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HODGE-TATE AND DE RHAM REPRESENTATIONS
IN THE IMPERFECT RESIDUE FIELD CASE

ʙʏ K����� MORITA

Aʙ��ʀ���. – Let K be a p-adic local field with residue field k such that [k : kp] = pe < +∞ and
V be a p-adic representation of Gal(K/K). Then, by using the theory of p-adic differential modules,
we show that V is a Hodge-Tate (resp. de Rham) representation of Gal(K/K) if and only if V is a
Hodge-Tate (resp. de Rham) representation of Gal(Kpf/Kpf) where Kpf/K is a certain p-adic local
field with residue field the smallest perfect field kpf containing k.

R�����. – Soit K un corps local p-adique de corps résiduel k tel que [k : kp] = pe < +∞ et
soit V une représentation p-adique de Gal(K/K). Nous utilisons la théorie des modules différentiels
p-adiques pour montrer que V est une représentation de Hodge-Tate (resp. de Rham) de Gal(K/K) si
et seulement si V est une représentation de Hodge-Tate (resp. de Rham) de Gal(Kpf/Kpf) où Kpf/K

est un certain corps local p-adique de corps résiduel le plus petit corps parfait kpf contenant k.

1. Introduction

Let K be a complete discrete valuation field of characteristic 0 with residue field k of
characteristic p > 0 such that [k : k

p] = p
e

< +∞. Choose an algebraic closure K of K

and put GK = Gal(K/K). By a p-adic representation of GK , we mean a finite dimensional
vector space V over Qp endowed with a continuous action of GK . In the case e = 0 (i.e. k is
perfect), following Fontaine, we can classify p-adic representations of GK by using the p-adic
periods rings BHT, BdR, Bst and Bcris (Hodge-Tate, de Rham, semi-stable and crystalline
representations). In the general case (i.e. k is not necessarily perfect), Hyodo constructed the
imperfect residue field version of the ring BHT and Tsuzuki and several authors constructed
that of the ring BdR. By using these rings, we can define the imperfect residue field version
of Hodge-Tate and de Rham representations of GK in the evident way ([3], [7], [8], [9], [12]).

Now, we shall state the main result of this article. Let us fix some notations. Fix a lifting
(bi)1≤i≤e of a p-basis of k in OK (the ring of integers of K) and for each m ≥ 1, fix a p

m -th
root b

1/p
m

i
of bi in K satisfying (b1/p

m+1
i

)p = b
1/p

m

i
. Put K

(pf) = ∪m≥1K(b1/p
m

i
, 1 ≤ i ≤ e)

and K
pf = the p-adic completion of K

(pf). These fields depend on the choice of a lifting
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342 K. MORITA

of a p-basis of k in OK . Since K
pf becomes a complete discrete valuation field with perfect

residue field, we can apply theories in the perfect residue field case to p-adic representations of
GKpf = Gal(Kpf/K

pf) where we choose an algebraic closure Kpf of K
pf containing K. Note

that, if V is a p-adic representation of GK , it can be also regarded as a p-adic representation
of GKpf (see Section 2.2 for details). Our main result is the following.

Tʜ��ʀ�� 1.1. – Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : k

p] = p
e

< +∞ and V be a p-adic
representation of GK . Let K

pf be the field extension of K defined as above. Then, we have the
following equivalences

1. V is a Hodge-Tate representation of GK if and only if V is a Hodge-Tate representation
of GKpf ,

2. V is a de Rham representation of GK if and only if V is a de Rham representation of
GKpf .

In the case of Hodge-Tate representations, Tsuji [11] had proved a more refined theorem
based on this article. This paper is organized as follows. In Section 2, we shall review the
definitions and basic known facts on Hodge-Tate and de Rham representations, first in the
perfect residue field case and then in the imperfect residue field case. In Section 3, we shall
review the theory of p-adic differential modules which play a central role in this article.
In Section 4, by using the theory of p-adic differential modules, we shall prove the main
theorem, first for Hodge-Tate representations and then for de Rham representations.
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2. Preliminaries on Hodge-Tate and de Rham representations

2.1. Hodge-Tate and de Rham representations in the perfect residue field case

(See [4] and [5] for details.) Let K be a complete discrete valuation field of characteristic 0
with perfect residue field k of characteristic p > 0. Choose an algebraic closure K of K and
consider its p-adic completion Cp. Put

�E = lim←−x�→xpCp = {(x(0)
, x

(1)
, . . . ) | (x(i+1))p = x

(i)
, x

(i) ∈ Cp}

and let �E+ denote the set of x = (x(i)) ∈ �E such that x
(0) ∈ OCp where OCp denotes the

ring of integers of Cp. For two elements x = (x(i)) and y = (y(i)) of �E, their sum and
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HODGE-TATE AND DE RHAM REPRESENTATIONS 343

product are defined by (x + y)(i) = limj→+∞(x(i+j) + y
(i+j))p

j
and (xy)(i) = x

(i)
y
(i).

These sum and product make �E a perfect field of characteristic p > 0 (�E+ is a subring of �E).
Let � = (�(n)) be an element of �E such that �

(0) = 1 and �
(1) �= 1. Then, �E is the completion

of an algebraic closure of k((� − 1)) for the valuation defined by vE(x) = vp(x(0)) where
vp denotes the p-adic valuation of Cp normalized by vp(p) = 1. The field �E is equipped
with a continuous action of the Galois group GK = Gal(K/K) with respect to the topology
defined by the valuation vE. Put �A+ = W (�E+) (the ring of Witt vectors with coefficients in
�E+) and �B+ = �A+[1/p] = {

�
k�−∞ p

k[xk] | xk ∈ �E+} where [∗] denotes the Teichmüller
lift of ∗ ∈ �E+. This ring �B+ is equipped with a surjective homomorphism

θ : �B+ � Cp :
�

p
k[xk] �→

�
p

k
x

(0)
k

.

If p̃ = (p(n)) denotes an element of �E+ such that p
(0) = p, we can show that Ker (θ) is the

principal ideal generated by ω = [p̃] − p. The ring B
+
dR,K

is defined to be the Ker (θ)-adic

completion of �B+

B
+
dR,K

= lim←−n≥0
�B+

/(Ker (θ)n).

