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DELIGNE-LUSZTIG RESTRICTION
OF A GELFAND-GRAEV MODULE

 O DUDAS

A. – Using Deodhar’s decomposition of a double Schubert cell, we study the regular
representations of finite groups of Lie type arising in the cohomology of Deligne-Lusztig varieties
associated to tori. We deduce that the Deligne-Lusztig restriction of a Gelfand-Graev module is a
shifted Gelfand-Graev module.

R. – À l’aide de la décomposition de Deodhar d’une double cellule de Schubert, nous étu-
dions les représentations régulières des groupes finis de type de Lie apparaissant dans la cohomologie
des variétés de Deligne-Lusztig associées à des tores. Nous en déduisons que la restriction de Deligne-
Lusztig d’un module de Gelfand-Graev est un module de Gelfand-Graev décalé.

Introduction

Let G be a connected reductive algebraic group defined over an algebraic closure F of a
finite field of characteristic p. Let F be an isogeny of G such that some power is a Frobenius
endomorphism. The finite group G = GF of fixed points under F is called a finite group of
Lie type. We fix a maximal torus T contained in a Borel subgroup B with unipotent radical
U, all of which assumed to beF -stable. The corresponding Weyl group will be denoted byW .

In an attempt to have a complete understanding of the character theory of G, Deligne
and Lusztig have introduced in [7] a family of biadjoint morphisms Rw and ∗Rw indexed by
W , leading to an outstanding theory of induction and restriction between G and any of its
maximal tori. Roughly speaking, they encode, into a virtual character, the different repre-
sentations occurring in the cohomology of the corresponding Deligne-Lusztig variety. Un-
fortunately, the same construction does not give enough information in the modular setting,
and one has to work at a higher level. More precisely, for a finite extension Λ of the ring Z`
of `-adic integers, Bonnafé and Rouquier have defined in [4] the following functors (see §1.3
for the notation):
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and

Rẇ : Db(ΛTwF -mod) −→ Db(ΛG-mod)

∗Rẇ : Db(ΛG-mod) −→ Db(ΛTwF -mod)

between the derived categories of modules, which generalize the definition of Deligne-
Lusztig induction and restriction.

In this article we study the action of the restriction functor on a special class of repre-
sentations: the Gelfand-Graev modules, which are projective modules parametrized by the
G-regular characters of U (see §1.4). More precisely, we prove in Section 3 the following re-
sult:

T. – Let ψ : U −→ Λ× be a G-regular linear character, and denote by Γψ the
associated Gelfand-Graev module of G. Then, for any w in W , one has

∗RẇΓψ ' ΛTwF [−`(w)]

in the derived category Db(ΛTwF -mod).

This result was already known for some specific elements of the Weyl group. In the case
wherew is the trivial element, the Deligne-Lusztig functor ∗Rẇ comes from a functor defined
at the level of module categories, and the result can be proved in a completely algebraic set-
ting (see [6, Proposition 8.1.6]). But more interesting is the case of a Coxeter element, studied
by Bonnafé and Rouquier in [5]. Their proof relies on the following geometric properties for
the corresponding Deligne-Lusztig variety X(w) (see [17]):

(?)
• X(w) is contained in the maximal Schubert cell Bw0B/B;

• the quotient variety U\X(w) is a product of Gm’s.

Obviously, one cannot expect these properties to hold for any element w of the Weyl group
(for instance, the variety X(1) is a finite set of points whose intersection with any F -stable
Schubert cell is non-trivial). However, it turns out that for the specific class of representations
we are looking at, we can restrict our study to a smaller variety which will be somehow a good
substitute for X(w).

Let us give some consequences of this theorem, which are already known but can be
deduced in an elementary way from our result. From the quasi-isomorphism one can first
obtain a canonical algebra homomorphism from the endomorphism algebra of a Gelfand-
Graev module to the algebra ΛTwF . Tensoring by the fraction fieldK of Λ, it can be shown
that we obtain the Curtis homomorphism KCurw : EndKG(KΓψ) −→ KTwF , thus giving
a modular and conceptual version of this morphism (see [3, Theorem 2.7]).

The character-theoretic version of the theorem is obtained in a drastic way, by tensoring
the quasi-isomorphism by K and by looking at the induced equality in the Grothendieck
group of the category of ΛTwF -modules. Applying the Alvis-Curtis duality gives then a new
method for computing the values of the Green functions at a regular unipotent element (see
[7, Theorem 9.16]). This is the key step for showing that a Gelfand-Graev character has a
unique irreducible component in each rational series E(G, (s)G∗F∗ ).

Beyond these applications, our approach aims at understanding each of the cohomology
groups of the Deligne-Lusztig varieties, leading to concentration and disjointness properties,
in the spirit of Broué’s conjectures. For example, by truncating by unipotent characters, one
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can deduce that the Steinberg character is concentrated in the cohomology group in middle
degree. This result was already proved in [10, Proposition 3.3.15], by a completely different
method, since their proof relies on the computation of eigenvalues of Frobenius. By refining
our method, we should be able to deal with some other unipotent characters and enlarge the
scope of our result.

This paper is divided into three parts: in the first section, we introduce the basic notations
about the modular representation theory of finite groups of Lie type. Then, we focus on an
extremely rich decomposition for double Schubert cells, introduced by Deodhar in [9]. To
this end, we shall use the point of view of [18] and the Bialynicki-Birula decomposition, since
it is particularly adapted to our case. This is the crucial ingredient for proving the main theo-
rem. Indeed, we show in the last section that the maximal piece of the induced decomposition
on X(w) satisfies the properties (?), and that it is the only one carrying regular characters in
its cohomology.
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1. Preliminaries

1.1. Cohomology of a quasi-projective variety

Let Λ be a commutative ring and H a finite group. We denote by ΛH-mod the abelian
category of finitely generated ΛH-modules, and byDb(ΛH-mod) the derived category of the
corresponding bounded complexes. From now on, we assume that Λ is a finite extension of
the ring Z` of `-adic integers, for a prime ` different from p. To any quasi-projective variety X

defined over F and acted on byH, one can associate a classical object in this category, namely
the cohomology with compact support of X, denoted by RΓc(X,Λ). It is quasi-isomorphic
to a bounded complex of modules which have finite rank over Λ.

We give here some quasi-isomorphisms we shall use in Section 3. The reader will find
references or proofs of these properties in [4, Section 3] and [7, Proposition 6.4] for the third
assertion. The last one can be deduced from [13, Exposé XVIII, 2.9].

P 1.1. – Let X and Y be two quasi-projective varieties acted on by H. Then
one has the following isomorphisms in the derived category Db(ΛH-mod):

(i) The Künneth formula:

RΓc(X×Y,Λ) ' RΓc(X,Λ)
L
⊗ RΓc(Y,Λ)

where
L
⊗ denotes the left-derived functor of the tensor product over Λ.
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(ii) The quotient variety H\X exists. Moreover, if the order of the stabilizer of any point of
X is prime to `, then

RΓc(H\X,Λ) ' Λ
L
⊗ΛH RΓc(X,Λ).

(iii) If the action ofH on X is the restriction of an action of a connected group and if the order
of the stabilizer of any point of X in H is prime to `, then

RΓc(X,Λ) ' Λ
L
⊗ΛH RΓc(X,Λ).

