+2 (C)

and is the non trivial element of H1 (r, §04^+2) under the natural isomorphism
Z^ ^ ff^F, §04^4.2); it must indeed correspond to the name/type ^2^+1. It also
follows that there must be two inner forms of name/type 4P2m+l corresponding to the
two faithful characters of Z4.

It will also be necessary for later purposes to distinguish between the various inner
forms of PS04^. In this case Z ^ 1^ x 1^ so there are three characters of order two.
One of them vanishes on the subgroup {e) = ker (Spn^ -^ SC^); an argument similar
to that above implies that it must correspond to the non split inner form of type D^.
The other two vanish on the two remaining subgroups of order two of l^xl^ they must
correspond to forms of type ^2'^. (In fact they are isogenous to quatemionic special
orthogonal groups.)

There are two non-split inner forms of type EQ corresponding to the two division
algebras of degree 3.

6.5. Consider the anisotropic case of type A. First observe that

I/n Z ̂  (^A ^ {ZSL^ (C)T ^ H2 (F, /^) ̂  H1 (F, PGL,)

In any case an invertible element of the left most group above corresponds naturally to
both a faithful character of the centre of the simply connected group SLn (C) and to a
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division algebra of degree n over F. According to [L3] 10.3.2, 2.10, there are n cuspidal
local systems on SLn (C) transforming by a fixed faithful character; they are described
by triples (z, u, \) where u is a regular unipotent element, z is an element of the centre
of SLn (C) and \ is the character in question. The support of the system corresponding
to (z, u, ^) is the closure of the conjugacy class of zu. All cuspidal local systems are
obtained in this fashion.

On the other side the local division algebra D corresponding to a given \ has a unique
maximal order 0; passing to the adjoint group and taking reductive quotients we obtain
an anisotropic torus over the residue field Fq whose group of rational points is a quotient
of (F^n)^ The trivial representation of this latter group is the unique unipotent cuspidal
representation; it inflates to a representation of Ox (modFX). The index of this latter
group in Dx (modFX) is n; in fact the quotient is cyclic and generated by any generator
of the maximal prime ideal in 0. Thus if we induce the trivial representation to the full
group it breaks into a sum of n distinct irreducible representations.

The cuspidal systems above are determined by a triple (z, N, \) where N is a regular
nilpotent element and \ is the faithful character of ZSL, (c) ^ ^LG W/^ ( N )
in question. Given N there is a unique regular semisimple element s such that
Ad (s) N = q N , and then Z^ (s, N)/Z°^ (^ N) ̂  Z^ (N)/Z°^ (N) = Z^.

6.6. Next, consider adjoint inner forms of type ̂ n' Using the methods just sketched
together with those employed previously, one readily finds that the type of a Levi component
for a standard maximal parahoric P is ̂  x Bn-r where ̂  denotes the quasisplit form
of type Dr over F^. It then follows that pairs (P, a) are indexed by ordered pairs
O2, t(t + 1)) where s is odd and n = s2 +1 (t + 1). In particular, n is odd.

Following Section 5 we denote this set by T.
On the dual side one knows from [L3] (see [L5] Sect. 23) that the irreducible cuspidal

local systems on Span (C) with non trivial central character are parametrised by ordered
pairs (v, w) of triangular numbers with n = v 4- w (n odd). Let CT be the set given
in 5.3 but with n odd. There is a bijection T -^ CT just as in 5.3. Each element of CT
corresponds to a pair of irreducible cuspidal local systems on Sp2n (C) with non trivial
central character. On the other hand each element of T gives rise to a pair of irreducible
supercuspidal representations via the usual compact induction argument, and an argument
as in 6.2 for computing the normaliser. Thus we obtain a correspondence subject to the
usual ambiguity about elements within corresponding pairs.