This is a discrete valuation ring and t = log([�]) which converges in B
+
dR,K

is a gen-
erator of the maximal ideal. Put BdR,K = B

+
dR,K

[1/t]. This ring BdR,K becomes a
field and is equipped with an action of the Galois group GK and a filtration defined by
FiliBdR,K = t

i
B

+
dR,K

(i ∈ Z). Then, (BdR,K)GK is canonically isomorphic to K. Thus, for
a p-adic representation V of GK , DdR,K(V ) = (BdR,K ⊗Qp V )GK is naturally a K-vector
space. We say that a p-adic representation V of GK is a de Rham representation of GK if
we have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially de Rham repre-
sentation of GK if there exists a finite field extension L/K in K such that V is a de Rham
representation of GL. It is known that a potentially de Rham representation V of GK is a
de Rham representation of GK (see [5, 3.9]).

Define BHT,K to be the associated graded algebra to the filtration FiliBdR,K . The quo-
tient gri

BHT,K = FiliBdR,K/Fili+1
BdR,K (i ∈ Z) is a one-dimensional Cp-vector space

spanned by the image of t
i. Thus, we obtain the presentation

BHT,K =
�

i∈Z
Cp(i)

where Cp(i) = Cp ⊗ Zp(i) is the Tate twist. Then, (BHT,K)GK is canonically isomorphic to
K. Thus, for a p-adic representation V of GK , DHT,K(V ) = (BHT,K⊗Qp V )GK is naturally a
K-vector space. We say that a p-adic representation V of GK is a Hodge-Tate representation
of GK if we have

dimQpV = dimKDHT,K(V ) (we always have dimQpV ≥ dimKDHT,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially Hodge-Tate repre-
sentation of GK if there exists a finite field extension L/K in K such that V is a Hodge-Tate
representation of GL. It is known that a potentially Hodge-Tate representation V of GK is
a Hodge-Tate representation of GK (see [5, 3.9]). Since we have grBdR,K �

�
i∈Z Cp(i),
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344 K. MORITA

if V is a de Rham representation of GK , there exists a GK-equivariant isomorphism
Cp ⊗Qp V �

�d=dimQpV

j=1 Cp(nj) (nj ∈ Z). Thus, it follows that a de Rham representation
V of GK is a Hodge-Tate representation of GK .

2.2. Hodge-Tate and de Rham representations in the imperfect residue field case

Let K be a complete discrete valuation field of characteristic 0 with residue field k of
characteristic p > 0 such that [k : k

p] = p
e

< +∞. Choose an algebraic closure K of
K and put GK = Gal(K/K). As in the introduction, fix a lifting (bi)1≤i≤e of a p-basis of
k in OK (the ring of integers of K) and for each m ≥ 1, fix a p

m -th root b
1/p

m

i
of bi in K

satisfying (b1/p
m+1

i
)p = b

1/p
m

i
. Put

K
(pf) = ∪m≥0K(b1/p

m

i
, 1 ≤ i ≤ e) and K

pf = the p-adic completion of K
(pf)

.

These fields depend on the choice of a lifting of a p-basis of k in OK . Since K
(pf) is a

Henselian discrete valuation field, we have an isomorphism GKpf = Gal(Kpf/K
pf) �

GK(pf) = Gal(K/K
(pf)) (⊂ GK) where we choose an algebraic closure Kpf of K

pf contain-
ing K. With this isomorphism, we identify GKpf with a subgroup of GK . We have a bijective
map from the set of finite extensions of K

(pf) contained in K to the set of finite extensions of
K

pf contained in Kpf defined by L → LK
pf. Furthermore, LK

pf is the p-adic completion
of L. Hence, we have an isomorphism of rings

O
K

/p
n
O

K
� O

Kpf
/p

n
O

Kpf

where O
K

and O
Kpf

denote the rings of integers of K and Kpf. Thus, the p-adic completion
of K is isomorphic to the p-adic completion of Kpf, which we will write Cp. As in Subsection
2.1, construct the rings �E+ and �A+ = W (�E+) from this Cp. Let k

pf denote the perfect residue
field of K

pf and put OK0 = OK ∩ W (kpf). Let α : OK ⊗OK0
�A+ � O

K
/pO

K
be the

natural surjection and define �A+
(K) to be �A+

(K) = lim←−n≥0(OK ⊗OK0
�A+)/(Ker (α))n. Let

θK : �A+
(K) ⊗Zp Qp � Cp be the natural extension of θ : �A+[1/p] � Cp. Define B

+
dR,K

to be

the Ker (θK)-adic completion of �A+
(K) ⊗Zp Qp

B
+
dR,K

= lim←−n≥0(�A+
(K) ⊗Zp Qp)/(Ker (θK)n).

This is a K-algebra equipped with an action of the Galois group GK . Let �bi denote
(b(n)

i
) ∈ �E+ such that b

(0)
i

= bi and then the series which defines log([�bi]/bi) converges
to an element ti in B

+
dR,K

. Then, the ring B
+
dR,K

becomes a local ring with the maximal
ideal mdR = (t, t1, . . . , te). Define a filtration on B

+
dR,K

by filiB+
dR,K

= m
i

dR
. Then, the

homomorphism

f : B
+
dR,Kpf [[t1, . . . , te]]→ B

+
dR,K

is an isomorphism of filtered algebras (see [3, Proposition 2.9]). From this isomorphism, it
follows easily that

i : B
+
dR,Kpf �→ B

+
dR,K

and p : B
+
dR,K

� B
+
dR,Kpf : ti �→ 0

are GKpf -equivariant homomorphisms and the composition

p ◦ i : B
+
dR,Kpf �→ B

+
dR,K

� B
+
dR,Kpf
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HODGE-TATE AND DE RHAM REPRESENTATIONS 345

is an identity. Put BdR,K = B
+
dR,K

[1/t]. Then, K is canonically embedded in BdR,K and
we have a canonical isomorphism (BdR,K)GK = K. Thus, for a p-adic representation V of
GK , DdR,K(V ) = (BdR,K ⊗Qp V )GK is naturally a K-vector space. We say that a p-adic
representation V of GK is a de Rham representation of GK if we have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially de Rham repre-
sentation of GK if there exists a finite field extension L/K in K such that V is a de Rham
representation of GL. We can show that a potentially de Rham representation V of GK is a
de Rham representation of GK in the same way as in the perfect residue field case.