(iv) Let π : Y −→ X be an H-equivariant smooth morphism of finite type. If the fibers of π
are isomorphic to affine spaces of constant dimension n, then

RΓc(Y,Λ) ' RΓc(X,Λ)[−2n].

IfN is a finite group acting on X on the right and on Y on the left, we can form the amal-
gamated product X ×N Y, as the quotient of X × Y by the diagonal action of N . Assume
that the actions ofH andN commute and that the order of the stabilizer of any point for the
diagonal action of N is prime to `. Then X ×N Y is an H-variety and we deduce from the
above properties that

(1) RΓc(X×N Y,Λ) ' RΓc(X,Λ)
L
⊗ΛN RΓc(Y,Λ)

in the derived category Db(ΛH-mod).

1.2. Algebraic groups

We keep the basic assumptions of the introduction: G is a connected reductive algebraic
group, together with an isogeny F such that some power is a Frobenius endomorphism. In
other words, there exists a positive integer δ such that F δ defines a split Fq-structure on G

for a certain power q of the characteristic p. For any F -stable algebraic subgroup H of G,
we will denote by H the finite group of fixed points HF .

We fix a Borel subgroup B containing a maximal torus T of G such that both B and T

are F -stable. They define a root sytem Φ with basis ∆, and a set of positive (resp. negative)
roots Φ+ (resp. Φ−). Note that the corresponding Weyl group W is endowed with an action
ofF , compatible with the isomorphismW ' NG(T)/T. Therefore, the image byF of a root
is a positive multiple of some other root, which will be denoted by φ−1(α), defining thus a
bijection φ : Φ −→ Φ. Since B is also F -stable, this map preserves ∆ and Φ+. We will also
use the notation [∆/φ] for a set of representatives of the orbits of φ on ∆.

Let U (resp. U−) be the unipotent radical of B (resp. the opposite Borel subgroup
B−). For any root α, we denote by Uα the corresponding one-parameter subgroup and
uα : F −→ Uα an isomorphism of algebraic groups. Note that the groups U and U−

are F -stable whereas Uα might not be. However, we may, and we will, choose the family
(uα)α∈Φ such that the restriction to Uα of the action of F satisfies F (uα(ζ)) = uφ(α)(ζ

q◦α)

where q◦α is some power of p defined by the relation F (φ(α)) = q◦α α. We define dα to be the
length of the orbit of α under the action of φ and we set qα = q◦αq

◦
φ(α) · · · q

◦
φdα−1(α). Then

Uα is stable by F dα and UFdα
α ' Fqα .

Let us consider the derived group D(U) of U. For any total order on Φ+, the product
map induces the following isomorphism of varieties:
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D(U) '
∏

α∈Φ+r∆

Uα.

Note that it is not a group isomorphism in general, since D(U) might not be abelian.
However, the canonical map

∏
α∈∆ Uα −→ U/D(U) induces an isomorphism of algebraic

groups commuting with F . In order to give a description of the rational points of U/D(U),
we introduce the one-parameter group Vα as the image of the following morphism:

vα : ζ ∈ F 7−→
dα−1∏
i=0

F i(uα(ζ)) =

dα−1∏
i=0

uφi(α)(ζ
q◦α···q

◦
φi−1(α)) ∈

∏
α∈∆

Uα.

The group Vα is not necessarily F -stable, but the fixed points will still be denoted by Vα,
and we obtain a canonical isomorphism of algebraic groups:

U/D(U)F ' (U/D(U))F '
∏

α∈[∆/φ]

Vα.

Now we give a construction of the quotient D(U)F \B which will be useful in Section 3.
Towards this aim, we define the F -group B∆ to be

B∆ =
( ∏
α∈∆

Uα

)
o T ' D(U)\B

so that the total order on Φ+ chosen to describe D(U) gives rise to an isomorphism of vari-
eties B ' D(U) ×B∆ which commutes with F . If b ∈ B, we denote by (bD, b∆) its image
under this isomorphism. Conversely, we can embed the variety B∆ into B by considering
the unique section ι : B∆ −→ B such that b = bDι(b∆). We should notice again that if U is
not abelian, ι is only a morphism of algebraic varieties. With these notations, we obtain the
following realization of D(U)F \B:

P 1.2. – The map ϕ : b ∈ B 7−→ (b−1F (b), b∆) ∈ B × B∆ induces the
following isomorphism of varieties:

D(U)F \B '
{

(b̄, h) ∈ B×B∆

∣∣ b̄∆ = L∆(h)
}

where L∆ denotes the Lang map corresponding to the F -group structure on B∆.

Proof. – Let b be an element of B; by definition, we can decompose it into b = bDι(b∆)

and hence compute b−1F (b) =
(
b−1
D F (bD)

)
ι(b∆) ι(b∆)−1F (ι(b∆)). As a consequence, we

get (
b−1F (b)

)
∆

=
(
ι(b∆)−1F (ι(b∆))

)
∆

= L∆(b∆).

Therefore, the image of ϕ is the set of pairs (b̄, h) ∈ B×B∆ such that b̄∆ = L∆(h).

As another application of the computation of b−1F (b), one can readily check that the fiber
at a point ϕ(b) is exactly the set D(U)F b.

Finally, we show that ϕ : B −→ Imϕ is étale, which will prove the assertion of the propo-
sition. Since the maps B −→ B\B and Imϕ −→ B\Imϕ are étale, it is sufficient to show
that the induced map ϕ′ : B\B −→ B\Imϕ is an isomorphism. But by the first projection
B\Imϕ −→ B, ϕ′ identifies with the canonical isomorphism Bb ∈ B\B 7−→ b−1F (b) ∈ B.
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1.3. Deligne-Lusztig varieties

Following [4, Section 11.2], we fix a set of representatives {ẇ} of W in NG(T) and we
define, for w ∈W , the Deligne-Lusztig varieties X(w) and Y(ẇ) by:

Y(ẇ) =

TwFπw
����

{
gU ∈ G/U

∣∣ g−1F (g) ∈ UẇU
}

X(w) =
{
gB ∈ G/B

∣∣ g−1F (g) ∈ BwB
}

where πw denotes the restriction to Y(ẇ) of the canonical projection G/U −→ G/B. They
are both quasi-projective varieties endowed with a left action ofG by left multiplication. Fur-
thermore, TwF acts on the right of Y(ẇ) and πw is isomorphic to the corresponding quotient
map, so that it induces a G-equivariant isomorphism of varieties Y(ẇ)/TwF ' X(w).

We introduce now the general framework for the modular representation theory ofG: we
choose a prime number ` different from p and we consider an `-modular system (K,Λ, k)

consisting of a finite extension K of the field of `-adic numbers Q`, the integral closure Λ

of the ring of `-adic integers in K and the residue field k of the local ring Λ. We assume
moreover that the field K is big enough for G, so that it contains the e-th roots of unity,
where e is the exponent of G. In that case, the algebra KG is split semi-simple.