6.7. Next consider inner forms of type ^m-i. In this case one finds first that the type
of M (over the residue field) for a standard maximal P is ̂  x C^ m-i-r' It follows from
this and [T] 2.6, and then [L4] that the set T of pairs (P, a) is indexed by ordered pairs
(s {s + l)/2,2t(t + 1)) whose sum is 2m - 1. Indeed one first observes that [T] 3.5.2.
implies that the Levi component of a standard maximal parahoric is isogenous to the group
SU^+i x Rp^/Fg Sp2r where "R" denotes restriction of scalars, SU denotes the special
unitary group with respect to the quadratic extension F q 2 / P q , and / + 2r = 2 (m - 1).
The assertion then follows by applying the criteria for the existence of unipotent cuspidal
representations for such a group, after noting that such representations occur if and only
if they exist on the corresponding adjoint group which is a direct product of its simple
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factors. (We have used this observation repeatedly in Section 5.) One then observes that
[T] 3.5.3 implies that such a parahoric will always have index 2 in its normaliser; this
implies that the compactly induced representation will split into 2 irreducible supercuspidal
representations on G.

On the dual side [L3] (see also [L5] Sect. 23) one knows that each element of the set
CT of ordered pairs (v, w) of triangular numbers with 4 m - l = v + w ( i ; even) gives
rise to two irreducible cuspidal local systems on Sph^.i (C) with non trivial central
character. All such cuspidal systems are obtained in this manner. There is a bijection
T -^ CT via the rule

(s (s + 1)/2, 2t (t + 1)) ̂  {(s + 2t + 1) (s + 2t + 2)/2, (s - 2t) (s - 2t - 1)/2}.

(Note that exactly one of the two terms on the right must be even.)
From this we see that there is a correspondence, subject to the usual caveat.
6.8. The argument for 2C2m is entirely similar.
6.9. Consider groups of type 2'D^. We argue as in 6.7 to see that the Levi components

of standard maximal parahorics are isogenous to products 2Dl x2 D^; where k + ( = n,
and the superscript indicates the quasisplit form over a finite field. It follows that the pairs
(P, a) are parametrised by unordered pairs of odd squares {v2, w2} such that n = v2 +w2.
(In particular n = 2 (mod 4.) We also find that P has index 2 in its normaliser (case (a))
unless it corresponds to omitting the middle vertex in either the local index or the relative
local Dynkin diagram, and then the index is 4 (case (b)). In case (a) the compactly
induced representation splits into two irreducible pieces; in case (b) it splits into four
irreducible pieces.

Now consider the dual side. We want to consider complexes whose central character is
non trivial and factors through the kernel of the map

Spm^(C)-^S02n(C).
The argument for describing these is just like those given in Section 5. We shall state

the results and omit the details. First, n = 2 (mod 4) and then to each unordered pair of
even squares (a, b) with 2 n = a + b one can associate

(a) two complexes if ab > 0;
(b) four complexes if ab = 0.
Let T denote the set of unordered pairs {v2, w2} of odd squares such that n = v2 + w2;

let CT denote the set of unordered pairs of even squares as above. There is a bijection
/ : T —^ CT given by the rule

{a^& 2 } ^ { (a+&) 2 , (a -6 ) 2 }

and the discussion above tells us that there are as many complexes in (p~1 (A) {(p as in
Sect. 5) for an element A of CT as there are supercuspidal representations corresponding
to f-1 (A).

6.10. We pass to inner forms of type 2^^' In ^is case one finds that the Levi
component of a standard maximal parahoric is isogenous to SU^+i x Rp ^ /Fq S^2r and
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then that the pairs (P, a) are parametrised by ordered pairs (s(s + 1)/2, t2) such that
s (s + 1)/2 + 2t2 = 2m. The index of P in its normaliser is 4 unless P corresponds to
omitting a special point; in this case the index is 2. From this we see that if P is not
special, one obtains four irreducible supercuspidal representations from the pair (P, a); in
the special case one obtains two irreducible supercuspidal representations. (This group splits
over an unramified extension and the Galois group acts as a cyclic group of order two.)