Define a filtration on BdR,K to be

Fil0BdR,K =
∞�

n=0

t
−nfilnB

+
dR,K

= B
+
dR,K

[
t1

t
, . . . ,

te

t
],

FiliBdR,K = t
iFil0BdR,K (i ∈ Z).

Define BHT,K to be the associated graded algebra to this filtration. Since the quotient
gri

BHT,K = FiliBdR,K/Fili+1
BdR,K (i ∈ Z) is given by gri

BHT,K = t
iCp[

t1
t
, . . . ,

te
t
], we

obtain the presentation

BHT,K = Cp[t, t
−1

,
t1

t
, . . . ,

te

t
] = BHT,Kpf [

t1

t
, . . . ,

te

t
].

From this presentation, it follows easily that

i : BHT,Kpf �→ BHT,K and p : BHT,K � BHT,Kpf : ti/t �→ 0

are GKpf -equivariant homomorphisms and the composition

p ◦ i : BHT,Kpf �→ BHT,K � BHT,Kpf

is an identity. The field K is canonically embedded in BHT,K and we have (BHT,K)GK = K.
Thus, for a p-adic representation V of GK , DHT,K(V ) = (BHT,K ⊗Qp V )GK is naturally a
K-vector space. We say that a p-adic representation V of GK is a Hodge-Tate representation
of GK if we have

dimQpV = dimKDHT,K(V ) (we always have dimQpV ≥ dimKDHT,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially Hodge-Tate
representation of GK if there exists a finite field extension L/K in K such that V is a Hodge-
Tate representation of GL. We can show that a potentially Hodge-Tate representation V of
GK is a Hodge-Tate representation of GK in the same way as in the perfect residue field case.

3. Preliminaries on p-adic differential modules

In this section, we shall review the theory of p-adic differential modules which plays an
important role in this article. First, let us fix the notations. Let K be a complete discrete
valuation field of characteristic 0 with residue field k of characteristic p > 0 such that
[k : k

p] = p
e

< ∞ and V be a p-adic representation of GK . Define K
(pf) and K

pf as
in the introduction and in Subsection 2.2. Put K

(pf)
∞ = ∪m≥0K

(pf)(ζpm) (resp. K
pf

∞ =

∪m≥0K
pf(ζpm)) where ζpm denotes a primitive p

m-th root of unity in K (resp. Kpf) such
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346 K. MORITA

that (ζpm+1)p = ζpm . Let K̂
pf

∞ denote the p-adic completion of K
pf

∞. These fields K
(pf)
∞ , K

pf

∞
and K̂

pf

∞ depend on the choice of a lifting of a p-basis of k in OK . Then, we have the following
inclusions

K
(pf)
∞ ⊂ K

pf

∞ ⊂ K̂
pf

∞.

Let H denote the kernel of the cyclotomic character χ : GKpf → Z∗
p
. Then, the Galois group

H is isomorphic to the subgroup Gal(K/K
(pf)
∞ ) of GK . Define ΓK = GK/H . Let Γ0 denote

the subgroup Gal(K(pf)
∞ /K

(pf)) (� GKpf/H) of ΓK . Let Γi (1 ≤ i ≤ e) be the subgroup of
ΓK such that actions of βi ∈ Γi (1 ≤ i ≤ e) satisfy βi(ζpm) = ζpm and βi(b

1/p
m

j
) = b

1/p
m

j

(i �= j) and define the homomorphism ci : Γi → Zp such that we have
βi(b

1/p
m

i
) = b

1/p
m

i
ζ

ci(βi)
pm . Then, the homomorphism ci defines an isomorphism Γi � Zp of

profinite groups. With this, we can see that there exist isomorphisms of profinite groups

ΓK � Γ0 � (⊕e

i=1Γi) � Γ0 � Z⊕e

p
.

3.1. Definitions of p-adic differential modules

We shall review the definitions of p-adic differential modules and have the following
diagram, for a p-adic representation V of GK ,

(B+
dR,K

⊗QpV )H
θK� (Cp ⊗Qp V )H

∪ ∪
D

+
dif

(V ) � DSen(V )

∪ ∪
D

+
e-dif

(V ) � DBri(V ).

3.1.1. The module DSen(V ). – In the article [10], Sen shows that, for a p-adic repre-
sentation V of GKpf , the K̂

pf

∞-vector space (Cp ⊗Qp V )H has dimension d = dimQpV

and the union of the finite dimensional K
pf

∞-subspaces of (Cp ⊗Qp V )H stable under Γ0

(� GKpf/H) is a K
pf

∞-vector space of dimension d stable under Γ0 (called DSen(V )). We have
Cp ⊗K

pf

∞
DSen(V ) = Cp ⊗Qp V and the natural map K̂

pf

∞ ⊗K
pf

∞
DSen(V )→ (Cp ⊗Qp V )H is

an isomorphism. Furthermore, if γ ∈ Γ0 is close enough to 1, then the series of operators
on DSen(V )

log(γ)

log(χ(γ))
= − 1

log(χ(γ))

�

k≥1

(1− γ)k

k

converges to a K
pf

∞-linear derivation ∇(0) : DSen(V ) → DSen(V ) and does not depend on
the choice of γ.