By considering the object RΓc(Y(ẇ),Λ) of the categoryDb(ΛG-mod-ΛTwF ), we define a
pair of biadjoint functors between the derived categoriesDb(ΛG-mod) andDb(ΛTwF -mod),
called the Deligne-Lusztig induction and restriction functors:

and

Rẇ = RΓc(Y(ẇ),Λ)
L
⊗TwF− : Db(ΛTwF -mod) −→ Db(ΛG-mod)

∗Rẇ = RHom•ΛG(RΓc(Y(ẇ),Λ),−) : Db(ΛG-mod) −→ Db(ΛTwF -mod)

where Hom•ΛG denotes the classical bifunctor of the category of complexes of ΛG-modules.
Tensoring by K, they induce adjoint morphisms Rw and ∗Rw between the corresponding
Grothendieck groups, known as the original induction and restriction defined in [7]. Note
that when w = 1, these functors are the reflect of the Harish-Chandra induction and restric-
tion, which are more simply defined at the level of the modules categories.

1.4. Gelfand-Graev modules

In this subsection, we present the basic definitions and results concerning the Gelfand-
Graev representations, before stating the main theorem. We discuss then the strategy sug-
gested by Bonnafé and Rouquier in [5], coming from some geometric observations in the
case of a Coxeter element.

Let ψ : U −→ Λ× be a linear character of U . We assume that ψ is trivial on D(U)F ; it
is not a strong condition since the equality D(U)F = D(U) holds in most of the cases (the
only exceptions for quasi-simple groups being groups of type B2 or F4 over F2 or groups of
type G2 over F3, see [15, Lemma 7]). For any α in [∆/φ], we denote by ψα the restriction of
ψ through Fqα ' Vα ↪→ U/D(U)F .

D 1.3. – A linear character ψ : U −→ Λ× is said to be G-regular if

• ψ is trivial on D(U)F ;
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• ψα is non-trivial for any α in [∆/φ].

In that case, we define the Gelfand-Graev module of G associated to ψ to be

Γψ = IndGU Λψ

where Λψ denotes the ΛU -module Λ on which U acts through ψ.

R 1.4. – One can perform the same construction without assuming that ψ is reg-
ular. However, Steinberg has shown in [20] that in the case of a regular character, the module
obtained is always multiplicity free. For example, if G is a torus, then the unipotent group is
trivial, and therefore there is only one Gelfand-Graev module, corresponding to the trivial
character: the regular representation ΛG.

The construction of the Gelfand-Graev modules is to some extent orthogonal from the
Deligne-Lusztig functors. In this sense, we might try to understand the interactions between
the two notions. The following theorem and main result of this article is a partial achieve-
ment in this direction; it asserts that the Deligne-Lusztig restriction of a Gelfand-Graev mod-
ule is a shifted Gelfand-Graev module. By the previous remark, it can be stated as follows:

T 1.5. – Let ψ : U −→ Λ× be a G-regular linear character and w be an element
of W . Then

∗RẇΓψ ' ΛTwF [−`(w)]

in the derived category Db(ΛTwF -mod).

Such a result was already known for some specific elements of the Weyl group, namely
for the trivial element (see [6, Proposition 8.1.6]) and for a Coxeter element (see [5, Theo-
rem 3.10]). As explained in the introduction, both of these cases suggested to Bonnafé and
Rouquier that a stronger result should hold. Before stating it, we need to introduce some
more notations. For x ∈ W , we will denote by Bx ·B the unique B-orbit of G/B contain-
ing x, and will refer to it as the Schubert cell corresponding to x. Following [5], we now define
the pieces of the Deligne-Lusztig varieties:

and

Yx(ẇ) =
{
gU ∈ Bx ·U

∣∣ g−1F (g) ∈ UẇU
}

Xx(w) =
{
gB ∈ Bx ·B

∣∣ g−1F (g) ∈ BwB
}
.

By the Bruhat decomposition, one can check that there exist a numbering {w0, w1, . . . , wn}
of W and a filtration X(w) = F0 ⊃ F1 ⊃ · · · ⊃ Fn ⊃ Fn+1 = ∅ of X(w) by closed subsets
such that FirFi+1 = Xwi(w). We will say that the decomposition (Xx(w))x∈W is filterable.
The same property holds obviously for the variety Y(ẇ). Finally, if ψ : U −→ Λ× is a linear
character of U , we denote by eψ the corresponding idempotent, defined by

eψ =
ψ(1)

|U |
∑
u∈U

ψ(u−1)u.

Since U is a p-group, its order is invertible in Λ and eψ is a central element of ΛU .

With these notations, the result conjectured by Bonnafé and Rouquier in [5, Conjecture
2.7] can be stated as follows:
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T 1.6. – Let ψ : U −→ Λ× be a G-regular linear character and w be an element
of W . Then

eψRΓc(Yx(ẇ),Λ) '

ΛTwF [−`(w)] if x = w0

0 otherwise

in the derived category Db(mod-ΛTwF ).

Note that the family of varieties (Yx(ẇ))x∈W is a filterable partition of Y(ẇ) with maxi-
mal element Yw0(ẇ) and that ∗RẇΓψ ' RHom•ΛU (RΓc(Y(ẇ),Λ),Λψ) '

(
eψRΓc(Y(ẇ),Λ)

)∨
in the derived categoryDb(ΛTwF -mod), so that Theorem 1.5 follows indeed from this result.

To conclude this section, we move back attention to the family of varieties (Yx(ẇ))x∈W
and (Xx(w))x∈W . By the isomorphism B ∩ xB− ' Bx ·U which sends b to the coset bxU,
and its analog for G/B, we obtain a new description of these varieties:

and

Yx(ẇ) '
{
b ∈ B ∩ xB−

∣∣ b−1F (b) ∈ x(UẇU)F (x)−1
}

Xx(w) '
{
u ∈ U ∩ xU−

∣∣ u−1F (u) ∈ x(BwB)F (x)−1
}

the right action of TwF on Yx(ẇ) being now twisted by x. With this description, the restric-
tion of πw sends an element b of Yx(ẇ) to its left projection on U, that is, according to the
decomposition B = U o T.

2. Deodhar’s decomposition

We recall in this section the principal result of [9], using a different approach due to Morel
(see [18, Section 3]) which relies on a general decomposition theorem, namely the Bialynicki-
Birula decomposition, applied to Bott-Samelson varieties. We also give an elementary result
on the filtration property of this partition. Both are the fundamental tools we will be using
in the next section.

2.1. Decomposition of a double Schubert cell

Let w ∈W be an element of the Weyl group of G. The Schubert variety Sw associated to
w is the closure in G/B of the Schubert cell Bw·B. This variety is not smooth in general, but
Demazure has constructed in [8] a resolution of the singularities, called the Bott-Samelson
resolution, which is a projective smooth variety over Sw. The construction is as follows: we
fix a reduced expression w = s1 · · · sr of w and we define the Bott-Samelson variety to be

BS = Ps1 ×B · · · ×B Psr/B

where Psi = B ∪ BsiB is the standard parabolic subgroup corresponding to the simple
reflection si. The homomorphism π : BS −→ Sw which sends the class [p1, . . . , pr] in BS

of an element (p1, . . . , pr) ∈ Ps1 × · · · × Psr to the class of the product p1 · · · pr in G/B

is called the Bott-Samelson resolution. It is a proper surjective morphism of varieties and it
induces an isomorphism between π−1(Bw ·B) and Bw ·B.