Passing to the dual, we wish to consider those complexes with non trivial central
character which factor through the kernel of Spn^ —> j Spn^. Here j Spn^ denotes
the quotient of Sphi4^ by a subgroup of order two which is not ker (Spn^^ —^ §04 m).
Let CT denote the set of unordered pairs {a, b} of even triangular numbers whose sum
is 4m.

We shall explain briefly how one obtains the relevant complexes in this case. Let a, b be
two positive integers whose sum is 4m; then a, b must be even. There is a subgroup H in
Spin4^ which is isogenous to Spin^ x Spin^ and whose centre is an elementary abelian
2-group. Indeed if (e) (respectively (e^) denotes ker(Spin2^ —> §02 a) (respectively
ker(Spm2^ —^ S02&) then H is Spn^ x Spm^^/((e, e')}. This group doubly covers the
identity component of the corresponding subgroup in | Spn^y^. (If Z (Spin^) = (e} x (c^),
Z (Spin^) = (£') x (c</), one forms H/{{ijj^ ^/)).) We want complexes whose central
characters are equal, but not trivial, on 5, e'\ and which are both trivial or both non
trivial on uj, u j ' . The table in [L3] tells us that this will occur if and only if 2 a, 26 are
triangular numbers, and there are exactly two such complexes. Thus there are exactly two
irreducible cuspidal complexes supported on the closure of a conjugacy class su where
Z (s) is isogenous to Spin^ x Spin^, with central character of the desired type. Similarly
we obtain two irreducible cuspidal complexes corresponding to (6, a).

If ab = 0 then we find by a familiar argument that there are four complexes corresponding
to the four elements of the centre. Thus to each unordered pair {a, b} of even triangular
numbers whose sum is 4 m and a / b we obtain four irreducible cuspidal local systems on
Sphi4^. If a = b we find two irreducible cuspidal local systems on Sph^y^ of the desired
type. All such cuspidal local systems are obtained in this manner.

There is a bijection f : T —> CT given by

(s (s + 1)/2, t2) ̂  {(2t + s) (2t + s + 1)/2, {2t - s) (2t - s - 1)/2}

and using these results, we obtain a correspondence with similar properties to that obtained
in 6.9.

6.11. To finish inner forms of classical type we must consider type ^am+i. Here the
Levi component of a standard parahoric is isogenous to SU^+i x Rp ^/Fq 2S02^, where
the superscript denotes the quasisplit form over F^s. Then pairs (P, a) are parametrised
by ordered pairs (s {s + 1)/2, t2) where t is odd and s (s + 1)/2 + 2t2 = 2m + 1; we
denote this set by T as usual. In all cases P has index 4 in its normaliser. (There are
no relative diagram automorphisms for this case.) This implies that each member of T
gives rise to four irreducible supercuspidal representations of the local group (isogenous
to the orthogonal group of a certain quatemionic quadratic form), by the usual compact
induction argument.
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Passing to the dual side, we must consider the group Spin4y^2(C), and irreducible
cuspidal complexes with faithful central character. Let CT denote the set of unordered
pairs (a, b) of even triangular numbers whose sum is 4 m + 2; there is a bijection T —> CT
given by

{s (s + 1)/2, t2) ̂  { ( 2 t + s) (2t + s + 1)/2, (2^ - s) (2t - 5 - 1)/2}.

Each element (a, b) of CT gives rise to four irreducible cuspidal local systems: for
example if a, b > 1 then two of these have support on the closure of a conjugacy class
su where Z {s) is doubly covered by Spin^ x Spin;, and u e Z (s) can be explicitly
described; the other two have support on the closure of a conjugacy class su where Z (s)
is doubly covered by Spin^, x Spin^ and u G Z (s). (The Z(s) correspond to omitting
different nodes of the completed Dynkin diagram; they are not conjugate, since we are
considering the simply connected group.)