3.1.2. The module DBri(V ). – In the article [2], Brinon generalizes Sen’s work above. For
a p-adic representation V of GK , he shows that the union of the finite dimensional K

(pf)
∞ -

subspaces of (Cp ⊗Qp V )H stable under ΓK is a K
(pf)
∞ -vector space of dimension d stable

under ΓK (we call it DBri(V )). We have Cp ⊗
K

(pf)
∞

DBri(V ) = Cp ⊗Qp V and the natural

map K̂
pf

∞ ⊗K
(pf)
∞

DBri(V ) → (Cp ⊗Qp V )H is an isomorphism. As in the case of DSen(V ),

the K
(pf)
∞ -vector space DBri(V ) is endowed with the action of the K

(pf)
∞ -linear derivation

4 e SÉRIE – TOME 43 – 2010 – No 2



HODGE-TATE AND DE RHAM REPRESENTATIONS 347

∇(0) = log(γ)
log(χ(γ)) if γ ∈ Γ0 is close enough to 1. In addition to this operator ∇(0), if βi ∈ Γi

is close enough to 1, then the series of operators on DBri(V )

log(βi)

ci(βi)
= − 1

ci(βi)

�

k≥1

(1− βi)k

k

converges to a K
(pf)
∞ -linear derivation ∇(i) : DBri(V ) → DBri(V ) and does not depend on

the choice of βi.

3.1.3. The module D
+
e-dif

(V ). – In the article [1], Andreatta and Brinon generalize
Fontaine’s work [6]. For a p-adic representation V of GK , they show that the union of
K

(pf)
∞ [[t, t1, . . . , te]]-submodules of finite type of (B+

dR,K
⊗Qp V )H stable under ΓK is a

free K
(pf)
∞ [[t, t1, . . . , te]]-module of rank d stable under ΓK (we call it D

+
e-dif

(V )). We have
B

+
dR,K

⊗
K

(pf)
∞ [[t,t1,...,te]]

D
+
e-dif

(V ) = B
+
dR,K

⊗Qp V and the natural map

(B+
dR,K

)H ⊗
K

(pf)
∞ [[t,t1,...,te]]

D
+
e-dif

(V )→ (B+
dR,K

⊗Qp V )H

is an isomorphism. The K
(pf)
∞ [[t, t1, . . . , te]]-module D

+
e-dif

(V ) is endowed with the action
of the K

(pf)
∞ -linear derivations ∇(0) = log(γ)

log(χ(γ)) if γ ∈ Γ0 is close enough to 1 and

∇(i) = log(βi)
ci(βi)

(1 ≤ i ≤ e) if βi ∈ Γi is close enough to 1.

3.1.4. The module D
+
dif

(V ). – For a p-adic representation V of GK , define D
+
dif

(V )

to be lim←−r(Kpf

∞[[t, t1, . . . , te]]⊗
K

(pf)
∞ [[t,t1,...,te]]

D
+,(r)
e-dif

(V )) where we put D
+,(r)
e-dif

(V ) =

D
+
e-dif

(V )/(t, t1, . . . , te)r
D

+
e-dif

(V ). One can verify that D
+
dif

(V ) is the union of
K

pf

∞[[t, t1, . . . , te]]-submodules of finite type of (B+
dR,K

⊗Qp V )H stable under Γ0 (� GKpf/H)
and is a free K

pf

∞[[t, t1, . . . , te]]-module of rank d stable under Γ0. Furthermore, we
have B

+
dR,K

⊗
K

pf

∞[[t,t1,...,te]] D
+
dif

(V ) = B
+
dR,K

⊗Qp V and the natural map (B+
dR,K

)H

⊗
K

pf

∞[[t,t1,...,te]]D
+
dif

(V )→ (B+
dR,K

⊗Qp V )H is an isomorphism. As in the case of D
+
e-dif

(V ),
the K

pf

∞[[t, t1, . . . , te]]-module D
+
dif

(V ) is endowed with the action of the K
pf

∞-linear deriva-
tion ∇(0) = log(γ)

log(χ(γ)) if γ ∈ Γ0 is close enough to 1.

R���ʀ� 3.1. – 1. The preceding results in Subsection 3.1.1 are obtained when V is
a p-adic representation of GL = Gal(L/L) where L is a complete discrete valuation
field of characteristic 0 with perfect residue field of characteristic p > 0 and we choose
an algebraic closure L of L. However, in Subsection 3.1.1, for simplicity, we stated the
results in the case L = K

pf.
2. Note that, though many people denote the p-adic differential module constructed by

Fontaine in [6] by D
+
dif

(V ), the module D
+
dif

(V ) in Subsection 3.1.4 is a little different
from this module.

3.2. Some properties of differential operators

We shall describe the action of derivations {∇(i)}e

i=0 on DBri(V ) and D
+
e-dif

(V ). First, by
a standard argument, we can show that, if x ∈ DBri(V ) (resp. D

+
e-dif

(V )), we have

∇(0)(x) = limγ→1
γ(x)− x

χ(γ)− 1
and ∇(i)(x) = limβi→1

βi(x)− x

ci(βi)
.
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With this, we can easily describe the actions of K
(pf)
∞ -linear derivations {∇(i)}e

i=0 on
K

(pf)
∞ [[t, t1, . . . , te]] = D

+
e-dif

(Qp) where Qp is equipped with the structure of p-adic repre-
sentations of GK induced by the trivial action of GK .

L���� 3.2. – The actions of K
(pf)
∞ -linear derivations {∇(i)}e

i=0 on K
(pf)
∞ [[t, t1, . . . , te]]

are given by ∇(0) = t
d

dt
and ∇(i) = t

d

dti
(1 ≤ i ≤ e).

Proof. – Since {∇(j)}e

j=0 are K
(pf)
∞ -linear derivations and we can see that we have

∇(j)(tk) = 0 (j �= k) and ∇(i)(t) = 0 (i �= 0), it suffices to show that we have ∇(0)(t) = t

and ∇(i)(ti) = t. These follow from

∇(0)(t) = limγ→1
γ(t)− t

χ(γ)− 1
= limγ→1

χ(γ)t− t

χ(γ)− 1
= t

∇(i)(ti) = limβi→1
βi(ti)− ti

ci(βi)
= limβi→1

(ti + ci(βi)t)− ti

ci(βi)
= t.

We extend naturally actions of K
(pf)
∞ -linear derivations {∇(i)}e

i=0 on K
(pf)
∞ [[t, t1, . . . , te]]

to K
(pf)
∞ [[t, t1, . . . , te]][t−1] (⊂ BdR,K) by putting ∇(0)(t−1) = −t

−1 and ∇(i)(t−1) = 0
(1 ≤ i ≤ e). Now, we compute the bracket [ , ] of derivations {∇(i)}e

i=0 on DBri(V ) (resp.
D

+
e-dif

(V )).