Now the torus T acts naturally on BS by left multiplication on the first component, or
equivalently by conjugation on each component, so that π becomes a T-equivariant mor-
phism. There are finitely many fixed points for this action, represented by the classes of the
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elements of Γ = {1, s1}× · · · × {1, sr} in BS; such an element will be called a subexpression
of w.

For a subexpression γ = (γ1, . . . , γr) ∈ Γ ofw, we denote by γi = γ1 · · · γi the i-th partial
subword and we define the two following sets:

and

I(γ) =
{
i ∈ {1, . . . , r} | γi = si

}
J(γ) =

{
i ∈ {1, . . . , r} | γisi < γi

}
.

Finally, for v ∈ W , we will refer to the variety Bw · B ∩ B−v · B as the double Schubert
cell associated to (w, v). With these notations, Deodhar’s decomposition theorem (see [9,
Theorem 1.1 and Corollary 1.2]) can be stated as follows:

T 2.1 (Deodhar, 84). – There exists a set {Dγ}γ∈Γ of disjoint smooth locally
closed subvarieties of Bw ·B such that:

(i) Dγ is non-empty if and only if J(γ) ⊂ I(γ);
(ii) ifDγ is non-empty, then it is isomorphic to (Ga)|I(γ)|−|J(γ)|×(Gm)r−|I(γ)| as a variety;
(iii) for all v ∈W , the double Schubert cell has the following decomposition:

Bw ·B ∩B−v ·B =
∐
γ∈Γv

Dγ

where Γv is the subset of Γ consisting of all subexpressions γ such that γr = v.

R 2.2. – In the first assertion, the condition for a cell Dγ to be non-empty, that
is J(γ) ⊂ I(γ), can be replaced by:

∀ i = 2, . . . , r γi−1si < γi−1 =⇒ γi = si.

A subexpression γ ∈ Γ which satisfies this condition is called a distinguished subexpression.
For example, if G = GL3(F) and w = w0 = sts, then there are seven distinguished subex-
pressions, the only one being not distinguished is (s, 1, 1).

Sketch of proof:. – the Bott-Samelson variety is a smooth projective variety endowed
with an action of the torus T. Let us consider the restriction of this action to Gm through
a strictly dominant cocharacter χ : Gm −→ T. Since this action has a finite number of
fixed points, namely the elements of Γ, there exists a Bialynicki-Birula decomposition of the
variety BS into a disjoint union of affine spaces indexed by Γ (see [1, Theorem 4.3]):

BS =
∐
γ∈Γ

Cγ .

In [14], Härterich has explicitly computed the cells Cγ . To describe this computation, we
need some more notations: the simple roots corresponding to the simple reflections of the
reduced expression w = s1 · · · sr will be denoted by β1, . . . , βr and we set β̃i = γi(−βi).
Note that with these notations, one has

J(γ) =
{
i ∈ {1, . . . , r} | β̃i ∈ Φ+

}
.

Let us consider the open immersion aγ : Ar −→ BS defined by

aγ(x1, . . . , xr) = [uγ1(−β1)(x1)γ1, . . . , uγr(−βr)(xr)γr].
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Then one can easily check that π−1(Bw ·B) = Im(a(s1,··· ,sr)). Moreover, Härterich’s com-
putations (see [14, Section 1]) show that for any subexpression γ ∈ Γ, one has:

Cγ = aγ
(
{(x1, . . . , xr) ∈ Ar | xi = 0 if i ∈ J(γ)}

)
.

Taking the trace of this decomposition with π−1(Bw · B), one obtains a decomposition of
the variety π−1(Bw ·B). Furthermore, the restriction of π to this variety induces an isomor-
phism with Bw ·B, and thus gives a partition of Bw ·B into disjoint cells:

π−1(Bw ·B) =
∐
γ∈Γ

π−1(Bw ·B) ∩ Cγ '
∐
γ∈Γ

Bw ·B ∩ π(Cγ) = Bw ·B.

If we define Dγ to be the intersection Bw ·B ∩ π(Cγ), then it is explicitly given by:

Dγ ' π−1(Dγ) = aγ
(
{(x1, . . . , xr) ∈ Ar | xi = 0 if i ∈ J(γ) and xi 6= 0 if i /∈ I(γ)}

)
.

This description, together with the inclusion π(Cγ) ⊂ B−γr ·B, proves the three assertions
of the theorem.

E 2.3. – In the case where G = GL3(F), and w = w0 = sts, one can easily
describe the double Schubert cell Bw · B ∩ B− · B. It is isomorphic to BwB ∩U− by the
map u 7→ uB. Besides, by Gauss reduction, the set BwBw−1 = BB− consists of all matrices
whose principal minors are non-zero. Hence,

BwB ∩U− =


Ü

1 0 0

b 1 0

c a 1

ê∣∣∣∣∣∣∣∣ c 6= 0 and ab− c 6= 0

 .

Considering the alternative a = 0 or a 6= 0, one has BwB ∩ U− ' (Gm)3 ∪ Ga × Gm,
which is exactly the decomposition given by the two distinguished expressions (1, 1, 1) and
(s, 1, s).

N 2.4. – For a subexpression γ ∈ Γ, we define the sequence

Φ(γ) =
(
γi(−αi)

∣∣ i = 1, . . . , r and γi(αi) > 0
)

=
(
β̃i
∣∣ i = 1, . . . , r and γi(αi) > 0

)
.

Using Härterich’s computation for the cell Cγ and the definition of π, one can see that each
element of π(Cγ) ⊂ B−γr ·B has a representative in U− of the form∏

β∈Φ(γ)

uβ(xβ) with each xβ ∈ Ga,

the product being taken with respect to the order on Φ(γ). At the level of Dγ , some of the
variables xβ must be non-zero (those corresponding to β̃i with γi = 1) but the expression
becomes unique. Indeed, the restriction of π to π−1(Bw ·B) (and then to π−1(Dγ)) is injec-
tive. Note that this set of representatives is not contained in the variety BwB∩ (U−∩ vU−)

in general. However, this is the case for v = 1, and we obtain in this way a parametrization
of the variety BwB ∩U−.
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2.2. Filtration property

We keep the previous notations: v and w are two elements of the Weyl group such that
v ≤ w and w = s1 · · · sr is a reduced expression of w. Deodhar has shown (see [9, Propo-
sition 5.3.(iv)]) that among all the distinguished subexpressions of w with product v, there
exists one and only one for which the sets J and I are equal. For example, if v = 1, it is clear
that this subexpression is (1, . . . , 1). By Theorem 2.1.(ii) the corresponding Deodhar cell has
the following properties:

– it is the unique maximal cell in Bw ·B ∩B−v ·B, and it is of dimension `(w)− `(v);
– it is a product of Gm’s;
– it is dense in Bw ·B ∩B−v ·B (since this variety is irreducible by [19]).

In particular, the border of the maximal cell is a union of cells of lower dimensions. Unfor-
tunately, this is not always true for the other cells (see [11]), and the decomposition is not a
stratification in general. However, it is possible to describe some relations between the dif-
ferent closures, showing that it is at least filterable. This is a general property for projective
smooth varieties (see [2]) but we shall give here a simple method for constructing the filtra-
tion. In this aim, we can embed BS into a product of flag varieties as follows: we define the
morphism ι : BS −→ (G/B)r by

ι([p1, p2, . . . , pr]) = (p1B, p1p2B, . . . , p1p2 · · · prB).

Note that π is the last component of this morphism. Let γ ∈ Γ be a subexpression of w. As
a direct consequence of the construction of Cγ , one has

ι(Cγ) ⊂
r∏
i=1

B−γi ·B.

Since BS is projective, ι is a closed immersion, and hence it sends the closure of a cell Cγ in
BS to the closure of ι(Cγ). Therefore, it is natural to consider a partial order on the set Γ

coming from to the Bruhat order on W since it describes the closure relation for Schubert
cells. For δ ∈ Γ, we define

δ � γ ⇐⇒ γi ≤ δi for all i = 1, . . . , r.

Then, by construction:

(2) Cγ ⊂
⋃
δ�γ

Cδ and Dγ ⊂
⋃
δ�γ

Dδ,

where Dγ denotes the closure of Dγ in the Schubert cell Bw · B. Furthermore, con-
sidering subexpressions in Γv only would lead to a similar description for the closure in
Bw ·B ∩B−v ·B. Therefore,

L 2.5. – Let w, v ∈ W such that v ≤ w and w = s1 · · · sr be a reduced expression
of w. Then there exist a numbering of Γv = {γ0, γ1, . . . , γn} and a sequence (Fi)i=0,...,n of
closed subvarieties of Bw ·B ∩B−v ·B such that:

• γ0 corresponds to the maximal cell;
• Fn = Dγn ;
• ∀ i = 0, . . . , n− 1, Fi r Fi+1 = Dγi .
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Proof. – We can choose any numbering which refines the order�: the (Fi) are then deter-
mined by the relation they must verify, and they are closed as a consequence of Formula (2).

3. Proof of the main theorem

In this section, we present a proof of Theorem 1.6, which, as explained in Section 1.4, im-
plies the main result of this article. It is divided into two parts: in the first subsection, we
deal with the variety Yx(ẇ) for an element x ∈W which is assumed to be different from w0.
We show that there cannot be any regular character in the cohomology of this variety. The
key point is to consider a specific quotient of this variety for which one can extend the action
of at least one of the finite groups Vα up to the corresponding one-parameter subgroup Vα.
The second subsection is devoted to the remaining piece, the variety Yw0

(ẇ). The crucial in-
gredient for studying its cohomology is the Deodhar decomposition, which has been recalled
in the previous section. We shall lift this decomposition to obtain a nice partition of Yw0

(ẇ)

and then compute the cohomology of the pieces using the results of [5].

3.1. The variety Yx(ẇ) for x 6= w0

Throughout this section, xwill denote any element of the Weyl groupW different fromw0.
In order to study the cohomology groups of the Deligne-Lusztig variety Yx(ẇ), we define

Ỹx(ẇ) =
{
b ∈ B

∣∣ b−1F (b) ∈ x(UẇU)F (x)−1
}
.

It is aB-variety, endowed with a right action of TwF obtained by right multiplication by the
conjugate xTwFx−1. Besides, it is related to Yx(ẇ) via the map π : b ∈ Ỹx(ẇ) 7−→ bxU ∈
Yx(ẇ). One can readily check that this morphism has the following properties:

– it is a surjective smooth B × (TwF )op-equivariant morphism of varieties;
– all the fibers of π are isomorphic to an affine space of dimension `(w0)− `(x).

It is therefore sufficient to study the cohomology of Ỹx(ẇ). More precisely, one has by
Proposition 1.1.(iv)

(3) RΓc(Yx(ẇ),Λ) ' RΓc(Ỹx(ẇ),Λ)[2(`(w0)− `(w))]

in the derived category Db(ΛB-mod-ΛTwF ). We now prove the following result:

P 3.1. – Let α be a simple root such that x−1(α) > 0. Then the action of Vα
on the quotient D(U)F \Ỹx(ẇ) extends to an action of Vα.

Proof. – Considering the restriction to Ỹx(ẇ) of the map b ∈ B 7−→ (b−1F (b), b∆) ∈
B×B∆ studied in Section 1.2 leads to the following parametrization of the quotient:

D(U)F \Ỹx(ẇ) '
{

(b̄, h) ∈ B×B∆

∣∣ b̄∆ = L∆(h) and b̄ ∈ x(UẇU)F (x)−1
}
.

We should notice that with this description, U (and thenD(U)F \U ) acts only on the second
coordinate. More precisely, any element u of U acts by u · (b̄, h) = (b̄, u∆h).

Through the quotient map B∆ −→ T, one can extend trivially any character of T to the
group B∆. For the simple root α, we will denote by α̃ : B∆ −→ Gm the corresponding
extension and we define an action of Vα on the quotient variety D(U)F \Ỹx(ẇ) by:
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∀ ζ ∈ F vα(ζ) · (b̄, h) =
(
uα
(
α̃(h−1)(ζqα − ζ)

)
b̄, vα(ζ)h

)
.

Let us show that this is a well-defined action on Ỹx(ẇ): consider (b̄, h) ∈ Ỹx(ẇ) and
(b̄′, h′) = vα(ζ) · (b̄, h) their image by ζ. Using the fact that L∆(vα(ζ)) = uα(ζqα − ζ), we
compute in the group B∆:

L∆(h′) = h′
−1
F (h′) = h−1L∆(vα(ζ))F (h)

= h−1uα(ζqα − ζ)hh−1F (h)

L∆(h′) = uα
(
α̃(h−1)(ζqα − ζ)

)
L∆(h)

so that L∆(h′) = b̄′∆ by definition of b̄′. Moreover, the one-parameter subgroup Uα is con-
tained in xU since x−1(α) > 0, and hence b̄′ ∈ xUb̄ ⊂ x(UẇU)F (x)−1, which proves that
(b̄′, h′) ∈ Ỹx(ẇ).

To conclude, we remark that restricting this action to Vα amounts to restrict the parame-
ter ζ to Fqα . In that case, we clearly recover the natural action of Vα coming from the action
of D(U)F \U we described before.

As an application, we show that, as expected in [5, Conjecture 2.7], the regular characters
do not occur in the cohomology of the variety Yx(ẇ). This is the first step for determining
the isotypic part of these representations in the cohomology of the variety Y(ẇ), and hence
proving Theorem 1.5.

C 3.2. – Let ψ : U −→ Λ× be a G-regular linear character, and x an element
of the Weyl group W different from w0. Then

eψRΓc(Yx(ẇ),Λ) ' 0

in the derived category Db(mod-ΛTwF ).

Proof. – By Formula (3), we can replace Yx(ẇ) by Ỹx(ẇ). Since x is different from w0,
there exists a simple root α such that x−1(α) > 0; by Proposition 3.1, the action of Vα on
D(U)F \Ỹx(ẇ) extends to an action of the connected group Vα. On the other hand, ψ is
a regular character, and hence its restriction to Vα is non-trivial. Therefore, we obtain by
Proposition 1.1.(iii):

eψRΓc(D(U)F \Ỹx(ẇ),Λ) ' eψ
(
Λ

L
⊗ΛVα RΓc(D(U)F \Ỹx(ẇ),Λ)

)
' 0.