6.12. Consider the case of a group of type ^EQ. Applying the recipes in [T] 3.51-2
as usual allows us to determine the type of M, and then we may determine from [L4]
(say) whether there is a possible unipotent cuspidal representation. The only possibility
is when P is special; this corresponds to removing the right-most vertex in the relative
local Dynkin diagram. In this case by applying [T] 3.5.2 we see immediately that M is of
type ^4 over the residue field; such a group has two unipotent cuspidal representations.
On the other hand op. cit. 3.5.3 implies that P has index 3 in its normaliser, which is the
pointwise stabiliser of the vertex attached to P in the affine building. We note in passing
that there are no (relative) diagram automorphisms in this case. Each of these cuspidal
representations is fixed under the action of the normaliser from the results in 4.6 (or since
we have a group of order three acting on a set with two elements) and when one compactly
induces to G one obtains a direct sum of three (non isomorphic) irreducible supercuspidal
representations. Thus one obtains a total of six irreducible supercuspidal representations for
each non split group of type ^5; in addition there are two previously obtained irreducible
supercuspidal representations arising from the split form of EG. Thus one obtains a total
of fourteen irreducible supercuspidal representations arising from such forms.

One the dual side [L3] Section 15 tells us that there are also fourteen irreducible
cuspidal local systems for a simply connected E6(C). Two of them have already been
used in Section 5; they have support on the closure of the conjugacy class of su where s
is a semisimple element whose centraliser is isogenous to §1-3 x SLa x SLa and where u
is regular unipotent in §1-3 x §13 x §13. The others can be described as follows.

There are two unipotent cuspidal complexes whose support is the closure of a certain
unipotent conjugacy class {u} in EQ (C); each corresponds to a choice of faithful central
character. Replacing {u} by {zu} where z runs through the centre of EG (C) we obtain
six cuspidal complexes.

Again, in the completed Dynkin diagram for EG we can omit any non extremal, non
branch node. This corresponds to a subgroup H in EQ (C) which is the quotient

SL2 x SL6/(^ p3)

where {e) (respectively (p)) denotes the centre of §L2 (respectively SLe). The centre of
Ee(C) in H is generated by the image of p2. Using [L3] 2.10.1 as we have done in
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previous paragraphs we obtain two cuspidal complexes on EG (C) which correspond to two
unipotent cuspidal complexes on H of the form £ 0 £^ where £ is the unique cuspidal
complex on SL2 and £^ is a complex on §Le transforming by a (faithful) central character
^. There are three ways to omit such a node, so this gives six such complexes.

All such complexes are obtained in this way.
6.13. A similar phenomenon occurs for the non split inner form ^7. Again one need

only consider the special point; the corresponding parahoric has a Levi component of type
2 EG over the residue field and is of index 2 in its normaliser. The group of type ^5 has
three unipotent cuspidal representations; in P. Compactly inducing and applying 4.6 we
obtain six irreducible supercuspidal representations; adding these to the two previously
obtained for the split Ey we obtain a total of eight. On the dual side [L3] provides
eight irreducible cuspidal local systems for a simply connected Ey(C); their description
is similar to that given above for EG.

6.14. Remark. - Of course the bijections obtained in 6.12 and 6.13 are even less
satisfactory than those obtained previously. Once one has made choices for central
characters one can lump the appropriate set of supercuspidal representations with the
appropriate set of triples; beyond that, things are murky. Consider once again the case
of ^6. Having fixed central characters, one has two sets consisting of three irreducible
supercuspidal representations each, for each form. On the dual side there are also two sets
of three irreducible cuspidal local systems each: one set comes from EQ and the other set
comes from a group isogenous to §1-2 x SLe. It is not clear to the author how these sets
are paired with each other, or even if they should be paired.