Pʀ����ɪ�ɪ�ɴ 3.3. – On the p-adic differential module DBri(V ) (resp. D
+
e-dif

(V )), we
have [∇(0)

,∇(i)] = ∇(i) (i �= 0) and [∇(i)
,∇(j)] = 0 (i, j �= 0).

Proof. – The second equality follows from the commutativity of βi and βj . For the first
equality, we have the relation γβi = β

χ(γ)
i

γ. Then, since we have

limh→0
a

h+1 − a

(h + 1)− 1
= alog(a),

we obtain

[∇(0)
,∇(i)](∗) = limγ→1

γ − 1

χ(γ)− 1
limβi→1

βi − 1

ci(βi)
(∗)− limβi→1

βi − 1

ci(βi)
limγ→1

γ − 1

χ(γ)− 1
(∗)

= limβi→1limγ→1
γβi − γ − βi + 1

(χ(γ)− 1)ci(βi)
(∗)− limβi→1limγ→1

βiγ − γ − βi + 1

(χ(γ)− 1)ci(βi)
(∗)

= limβi→1limγ→1
β

χ(γ)
i

γ − βiγ

(χ(γ)− 1)ci(βi)
(∗)

= limβi→1
βilog(βi)

ci(βi)
(∗)

= ∇(i)(∗).

Pʀ����ɪ�ɪ�ɴ 3.4. – The action of the K
(pf)
∞ -linear derivation∇(i) (i �= 0) on DBri(V ) is

nilpotent.

Proof. – From the equality∇(0)∇(i)−∇(i)∇(0) = ∇(i), we get∇(0)(∇(i))r−(∇(i))r∇(0)

= r(∇(i))r and tr(r(∇(i))r) = 0 for all r ∈ N. Since the characteristic of K
(pf)
∞ is 0, we obtain

tr((∇(i))r) = 0 for all r ∈ N. As is well known in linear algebra, this shows that the action
of the K

(pf)
∞ -linear derivation ∇(i) (i �= 0) on DBri(V ) is nilpotent.
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N����ɪ�ɴ . – For simplicity, put

R = K
(pf)
∞ [t,

t1

t
, . . . ,

te

t
] or K

(pf)
∞ [[t, t1, . . . , te]].

Pʀ����ɪ�ɪ�ɴ 3.5. – Let M be a finitely generated free R[1/t]-module endowed with
K

(pf)
∞ -linear derivations {∇(i)}e

i=0 which satisfy the same properties in Lemma 3.2 and
Proposition 3.3. Assume that we can choose a basis {gj}d

j=1 of M over R[1/t] such that
∇(0)(gj) = 0. Then, the action of∇(i) (i �= 0) on this basis is given by∇(i)(gj) = t

�
d

k=1 ckgk

where ck is an element of R such that ∇(0)(ck) = 0.

Proof. – Since {gj}d

j=1 forms a basis of M over R[1/t], we can write, for i �= 0,

∇(i)(gj) =
d�

k=1

akgk (ak ∈ R[1/t]).(3.1)

Then, the relation [∇(0)
,∇(i)] = ∇(i) (i �= 0) of Proposition 3.3 says that we have�

d

k=1∇(0)(ak)gk =
�

d

k=1 akgk. Note that we have ∇(0)(gj) = 0 by hypothesis. Hence, we
obtain the differential equation ∇(0)(ak) = ak. Define an element ck of R[1/t] to be ak/t.
Then, we can see that ck satisfies ∇(0)(ck) = ak/t − ak/t = 0 and that ck is contained in
R. Thus, the solution of the differential equation ∇(0)(ak) = ak in R[1/t] has the following
form

ak = ckt(3.2)

where ck is an element of R such that∇(0)(ck) = 0. Hence, from (3.1) and (3.2), we obtain,
for i �= 0, ∇(i)(gj) = t

�
d

k=1 ckgk where ck is an element of R such that ∇(0)(ck) = 0.

C�ʀ�ʟʟ�ʀʏ 3.6. – With notations as in Proposition 3.5 above, we have the following
presentation

(∇(1))k1 · · · (∇(e))ke(gj) = t
k1+···+ke

d�

k=1

ckgk

where ck is an element of R such that ∇(0)(ck) = 0.

4. Proof of the main theorem

In this section, we keep the notation and the assumption of Section 3.

4.1. Main theorem for Hodge-Tate representations

Pʀ����ɪ�ɪ�ɴ 4.1 ([10, Section (2.3)]). – If V is a Hodge-Tate representation of GKpf ,
there exists a Γ0-equivariant isomorphism of K

pf

∞-vector spaces

DSen(V ) �
d=dimQpV�

j=1

K
pf

∞(nj) (nj ∈ Z).
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R���ʀ� 4.2. – In general, if L denotes a complete discrete valuation field of character-
istic 0 with perfect residue field of characteristic p > 0 and V is a Hodge-Tate representation
of GL = Gal(L/L) where we choose an algebraic closure L of L, Sen shows that there exists
a GL/H-equivariant isomorphism of L∞(= ∪m≥1L(ζpm))-vector spaces ([10, Section (2.3)])

DSen(V ) �
d=dimQpV�

j=1

L∞(nj) (nj ∈ Z).

C�ʀ�ʟʟ�ʀʏ 4.3. – For a p-adic representation V of GK , assume that V is a Hodge-Tate
representation of GKpf . Then, there exists a ∇(0)- equivariant isomorphism of K

(pf)
∞ -vector

spaces

DBri(V ) �∇(0)

d=dimQpV�

j=1

K
(pf)
∞ (nj) (nj ∈ Z).

Here,�∇(0) denotes a∇(0)-equivariant isomorphism. Furthermore, the multiplicity of {nj}d

j=1

is the same as that of {nj}d

j=1 in Proposition 4.1.

Proof. – From the presentation of Proposition 4.1, the action of the K
pf

∞-linear deriva-
tion ∇(0) on DSen(V ) is semi-simple and its eigenvalues are integers. Thus, the action of
the K

(pf)
∞ -linear derivation ∇(0) on the subspace DBri(V ) of DSen(V ) is also semi-simple

and its eigenvalues are the same. Therefore, we obtain a ∇(0)-equivariant isomorphism
DBri(V ) �∇(0)

�
d

j=1 K
(pf)
∞ (nj) (nj ∈ Z). By tensoring K

pf

∞⊗K
(pf)
∞

over both sides, we

obtain K
pf

∞ ⊗
K

(pf)
∞

DBri(V ) �∇(0)

�
d

j=1 K
pf

∞(nj) (nj ∈ Z). Furthermore, since we have
K

pf

∞ ⊗
K

(pf)
∞

DBri(V ) �→ DSen(V ) by definition and both sides have the same dimension d

over K
pf

∞, we obtain K
pf

∞ ⊗
K

(pf)
∞

DBri(V ) = DSen(V ) and can see that the multiplicity of
{nj}d

j=1 is the same as that of {nj}d

j=1 in Proposition 4.1.

Tʜ��ʀ�� 4.4. – Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : k

p] = p
e

< +∞ and V be a p-adic
representation of GK . Let K

pf be the field extension of K defined as before. Then, V is a
Hodge-Tate representation of GK if and only if V is a Hodge-Tate representation of GKpf .

Proof. – We shall prove the main theorem in two parts.

(1) V : HT rep. of GK ⇒ V : HT rep. of GKpf . – Since V is a Hodge-Tate representation of
GK , there exists a GK-equivariant isomorphism of BHT,K-modules

BHT,K ⊗Qp V � (BHT,K)d=dimQpV
.(4.1)

Now, by tensoring BHT,Kpf⊗BHT,K (which is induced by the GKpf -equivariant surjection
p : BHT,K � BHT,Kpf : ti/t �→ 0) over (4.1), we obtain a GKpf -equivariant isomorphism of
BHT,Kpf -modules

BHT,Kpf ⊗Qp V � (BHT,Kpf)d
.

This means that V is a Hodge-Tate representation of GKpf .
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(2) V : HT rep. of GKpf ⇒ V : HT rep. of GK . – For simplicity, put
R = K

(pf)
∞ [t, t1

t
, . . . ,

te
t
]. We shall construct the K

(pf)
∞ -linearly independent elements

{f (∗)
j

}d=dimQpV

j=1 of

R[1/t] ⊗
K

(pf)
∞

DBri(V ) (⊂ BHT,K ⊗Qp V ) such that ∇(i)(f (∗)
j

) = 0 for all 0 ≤ i ≤ e

and 1 ≤ j ≤ d.

(A) Construction of {f (∗)
j

}d

j=1 ∈ R[1/t] ⊗
K

(pf)
∞

DBri(V ). – From the presentation
of Corollary 4.3 above, if we twist by some powers of t, we obtain a basis {fj}d

j=1 of
R[1/t] ⊗

K
(pf)
∞

DBri(V ) over R[1/t] such that ∇(0)(fj) = 0 for all 1 ≤ j ≤ d. Thus, by
applying Corollary 3.6 to the R[1/t]-module R[1/t] ⊗

K
(pf)
∞

DBri(V ) generated by {fj}d

j=1,
we can deduce

(∇(1))k1 · · · (∇(e))ke(fj) = t
k1+···+ke

d�

k=1

ckfk(4.2)

where ck is an element of R such that ∇(0)(ck) = 0. Furthermore, since the action of
K

(pf)
∞ -linear derivation ∇(i) (i �= 0) on DBri(V ) is nilpotent by Proposition 3.4, if we take

n ∈ N large enough, we obtain

(∇(i))n(fj) = 0 for all 1 ≤ j ≤ d and 1 ≤ i ≤ e.(4.3)

Define an element f
(∗)
j

of R[1/t]⊗
K

(pf)
∞

DBri(V ) by

f
(∗)
j

=
�

0≤k1,...,ke

(−1)k1+···+ke
t
k1
1 · · · tke

e

k1! · · · ke!tk1+···+ke
(∇(1))k1 · · · (∇(e))ke(fj).

Note that this series is a finite sum by (4.3) and thus f
(∗)
j

actually defines an element of

R[1/t]⊗
K

(pf)
∞

DBri(V ). Then, it follows easily that we have∇(i)(f (∗)
j

) = 0 for all 1 ≤ i ≤ e and
1 ≤ j ≤ d by using the Leibniz rule. Furthermore, by using (4.2) and the fact∇(0)(fj) = 0,
we can deduce that we have∇(0)(f (∗)

j
) = 0 for all 1 ≤ j ≤ d.

(B) {f (∗)
j

}d

j=1 ∈ R[1/t] ⊗
K

(pf)
∞

DBri(V ) is linearly independent over K
(pf)
∞ . – By the

presentation of f
(∗)
j

, we have

f
(∗)
j

= fj + gj (gj ∈ (
t1

t
, . . . ,

te

t
)(BHT,K ⊗Qp V )).

Since {fj}d

j=1 forms a basis of R[1/t]⊗
K

(pf)
∞

DBri(V ) over R[1/t], it is, in particular, linearly

independent over K
(pf)
∞ (⊂ R[1/t]). Thus, {fj = fj

(∗)}d

j=1 (− denotes the reduction modulo

(t1, . . . , te)) is linearly independent over K
(pf)
∞ and we can see that {f (∗)

j
}d

j=1 is linearly

independent over K
(pf)
∞ in R[1/t]⊗

K
(pf)
∞

DBri(V ).

(C) Conclusion. – Therefore, on the K-vector space generated by {f (∗)
j

}d

j=1, log(γ) and

{log(βi)}e

i=1 act trivially (⇔ ∇(0)(f (∗)
j

) = 0 and ∇(i)(f (∗)
j

) = 0 for all 1 ≤ i ≤ e and
1 ≤ j ≤ d). Thus, this means that ΓK acts on this K-vector space via finite quotient and there
exists a finite field extension L/K in K

(pf)
∞ such that {f (∗)}d

j=1 forms a basis of DHT,L(V )
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over L. Since a potentially Hodge-Tate representation of GK is a Hodge-Tate representation
of GK , this completes the proof.

4.2. Main theorem for de Rham representations

L���� 4.5. – For a p-adic representation V of GK , assume that V is a de Rham
representation of GKpf . Then, we can choose a basis {hj}

d=dimQpV

j=1 of D
+
dif

(V )[1/t] over
K

pf

∞[[t, t1, . . . , te]][1/t] such that the action of Γ0 on {hj}d

j=1 is trivial.

Proof. – Since V is a de Rham representation of GKpf , there exists a basis {hj}d

j=1 of
BdR,Kpf⊗QpV over BdR,Kpf such that the action of GKpf on {hj}d

j=1 is trivial. We can see that
these elements {hj}d

j=1 are contained in D
+
dif

(V )[1/t] by definition. For each j, if we twist hj

by some power of t, we obtain an element gj of B
+
dR,Kpf⊗Qp V such that gj �∈ tB

+
dR,Kpf⊗Qp V .

Then, it follows that gj is contained in D
+
dif

(V ) and satisfies gj �= 0 (− denotes the reduction
modulo (t, t1, . . . , te)D

+
dif

(V )). Since D
+
dif

(V ) is a free module of rank d over the local ring
K

pf

∞[[t, t1, . . . , te]] and {gj}d

j=1 forms a basis of DSen(V ) over K
pf

∞, the lifting {gj}d

j=1 of
{gj}d

j=1 in D
+
dif

(V ) forms a basis of D
+
dif

(V ) over K
pf

∞[[t, t1, . . . , te]]. Thus, it follows that
{hj}d

j=1 forms a basis of D
+
dif

(V )[1/t] over K
pf

∞[[t, t1, . . . , te]][1/t].

With notations as above, note that, since we have the inclusion D
+
e-dif

(V ) �→ D
+
dif

(V )[1/t]

by definition, any element g of D
+
e-dif

(V ) can be written as g =
�+∞

k=l
(
�

d

j=1 ajkhj)tk

(ajk ∈ K
pf

∞[[t1, . . . , te]]).

R���ʀ� 4.6. – Keep the notation as in Lemma 4.5. Since we assume that V is a de
Rham representation of GKpf , by Corollary 4.3, there exists a basis {vj}d

j=1 of DBri(V )

over K
(pf)
∞ such that ∇(0)(vj) = njvj . Put M = Max(nj)d

j=1. Then, for an element
g ∈ D

+
e-dif

(V ), there exists an element
�+∞

k=n
(
�

d

j=1 cjkhj)tk of (t, t1, . . . , te)D
+
e-dif

(V ) such
that we can write

g =
M�

k=m

(
d�

j=1

bjkhj)t
k +

+∞�

k=n

(
d�

j=1

cjkhj)t
k (bjk, cjk ∈ K

pf

∞[[t1, . . . , te]]).

Thus, g
� =

�
M

k=m
(
�

d

j=1 bjkhj)tk defines an element of D
+
e-dif

(V ).

L���� 4.7. – With notations as above, for an element g
� =

�
M

k=m
(
�

d

j=1 bjkhj)tk of
D

+
e-dif

(V ), each (
�

d

j=1 bjkhj)tk is contained in D
+
e-dif

(V ).

Proof. – We shall prove this lemma by induction on the smallest degree of g
� with

respect to t. Since we have g
� − (

�
d

j=1 bjmhj)tm ∈ D
+
e-dif

(V ) if (
�

d

j=1 bjmhj)tm is con-
tained in D

+
e-dif

(V ), it suffices to show that (
�

d

j=1 bjmhj)tm is contained in D
+
e-dif

(V ). Since
the K

pf

∞[[t1, . . . , te]]-linear derivation ∇(0) acts trivially on {hj}d

j=1, we have

M�

k=m+1

(∇(0) − k)(g�) = (
M�

k=m+1

(m− k))(
d�

j=1

bjmhj)t
m

.

It follows that (
�

d

j=1 bjmhj)tm is contained in D
+
e-dif

(V ) since the action of ∇(0) on
D

+
e-dif

(V ) is stable. Thus, this completes the proof.
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Pʀ����ɪ�ɪ�ɴ 4.8. – For a p-adic representation V of GK , assume that V is a de Rham
representation of GKpf . Then, there exists a ∇(0)-equivariant isomorphism of
K

(pf)
∞ [[t, t1, . . . , te]]-modules

D
+
e-dif

(V ) �∇(0)

d=dimQpV�

j=1

K
(pf)
∞ [[t, t1, . . . , te]](nj) (nj ∈ Z).

Proof. – Since V is also a Hodge-Tate representation of GKpf , by Corollary 4.3, there
exists a basis {vj}d

j=1 of D
+
e-dif

(V )/(t, t1, . . . , te)D
+
e-dif

(V ) � DBri(V ) over K
(pf)
∞ such that it

gives a ∇(0)-equivariant isomorphism of K
(pf)
∞ -vector spaces

D
+
e-dif

(V )/(t, t1, . . . , te)D
+
e-dif

(V ) �∇(0)

d�

j=1

K
(pf)
∞ (nj) : vj �→ t

nj .

Since D
+
e-dif

(V ) is a free module of rank d over the local ring K
(pf)
∞ [[t, t1, . . . , te]], any lifting

{gj}d

j=1 of {vj}d

j=1 in D
+
e-dif

(V ) forms a basis of D
+
e-dif

(V ) over K
(pf)
∞ [[t, t1, . . . , te]]. Let

{hj}d

j=1 denote a basis of D
+
dif

(V )[1/t] over K
pf

∞[[t, t1, . . . , te]][1/t] such that ∇(0)(hj) = 0
obtained in Lemma 4.5. Then, we may assume that each gj is written as
gj =

�
M

k=m
(
�

d

l=1 bklhl) t
k (bkl ∈ K

pf

∞[[t1, . . . , te]]) where we take M ∈ N as in Remark 4.6.
Now, define an element fj of D

+
e-dif

(V ) (Lemma 4.7 above) by

fj = (
d�

l=1

bnj lhl)t
nj .

It is easy to see ∇(0)(fj) = njfj . Therefore, the rest is to show that {fj}d

j=1 forms a basis

of D
+
e-dif

(V ) over K
(pf)
∞ [[t, t1, . . . , te]]. To prove that {fj}d

j=1 is a lifting of {vj}d

j=1, it suf-
fices to show gj − fj ∈ (t, t1, . . . , te)D

+
e-dif

(V ). For each gj , put sk = (
�

d

l=1 bklhl)tk ∈ D
+
e-dif

(V )
(Lemma 4.7 above). Since we have ∇(0)(sk) = ksk (− denotes the reduction
modulo (t, t1, . . . , te)) and this means that sk is an eigenvector of ∇(0), it follows that
the elements {vj , sk �= 0}k �=nj are linearly independent over K

(pf)
∞ in DBri(V ). Since we have

vj =
�

M

k=m
sk by definition, it follows that we obtain sk = 0 for k �= nj . This means that

we have sk ∈ (t, t1, . . . , te)D
+
e-dif

(V ) (k �= nj) and gj − fj ∈ (t, t1, . . . , te)D
+
e-dif

(V ). Thus,
this completes the proof.

R���ʀ� 4.9. – In general, it is evident from the proof that, if L denotes a complete
discrete valuation field of characteristic 0 with perfect residue field of characteristic p > 0
and V is a de Rham representation of GL = Gal(L/L) where we choose an algebraic closure
L of L, we have a ∇(0)-equivariant isomorphism of L∞[[t]]-modules

D
+
dif

(V ) �∇(0)

d=dimQpV�

j=1

L∞[[t]](nj) (nj ∈ Z).

Tʜ��ʀ�� 4.10. – Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : k

p] = p
e

< +∞ and V be a p-adic
representation of GK . Let K

pf be the field extension of K defined as before. Then, V is a de
Rham representation of GK if and only if V is a de Rham representation of GKpf .
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Proof. – We shall prove the main theorem in two parts.

(1) V : dR rep. of GK ⇒ V : dR rep. of GKpf . – Since V is a de Rham representation of
GK , there exists a GK-equivariant isomorphism of BdR,K-modules

BdR,K ⊗Qp V � (BdR,K)d=dimQpV
.(4.4)

Now, by tensoring BdR,Kpf⊗BdR,K (which is induced by the GKpf -equivariant surjection
p : BdR,K � BdR,Kpf : ti �→ 0) over (4.4), we obtain a GKpf -equivariant isomorphism
of BdR,Kpf -modules

BdR,Kpf ⊗Qp V � (BdR,Kpf)d
.

This means that V is a de Rham representation of GKpf .

(2) V : dR rep. of GKpf ⇒ V : dR rep. of GK . – For simplicity, put R = K
(pf)
∞ [[t, t1, . . . , te]].

We shall construct the K
(pf)
∞ -linearly independent elements {f (∗)

j
}d=dimQpV

j=1 of

R[1/t] ⊗R D
+
e-dif

(V ) (⊂ BdR,K ⊗Qp V ) such that ∇(i)(f (∗)
j

) = 0 for all 0 ≤ i ≤ e and
1 ≤ j ≤ d.

(A) Construction of {f (∗)
j

}d

j=1 ∈ R[1/t] ⊗R D
+
e-dif

(V ). – From the presentation
of Proposition 4.8 above, if we twist by some powers of t, we obtain a basis {fj}d

j=1 of
R[1/t]⊗R D

+
e-dif

(V ) over R[1/t] such that∇(0)(fj) = 0 for all 1 ≤ j ≤ d. Thus, by applying
Corollary 3.6 to the R[1/t]-module R[1/t]⊗RD

+
e-dif

(V ) generated by {fj}d

j=1, we can deduce

(∇(1))k1 · · · (∇(e))ke(fj) = t
k1+···+ke

d�

k=1

ckfk(4.5)

where ck is an element of R such that ∇(0)(ck) = 0. Define an element f
(∗)
j

of
R[1/t]⊗R D

+
e-dif

(V ) by

f
(∗)
j

=
�

0≤k1,...,ke

(−1)k1+···+ke
t
k1
1 · · · tke

e

k1! · · · ke!tk1+···+ke
(∇(1))k1 · · · (∇(e))ke(fj).

Note that this series converges in R[1/t]⊗R D
+
e-dif

(V ) for (t1, . . . , te)-adic topology by (4.5)

and thus f
(∗)
j

actually defines an element of R[1/t] ⊗R D
+
e-dif

(V ). Then, it follows easily

that we have ∇(i)(f (∗)
j

) = 0 for all 1 ≤ i ≤ e and 1 ≤ j ≤ d by using the Leibniz
rule. Furthermore, by using (4.5) and the fact ∇(0)(fj) = 0, we can deduce that we have
∇(0)(f (∗)

j
) = 0 for all 1 ≤ j ≤ d.

(B) {f (∗)
j

}d

j=1 ∈ R[1/t]⊗RD
+
e-dif

(V ) is linearly independent over K
(pf)
∞ . – By the presentation

of f
(∗)
j

, we have

f
(∗)
j

= fj + gj (gj ∈ (t1, . . . , te)(BdR,K ⊗Qp V )).

Since {fj}d

j=1 forms a basis of R[1/t] ⊗R D
+
e-dif

(V ) over R[1/t], it is, in particular, linearly

independent over K
(pf)
∞ (⊂ R[1/t]). Thus, {fj = fj

(∗)}d

j=1 (− denotes the reduction modulo

(t1, . . . , te)) is linearly independent over K
(pf)
∞ and we can see that {f (∗)

j
}d

j=1 is linearly

independent over K
(pf)
∞ in R[1/t]⊗R D

+
e-dif

(V ).
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(C) Conclusion. – Therefore, on the K-vector space generated by {f (∗)
j

}d

j=1, log(γ) and

{log(βi)}e

i=1 act trivially (⇔ ∇(0)(f (∗)
j

) = 0 and ∇(i)(f (∗)
j

) = 0 for all 1 ≤ i ≤ e and
1 ≤ j ≤ d). Thus, this means that ΓK acts on this K-vector space via finite quotient and there
exists a finite field extension L/K in K

(pf)
∞ such that {f (∗)}d

j=1 forms a basis of DdR,L(V ) over
L. Since a potentially de Rham representation of GK is a de Rham representation of GK ,
this completes the proof.
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