Finally, since ψ is trivial on D(U)F , we get

eψRΓc(Ỹx(ẇ),Λ) ' Λ
L
⊗ΛD(U)F eψRΓc(Ỹx(ẇ),Λ) ' eψRΓc(D(U)F \Ỹx(ẇ),Λ) ' 0

using the fact that eψ is central in ΛU and the Proposition 1.1 (ii).
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3.2. The variety Yw0
(ẇ)

In this section we are concerned with the cohomology of the Deligne-Lusztig variety
Yw0

(ẇ) corresponding to the maximal Schubert cell. Our aim is to determine the contri-
bution of the regular characters in these cohomology groups. For this purpose, we define
a partition of the variety Xw0

(w), coming from Deodhar’s decomposition of the double
Schubert cell Bw · B ∩ B− · B and we show that these specific characters occur only in
the cohomology of the maximal cell. We deduce the result at the level of Y using the same
method as in [5].

We keep the basic assumptions and the notations of Section 2: w = s1 · · · sr is a reduced
expression ofw, γ ∈ Γ1 is a distinguished subexpression ofw with product 1 andDγ denotes
the corresponding Deodhar cell in Bw ·B ∩B− ·B. We will be interested in the pull-back
Ωγ of Dγ in U−, for which we have a nice parametrization (see the Notations 2.4). In these
terms, Deodhar’s decomposition can be written as

BwB ∩U− =
∐
γ∈Γ1

Ωγ .

Now since F (w0) = w0, the maximal piece of the Deligne-Lusztig variety X(w) has the fol-
lowing expression (see Section 1.4):

Xw0
(w) =

{
gB ∈ Bw0 ·B

∣∣ g−1F (g) ∈ BwB
}

'
{
u ∈ U

∣∣ w0(u−1F (u)) ∈ BwB ∩U−
}

so that if we define the piece Xγ to be:

Xγ =
{
u ∈ U

∣∣ w0(u−1F (u)) ∈ Ωγ
}

then we get Xw0
(w) '

∐
γ∈Γ1

Xγ .

Note that each component of this partition is stabilized by the action of U , and that this
isomorphism is U -equivariant. The same decomposition holds also for Yw0

(ẇ) if we define
Yγ to be the pullback π−1

w (Xγ) where πw : Y(ẇ) −→ X(w) is the quotient map by the right
action of TwF defined in Section 1.3. One can easily check that this defines a family of locally
closed smooth subvarieties of Yw0

(ẇ) satisfying the filtration property of Lemma 2.5.

E 3.3. – Let us go back to our example of GL3(F), endowed with the standard
Fq-structure (see Example 2.3). Given an element u of U written as

u =

Ü
1 a c

0 1 b

0 0 1

ê
one has w0(u−1F (u)) =

Ü
1 0 0

bq − b 1 0

cq − c− a(bq − b) aq − a 1

ê
.

Together with the description of Bw0B ∩U− given in Example 2.3, we obtain
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Xw0(w0) '

(a, b, c) ∈ A3
∣∣∣ cq − c− a(bq − b) 6= 0

cq − c− aq(bq − b) 6= 0

 .

Since we are concerned with regular characters only, it is more convenient to consider the
quotient variety D(U)F \Xw0

(w0). But taking the quotient by D(U)F ' Fq amounts to
take the expression C = cq − c− a(bq − b) as a variable, so that

D(U)F \Xw0
(w0) '

{
(a, b, C) ∈ (Ga)2 ×Gm

∣∣C − (aq − a)(bq − b) 6= 0
}
.

It remains to apply the partition of Bw0B ∩ U− given in the Example 2.3 to deduce a de-
composition of this quotient into:

– a closed subvariety XC defined by the equation aq−a = 0. From the above description,
it is clearly isomorphic to Fq × Ga × Gm with the product action of D(U)F \U '
Fq × Fq on the first two coordinates;

– an open subvariety XO defined by the equation aq − a 6= 0. By the change of variables
C ′ = C/(aq − a), it becomes isomorphic to

XO ' L−1(Gm)×
{

(b, C ′) ∈ Ga ×Gm

∣∣ C ′ 6= bq − b
}

' L−1(Gm)×
(
(Ga ×Gm) r L−1(Gm)

)
where we have embedded L−1(Gm) into Ga ×Gm by the map b 7−→ (b, bq − b).

It is now a straightforward matter to compute the cohomology groups of the varieties and it
turns out that the cohomology of XC does not carry any regular character whereas there
is one occurring in the cohomology of the maximal cell XO. More precisely, for a regu-
lar character ψ, we get eψH•c(D(U)F \Xw0

(w0)) ' eψH•c(XO) ' Λψ[−3] as expected in
Theorem 1.6.

Keeping in mind the previous example, we give now a description of the quotient variety
D(U)F \Xγ in terms of some combinatorial data, namely the sets I(γ) and J(γ) introduced
in Section 2. In order to state this result, we need to introduce some more notations; for
m,n ∈ N and q a power of p, we define the following variety:

Xq(n,m) =
{

(ζ, µ1, . . . , µn, λ1, . . . , λm) ∈ (Ga)n+1 × (Gm)m
∣∣ ζq − ζ =

∑
i
µi +

∑
j
λj
}

which is endowed with an action of Fq by translation on the first variable.

P 3.4. – Let γ be a distinguished subexpression of w. For α ∈ ∆ a simple
positive root and Oα the corresponding orbit in ∆/φ, we consider the following integers:

• nα(γ) =
∣∣{i = 1, . . . , r | w0(β̃i) ∈ Oα and i ∈ I(γ) r J(γ)}

∣∣;
• mα(γ) =

∣∣{i = 1, . . . , r | w0(β̃i) ∈ Oα and i /∈ I(γ)}
∣∣;

• n̄(γ) = |I(γ)| − |J(γ)| −
∑
nα(γ);

• m̄(γ) = r − |I(γ)| −
∑
mα(γ).
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Then there exists a D(U)F \U -equivariant morphism of varieties, bijective, finite and purely
inseparable:

(Ga)n̄(γ) × (Gm)m̄(γ) ×
∏

α∈[∆/φ]

Xqα(nα(γ),mα(γ)) −→ D(U)F \Xγ

where D(U)F \U '
∏
α∈[∆/φ] Vα acts on the product

∏
α∈[∆/φ] Xqα(nα(γ),mα(γ)) via the

identifications Vα ' Fqα . Moreover, if (G, F ) is split, this is an isomorphism of varieties. In
general, it induces an equivalence of étale sites.

Proof. – Recall that we have chosen in Section 1.2 an isomorphism of algebraic groups
between D(U)\U and the abelian group

∏
α∈∆ Uα ⊂ B∆. As in the proof of Proposi-

tion 3.1, we can hence realize the quotient variety as:

D(U)F \Xw0
(w) '

{
(ū, h) ∈ U×

∏
α∈∆

Uα

∣∣ ū∆ = L∆(h) and w0 ū ∈ BwB
}
.

The restriction of this isomorphism to D(U)F \Xγ gives the following description:

D(U)F \Xγ '
{

(ū, h) ∈ U×
∏
α∈∆

Uα

∣∣ ū∆ = L∆(h) and w0 ū ∈ Ωγ
}

'
{

(ū, h) ∈ w0Ωγ ×
∏
α∈∆

Uα

∣∣ ū∆ = L∆(h)
}
.

According to the parametrization of the cell Dγ (see the Notations 2.4), every element ū of
w0Ωγ can be uniquely written as

ū =
∏

β∈Φ(γ)

uw0(β)(xβ) ∈ U

with the variables xβ living in Ga or Gm whether β is of the form β̃i with i belonging to I(γ)

or not. Now calculating ū∆ (or equivalently ūD(U)) amounts to keep only the simple roots
occurring in this expression, that is the negative roots β for which w0(β) ∈ ∆. On the other
hand, for any element h =

(
uα(ζα)

)
α∈∆

of
∏
α∈∆ Uα, one has

L∆(h) = h−1F (h) =
(
uφ(α)(ζ

q◦α
α − ζφ(α))

)
α∈∆

.

Therefore, the quotient varietyD(U)F \Xγ has a system of coordinates given by the two sets
of variables (xβ) and (ζα) satisfying the relations

∀α ∈ ∆ ζ
q◦α
α − ζφ(α) =

∑
w0(β)=φ(α)

xβ .

Note that we can group the relations and the variables according to the class of the simple
root α in ∆/φ which is involved in the equations. One deduces thatD(U)F \Xγ decomposes
into a product of varieties indexed by [∆/φ]. Without any loss of generality, we can hence
assume that φ acts transitively on ∆. In order to simplify the notations, we fix a simple rootα
and we will denote ζφi(α) by ζi and q◦φi(α) by q◦i . The relations defining Xγ can be then rewrit-
ten as

∀ i = 1, . . . , d ζi = ζ
q◦i−1

i−1 −
∑

w0(β)=φi(α)

xβ .

It shows that the value of ζi is uniquely determined by ζ0 and the variables (xβ). Moreover,
by substitution, the last equation becomes
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ζqα0 − ζ0 =
∑

w0(β)=α

xβ +
∑

w0(β)=φd−1(α)

x
q◦d−1

β + · · · +
∑

w0(β)=φ(α)

x
q◦d−1···q

◦
2q
◦
1

β .

We should not forget that some of the variables xβ are not involved in this equation, namely
the ones for which w0(β) is not a simple root; they correspond to the factor (Ga)n̄(γ) ×
(Gm)m̄(γ). Indeed, if we set qβ = q◦d−1 · · · q◦i provided thatw0(β) = φi(α) for i ∈ {1, . . . , d},
we obtain the following description of the quotient variety D(U)F \Xγ :

D(U)F \Xγ ' (Ga)n̄(γ) × (Gm)m̄(γ) ×
{

(ζ, (xβ)β∈−∆)
∣∣ ζqα − ζ =

∑
x
qβ
β

}
.

Finally, up to a new labelling of the variables (xβ)β∈−∆ whether they belong to Ga or Gm,
the map (xβ) 7−→ (x

qβ
β ) induces the expected morphism of varieties. It is a finite, bijective

and purely inseparable morphism between smooth varieties. By [12, Exposé IX, 4.10], it in-
duces an equivalence of étale sites.

We want to lift the above description of Xγ up to the variety Yγ . Unfortunately, one can-
not deduce directly from the previous proposition a parametrization of Yγ since the quo-
tient map by TwF might not split. Following [5], we shall nevertheless construct an abelian
covering of D(U)F \Yγ which will have the expected shape.

N 3.5. – For the sake of coherence with the notations of the last proposition,
we introduce the positive integers m(γ) = r − |I(γ)| and n(γ) = |I(γ)| − |J(γ)| so that the
Deodhar cell is isomorphic to (Ga)n(γ) × (Gm)m(γ). The product variety given in the same
proposition will be simply denoted by X′γ .

Let us consider the pullback in Yγ of a connected component of U\Yγ and denote it
by Y◦γ . By construction, Y◦γ is stable by U and the quotient U\Y◦γ is connected (whereas
Y◦γ might not be). Besides, since U\Yγ/T

wF ' U\Xγ is connected, the group TwF

permutes transitively the connected components of U\Yγ . Therefore, if we define the
group H to be the stabilizer of U\Y◦γ in TwF , then the multiplication induces the following
(TwF )op-equivariant isomorphism of varieties:

(U\Y◦γ)×H TwF ' U\Yγ .

On the other hand, the actions of U and TwF commute, so that we can also check that

(4) (D(U)F \Y◦γ)×H TwF ' D(U)F \Yγ .

We now define the analog Y′γ of X′γ for the varietyD(U)F \Y◦γ , which fits into the follow-
ing commutative diagram, where all the squares are cartesian:

Y′γ oo
equ //

π′w ����

D(U)F \Y◦γ // //

π◦w
����

U\Y◦γ

π◦w
����

X′γ oo
equ // D(U)F \Xγ

// // U\Xγ .

In this diagram and the following ones, the notation equ stands for an equivalence of étale
sites. Note that the morphims π′w and π◦w are isomorphic to quotient maps by the right ac-
tion of H ⊂ TwF , which is a p′-group. In particular, the map π◦w : U\Y◦γ −→ (Ga)n(γ) ×
(Gm)m(γ) is a Galois covering which is tamely ramified. By Abhyankar’s lemma (see [12,
Exposé XIII, 5.3]) there exists a Galois covering $ : (Ga)n(γ) × (Gm)m(γ) −→ U\Y◦γ with
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groupN such that the composition π◦w◦$ : (Ga)n(γ)×(Gm)m(γ) −→ (Ga)n(γ)×(Gm)m(γ)

sends (µ1, . . . , µn(γ), λ1, . . . , λm(γ)) to (µ1, . . . , µn(γ), λ
d
1, . . . , λ

d
m(γ)) for some positive inte-

ger d relatively prime to p. We summarize the different maps involved in the following dia-
gram:

(Ga)n(γ) × (Gm)m(γ)

$ /N
����

/(µd)m(γ)

�� ��

U\Y◦γ

π◦w /H
����

U\Xγ ' (Ga)n(γ) × (Gm)m(γ)

where µd denotes the group of the d-th roots of unity in F. In this setting, N is a subgroup
of (µd)

m(γ) and we have a canonical group isomorphism (µd)
m(γ)/N ' H. If we form the

fiber product of Y′γ and (Ga)n(γ)×(Gm)m(γ) aboveU\Y◦γ , we obtain the following diagram
whose squares are cartesian:

(5) Y′′γ // //

/N
����

(Ga)n(γ) × (Gm)m(γ)

/N$
����

/(µd)m(γ)

�� ��

Y′γ oo
equ //

π′w ����

D(U)F \Y◦γ // //

π◦w
����

U\Y◦γ

π◦w /H
����

X′γ oo
equ // D(U)F \Xγ

// // U\Xγ ' (Ga)n(γ) × (Gm)m(γ)

so that by definition of X′γ and the properties of the Galois covering π◦w ◦ $ we get a
D(U)F \U ×

(
(µd)

m(γ)
)op

-equivariant isomorphism of varieties:

(6) Y′′γ ' (Ga)n̄(γ) × (Gm)m̄(γ)
∏

α∈[∆/φ]

Yqα,d(nα(γ),mα(γ))

where the factors on the right-hand side are defined by

Yq,s(n,m) =
{

(ζ, µ1, . . . , µn, λ1, . . . , λm) ∈ (Ga)n+1 × (Gm)m
∣∣ ζq − ζ =

∑
i
µi +

∑
j
λsj
}

and endowed with a natural action Fq by translation on the first variable together with the
action of (µs)

m obtained by multiplication on (Gm)m. Up to an equivalence of étale sites, we
have performed in this way a construction of an abelian covering of the variety D(U)F \Y◦γ
which decomposes into a product of varieties. Using the results of [5], we shall first compute
the cohomology of each of these factors:

L 3.6. – Let ψ be a non trivial character of Fq. Then

eψRΓc(Yq,s(n,m),Λ) '

Λψ(µs)
m[−m] if n = 0,

0 otherwise

in the derived category Db(ΛFq-mod-Λ(µs)
m).
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Proof. – If n 6= 0, the equation defining Yq,s(n,m) can be rewritten as

µ1 = ζq − ζ −
m∑
i=1

λi −
n∑
j=2

µj

so that Yq,s(n,m) ' (Ga)n × (Gm)m, with an action of Fq on the first coordinate. Since
the cohomology of the affine line is given by RΓc(Ga,Λ) ' Λ[−2] we get the result by the
Künneth formula (see Proposition 1.1 (i)).

The variety Yq,s(0,m) can be completely described in terms of the curves Yq,s =

Yq,s(0, 1) studied by Bonnafé and Rouquier in [5] (see also [16]): the map

Yq,s ×Yq,s × · · · ×Yq,s −→ Yq,s(0,m)(
(ζ1, λ1), . . . , (ζm, λm)

)
7−→ (ζ1 + · · ·+ ζm, λ1, . . . , λm)

induces indeed the following Fq × (µs)
m-equivariant isomorphism of varieties:

Yq,s ×Fq ×Yq,s ×Fq · · · ×Fq Yq,s ' Yq,s(0,m).

To conclude, it remains to translate this isomorphism in the categoryDb(ΛFq-mod-Λ(µs)
m);

we can then deduce the result from the case m = 1 which was solved in [5, Lemma 3.6]:

eψRΓc(Yq,s(0,m),Λ) ' eψRΓc(Yq,s,Λ)
L
⊗ΛFq · · ·

L
⊗ΛFqeψRΓc(Yq,s,Λ)

' Λψµs[−1]
L
⊗ΛFq · · ·

L
⊗ΛFqΛψµs[−1] ' Λψ(µs)

m[−m].

the first quasi-isomorphism coming also from the fact that eψ is an idempotent.

We have now at our disposal all the ingredients we need to compute the isotypic part of a
regular character in the cohomology of each variety Yγ :

P 3.7. – Let γ be a distinguished subexpression of w with product 1, and
ψ : U −→ Λ× a G-regular linear character. Then

eψRΓc(Yγ ,Λ) '

ΛTwF [−`(w)] if γ = (1, 1, . . . , 1),

0 otherwise

in the derived category Db(mod-ΛTwF ).

Proof. – Since ψ is trivial on D(U)F , we can argue as in the proof of Corollary 3.2 to
show that it is sufficient to prove the result for the quotient varietyD(U)F \Yγ . Furthermore,
this variety can be expressed by Formula (4) as an amalgamated product with TwF aboveH
so that by Formula (1) one obtains

RΓc(D(U)F \Yγ ,Λ) ' RΓc(D(U)F \Y◦γ ,Λ)
L
⊗ΛH TwF .

We continue the reductions: from the commutative diagram (5), we have an equivalence of
étale sites between D(U)F \Y◦γ and Y′γ and an isomorphism between Y′γ and Y′′γ/N , both
being U ×Hop-equivariant. Together, they induce the following quasi-isomorphism:

RΓc(D(U)F \Y◦γ ,Λ) ' RΓc(Y
′′
γ ,Λ)

L
⊗ΛN Λ.

Since H ' (µd)
m/N , we deduce by an adjunction formula that
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RΓc(D(U)F \Yγ ,Λ) '
(
RΓc(Y

′′
γ ,Λ)

L
⊗ΛN Λ

) L
⊗ΛH ΛTwF

'
(
RΓc(Y

′′
γ ,Λ)

L
⊗Λ(µd)m(γ) ΛH

) L
⊗ΛH ΛTwF

RΓc(D(U)F \Yγ ,Λ) ' RΓc(Y
′′
γ ,Λ)

L
⊗Λ(µd)m(γ) ΛTwF .

Denote by ψα the restriction of ψ to the group Vα. The decomposition of the variety Y′′γ (see
Formula (6)) translates, by the Künneth formula, into the following quasi-isomorphisms:

eψRΓc(Y
′′
γ ,Λ)

' RΓc
(
(Ga)n̄(γ) × (Gm)m̄(γ),Λ

) L
⊗ eψRΓc

( ∏
α∈[∆/φ]

Yqα,d(nα(γ),mα(γ)),Λ
)

' RΓc
(
(Ga)n̄(γ) × (Gm)m̄(γ),Λ

) L
⊗
( L⊗
α∈[∆/φ]

eψαRΓc(Yqα,d(nα(γ),mα(γ)),Λ)
)
.

Since ψ is a regular character, every restriction ψα is a non trivial character of Fqα . It fol-
lows from Lemma 3.6 that the complex eψRΓc(D(U)F \Yγ ,Λ) is quasi-isomorphic to zero
as soon as one of thenα(γ) is different from zero. But for γ 6= (1, 1, . . . , 1), the set I(γ)rJ(γ)

is non-empty, and if i0 denotes its largest element, then γi0 = 1 and γi0−1 is a simple reflec-
tion sα for some simple root α ∈ ∆. Therefore, n−w0(α)(γ) 6= 0 and eψRΓc(Y

′′
γ ,Λ) ' 0.

If γ = (1, 1, . . . , 1), then the invariants m̄(γ), n̄(γ) and nα(γ) are all equal to zero, and by
Lemma 3.6, one has

eψRΓc(D(U)F \Yγ ,Λ) '
( L⊗
α∈[∆/φ]

eψαRΓc(Yqα,d(0,mα(γ)),Λ)
)L
⊗Λ(µd)m(γ)ΛTwF

'
( L⊗
α∈[∆/φ]

Λψα(µd)
mα(γ)[−mα(γ)]

)L
⊗Λ(µd)m(γ)ΛTwF

' Λψ(µd)
m(γ)[−m(γ)]

L
⊗Λ(µd)m(γ)ΛTwF

eψRΓc(D(U)F \Yγ ,Λ) ' ΛψT
wF [−m(γ)],

which gives the conclusion since m(γ) = `(w) for this particular subexpression.

By combining the last proposition and the filtration property (see Lemma 2.5), we can
finally state the second part of the result expected in [5, Conjecture 2.7], which finishes the
proof of Theorem 1.6.

C 3.8. – Let ψ : U −→ Λ× be a G-regular linear character. Then

eψRΓc(Yw0
(ẇ),Λ) ' ΛψT

wF [−`(w)]

in the derived category Db(ΛU -mod-ΛTwF ).
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R 3.9. – Using the results of [5], we can actually compute the cohomology of each
variety D(U)F \Yγ , and not only the ψ-isotypic part. However, except in some very special
cases, it does not lead to a complete description of the complex of ΛU -modules for the va-
riety D(U)F \Yw0

(ẇ). Indeed, we need to compute the connection morphisms between the
cohomology groups of the different pieces, which seems to be a difficult problem for the mo-
ment.
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