REFERENCES

[Bo2] N. BOURBAKI, Algebre, Chapitre 9, Hermann, Paris, 1973.
[B-T2] F. BRUHAT and J. TITS, Groupes reductifs sur un corps local I I : Schemas en groupes. Existence d'une

donnee radicielle valuee {Publ. Math. I.H.E.S., Vol. 60, 1984, pp. 5-184).
[B-K] C. J. BUSHNELL and P. C. KUTZKO, The admissible dual of GL (N) via compact open subgroups. Annals

of Mathematics Studies No. 129, Princeton Univ. Press, Princeton NJ, 1993.
[Ca] P. CARTIER, Representation ofp-adic groups: a survey (Proc. ofSymp. in Pure Math., Vol.33, 1979), part

1, pp.111-155 Am. Math. Soc., Providence, R.I.
[Cy] H. CARAYOL, Representations cuspidales du groupe lineaires (Ann. Scient. EC. Norm. Sup., (4), Vol.17,

1984, pp.191-225).
[C] R. CARTER, Finite groups of Lie type: conjugacy classes and complex characters, Wiley Interscience,

Chichester, 1985.
[CR] C. CURTIS and I. REINER, Methods of representation theory, Vol.1, Wiley Classics Library, John Wiley,

New York, 1990.
[DM] F. DIGNE and J. MICHEL, Representations of finite groups of Lie type, London Mathematical Society

Student Texts 21, Cambridge University Press, Cambridge, 1991.
[H] R. HOWLETT, Normalisers of parabolic subgroups of reflection groups (J. London Math. Soc., Vol. 21,

1980, pp. 62-80).
[Ko] R. E. KOTTWITZ, Stable trace formula: cuspidal tempered terms {Duke Math. J., Vol. 51, 1984,

pp. 611-650).

4° SERIE - TOME 29 - 1996 - N° 5



TAMELY RAMIFIED SUPERCUSPIDAL REPRESENTATIONS 667

[K] P. C. KUTZKO, Mackey's theorem for non unitary representations (Proc. Am. Math. Soc., Vol. 64, 1977,
pp. 173-175).

[Kl] P. C. KUTZKO, On the restriction of supercuspidal representations to compact open subgroups (Duke Math.
J., Vol. 52, 1985, pp.753-764).

[LO] G. LUSZTIG, Some examples of square integrable representations ofsemisimple p-adic groups (Trans. Am.
math. Soc., Vol. 277, 1983, pp. 623-653).

[L2] G. LUSZTIG, Intersection cohomology methods in representation theory, International Congress of
Mathematicians Kyoto, 1990.

[L3] G. LUSZTIG, Intersection cohomology complexes on a reductive group (Inv. Math., Vol. 75, 1984,
pp. 205-272).

[L4] G. LUSZTIG, Representations of finite Chevalley groups, C.B.M.S regional conference series no. 39
(Amer. Math. Soc., Providence, R.I., 1978).

[L5] G. LUSZTIG, Character sheaves IV (Adv. Math., Vol. 59, 1986, pp. 1-63; V. Ibid., Vol. 61, 1986,
pp. 103-155).

[M] L. MORRIS, Tamely ramified intertwining algebras (Inv. Math., Vol. 114, 1993, pp. 1-54).
[Ml] L. MORRIS, P-cuspidal representations of level one (Proc. London Math. Soc., (3), Vol. 58, 1989,

pp. 550-558).
[M2] L. MORRIS, Level zero G-types (Preprint 1994).
[P-R] G. PRASAD and M. RAGHUNATHAN, Topological central extensions ofsemisimple groups over local fields I

(Ann. of Math., Vol. 119, 1984, pp. 143-201).
[R] M. REEDER, On the Iwahori spherical discrete series for p-adic Chevalley groups; formal degrees and

L-packets (Ann. Scient. EC. Norm. Sup., Vol. 27, 1994, pp. 463-491).
[T] J. TITS, Reductive groups over local fields (In Proc. Symp. in Pure Mathematics, Vol. 33, 1979, Part 1,

pp. 29-69, Am. Math. Soc., Providence R.I.).
[T2] J. TITS, Classification of algebraic semisimple groups (In Proc. Symp. in Pure Mathematics, Vol. 9, 1966,

pp. 33-62, Am. Math. Soc., Providence, R.I.).
[V] D. VOGAN, The local Langlands conjecture, (Cont. Math., Vol. 145, Am. Math. Soc., Providence R.I.,

1993).

(Manuscript received May 16, 1995;
revised November 23, 1995.)

L. MORRIS,
Department of Mathematics,

dark University, USA.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE


