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STRICHARTZ ESTIMATES FOR WATER WAVES

BY THoMAS ALAZARD, NicorLas BURQ AnD CrLauDE ZUILY

ABSTRACT. — In this paper we investigate the dispersive properties of the solutions of the two
dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss
of derivatives at the same low level of regularity we were able to construct the solutions in [2]. On the
other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates
(i.e, without loss of regularity compared to the system linearized at (n = 0, = 0)).

RESUME. — Nous nous intéressons dans cet article aux propriétés dispersives du systéme des ondes
de surface en dimension 2, avec tension de surface. Nous démontrons tout d’abord des estimées de
Strichartz, avec pertes de dérivées, au niveau de régularité ou nous avons construit des solutions
dans [2]. Ensuite, pour des données initiales plus réguliéres, nous démontrons les estimées de Strichartz
optimales (i.e. sans perte de régularité par rapport a celles du systeme linéarisé en (n = 0,9 = 0)).

1. Introduction
In a time-dependent domain €, C R? which is located between a free hypersurface X,
and a fixed known bottom I, consider a potential flow v = V, ,¢, with
Apydp=0 inQy, 0Opp=0 onl.

The surface-tension water-waves problem is given by two equations: a kinematic condition
(which states that the free surface moves with the fluid), and a dynamic condition (that
expresses a balance of forces across the free surface). The system reads

Oin = 0y¢p —Vn-Vo onY; ={y=n(tz)},

(1.1) 1 )
Orp + §|vm,y¢| +gn=H(n) on,
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856 T. ALAZARD, N. BURQ AND C. ZUILY

where V = 0,, g > 0 is the acceleration of gravity and
H(n) = div (V”)
1+ (Vn)?
is the mean curvature of the free surface.

1.1. Assumptions

We work in a fluid domain such that there is uniformly a minimum depth of water, more
precisely we assume that for each time ¢ one has

Q=01 N
where 2 ; is the half space located below the free surface 3,
Qe={(z,y) eRxR:y<n(tz)}

for some unknown function 7 and €2 contains a fixed strip around ¥;, that means that there
exists h > 0 such that,

(12) {(m,y) ERXR: W(taw)—hﬁyﬁﬁ(tax)}’:gz’

for all t € [0,T]. We shall also assume that the domain Q3 (and hence the domain
Q, = Q7 N Q) is connected.

We emphasize that no regularity assumption is made on the bottom I' = 99, \ ;. We
consider both cases of infinite depth and bounded depth bottoms (and all cases in-between).
Finally, we could consider the cases where the free surface is a graph over a given smooth
hypersurface and the bottom is time dependent.

1.2. Main results

Following Zakharov we reduce the system to a system on the free surface. If
¥ = (t,z) € Ris defined by

Y(t,z) = ¢(t, z,1(t, z)),
then ¢(¢, z, y) is the unique variational solution of
(1.3) A¢p =0 inQy, o(t,z,n(t,x)) = Y(t, ).
The Dirichlet-Neumann operator is then defined by
(GMY)(t,z) = 1+ VN2 Ondly=y(ta) = Oy¢ — V- Vo

(we refer to Section 2 in [2] for a precise construction).
Then (7, ¢) is solution of the water-waves system (1.1) if and only if (n,) solves the
system

y=n(t,z)

(1.4) 1 (9an - 0ath + G(n)v)?

2 1+ |0z7|?

Concerning the Cauchy theory for the water waves with surface tension, there are many
results starting from the pioneering work of K. Beyer and M. Giinther [10]. See D. M.
Ambrose and N. Masmoudi [6], B. Schweiser [24], T. Iguchi [19], D. Coutand and S. Shkoller

=0.

1
o + gn — H(n) + 3 10,) —
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[17], J. Shatah and C. Zeng [25], M. Ming and Z. Zhang [22], F. Rousset and N. Tzvetkov
[23]. In [2], we established new local well posedness results for the system (1.4) under sharp
(as long as no dispersive effects are taken into account) regularity assumptions on the initial
data. We refer to the introduction of [2] for references and a short historical survey of the
background of these problems.

The purpose of this work is precisely, in the case d = 1, to investigate the dispersive
properties of these solutions. Our results are twofold: first we prove Strichartz type estimates
with loss of derivatives at the very same level of regularity we were able to construct the
solutions in [2]. On the other hand, for smoother initial data, we prove that the solutions
enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system
linearized at (n = 0,v¢ = 0)).

Define the usual Besov space,

u € BL,(R) <= Y 2578 ()| 7w (my < +00,
JEN
where u = 3, Aj;(u) is the standard Littlewood-Paley decomposition of u. Notice that if
o ¢ N, we have (with continuous injection)

BZ »(R) c W”%(R),

where W2 °°(R) is the usual Holder C? space (which, if o ¢ N, is characterized by the fact
that (277]|A; (u)||Loo(R))j6N € £*°(N), see for example [15, Proposition 2.3.1]).

Our main results are the following.

THEOREM 1.1. — Let s > 5/2 and T > 0. Consider a solution (n,v) of (1.4) on the time
interval I = [0, T] such that Qy satisfies (1.2) fort € I. If

(n,) € C°(I, H"*(R) x H*(R)),
then
(n,¥) € L*(I, B E(R) x B 4(R)).
THEOREM 1.2. — Let s > 11/2, T > 0. Consider a solution (n,v) of (1.4) on the time
interval I = [0, T] such that Q satisfies (1.2) fort € I. If
(n,9) € C°(I, H"*(R) x H*(R),

then \ )
(n,9) € L*(I, B3 (R) x B 5 (R).
REMARK 1.3. — (i) Theorem 1.1 was obtained recently under the assumption s > 15 by

Christianson-Hur-Staffilani [16] .

(i) Let s > 5/2 and (no,v0) € H*"2(R) x H*(R) satisfying dist(Eo,l") >c>0,we
proved in [2] that there exist 7' > 0 and a solution (1,%) € C°([0,T]; H*t3(R) x H*(R))
satisfying dist(3;,I") > ¢ > 0.

(iii) The gain of regularity exhibited in Theorem 1.2 is optimal as can be seen at the level
of the linearized system around the trivial solution (7, ) = (0, 0) which reads (when g = 0),

at’I]—|Dw|'(/J:0, 8t1/1—A77:0
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1 . : . 3 .
Indeed uw = |D,|2 i+ i1 is a solution of the equation i0;u — | D|? u = 0, for which one can
prove the optimal estimate

3
exp(=it | D21 yuol < Clus s (ry;

L4 (I,B:é (R))
which gives the desired regularity on (n, ).

(iv) It is most likely that Theorem 1.1 remains valid when R is replaced by the one dimen-
sional torus T. Indeed, our proof relies on a semi-classical parametrix (on time intervals
tailored to the frequency) which exhibits finite speed of propagation and which can conse-
quently be easily localized in space.

(v) Notice that the dispersive estimates proved in this paper can be combined with our
previous work to improve the regularity threshold obtained in [2] and give local well posed-
nesss for initial data below the s = 2+  threshold. This will be the matter of a forthcoming
paper (including the 3-d water-waves system) [1].

(vi) Notice finally that dispersive properties of the operator linearized at (n = 0, ¢ = 0)
were used recently by Wu [30, 31] and Germain-Masmoudi-Shatah [18] to prove global
existence results for gravity waves.

1.3. Strategy of the proofs

Following the approach in Alazard-M¢étivier [3], after suitable paralinearizations, we have
shown in [2] that the water waves system can be arranged into an explicit paradifferential
symmetric equation of Schrodinger type, and we deduced the smoothing effect for the 2-d
surface tension water waves. Here, we will also take benefit of this paralinearization reduc-
tion, and this reduced system will be our starting point. The guiding line for the rest of our
proof is very classical: construction of a parametrix to prove dispersion (L' — L™ estimates,
and then T'T* argument).

There are two main difficulties in the analysis of this equation. First the coefficients of the
operator are time dependent and consequently we cannot get rid of the lower order terms
by simple conjugation arguments (see Burqg-Planchon [14]). Second the coefficients enjoy
poor regularity, and finally, whereas the principal part in the operator is of order 3/2, the
subprincipal part in the operator is of order 1 which gives only a 1/2 difference compared
to the usual 1 difference encountered for magnetic Schrodinger operators. As will be shown
in our analysis, the presence of such subprincipal parts will produce non trivial oscillations
which here have to be taken into account in the analysis.

The first common step for both theorems is to perform several reductions for the para-
differential equation. The first one is to use Alinhac’s para-composition theory [4] (see also
Burg-Planchon [14] where a similar idea was used) to reduce the matters to the study of
a Schrodinger type operator with constant coefficients principal part. This is particular to
space dimension 1 and reflects the fact that there is only one metric on R. The second reduc-
tion, inspired by works by Smith [26], Bahouri-Chemin [7], Tataru [28, 29] and Blair [11],
consists in smoothing out the coefficients of the operator.

Once this reduction has been achieved, we can construct the parametrix, for which the
natural time is the semi-classical one: s = t[¢|~/2. Here the differences between our
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two theorems appear. Indeed, in the proof of Theorem 1.1, following the strategy in Burg-
Gérard-Tzvetkov [13] (see also Staffilani-Tataru [27] and Koch-Tataru [20]), we construct
the parametrix on small times |s| < ¢) and the main difficulty is to handle sharp regularity
threshold (for smooth enough initial data the proof would be much simpler). In the proof of
Theorem 1.2 the difficulties are different: first we have to handle the oscillations generated
by the subprincipal part and furthermore we have to prove very large time asymptotics
(|| < ¢[¢]*/?) in the high frequency regime |¢| — +o0. Notice that, even for initial data with
arbitrarily large smoothness, the analysis would be non trivial. Finally, once the parametrix
is constructed, the dispersion estimate is obtained by using non classical stationary phase
lemmas involving precise controls on the remainder terms.

Acknowledgements. — The authors would like to thank the referee for a very careful reading
of the manuscript, which led to improvements in the presentation.

2. Preliminaries

In this section we recall some notations and results from [2] which will be used in the
sequel.

2.1. Paradifferential calculus

In this paragraph we review classical facts about Bony’s paradifferential calculus (see [12]).

For p € N, according to the usual definition, we denote by W#°°(R)) the Sobolev spaces
of L* functions whose derivatives of order < p are in L*. For p €]0, +oo[\N, we denote
by W+ (R) the space of bounded functions whose derivatives of order [p] are uniformly
Holder continuous with exponent p — [p].

DEFINITION 2.1. — Given p > 0andm € R, I'}} (R) denotes the space of functions a(z, §)
on R x (R\ 0), which are C* with respect to & and such that, for all o € N and all § # 0, the
Junction x — 0g a(z, &) belongs to W»>°(R) and there exists a constant C¢, such that,

@.1) VI 50 110800, )y gy < Coll + fED™ L

DEFINITION 2.2. — 37¢(R) denotes the space of symbols a(z, ) such that

a= ) o™ (jeN),

0<j<p

where a(™=7) e I‘Z’__jj (R) is homogeneous of degree m — j with respect to &.

Given a symbol a, we define the paradifferential operator T, by

22) Tou(©) = (2)™ [ x(€ = .)€ — nmw(n)ata) dn
where @(0,¢) = [e "%(z,£)dr is the Fourier transform of a with respect to the first

variable, x, ¥ are two fixed C'*° functions such that

Y(n) =0 for [n| <1, Y(n) =1 for |n| >2,
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860 T. ALAZARD, N. BURQ AND C. ZUILY

x(0,n) is homogeneous of degree 0 and satisfies, for 0 < £; < &5 small enough,
x(@,m) =1 if [0|<ei|nl,  x(0,n) =0 if [0]=ezln|.

We shall use quantitative results from Métivier [21] about operator norms estimates in
symbolic calculus. To do so we introduce the following semi-norms.

DEFINITION 2.3. — Form € R, p > 0anda € F:,”(R), we set

2.3) MpMa)= s sup ||(1+[€DIm0ga( )|

la|<L+14p €1>1/2 Wee(R)

The main features of symbolic calculus for paradifferential operators are given by the
following theorems.

DEFINITION 2.4. — Let m € R. An operator T is said to be of order < m if, for all p € R,
it is bounded from H*(R) to H*~™(R).

THEOREM 2.5. — Letm € R. If a € T§*(R), then T, is of order < m. Moreover, for all
u € R there exists a constant K such that

(2.4) 1 Tall e o pru—m < K Mg (a).

THEOREM 2.6 (Composition). — Let m € R and p > 0. If a € T""(R) and b € T (R)
then T, Ty — Ty is of order < m +m’ — p, where

1 (03 (03
a#b= ) o 0gadh.
lal<p
Moreover, for all u € R there exists a constant K such that

2.5 1TaTs — Tagoll g gru—m—mrso < KM (@) M (D).

If a = a(x) is a function of z only, the paradifferential operator T, is called a paraproduct.
Paraproducts can also be defined using the Littlewood-Paley decomposition of the frequency
space. Indeed, let ¢: R — R be a smooth even function with ¢(¢) = 1 for |¢| < 1 and
¢(t) = 0 for |t| > 2. For k € N, we introduce the symbol

0@ = o( %),
and then the operators Sy and Ay defined by
SkF(©) = on(©F (&), BrF(€) = (8n(8) — dr-1(8)) F(&).

For all f € J'(R), the spectrum of A f satisfies spec Apf C {& : 2F71 < |¢| < 2R+
Hence A;Ag = 0if |j — k| > 2. Moreover we have the Littlewood—Paley decomposition:

F=5f+ Y Auf
kEN*
With this decomposition, paraproducts can be defined by
T.f = Sk-s(a)Af.
k>4
Notice that the difference between paraproducts defined in these two ways is a smoothing
operator. Namely, if a € W *°(R) for some p > 0 then the difference is of order —p.
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THEOREM 2.7. — Let o, 8 € R be such that o+ 3 > 0. If a € H*(R) and b € H’(R)
then ab — T,b — Tya € H*HP~3(R) and

llab = Tab = Toall ;rars-g g, < Kllalge@)llbllao )
H (R)

for some positive constant K independent of a, b.

We use the following result which is a consequence of (2.5) withm =m’' =0,p = 1.

LEMMA 2.8. — Let a € WH°°(R). Then for all o € R there exists a constant C > 0 such
that for all j € N,

114, Ta]ul o+ ) < Cllallwrew) llullzow)-

2.2. The Dirichlet-Neumann operator

LEMMA 2.9. — Let s > 2 + % and 1 < o < s. Then there exists an increasing function
C : Rt — R* such that for all (n,v) € H"2(R) x H5(R)

Gl ®) < CUnll gor g g Nl 1o R)-

Furthermore, if (n,) € L (I; H**2(R) x H*(R)) is a solution of (1.4), then

(2.6) 0:(G(n)y) = G(n) (0 — Boyn) — div(V o)
where
2.7) B(t, ) i 2Vt Gy V(t,z) = 8p0) — B,

1+ |0xm2 7

2.3. Symmetrization

We consider a solution (7, ) of (1.4) on the time interval I = [0, 7] with 0 < T < +o0,
satisfying the assumption (1.2) for all ¢ € I and such that

(m,¢) € C°(I, H**3 (R) x H'(R)),
for some s > 2. Then we set
(2.8) U=y —Tgn,

where 98 has been defined in (2.7). It follows from the analysis in [2] that we have the following
symmetrization of the equations.

LEmMA 2.10 ([2, Corollary 4.9]). — Let ¢, ¢1 be defined by

c= 1+, o= 1+0m) 2.
There exists an elliptic symbol p € Eii 21 such that the complex-valued unknown
2.9 ® =T,n+ T, U
satisfies a scalar equation of the form
(2.10) 0y® + Ty 9,® +i|Dy| % T, |Dy|T @ = F,

where V' has been defined in (2.7) and F € L> (I, H*(R)).
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3. Reductions

3.1. Change of variables

We consider a solution (n, ) of (1.4) on the time interval I = [0,T] with 0 < T' < +o0,
satisfying the assumption (1.2) for all ¢t € I and such that

(n,%) € C°(I, H*"2(R) x H*(R)),

for some s > 2.

Our aim in this section is to simplify the Equation (2.10) by a change of variable. To
compute the effect of a change of variable we shall use Alinhac’s paracomposition operators
and we refer to [4] for the general theory .

Let x be a C* diffeomorphism from R to R. We define the operator x* by

(3.1 K'u=uok —T(g,u)ork-

One of the main properties of k* is that there is a symbolic calculus theorem which allows
to compute the equation satisfied by x*u in terms of the equation satisfied by u (in analogy
with the paradifferential calculus).

THEOREM 3.1. — Let m € R, r > 1, p > 0 and set o := inf{p,r — 1}. Consider a
diffeomorphism x such that 9,x € W"=1>(R) and set k = x . Let a be a symbol in =7 (R).
Then there exists a* € L' (R) such that

KTy — Toxk™  isof order <m — 0.

Moreover one can give an explicit formula for a*. If a =Y am—g, then

(3.2) @) = 3 0, X (@)0)OC (=)

ilela!

where the sum is taken over all « € N such that the summand is well defined, x'(z) is the
derivative of x and

(3.3) Va(y) = x(y) — x(z) — X' (2)(y — ).
We are now ready to simplify (2.10). Define x by
(34) xt0)= [ ety tay= [ Vi @)y
0 0
so that

Bux(t, ) = /1 + (Bun(t,x))? = c(t,x) 3.

Then foreach t € [0,T], x — x(t, ) is a diffeomorphism from R to R. Introduce its inverse

(35) K = X_1~
3.1.1. Notations.— We shall set I = [0, T] and we shall denote
(36) A = C(”(na"/")”LOO(I,HH%(R)XH%R))

where C : RT — R is an increasing function which may change from line to line. Moreover
we shall denote by f o x the function

(3.7) (f o ’i)(th) = f(t7 H(t7$))'
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3.1.2. Estimates of x and k. — From (3.4), the equation 8,7 = G(n)%, the Lemma 2.9, the
Holder inequality and the fact that s > 2 + % we deduce,

(3.8) 10ex|| Lo (rxm) < A.

Now since
Ozx(t,z) =1+ f(0zm), [f€C™(R),[f(0)=0,
we deduce from the assumption s > 2 + % and the Sobolev embedding that,

(39) ||8$X(t,£l?) - 1” + ||8wX||L°°(I><R) <A

Lo (1,H*" 2 (R))

Let us consider the function «.
Otx

Oz X
(3.10) 10skl oo (1xm) < A

On the other hand we have 0,k = 1+ f(9,n) where f € C>°(R), f(0) = 0. It follows
that,

(3.11) 1025 — 1]

Since Oix = — o k we have, using (3.8),

Leo(I,H ™% (R)) <4

Letp =[s]ifs¢ N, p=s—1ifs € N;thenp > s—1and it follows from (3.11) that,
(3.12) ||amli||Loo(I7Wp—1,oo(R)) < A.

To go further we shall need the following elementary lemma.

LEmMMA 3.2. — Let p € N* and k : R — R be a diffeomorphism such that
Oyk € WP=L®(R). Set x = k~L. Then for all F € H*(R) with 0 < p < p we have
Fokx e H*(R) and

IF o &l mnmy < 1X' |z ) C([102llwr-1.00 () ) | F ll 20 ()
where C is an increasing function from R to RY.

We deduce from Lemma 3.2 and (3.12) that for 0 < y < s —land F € L>*(I, H*(R))
we have,

(3.13) |1 F 0 &l oo (1,50 )y < ANF (| Loo (1,10 (R))-

Coming back to the regularity of x we deduce from (3.4) that,

2X _ (83577)(8317)
xT - Fi
(1+ (02m)?)2
It follows from (3.13) that,

(3.14) 1(82x) o k|| < A.

Loo(1,H*" 2 (R)) =
On the other hand we have,

(021)0:(G(m)¥)

azatX = i
(L4 (8zm)?)=

So using Lemma 2.9 and (3.13) we obtain,

(3.15) 1020ex) © Kl o< (1, mro-2(R)) < A
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Now we would like to estimate 87 . Since 8;n = G(n)y we have,

2 [T 08 (G()Y))? ? [0:(G(m)y)]?
(3.16) O2x(t,x) = /o(1+(a ) dy+/0 1t @ EY
? 0:10:0:(G 77)1/1)
(14 (8,m)2)=

Since s > 2 + %, the Holder 1nequa11ty and Lemma 2.9 show that the first two terms are
pointwise bounded by A. By the Holder inequality the last term can be pointwise bounded by

10m o= (1,2 () 10205 (G (M%) | Low (1,22 () -
Using (2.6) and the equation satisfied by (7, 1) we find, if s > 3 + %,
1020 (G (M)l L= (1,2 (m)) < A
Therefore if s > 3 + % we obtain,
(3.17) 197 x| = (1xm) < A.

Finally let us estimate the term 8,02y. Using again (2.6) and the equation satisfied
by (n,) we find, if s > 4, that,

2
(3.18) 1920 XM e (1 1o~ 3 () = A

3.1.3. Reduction of the equation. — With V defined in (2.7) and ® defined in (2.9) let us set
(see (3.7)),
(3.19) W =V ok(Ozx o k)+ Ox ok,

(3.20) " =K"®=Dok—Tg,0)0xk-
Then we have the following result.

PROPOSITION 3.3. — Let s > 2+ % and I = [0,T). There exists a real valued function g

such that 0,9 € Zg_ s and the function u = T, ®* satisfies the equation
2

(3.21) (8, + Ty + | Dy | )u = F,
with F € L*(I, H*(R)) and W is defined by (3.19).

Proof. — We apply the operator £* to the Equation (2.10). We first show that

K*(0: + Ty 0,)® = (0: + Twd,)®* + R(P)
3.22

OB IR@) ey < CUM DN 1 et a0y VBl 1.2

To estimate the remainders we shall use the estimates (3.8) — (3.15) on x and x obtained
above. We begin by showing that

(3.23) K*(00®) = (8 — Tiopy)on)®* + Ri(®)

where R; satisfies the estimate in (3.22).

We have
K* (8t<I>) = (8t<I>) oK — T(é)zat@)onﬁ

= 0¢(® o k) — (0:k)(0:® o k) — T(a,0,8)0r ks
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therefore,
K" (0;®) = 0,(k"®) + By + Bo,
(3.24) Bi = Tio280r)0,n K
By = T9,0)ox 0tk — (0:k) (0P 0 k).
Let us consider the term B; in (3.24) and let us set a = Btn(82<1> o n). We have,
Tok =Y Sj_sl =278, 5(a)p(27/D)(8:) = > _ g;
>4 >4 >4
where ¢ € C®(R), supp ¢ C {3 < [¢] < 2}. Since 8,k = 1+ f(8,n) with f(0) = 0, we have
A;(0:k) = 8;(f(9am)) so.

9512 Ry < 277 |l Lo (r) 277 De; (|| (c;) € 1.

H5+ R))?
On the other hand using (3.8), (3.9) we can write,
lallpee (rxry < @l oo (1,2 106X (02 X) ™ | Lo (1xR)
SNl zoe (@D CU DN e 1 gt my ey
It follows that,
(3.25) 1Bullzoe(r ey < CU O e ;v d @y sers () | Bl 2o R)-

Let us consider the term Bs.
We have, 9;x = ab where a = dyx € I'Y,b = 9,k € I'{. It follows from Theorem 2.6 that
a#b=abandT,, — T,T, is of order —1. Let us set

(3.26) Bor = [[(Tab — TuT5)(0:® 0 &) || oo (1,15 (R)) -
Using (2.5) we obtain,

Bo1 < [|0sx] Lo (1,w1.00 R)) 10z || oo (1, w100 (R)) [ (02 @ © K) || Loo (1,15~ 1 (R)) -
Since s — 3 > 1, using (3.13) with y = s — 1 we obtain,

(3.27) Bjy < C(||77||LOO(I7H5+%(R)))||®||L°°(I,HS(R))~
Therefore using (3.24), (3.25), (3.27) and Theorem 2.7 we obtain,
(3.28) K (0:®) = Ouk™® — T, T5,:0:P 0 k + Ra (D),

where R, satisfies (3.22).
Now let us set

a =0,k € L®(I,H* 3(R)),b=08,®0r e L, H ' (R)).
It follows from Theorem 2.7 that
(3.29) llab = Tub — Toallpoe (1,522 (m)) < Nlall e ;o t oy 1Ol 2w (1,1 R))-
Therefore we obtain
(3.30) K (0y®) = 0y (k™ ®) — T, 02605 (P 0 k) + T, To, 40x0zk + Rs,
where Rj3 satisfies (3.22). Using (3.1) we obtain
K*(0:®) = (0y — T9,%0x) (K" ®) — T, 02 (Ts, dork) + To,xTo,d0x0zk + Rs,
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where Rj3 satisfies (3.22).
It follows that
K)* (at@) = (8,5 — Tatxaz)(li*@) — T(agfbon)@zmﬂ =+ R3.

Now the term T(s20x)0, <+ can be estimated exactly by the same method as the term By,
therefore we obtain

K*(0:®) = (0p — T5,50x) (K" ®) + Ry,
where Ry satisfies (3.22). This is precisely (3.23).
Now we claim that

(331) K" (TVBECD) = T(Vamx)mamn*@ + R5(¢)),

where R satisfies (3.22). But this is precisely a consequence of Theorem 3.1. Indeed we have
for (almost all) fixed t, a(z, £) = iV (t,z)¢ € £!_,, and the diffeomorphism « is in W*~ 2 (R.),
s0 0 = s — 2 and the remainder term is of order less than 1 — (s — 3) = 2 — s < 0. Then
(3.22) follows from (3.23) and (3.31).

Let us consider now the principal part. Applying again Theorem 3.1 we find that,
K*(|Dy| T T.|Dy|1®) = |Dy|26*® + Tur*®,
where a is of order 1.

Finally, it remains to reduce to the case where a = 0. Indeed, let g be a real-valued symbol
such that 0,9 € T'{_; »(R) and

{|‘5|3/2ag} = —a,

then if we set
(3.32) u="T,sP",
we obtain by symbolic calculus that u satisfies
(8, + Ty, +i|Dy|? + 4T, + Ty)u = F,
with F € L>=(I, H*(R)) and b = i{|¢|>/2, g}. This completes the proof of Proposition 3.3.
O

3.1.4. Regularity of W. — The following result gives some informations on the function W
defined in (3.19).
LEMMA 3.4. — Let I =[0,T), E = L®(I x R), F = L>(I, H""2(R)).
1. Ifs>2+ % we have W € E, 0, W € F, and
IW s+ 10:W e < CUDB o o sy

2. If s > 4, we have O;W, 9*°W, 0,0, W € E and

1007 1 + 102W L + 100 1 < CCUD I, e gy
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Proof. — Let us recall that we have set,
(3.33) A=CIO e 1o+ o srec)
where C : Rt — R is an increasing function which may change from place to place.
Since s > 2 + % using (2.7) we obtain,
(334 Ve < 10:¥ Lo (1, m5-2R)) + 1Bl Lo (1,55-2(®)) 0l Lo (1,152 (R)) < A.
Then the estimate |W||g < A follows fom (3.8) and (3.9).
Now we have
(3.35) 0, W =0,V ok +V or(8%x 0 k)Iuk + (0:92X © K)Ozk.
Using (3.13) we see that,
(3.36) IV okllr+10:V okllr < AV Lo (1,151 (r)) < A
Now using (3.11), (3.14) and the fact that H5~2(R) is an algebra we deduce,
(3.37) |V o k(8%x o k)Duk|r < A.
Then the estimate |0, W||r < A follows from (3.15) and (3.11).
Let us now prove 2. We have
OW =0,V ok(Ozx 0o k) + 0,V o k(Ozx 0 k)Osk + V 0 k(0:0zx 0 K)
3.38 6
(3-38) +V o k(8%x 0 K)Otk — 02X 0 Kk — DOz X © K(Opk) =: ZBi'
i=1

It follows from (3.13), (3.9), (3.10), (3.14), (3.15), and the Sobolev embedding that
(3.39) |Bz| + [Bs| + [Bs| + |Be| < A.

Now we have 8,V = 0,0:¢ — (0:B)0.,n — BO.0:n. So using the equations satisfied
by (n, ), the Sobolev embedding and Lemma 2.9 we obtain

(3.40) 10V e et ey < A

It follows that
(3.41) |B:| < A.

The term Bs is estimated by A using (3.17). Therefore using (3.39) and (3.41) we deduce
that |0, W | g < A.

The claim on 2W follows from the first part of the lemma and the Sobolev embedding
since s > 3 + % It remains to consider the quantity 8,0, W. We go back to (3.38). The term
8,V o k(8,x o k) is bounded by A in L°°(I, H*=5(R)). The third term V o k(8,9 © )
is bounded by A in L*(I, H"2(R)). The term 8,0,x o x(8.k) is bounded by A in
L°°(I, H572(R)). Therefore the 9, derivative of these three terms are bounded by A
in L>(I, H~%(R)). By (3.8) we have,

10V 0 k(9zx © ’i)at'%HLw(IxR) < A0,V 0 k(Opx © K)||L°°(I><R)
< A||8IV o /ﬂ?(azX o K?)”Loo(],Hs—Z) < A.
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We can apply the same argument for the term V o k(92 o k)9; k. Finally we bound the term
V o k(0,02 o k) in the space L= (I, H5~%(R)) by using (3.13) and (3.18).This completes
the proof of our lemma. O

3.2. Symbol smoothing

In this section we follow an idea of Smith [26] (see also Bahouri-Chemin [7]), and we
are going to smooth out the coefficients of the function W with respect to x. As already
mentioned, here is the main place where the idea of allowing loss in remainder terms enters.

We define for0 < § < 1,
Ty =D Sia-»1(W)A
>4
The key difference between Ty and T, is made clear below.

LEMMA 3.5. — The operator Ty, — T, is of order —§(s — 3).

Proof. — Since for almost all fixed t we have, 8, W (¢,-) € H~2(R) we have,

HSJ(W) - S[5j ||L<X>(R) Z ”A ||L°°(R)
[5J
<K Z 9 n(s=3) < g 0i(s—3), O
n=[d5]

In the sequel we shall set
h=277j€N,
(3.42) Wy = Sisi—sn (W),
a(€) = xo(O)E%,

where xo € C5°(R),suppxo C {3 < [¢] <4}, xo=1in {3 < |¢] <2}

LEMMA 3.6. — Lets > 2+ % and u € L>=(I, H*(R)) be a solution of (3.21). There exist
§< i e>0and f, € L®(I, H*~3(R)) such that

1l ety < C (||<n O e+ d o)
supp(7n) € {55~ < 6] < 207

and the functions u, = Aju satisfy

(3.43)

1
(3.44) (0 + i(W;fax + 8, W}) + ia(Dy))up = fa.
Furthermore we have
(3.45) D A ullf o (1 () < +00-
JjEN
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a(D,)uy, (and consequently

Proof. — First of all we remark that we have |Dz|% up,
h=%a(hDy)up = a(Dy)us). Now, applying the operator Aj to (3.21), we obtain

(B¢ + Tw 0y + i | Da|F)up, = A F — [A}, T )0pu := gl

w®) + 194l (5 ®))
Hs(R) T ||9;1z||L2(I;HS(R)))'

(3.46)
Let us prove (3.45). We deduce from the usual energy estimates that,

lunll oo (1;m5r)) < C(llun =0 |
< C'([lun |e=o |

Since by Lemma 3.4 we have 0, W € L*>°(I, H*~%(R)), using Lemma 2.8 we can write,

||9flz||2L2(1;Hs(R)) < 2(”AJF”%2(I;H°'(R)) + ||[Aj»TW]azAjUH%m;Hb(R)))
< C(”AJ’F”%P(I;HS(R)) + ||Aju||iz(I;Hs(R)))

where Zj =D jk—j|<3 Ak- It follows that
Z ”gilL”%?(I;HS(R)) < C(||F||2L?(1;HS(R)) + HUH%Z(I;HS(R)))

jEN
from which (3.45) follows easily.
Now we replace Ty, by T{,SV in (3.46) to obtain
(3.47) (0: + Z Sisk—3)) (W)Ak0z +i |Dz|%)uh = gp + (T, — Tw)0zun = gy, + g1
|k—j]<1
%)—% > 0ifé < %is

where, according to Lemma 3.5, g7 satisfies (3.43) with € = (s —

chosen close enough to % Now, we have
Sis(j—3)) (W)0zup = Z Ss(j—3))(W)AgOzup.
[k—j1<1

Consequently, we obtain

(3.48) (815 + S[g(j_g)] (W)az +4 |Dm|§)uh
=gh+ai+ D, (Sig-3n(W) = Sis—3)(W))Axdyun = gj, + g7 + g5,

[k—j|<1

and using that for |k — j| <1,
||S[6(Ic—3)](W) — S[(;(j,g)](W)HLQo < CQ—jé(s—E)’

we obtain that g3 satisfies (3.43). Finally, we obtain
1 . 3
(O + 5 (Wi + 0 W) + i |Dal *)un = gi, + i, + b + g,

where gi = 1S5(;—3)(8: W )uy, satisfies (3.43) (for any 0 < e < ).

LEMMA 3.7. — Let s > 4L and set
1 1
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Then there exists f, € L*(I, H(R)) such that

Ifallz=aremn < C (109w st gyt
(3.49) R
supp(fn) C {5h7" < [¢l <2077}
and the functions up, = Aju satisfy

1
(3.50) (0 + 5 (WR0s + 0: W) + ia(Dq))un = fn.

Proof. — The proof is identical to that of Lemma 3.6, the only difference being that now
we take & such that §(s — 2) = 1. O

4. Semi-classical parametrix

The purpose of this section is to prove the main step toward Theorem 1.1.

THEOREM 4.1. — Under the assumptions of Theorem 1.1, let u be defined by (3.32). Then

there exists C = C(||(n, w)||Lw(I’HS+%(R)XHS(R))) such that

bll g S
(I,B_ 1 (R))

Following [13] we shall reduce the analysis to establishing semi-classical estimates. Recall
that 277 = h and W;Ls = S[(g(j,g)](W) = qﬁ(h‘sDw)W, ¢ € C°(R).

THEOREM 4.2. — Let x € C3°(R) withsupp x C {£: 2 < || < 2} and ty € R. For any
initial data g p, = x(hD,)uo, where ug € L*(R), let Uy, := S(t,to, h)uo,n be the solution of

1 .
(4.1) OUn + 5 (Wi0s + 0:W3)Un + ia(Da)Up =0, Up l1=ty= tio h-
Then for any 0 < h < 1 and any |t — to| < h3,

C
4.2) 1S (¢, to, h)uo,nl L= (®) < W||Uo,h||y(m~

To prove this result, we shall follow a very classical trend and construct a parametrix.
Notice that our assumptions being time-translation invariant we can assume ¢ty = 0. The
parametrix will take the following form,

(43) On(t,0) = oy [ [ FOCED 0 B(1,2,2,6 Mo (2)dzde,

where & will satisfy the eikonal equation and

(4.4) Bl(t,x, 2,6, k) = B(t,z,&,h)((z — z — th~%d/(€)),

where B will satisfy the transport equations and { € C§°(R), {(s) = 1if|s| < 1,{(s) = 0if

|s] > 2.
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In addition to  (introduced in Theorem 4.2), we shall use two more cut-off functions
x; € C°(R),j = 1,2, such that

suppx1 C {€: - < |§] <3}, x1 =1lonsuppy,

(4.5)

supp xo C {€: = < [§| <4}, xo = 1on suppxi.

NS

4.1. The eikonal and transport equations

We introduce some space of symbols in which we shall solve our equations.

DEFINITION 4.3. — For small hg to be fixed, we introduce the sets
Q= {(t,z,6,h) eR* : he (0,ho),|t| <h?,1< ¢ <3},
0={(0,z,&,h) €ER* : h€ (0,ho),|o| <1,1< ¢ <3},

If m € R and o € R, we denote by Sy () (resp.S7(0)) the set of all functions f on Q
which are C* with respect to (t,z,§) (resp.(o,x,§)) and satisfy the estimate

(4.6) 107 f(t, 2, &, h)| (resp. |03 f (0,2, &, h)|) < Cah™ 9,
Sforall (t,x,&,h) € Q (resp.(o,z,&,h) € D).

REMARK 4.4. — (i) If f € S, g € S then fg € ST+™if f € S, (m > 0) and

F € C=(C) then F(f) € Sy if f € Si*,(m < 0) and F € C3°(C) then F(f) € S9_,, .
Let f € Sy, then 0, f € S5~¢. Moreover S;* C Sy} if o > ¢'.

(ii) Let W be such that 8, W € H**(R) with s > 2+ 1 and set W2 = y(h2D,)W where
v € J(R). Then 8, W € 57 .

Letd € (0, 1). We fix
@.7) ho = + (1 - 5) .
Finally we set,
Lo = B0t 5 (Wid, + ,W]) + ixo(hD2) D]

a(€) = xo() €% .

The main result of this section is the following.

4.8)

PROPOSITION 4.5. — There exist a phase ® of the form
B(t,z, &, h) = x€ — K™ 3ta(€) + h2U(t, 2, €, h)
with 0, ¥ € S(Y) and an amplitude B € S3(Q) such that, with B defined in (4.4),
(4.9) 2o (e#*B) = e#®Ry,
and for all N € N we have,
“10) | // e (BT EM =R, (4t 4 2 ¢ h)ug(2) dz dg”Hl(Rx) < CnhY Juonllp (wy,

forall t in [0, h=].
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Proof. — We set,
t=ho, o(0,3,&,h) = ®(ch?,z, &, h),
@.11) b(o,z,&,h) = B(oh?,z,,h), Vii(o,z) = Wi(oh?,z),
£ = hd, + %h% (Vi (h8z) + hd, Vi) + ia(hD,).

Multiplying (4.9) by h3 we see that it is equivalent to,
(4.12) £ (e%‘”g> = e%“’r(mx,z,&,h),
and (4.10) becomes,

(4.13) H //e%(w(a,m,ﬁ,h)—ZE)r(@x,z,g,h)uo’h(z) dzdﬁHHl(R ) < CNhNHuO)hHLl(R).

In the proof of (4.13), z, &, h will be considered as parameters.
We shall take ¢ of the form

(4.14) 0(0,2,6,h) = a€ — 0a(€) + hy(0,2,6,h),
where 1 is the solution of the problem
{30111 + a/(f)aﬂl) = _€Vh7

¢|U:0 = 0.
Differentiating (4.15) with respect to x and &, using an induction on & and the fact that
9: Vi, € S9(0), we see easily that,
(4.16) 0£ 020 (0,2, €, 1)| < Chalolh=*CeFh=D",
for every (o,z,£,h) € O, where a* = sup(a,0). It follows in particular that 9,9 € S2(0),
o € SY(O) .

Now, since (see (4.11)) b = b we have,

(4.15)

i h% i T 1 1 ~
(4 1 ) e_i(‘a(hao + 7(Vh6w + 8,Vh))(eﬁ“”b) = Z[h§€Vh — a(é) + h§80¢ + thaz’l/J]b
17

1 1 1 1
+ hldob + W3 Vidsb + Sh? (D Vi)BIC + hl—a(§) + hViJb('.

On the other hand recall that we have for all M € N* (see the appendix),

(4.18) e #a(hDy;) (€79b) = A+ 711 + 1,
where
M-—1 hk. N
(4.19) A= G {0k 6w} |
k=0
with
1 8§0
@.20) o) = [ P(oNe+ (1= Ny
0

and the remainder 7, ro are given by,

1 ~
@21) = kM / / / eF @00 () (1 — MM1OM [0 (A + p(z, ) B(y) ] dAdydr
0
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and
(4.22)  ro= Z e prhMTF // 2Mio(z A)M_laéwrk[ ®)( ]|y c—AhzdAdZ,

where cas, ¢, € C, ko € C§°(R), ko = 1 in a neighborhood of the origin. Now since
b(o, 7,2, h) = b(o, 3, h)((x — 2 — 0d(§)),
writing for simplicity b(y) = b(o,y,£, h) and ¢ = {(x — z — ga’(£)) we have,

M-1
A= () Ap)C+rs,

k=0

(4.23) Ap, = Qk o5 {(0Fa) (p @)} ly=a

M— k
Z Z kh*0E7 {(0Fa)(p(z, 1))b(y) } |y==C".
k=1 j=1

The term Ag in (4.23) is equal to a(¢ 4+ h2,1)b. Then
2

Z%a(j)(é)(héé‘w)f' (h20,)° ‘M’ / (1= N)20%a(€ + Ah? 8z1/))d)\]

j=0"7"

(4.24) Ay =

The term A7 in (4.23) can be written as

h 1
Ay =1 a6+ n0.0)aub + b @20 (6 + hb0.p)
Therefore

ot
2

1
: Ha'(g) + h%aqu/ a” (€ + Ah29,1)) dA} Azb

(4.25) 1 0
b anb(@2)a"(E+ hio.u)

Since 9,9 € S, K292y € S, we deduce from (4.24) and (4.25) that

@26 g+ Ay = [a(e) + B (@06 + 2a"(€)@0.0)] b+ T (0,
+ hhHo(c1b + ch’8,b)

for some ¢; € S2, where po has been defined in (4.7).
Now, consider the term Ay with & > 2. We have

Ay = Zkkl Z ( ) ay* [(0Fa)(p(x,y))] | yzwali—klb
kl 0
Since k28,9 € S, we obtain,
Che 1= WF008 [(DFa) (ple,9))] |,_, € 2.
It follows that the generic term in Ay can be written as

hhk*lhfkrl(sck,kl h*é(k‘*kl) (hSax)k7k1 b.
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We have, since k > 2,

427) k—1—ki6—356k—k) 21:(1—6)—122(1—6)—122(%—5) Z%—ézuo
so that
k
Ap = hh#hy " cg(h?0,)'b, ¢ € S5.

£=0

We deduce from (4.26) that
b M-1

% j ey 0 ) V4

(4.28) Z Ap = LZO j—am(s)(h 0,) | b+ 2/ ()0, + hh ; de(h°0,)%b

with d, € S((;)
Then it follows from (4.12), (4.17), (4.18) and (4.28) that

r=i(~a(€) + hEEVh + W3 0,9 + hVidsyh) bC

1 1
+ h[B,b+ h2V,0,b + §h (0. Vi)b]C

1 h
+i[a(6) + ha (0 + 2a(©)@:)2] 0+ ha'(©)0.b¢
M-1
+hh* Y dp(h°0,)'b¢ + Z rj.
£=0 j=1

Gathering the terms in powers of h, noting that the coefficient of h° vanishes and using the
eikonal equation to see that the coefficient in h2 vanishes, we are left with

M-1 4
(4.29) r=nh (80b +a/(£)0:b+ifb+h*h Y ez(héaz)eb> C+iy ry,
£=0 =1

where f = V,0,¢ + a” (£)(8,¢)? is real valued, e, € S and
(4.30) ry = %h[—a’(g) +h3V,]bC

It follows from (4.16) that

(4.31) 020 f(0,2,& h)| < Crooh™ FR™0TR),

for every (o,z,€&,h) € 0. In particular f € S9(9).
Now we shall seek b under the form
J-1
(4.32) b= Wb,
j=0

where the ;s are the solutions of the following problems

0bg 0bg
{ %—Fa (5)67_"7/]6[)0 —0

bolo=0 = x1(§),

(4.33)
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where x1 € C§°(R) has been introduced in (4.5) and

b b =

I L = — R%0,)%h;_
(4.34) 5o+ O, + b == X o) b,

bj|o':0 =0.

It is easy to see that for all j we have,
(4.35) bj(o,2,&, k) = x1(§)c;(o, 2, &, h).
For the estimates we shall use the following elementary lemma.
LEmMMA 4.6. — If u is a solution of the problem
O,u+a'(§)0yu +ifu=g, Uly—o = 2z € C,

where f be real-valued, then it satisfies the estimate
o & < Jol+ [ oo+ (0" = )a'(€), 6 Wldor
0

for every (o,z,&,h) € 0.
Proof. — Indeed, the solution is given by

w(o, @, €,h) = ¢t Jy 1t =) (.6 do’

e A R L] B
0

Using this lemma we deduce the following.

LEmMMA 4.7. — The problems (4.33), (4.34) have unique solutions b; = x1(&)c; where the c;
satisfy the estimates

(4.36) 1020 c; (0,2, €, h)| < Copgh™ (R

Sforall (o,z,&,h) € O,alla,k € N,andall j =0,..., M.
In particular ¢ = Y1 c;hito belongs to S9(0).

Proof. — Letuslook to the case j = 0. Then ¢ satisfies the same equation and cp|,—¢ = 1.
We show first (4.360) for k = 0 and all . By Lemma 4.6 we have |¢y| < C. So assume that
(4.36) is true (for £ = 0) up to the order o — 1 and let us differentiate the Equation (4.33)
o time with respect to z. It follows that U = 95 ¢y satisfies the equation

a£ / a£ . _ 2 - o ql a—I
(4.37) oy Ta(©)5 +ifU= z;q (8L )% ep.

Using (4.31), Lemma 4.6 and the induction we deduce that

|U| < Czh—léh—(a—l)ﬁ < Ch—aé.
=1
This proves (4.36) for &k = 0 and all a. Then using an induction on k we differentiate
the Equation (4.37) k times with respect to £ and we use again (4.31), Lemma 4.6 and the
induction to prove (4.36) for all k£ and «. The proof of (4.36) for j > 1 is similar. O
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It follows from (4.29), (4.33), (4.34) that

5
r= E Tj.
=1

where for any J € N

(4.38) rs = h7Hob;_1C.

4.1.1. End of the proof of Proposition 4.5. — We are left with the proof of (4.13).
For r;,j = 1,2 defined in (4.21), (4.22) we have,

(4.39) (¢ — 2~ 0d (§))lrj(0,5,2,6 h)| < CAMI=I Y x, (€)].

Let us prove (4.39) for r;. Recall that

1 : ~
= e [ [ et e a1 M0 ) + pla )i dAdydy
0
where kg € C§°(R), ko = 1 in a neighborhood of the origin and

b(y) = x1(&)e(0,y, &, ) (y — 2 — 0d/(€))
withc € 59 and § < 1.
We estimate separately r1, (z — y)r1 and (y — z — 0a’(§))r1. Since ¢ € S we can write,

il < W [ foo)lan [ 16 wldu

where ¢; € C$°(R),¢1 = 1 on the support of ¢. The term (y — z — oa’(£))ry is estimated
similarly, since (y — z — ga’(£)) is bounded on the support of {;(y — z — ga’(£)). Finally to
estimate (z — y)r;we integrate by parts using the fact that %8,,6%(9”*?/)’7 = (z—y)en@v)n,
Recall that
M-1

1
ro= Y cpuhMTH // Mio(2)(1 = MM 10l (p)b]y=g— anzdAdz.
k=0 0

As above one can estimate separately ro, (x — 2 — Ahz — gd/(§)) + Ahz)re and Ahzrs to
obtain the desired bound. An estimate of the type of (4.39) for r5 follows immediately from
(4.38). Let us prove (4.13) for r;,5 = 1,2,5. Let us first bound the L? norm of the left hand
side. Using (4.39) we can see that for any NV € N one can find M and J so large that

/ ||7'j(0', K2 53 h)”Lz(Rw)dg < cYNh/N
It follows that
//e%(“’(”’z’f’h)_zé)rj(a,m,z,f,h)uoyh(z) dz d§

(4.40) ‘ < CyhY / [uon(2)]dz.

L2(Ry)
The estimate of the L2 norm of the x derivative is analogous.

The terms corresponding to r3 and r4 defined in (4.23) and (4.30) will be treated in the
same manner and will use the fact that on the support of a derivative of the function ¢ one
has |z — z — oa’(§)| > 1. Since by (4.16) we have h%|8§¢| < Chz|o| < Ch? we deduce
from (4.14) that |0¢ (p(0, x, &, h) — 2€)| > % if h is small enough. Therefore we can obtain an
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estimate analogous to (4.40) by integrating N times by parts in the integral appearing in the
left hand side of (4.40) using the vector field

h

b oo e e — a2
The proof of Proposition 4.5 is complete. O
4.2. Refined Van der Corput estimate
Let us recall that we have set (see (4.3))
(4.41) ﬁh(t,x) = /%(t,x,z, h)uon(2) dz
where
(4.42) K(t,z,z,h) = ﬁ en(PLTEN 2O B(¢ o 2 € h)dE.

In the variable o = th~ % we have

K(t,z,z,h) = K(o,z,z,h)
where
1 i

K(O’, z,z, h) = ﬂ eﬁ(tp(o’,m,ﬁ,h)—zf) ’5(0', Z,Z, ‘5’ h) dé.)
i

where ¢ and b have been determined in (4.14), (4.33) and (4.34).

PROPOSITION 4.8. — There exists C > 0 such that
1
2
(4.43) |K(o,z,2,h)| < ¢ <ﬁ> ,
Sorall (o,x,2,h) in]0,1/2] x R x Rx]0, ho|.

Proof. — Since b € S is bounded with compact support in £, the estimate (4.43) is trivial
for |o| < Ch. Let us assume that |o| > Ch. We have by (4.11),

P = (ha,, + hEW) (W0, z)(hd,) + %h%(aﬁwg) + ia(th))> .

By a scaling argument we can assume without loss of generality that ¢ = o¢p = 1/2.

Indeed, otherwise, setting
o - T ~ h

T=—, T=—, h=—,
0o o oo
we see that in the new variables, the operator reads
L = hd, + h*Whd, + b (-W}) + i|hD~[*/?

where

W(r,%) = 03/2W£(007’, 00T)
and consequently we have

WP e L=(H*Y), oW €S9

with bounds uniform with respect to oy.
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Assume now that the dispersion estimate has been proved for the kernel of the operator
L and o = 1/2. Since we have

Su(0)uo(x) = (5;(

Dya) (L), () = uola),

oo (o) ago

we can write
~ o' —
(4.44)  [|Sh(o0)uollLe(r) = ”SE(;O)uOHLw(R)

c Cloo|*/? c
|h|1/2 ~——|uo||: R) > MHUOHD(R) ho |1/2
which is the dispersion estimate for the kernel of the operator L and o = oy.
Let us set
(4.45) 0(z,y,€h) = p(0,2,6,h) — 26 = (¢ — 2)€ + a()o + h* (0, 2,&, h).
Then
020(x,y,€,h) = BZa(€)o + h2 (0, a,& ).
Now by (4.5) and (4.8), on the support of x; we have a(§) = |§|%. Therefore 8§a(§) =
3l¢|=2 > c¢o > 0. On the other hand from (4.16) we have 02¢| < Coh~° which implies
h3 02| < Coh3—® < Cohto. It follows that on the support of x; one can find a constant
3 pp
c1 > 0 such that
1
(4.46) 0<co< 8529(;c,y,§,h) < Pl
1
if hg is small enough.
In the sequel we shall omit to note the variables (x, z, h) which are fixed. However, we shall
take care of the fact that all the constants are independent of (z, z, h) € R x Rx]0, hg[.

Let us denote by [«, 8] C [%, 3] the support of x1.We deduce from (4.46) that the function
& — 0:0(&) is increasing on [, (). Therefore one can find p € [o, ] such that

9:0(¢) <0 for& € o pl, 80(¢) >0 foré e p, .
Noting b(o, z, &, h) = b(§) and assuming that |p, 8] is non empty, we shall estimate

B
Ki(o,z,6,h) = en?©Ob(&)¢(z — 2 — d'(€))dE,

2rh

the estimate corresponding to the 1nterval [c, p] being similar. We write for small A,

Ky = h(Il + 1),

1
2
(4.47) /p %’“Qb(f)aw —z—d/(€))dE,

/ | eF0Op(E)C(x — 2 — d(€))deE
p+(L)2
We have obviously,

(4.48) Ih] < C(%),

9>
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In the integral I, using (4.46) and the Taylor formula we see that,

N|=

h 1 h.1
(4.49) (&) > c10()* = Cu(ho)®, VEE[p+ (D)1
Let us estimate the integral I>. We can state the following lemma which is a refined version
of the well known Van der Corput Lemma.

LEMMA 4.9. — For all k € N there exists C > 0 such that
h
ag

B N 1
(4.50) jb - (—1)’“(%)’c /+(h)1 eie(g)(agel(g))kagq(é“)df’ <C(=)?
p+(5)2

where g(€) = b(€)((z — = — d/(€).

Proof. — Let us denote by Jj, the integral term in (4.50). The lemma is true for £ = 0.

Assume it is true up to the order k. Using the fact that @%856%9(5) = e#%® and

integrating by parts in J; we obtain,

__k1ﬁk+1ﬁ ngeys (L \ok
1= O [y g

h 1 1
+ (=DM ()" /Mh)% e ey 1Ok

hyk+1; & 1
F (1 Byt (W)agq(g)]i(%)% = Ji+ JE+ T}

First of all we have J? = Jj1. Now using (4.36) and (4.49) we can write,
—k(5+4)
172 SC’thhi <C(ﬁ)%hk(%—5—4) SC(E)%,

o)y T o 1%

iy

since o > 1. Now using again (4.36) we obtain,

8
|JI%| < Chk+1—k(5+4)/
(L)

(e

Since by (4.46) the function 0,6 is increasing we have

'%(wwéWHJ’:‘%(wwéwa'

Therefore we can write,

_ 1
41 < OWE (G gy ot

We deduce exactly as for J3 that,
1
)

1
It follows that |.J, — JZ| < C(£)2, which proves our induction. O

l7h < C(

=
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Now using Lemma 4.9, (4.36) and (4.49) we can write,
1
(ho)%
so taking k such that 2kpo > 1 and using (4.7) we deduce that | J;| < C

Lemma 4.9 that | Io| < C(%)% and from (4.48), (4.47) that |[K 4| < £( which completes
the proof of Proposition 4.8. O

h—k:(5 S C(Z)%hk(%—(s)—% S C(ﬁ)%hzkﬂo_%7

g

|Jx| < Ch*
%. It follows from

)
ok

4.3. End of the proof of Theorem 4.2
Let us set J = [0, h%]. It follows from (4.3) and Proposition 4.5 that

~ 1 ~ ~ ~ ~
(4.51) 0:Up + §(Wifax + 8, W)Uy, +ia(Dy)Up = Fy, Unli=o = Un(0,2),
with
(452) sug) ||Fh(s, ) ||H1(R) S CNhN||U0,h||L1(R)~
se

We claim that,
(4.53) Un(0,-) = won +vons  |lvonllam < Cxh™N|luonlloim)-

Indeed using (4.3), (4.4), (4.14), (4.33) and (4.34) we see that,
@sh  wal)= @) [[ 5@ - 2) - Dua@uon(z)dnde.

Since on the support of 1 — {(x — z) we have |z — z| > 1 we can integrate by parts as much
as we want to obtain that for all N > 1,

von(z) = enhN "1 //e%(w—z)s [l—g(x)—Nz)] (8 x1) ()uo,n (2)dzdE.

(z—z

Using the Holder inequality we deduce that,
1— _
|’U0)h(£L')|2 S CNhN—l (/ M

2
(z — 2)N |“0,h(z)|dz) l[uo,nllzr (w)
from which we deduce that,

lvo,nllz2m) < CNhN_lHUOJIHLl(R)-

Differentiating (4.54) with respect to  and using the same trick we obtain the estimate in
(4.53).
Now by (4.51), the Duhamel formula and the definition in Theorem 4.2 we can write,

S(t,0,h)ugp, = D1+ Dy + D3 where D; = ﬁh(t,x),
(4.55) "
Dy = —S5(t,0,h)vo p(z), D3 = —/ S(t,s, h)[Fr(s,z)]ds.
0
First of all the estimate

C
(4.56) [D1(t)]| oo (r) < W”Uo,hHLI(R)

follows from Proposition 4.8 and (4.41).
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Let us estimate Dy. We have by Sobolev inequality,
[1D2()l|zoem) < CrllD2(8) [ ) < Collvo,nlla )

therefore by (4.53),
(4.57) ID2()| o () < Cnh™NuonllLr (m)-

Let us look now to the term Ds3. We have,

ID5Oll=m) < C [ 1501 Fs i < O [ 1Fu(o. o

from which we deduce,
(4.58) D3 ()| oo ry < CNR [Juopllr (m)-

Then Theorem 4.2 follows from (4.55), (4.56), (4.57), and (4.58).

4.4. The TT* argument

Having proved the dispersion estimate, the Strichartz estimates for the solution of (4.1)
follow very classically.

PROPOSITION 4.10. — There exist > 0, C > 0 such that for any 0 < h < 1 and any initial
data ug p, = x(hDy)ug, we have

(4.59) 15(¢,0,h) < Cfluo,nl

uo’h”m((o,h%),mo(R)) = HE(R)

Proof. — Indeed, applying the usual 7T* argument, it suffices to prove that the operator
h3

S(¢,0,h)S(s,0,h)* f(s)ds
0

maps continuously L3 ((0,h2), LY(R)) to L*((0,hz),L°°(R)). But a direct calculation
shows that since (W8, + 0, W}) is self adjoint, one has

S(s,0,h)* = S(0,s,h),

and consequently, Proposition 4.10 follows from the classical Hardy-Littlewood-Sobolev
inequality and the dispersion estimate (4.2). O

COROLLARY 4.11. — Let u be a solution of the problem
1
Oru + E(W,‘fax + 8IW,‘f)u +ia(Dg)u=f, u|t=0=0
withsupp f C {3h=1 < |€] < 2h=1}. Then we have,

<K —-1/8
Jul < KhYVE 11,

L4((0,h3),L>(R)) 0,h%),L2(R))
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Proof. — Indeed we have,
t
u(t;) = [ S(0,0,1)8°(5,0, )5, ) ds.
0

Let us set J = [0, h2]. It follows from Proposition 4.10 that,
nt
el g,y < € / 1805, 0,1 (5, )y gy B

1
h2
< C'/O £ M gy @5 < C"B7E Nl o 22 () »

since £ is supported in {1A~! < [¢] < 2h7 1} O

4.5. Gluing the estimates

It remains to glue the estimates which up to now have been proved on small time intervals
of size hz. Recall that from Lemma 3.6 we have

1 3
eup, + E(W;fax + 0, W up + i |Dx|3 up = fn € L®((0,T); H 7).

Let p € Cg°(0,2), equal to 1 on (3, 2). For —1 < k < Th™ 7, define

t — kh?
Uh,k = W(T)Uha

which satisfies

1 3
(4.60)  Dyun + 5 (Widou + 0, Wi Jun e +i D2 |? uni

= @(t _hkhé )fh + h‘%cp’(t _hlzh; )uh, Uh,k

1
2

rint =0

As a consequence, using Corollary 4.11 we obtain,

@OD)  unkll Laund ampndy, L=y

hd i+ b3 (

(t—kh% t—kh%)u ‘
14 X Ml ent (k+2)nd), L2(R))

< Chi~s (||fh||L°°(o,T),L2(R)) + h_%HuhHL“’((O,T),LZ(R))>

IN

1
2

< Ch*™3 (h° + [[unll o= ((0.1), 5 (R)))

where in the last inequality we used that by (3.43) we have f, € L((0,T), H* <=2 (R)).
Eventually, noticing that,

Th%
lunllZa 0,7, Lo (m)) < k221 ||Uh,k||i4((kh%’(k+2)h%)7LOC(R)),
we obtain
(4.62) lunlZago.y, Lo (rY) < Ch™3 W2 (B + [[unl| oo (0,7, 1o (R))) -
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For h = 277, let us set
¢j = 277 + ||unl| L (0,7, s (R)) -

Notice that according to (3.45), we have

(4.63) D& < 4oo.
jEN
We deduce
1
L _ 221= D A2 o bl
”uHL4((O7T)7B:§(R)) ||(]€ZN A ullg (R)) 20,1
o1 1
= 1Y 27D AjullF ey 172 0.7y
jEN
(4.64) 2i(s—) ) 3
o1
< (2 125 DAl gy 10
jEN
s 1 3
= (32 2D 18suls o 1y o (ry )
jEN

which, by (4.62) and (4.63) completes the proof of Theorem 4.1.

5. Classical time parametrix

In this section we take s > 1—21 and we prove the usual Strichartz estimates. The main step
is, as before, the dispersion estimate. To do so, we seek a parametrix. The main difference with
respect to the previous section is that (in the semi-classical framework), we are looking for
a large (O(h~1/?)) time parametrix. As a consequence, the lower order term Ty 9, induces
oscillations. This is reflected in the fact that the new eikonal equation will be quasi-linear.

We begin by an analogue of Theorem 4.1.

THEOREM 5.1. — Under the assumptions of Theorem 1.2, let u be defined by (3.32). Then
there exists C = C(||(n, w)”Lw(I,HS*%(R)xHS(R))) such that

ball oy <
(I.BL.§ (R))

THEOREM 5.2. — Let x € C§°(R) withsupp x C {€ : 3 < |¢| < 2} and ty € R. For any
initial data uo , = x(hDy)uo where ug € L*(R) let us denote by S(t,to, h)uop = Uy, the
solution of

1
(5.1) OUn + 5 (Wi0s + 0:Wi)Un + ia(Da)Up =0, Up ls=ty= tio h-

Then there exists 1o > 0 such that for any 0 < h < 1 and any |t — to| < 70,

C
(52) ||S(t, to, h)uothLoo(R) S m ||U0,h||L1(R).
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In the remaining of this section, we shall prove Theorem 5.2. We need first to refine the
constructions in Section 4 to handle large times. An important point in the construction of
the phase function is that handling large times leads us to non linear geometric optics.

Our parametrix will be of the form (4.3), (4.4) that is,

(53) = %k // REOREM OB (1, 2, 2, €, h)uo p () dedE,
where ® will satisfy the eikonal equation and
(54 B(t,z,2,6h) = B(t, 2,6 h)((z — 2 — th~2d(¢)),

where B will satisfy the transport equations and ¢ € C°(R), {(s) = 1if |s] < 1,{(s) = 0if
|s| > 2.

5.1. Notations

In this section we fix
1

s —

11 1
5> 5 and § = % < 1
As before we shall set 277 = h, where j € N and we shall work with the semiclassical

time o = th™3

In addition to the function x introduced in Theorem 5.2, we shall use two more cut-off
functions x; € Cg°(R),j = 1,2, such that,

suppx1 C {€: = <|¢] <3}, x1 = 1on thesupport of y,

(5.5

supp xo C {€: — < [§] <4}, xo = 1on the support of x;.

= o] =

Recall that we have
@) W € L>=([0,T], W (R)), W € L>([0,T], WH*°(R)) (Lemma 3.4),

G) W) = Sy (W) satisﬁes‘ cwi| S Call Wl

(ii1) a(§) = xo(&) €17,
DEFINITION 5.3. — For small hg, 19 to be fixed, we introduce the sets
Q={(tz,&h) €eR* : he(0,ho),|t| <m,1< €] <3}
0= {(0,2,6,h) €R* : h € (0,h),|o] < moh™%,1<[¢] <3}

If m € R and ¢ € R*, we denote by S;*(Q2) (resp. S*(0)) the set of all functions f on Q
(resp. ©) which are C* with respect to (t,z,€) (resp. (o, z,&)) and satisfy the estimate

(5.6) |07 f(t,z,& h)| (resp. |07 f(o,z,&, h)|) < Coh™™ 9,
Sforall (t,x,&,h) € Q (resp. (o,2,&,h) € O).
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5.2. The eikonal and transport equations

In all this section we keep the notations of (4.11), (4.12), and (4.17) to (4.23).

The main result is the following.

PROPOSITION 5.4. — There exist a phase ® of the form

O(t,x, &, h) = x€ — h™ta(€) + h3U(t,z, &, h)

with 8,V € SY(Q) and an amplitude B € S () such that, with B defined in (5.4),
(5.7) Lo (e#*B) = et Ry,
and for all N € N we have,
(5.8) H //e%(q’(t’w’g’h)_zg)Rh(t,x,z,{,h)uo,h(z) d2d§HH1(RI) < CNhN”uO,h”Ll(R)a
Sorall t in [0, To).

Proof. — According to (4.23) we have,
Ao = a(§ + h2,4)b,

h A 1h3 A
Ar=Zd/(6+h20:)0;b + 57(631/;)6/'(5 + h28,)b.
We deduce (with £ defined in (4.11)) that £(e#9b) = e#®r with
r=1i{h30,9 — a(€) + a6 + h28,) + hVidsp + h3EV; } bC

e+ hd 1t Lo
(5.9) +h{3[,b+a (§+h20,9)0:b+ 2h Vi 0pb + 2h (8:Vi)b

. M-1 4
1 )
+hE(GO2)" (€ + b+ T D AC+i Y,
k=2 j=1
where 71, 79 are defined in (4.21), (4.22), r3 in (4.23) and
h ,
(5.10) Ty = 7 {—0//(6) + hEVh} b(:/

5.2.1. The eikonal equation. — As already mentioned, an important point in the construction
of the phase function is that handling large times leads us to non linear geometric optics.

An important fact in the sequel is that 8,V3, = ©(hz) which follows from the fact that
(see (4.11)) Vi(o,2) = W) (hZo,z); that is why we shall keep the notation W2 (h2 o, z) in
what follows.

We determine ¢ by solving the following nonlinear problem,

a(€ + hz8,9) — a(€)

. + hEW) (W20, 2)0p1p = —W; (h? 0, )€,

Dot +
$(0,,&,h) = 0.

In this system, £ and h are seen as parameters. We begin by establishing that the solutions
exist for a time interval of size h~ % and satisfy some uniform estimates.

(5.11)
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PROPOSITION 5.5. — There exists 19 > 0 such that the problem (5.11) has a unique
C solution v in the set © such that %w,azw and 02+ are uniformly bounded on ©
by C(||(n, ¢)||LW(I,HS+%(R)><HS(R))) where C'is an increasing function from R™ to itself.

Proof. — Let us differentiate the Equation (5.11) with respect to z and let us set 1 = 9,%.
Then v, is solution of the quasi-linear equation
(512) 801/11+A(0,l’,h,§,’(/)1)8x’([11 :B(U7$7ha§7¢1)7 '(/11(0,15,h,§) :07

where

A(o,z,h,€,2) = ' (€ +h7z) + hi Wl (hio, ),
(5.13) { ( ) =a'( ) h( )

B(o,z,h, &, 2) = —h3 (0, W) (h30,2)z — E(0, W) (h? 0, ).

We shall solve (5.12) by the method of characteristics.
The characteristics are given by the system

o(s)=1, o(0)=0,
(5.14) X(s) = A(s, X (s),h, &, Z(s)), X(0) =g,
Z(s) = B(s, X (s),h,€, Z(s)), Z(0)=0.

Since A is uniformly bounded and |B| < C4 4 C3|z|, the above system has a unique global
solution (i.e defined for s € [0, +o00]).

5.2.2. Properties of the flow. — (i) We have,

(5.15) 319> 0,1 > 0,62 >0:¢; < |X(8)] <z, 0<s< Toh*%.
We show first that

(5.16) h2|Z(s)| < Crol|0:W Lo exp (10| 0:W|z), 0<s < moh™?.

To see this we integrate the equation satisfied by Z and use (5.13). We obtain
517 |Z(s)] < CloW |1 || + B3 1|8, W ]| = / 1Z(0)|do, 0<s<moh k.
, A

Then (5.16) follows from the Gronwall inequality.
On the other hand, setting m(s) = (s, X (s), h, &, Z(s)), we have

A(m(s)) = d'(€) + ;Z(s)/o a" (& + A2 Z(s))d\ + h3 W (h3 o, X (s))do

=d (&) +R
where
|R| < 70C (70, [0 W | = la” | e + B2 W ge, ).
Since for 1/2 < [¢] < 3 we have |a'(£)| > 2¢; > 0, we obtain
|A(s, X(s), h,€, Z(5))| = &1
when 0 < s < Toh™2 (10 and h small enough). This proves (5.15).
(ii) We have,

(5.18) X()| < (Il Wllnz, +10W iz ), 0<s<mh~t,
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Indeed let us set m(s) = (s, X (s), h, &, Z(s)). Then we have,
X(s) = (0:A)(m(s)) + (0:A)(m(s)) X (s) + (8- A)(m(s)) Z(s).
Moreover we have,
(054)(m(s)) = h(@W})(0h?, ), (9.A)(m(s)) = h* (0. W) (oh?, )
(0:A)(m(s)) = h2a" (€ + h2 Z(s)).
Then (5.18) follows from the expressions of X (s), Z(s) and (5.16).
(iii) We improve now (5.16). We have,

(5.19) ZE)| < (D 10°Wlhiz, ), 0= (31,00).

| <1

Indeed we can write
(5200 20) = ~¢ [ @WDoht, X(@)do — i [ @M (ohE, X()Z(0)do
0 0
Now, using (5.15) we have,

60 2 g % s 9 g %, g
(5.21) (&gW,‘f)(ahé,X(U)):a"[Wh(X}(‘U;X( )] hE( Wh)é((gf; X(0)).

After an integration by parts we obtain,

_ [ 3 _ Wi(sh?, X(s) W3 (0,X(0))
1_./0 (0:W7)(ch?, X (0))do = —1 X6 hX(O)

2O ysont, X(0))do -} [~ (@W)(ohE, X(0))do
+ [ W X (oo / o WD, X(0))do.

Using (5.15), (5.18) we deduce that for 0 < s < Toh ™% we have,
<c( Y 10°Wle) 0= (0.,0.).
o<1
It follows from (5.20) that,
2@ < (3 10°W e, ) + 107 |z h¥ / Z(o
o<1

which using Gronwall inequality proves (5.19).

We are going now to give some estimates on the z-derivative of the flow.

We claim that,

0X 0z 1

(522 @+ < C(10W e + [ Wl ) 05 < 1oh"3
0X 1 1
R — < — <sg< 2
(5.23) () -1 <5, 0<s<mh i,

ifToC( [EA g [— ||W||Wz,oo)) is small enough.
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Indeed using (5.14) we can write,

OX (o) = 3@, (sht X () D (o) + b + 12 2(60) 22 o),
A 1 0X 1 0X
52 () = ~E(@2W) sk, X () 5 () — hE(OIWE)(sh, X(5)) S (5)2(5)
1 3Z
W @) (sh¥, X (s)) 0
From the first equation we deduce
0X 1 50X
624 15 () <14 RH@W) e, / |5 (@)ldo + ¥ ]~ / 122 (0)\do

From the second equation we deduce,

0Z
o (s) =1 = I, + I3 where,
0X
B = —¢ [ @Wont X(0) G 0)do,
(5.25) oxX
I=-ht [(@Wheh, X(0) % Z(o)do,
0 T
b= [ @wiont X (o) 5 do
We have casily,
1 5 07
(526) ] < W10 Wz, [ 15 (@)ldo
il 0 x

Moreover using (5.19) we get,

(5.27) < wie( S 10 Wl ) lo2Wlar. [ 15,

lo|<1

We are left with the estimate of I;. We use (5.21) applied to 9, W} . We obtain

* 0,[0.W} (oh2, X (0))] 0X

s § %

(5.29) —h%g/ (9:9:Wj)(oh*, X (o)) aX( )do =: A+ B.
0 X(o)

We see easily that

(5.30) Bl < Ch2 0,0, W | s, / |5~ (0)|do.
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Let us consider the term A. After an integration by parts one can write,

(8. W) (shz,X(s)) 0X (B W9)(0, )
A= (i %“)‘W)

X(s)
v [ @wpont XN G0 £5

° s 1 X(U) 87XU o
—& [ 0wiont X(0) £ 55 5 e

Using (5.24), (5.15), (5.18) and the equation satisfied by %—f we obtain
1 [70X
(531) A< c(lowliz,) (141 [ 05

07z
()] + 5 (0))do)
Using (5.25) to (5.31) we obtain

0z
155 © = Clo:W )

BX'

(o) + ‘Z(J)‘)dg

+ 0 (10 lmzm + Whimz=) |

so using (5.24) and the Gronwall inequality we obtain (5.22).
Then coming back to the equation satisfied by %—f we deduce
0X 1
5 ©) =1 < C(10W ez + W g yze) s

for0 <s < Toh*%. Therefore taking 75 small enough we obtain (5.23).

5.2.3. Resolution of the eikonal equation. — We claim now that for all o in [0, 7oh~2] the
map x — X (o, ) is a global diffetomorphism from R to R. Indeed we have for such fixed o,

X(o,z) =z + /0(7 Ao, X (0"),h,&,Z(0"))do.

Since A is bounded by ||a’|| o + h? [W{|zse we have lim|,|_, 1 |X (0, )| = +00. Moreover
by (5.23) we have %—f(o, z) #0forall0 <o < roh~% and all z € R. Therefore our claim
follows from the following classical result (see [8] Theorem 5.1.4).

PROPOSITION 5.6. — Consider a C* map F : R* — R% Then F is a global C*
diffeomorphism if and only if F is proper and at any point its Jacobian does not vanish.

Then
(5.32) X(o,z) =y xz=Y(0,z), z,y€R,

and the function (o,y) — Y (o,y) is C* by the implicit function theorem. Let us consider
then the set

S ={(0,X(0,2),Z(0,2),0< o < 7oh" %,z € R}.
It follows from (5.32) that S is a submanifold of R3 of dimension two to which the vector
field L = % + A(o,z,h,&, z)% + B(o,z,h, &, z)% is tangent. It follows then from (5.32)
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that the function ¢4 (o, y, h,§) = Z(0,Y (0, y)) is the solution of our eikonal Equation (5.12).

Then ¢, € L*>. Moreover we have
ov _ 0z ov oz ox L
55—Mwyww%ﬁmw—wwmmwx%wxww»,

S0, since a— is bounded and using (5.23) we deduce,

| 6¢1

It follows that the solution w of our eikonal Equation (5.11) is such that

o 82111

— e L% e L™

Ox € Lo Ox? T
uniformly in A, £. We deduce from the Equation (5.11) that 9,4 is uniformly bounded and
therefore that || < C|o]|. O

1< (10 e + W e ).

5.2.4. Properties of the solution. — We investigate in this section further regularity of the
solution .

PROPOSITION 5.7. — Let 1 be the solution of (5.11) given by Proposition 5.5. Then we
have L1y € L>°(0), 0,9 € L>(0), 02 € SY(0).

Proof. — The first two claims have been proved in Proposition 5.5, let us consider the third
one. We shall prove that 8,1 € S9(0) where ¢, = 9,¢. Let us set for < |¢] < 2,

&
a'(€)

Then according to (5.12) the function v is solution of the equation,

Bov + (' (€ + h22hy)+h3 W} )d,v + h%a”(g + Ry )2

(5.33) v(0, @, &, h) = 0yt (0,2, €, h) — 0. Wi (oh?,1).

(5.34) ) )
+(2h§a//(§ + h2t)) ,(5)8 Wh + 2h? Oz Wh)’l) = f,
where,
- _ 3 3 5 € ovirs( 1 o
f= a’(f)h 0, 0. Wy + 7@ W (a' (€4 h2ypr) — d(€))
R T P e e R 1 512
(5.35) —h a,(g)whamwh +h (a’(§)) a" (& + h211) (0. W})
+2h3 fg) (0. W})? — h2 (82W ).
Let us set A = h%9,. We shall prove by induction on k € N that,

(5.36) ANveL>®(0), 0<j<k.

This will imply our claim since 8, W} € S9(0).
Notice that (5.36) is true for £ = 0 by Proposition 5.5. Assume it is true up to the order
k — 1. It follows then, using the Faa-di Bruno formula that,

(5.37) A'b(h2y)] € R2L®(0), 1<1<Fk,
for any C'*°-bounded function b from R to R.
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Applying the operator A* to both sides of (5.34) and using (5.37) and the fact that
0°W? € SY(0) for & = (04,0:),|a| < 2,a # (2,0) we find that A*v is solution of the
problem

(5.38) (B0 +a' (€ + h291)8, + hEWS 0, + h2d(0, 2, &, b)) A*v € hZ L>(0),

where d € L*(0.).
Let us set @ = (A*v)(o, 2 + a’(€)0). Then @y, is solution of the problem,

1
(aa + R / o’ (& + M3 4y) dA 10, + REWS D, + B3 d(o, x, €, h))f;k € hEL®(0).
0
Then the desired conclusion follows from the following lemma.

LEmMMA 5.8. — Let ¢y, co be two real valued functions such that ¢y, ,.c1, ca belong to L™ ()
and P = 8, + hici(o,x, &, h)dy + h2cs(o,x, &, h). Then for any F € L (0), the problem

Pu=F, u|0=0:07

has a unique solution u which satisfies the estimate

o, W) < C [ 1P ) ey
Sor all (o,z,&,h) in O, uniformly in h.
Proof of Lemma 5.8. — Let us sett = oh? and ci(t,x) = cj(h*%t,x), j =1,2. Then we
are led to the problem
Pi=h*F, dl,.o=0 (t€]0,7),z€R),

where P = 8, + ¢1(t,2)8, + ¢a(t,z). Recall that &, € L™, 8,6, € L™, ¢ € L*.
Then the claim of the lemma follows from the classical method of characteristics. Indeed,
the characteristics are given by ¢(s) = s and

X(s,z) =7¢1(s,X(s,2z)), X(0,z)=zx.

Then z — X(t, z) is globally invertible for each t € [0,79] i.e. X(t,z) =y & = = Y (t,y)
withY € C° N L>. Then

% [u(t, X (¢, z))] = Ca(t, X (¢, z))u(t, X (¢, z)) + F(t, X (¢, z)).

Therefore w given by

t ¢
u(t,y) = exp <— / ', X(,Y(ty) dt') / F(t', X(t,Y (t,y))dt’
0 0
is our solution. O
COROLLARY 5.9. — Let v be defined by Proposition 5.5 and L be the operator

(5.39) L=0,+d(E+h20,0)0, +h2d10, + h?ds,

where dy, 0,d1, d2 are real valued and belong to S(0).
Then for any F such that | A9 F || 1 ) is finite for every j € N, the problem

Lu=F, u|0=0 =0,
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has a unique solution which satisfies the estimate,

k
(5.40) |A*u(o, 2,6, k)| < Cho Y |A F| 1o p),
=0

forall (o,z,€,h) € O, where A = h%0,.

Proof. — Since by Proposition 5.7 we have 9%¢ € S9(0) one can write,
L=0,+d(€)d, +h?dsd, +hidy,
where ds, 8,ds, d2 belong to S9(#). Setting
U=u(o,z+0d (€),&h), e =ds(o,z+0d (), h),
2 = dz(0,z + 0ad'(§),&, h),
we see that c1, 9,1, co belong to S9(#) and U is a solution of the equation
(5.41) LU := (8, + h?c10, + h3ea)U = Fy.

We shall prove by induction on k that U satisfies the estimate (5.40). The case k = 0 follows
immediately from Lemma 5.8. Assume now that (5.40) is true up to the order k — 1,k > 1.

Applying A* to (5.41) and using the Leibniz formula we have
(k=2)*
LiARU + kh# (8,c1)APU = 2 )" (

=0

k

) (AF=ie))A'D,U

1

k—1 k

— h? () (A*"ier) AU + AR Fy = Gy,
i=0 \?

where we used that () AcyAF718, = k(8,c1)A".

The sum in the first line can be written, —hz S-¥7! (,*,) (A*~0,¢1)A’U. According to
our assumptions on ¢y, cg, we can apply the Lemma 5.8 to the operator L + khz (0zc1).We
obtain, using the induction and the fact that hioc < 70,

k—1
AU (0,2,€,h)| < 0| A*F |1~ (9) + Co Y [N Fl| = (p),
§=0
which completes the induction. O

PROPOSITION 5.10. — Let A = h%d,. The solution of (5.11) given by Proposition 5.5

satisfies the estimates,
(5 42) |Ak851/}(0'7 x, 67 h)' + |Ak818£’(/}(0', x, ga h)| S Ckaa
' [AFOZY (0,2, €, h)| < Crroh~ 2o,

for all (o,,&,h) € O, where C depends only on the norm in L= (I, H**2 (R) x H*(R)) of
the solution to (1.4).
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Proof. — Differentiating (5.11) with respect to £ we find that U = 0 satisfies the
equation

1
(543)  0,U + (' (€ + h20yp) + h2W?)9,U = —(aww)/ a” (€ + h2XNIp)dA — WY
0

Then the estimate of the first term in the first line of (5.42) follows from Corollary 5.9. To
estimate the second term we differentiate with respect to £ the Equation (5.12). We find that
the function U; = Ogep1 = 0,07 satisfies the equation

O,Ur + (a' (€ + h2thy) + h2W)0,Ur + h2a” (€ + h3 )0t Uy = —0, W7

The second estimate in the first line of (5.42) follows from Corollary 5.9. Finally to estimate
U, = 8521/1 we differentiate (5.43) with respect to £ and we find that U; satisfies the equation

85Uy + (a' (€ + h20,0) + hEWS)3,Up = F
where
a"(€+ h20u) — a”(€)
h3 '
So using the estimate on 0,1 and 0,0¢1 obtained before, we deduce from Corollary 5.9 the
last estimate of (5.42). O

F = —h(0,0:0)%d" (€ + h20,) + (0,0e1)a” (€ + h? 8,p) +

5.2.5. The symbol equations. — According to the Formulas (4.18)—(4.23), since the phase
now satisfies the eikonal Equation (5.11), we are led to solve the following transport equation

Oob+ ' (€ + h28,0)0,b + hEW)O,b — k2 (924)a” (€ + b2 8,)b

(5.44) 1. s i
+ (0 Wi)b =~ > Ay,
k=2
with
(5.45) blo=0 = x1(§),

where x1 € C3°(R) is equal to one on the support of the function x given in Theorem 5.2.
Let

1
Ho = 5 — 29,
where we recall that 6 < 1/4.
Let us set
(5.46) A = h%d,.

Then according to (4.23) and the Leibniz formula one can write

k
(5.47) %Ak = RFOO7E N " ek, (B00,) R [(0Fa) (p((w, )] |, AMD,

y=zx
k1:0
where ¢, € C.
We shall take b of the form

M
(5.48) b=x1(6)e, 0= 6;, 0; =hI"g;.
j=0

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



894 T. ALAZARD, N. BURQ AND C. ZUILY

Then A*1b is a finite linear combination of terms of the form
(Ao‘oe%> (AO‘MegM) , ag+ -+ apy = k.
Let
w:{aENM+1 : |Oz|=/€1}7
and, for0<p < M,

wp={acw, a=(ag,-,ap0,---,0) witha, # 0}.
Then w is the disjoint union of the w,. It follows that
M - - Mo
(549)  AMb=3"3" dya (A0e) o (A% ) exp ( 3 0j) . da,€C.
p=0 a€w, J 1

Now by the Faa-di Bruno formula we have for 0 < £ < M,
~ ~ Q2
(5.50) A%e” =N " By
s=1

where E; ; is a finite linear combination of terms of the form

s

H (Ap"ge)qi where 1 < zs:qz‘ < ay, Zs:pi(h = ay.

i=1 i=1 i=1

Since Y771 ¢; > 1 and p(p + 1)/2 > p, it follows from (5.49) and (5.48) that

M
(5.51) Ao =e> hro 3" Gpg (h, AP0y, ..., AP#0,)
p=0 [8|<k1
where Gy, g(h, Co, - - -, {p) are bounded in h and polynomial in (. Coming back to (5.47) we
remark first that since £ > 2 and po = % — 2§ > 0 we have

(5.52) k(l—é)—122(1—5)—1=%+u0.

Let us note that this is the only point where we use the fact that § < i.

On the other hand we have,
(5.53) (R°0,)* " [(BEa)(p((z,9))] |,_, € S5-
It follows then from (5.47), (5.51), (5.52), (5.53) that for k > 2
1 1 Mok '}
(5.54) A = h? SN0 N AR gy Hy (b, A, ..., A%6,) €,
p=0k1=0|8|<k1

where fix, € S, Hp g(h,Co, ... ,(p) are bounded in h and polynomial in ¢.
Let us denote by L the linear operator appearing in (5.44),

(5.55) L=0,+a(¢£+h?0,0)0, + h2W/0,.
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Since b = ¢¥ with § = Eﬁio hPkog, we have Lb = ¢’ LA Tt follows from (5.54) that the
transport Equation (5.44) can be written, modulo a remainder,

L0 — b {(829) — (2.7)))
M-1

+ Y R (L, — h3Gy (b, ..., 0,)) =0,
p=0

where G, (o, . . ., 0,) are polynomials in AP8, for || < N. Therefore we shall take for 6,,
0 < p < M — 1, the solutions of the problems

56 { L8y = W {(0%)a" (€ + hE0,) — 0. W5)}, folo—o =0,
Lbyi1 =h3Gp(Bo,...,0,), Opiilo—o=0 (0<p<M—1).
We have the following result.
PROPOSITION 5.11. — Let A = h28,. Then (5.56) has a unique solution (01, . ..,0y) such
that for 0 < p < M and all integers k € N,
|A*0, (0, 2,6, h)| < Cr, |A*0:0,(0,2,&, h)| < Crh~°0,

(5.57) .
|A*9Z0, (0, 2,&,h)| < Crph™ 2P0

Proof. — We proceed by induction on p. If p = 0, the estimate of the first term in the
first line of (5.57) follows immediately from Proposition 5.7 and Corollary 5.9. Now 0¢0y is
solution of the equation

Leby = hz {(0:029)a" (€ + h28,9) + (2%) (1 + h28,09)a™ (€ + h2,)}
— (14 h20:0,0)a” (€ + h30,1))0,00 = F.

It follows from (5.42) and the first estimate that || A7 Fy|| 1 (p) < C;h°. Using Corol-
lary 5.9 we obtain the estimate of the second term in the first line of (5.57). To estimate 85290
we differentiate one more time the Equation (5.58) and we find using the same arguments that
LOZ6y = Fy where F} satisfies, | A7 F1 || o g) < Cjh~2729_ The estimate of the term in the
second line of (5.57) follows then from Corollary 5.9. Assuming that (5.57) is true up to the
order p the estimate 6, follows from the second equation in (5.56) and the induction. [

(5.58)

It follows then from (5.9), (5.11), (5.44) and (5.56) that

5
(5.59) r=>y_rj,
j=1
where r1, 79,73, 74 are defined in (4.21), (4.22), (4.23), (5.10) and
rs = hERMFDE G (G0, 00 xa (€)€0C 0

5.2.6. End of the proof of Proposition 5.4. — Since we have
g = X1(£)C(U, €z, 57 h)(C(l‘ —Z = Ua’/(g))
~ M pp
with ¢ = ¢f = e2oro "% ¢ S9(€2) the same arguments as those used in Section 4.1.1 give

the proof of (5.8).
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5.3. The stationary phase lemma

In the sequel we will use the following elementary version of the stationary phase inequal-
ity where we allow complex valued phase functions.

LEMMA 5.12. — For any real numbers «, 3, ¢ < 3, one can find Cyog > 0 such that for all
0 < h < 1,p > 0and for any functions ¢ € C?*([a, 8], C), p € C*([e, B], C) such that

Vg€ loyfl, [moE) <h |me"(©<p L <Re((§) <p,

< Cug <||P||L°° - / "Wl ds) (’;)5.

Proof. — Notice that we can assume that p > h (otherwise, the conclusion is straightfor-
ward). Notice now that, using the monotonicity assumption of the real part of the phase ¢,
we can decompose the interval («, 3) into the disjoint union of at most three intervals

we have

B8
| et One ae

(a, ) = UL U I3,
where Iy, I or I3 are possibly empty and satisfy
V€ €L, Re(¢'(€)) < —(ph)'?,
VE€ L, —(ph)'/? <Re(¢'(€)) < (ph)'?,
Ve € Is, Re(¢'(§) = (oh)'/.

Let us first study the contribution of I3. Either Is = & or I3 is an interval contained in [4, 5]
for some § € [a, B]. Then, using that

h F6(©)) _ g 0O
@) = e
and integrating by parts, we obtain
A, h B P h
F6(8) — | one8) _ -5
(5.60) /5 FHOpE)dE = |1 eh Ope)], /5 0 (1 p(©) de
_ [P e o ’ wo h ) d ’ e he"(€) d
[iaﬁ’(&)e p(&)h /6 ¢ @ ler® €+/5 e OLS

Clearly, the contributions of the first two terms are easily handled by means of the lower
bound on Re(¢’(£)) on I3, and to conclude, it suffices to bound the last term. But according
to the assumption on the phase, we now have

Re(¢/(8)) > (ph)'/2 = Re(¢/(€)) > (ph)'/* + £ (€~ 9),
and consequently, the last term is bounded by

il /ﬁ dhp 2h||p|| Lo
Plee Jo @(hp) 72 + p(€ - 9)) (hp)1/2

where the last inequality is obtained by a straightforward computation.

5 dt <
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Now, of course, the contribution of I; is dealt with similarly, and consequently we can
focus on the contribution of I5. Now remark that according to the assumptions on ¢”, the
length of I, is smaller than 4(h/p)*/2, which implies

i hy1/2
/ em(f)p(g)dt‘ <4|pll g (’) '
I g

This completes the proof. O

5.4. End of the proof of Theorem 5.2
As in the preceding section we have

S(t,0,h)ugp, = D1+ Dy + D3 where Dy = ﬁh(t,x),

(5.61) t
Dy = —5(t,0,h)vo p(z), D3 = —/ S(t, s, h)[Fu(s,z)]ds.
0

The terms D, and D3 are estimated exactly as in Section 4.3 while D; will be estimated dif-
ferently using Lemma 5.12 instead of Van der Corput estimates. Indeed recall that according
to (5.4) and (5.48) our amplitude in the parametrix (5.3) is given by

b, @, 2, h) = 1 (E)ePTTEN (5 — 2 — 0d/ (€)).

The new fact here is that we shall glue tlflve term e with the phase and apply the
Lemma 5.12 with the new phase ¢ — 2§ + %6. Using (5.3) we can write in the variable
o =th"3 s

Dl :/K(a,x,z,{,h)uOh(z)dz,

= / eh(PlomEn 2t 102ty (6)¢ (@ — 2 — 0d (€)) de.

Therefore we shall apply the Lemma 5.12 with,

¢ = 90(0-3 I’Ea h) - Zf + %§(07I7‘57 h)a Y= {1,‘6 + O'G,(g) + hé‘b(ffﬂﬁaé, h)a
p=x1(§)¢(z — 2 — 0d/(¢)),
p=Co, C>0.

Let us show that all the hypotheses in this lemma are satisfied. For this we shall use (5.42)
and (5.57). First of all, since § €]0, ;[ we have,

m ¢| = h|Im 6| < Ch, m¢| < h|026] < Chh~ %0 < 0.
Im ¢| = h|Im 6| < Ch 0 Im ¢| < h|0Z6] < Chh™ 2%
Moreover,
|02 Re¢| < |a"(€)|o + h%|82y| + h|026] < Co.
Finally,
|Re¢| > |a" (€)|o — h%|8§2¢| - h|6§2§| > |a" (¢)|o — Cimo0 — Coh2 25 > (4o,

if 79 and h are small enough.
It follows then from Lemma (5.12) that,

K=o (B) s [ola@c — = - oa'@lac)
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Since the last integral is bounded by C” [ |¢’(t)|dt, we deduce that the term D; satisfies the
estimate (5.2) which completes the proof of Theorem 5.2.

Proof of Theorem 5.1. — According to Lemma 3.7, Theorem 5.2, the Duhamel formula
and the same 7T argument as in Section 4, we deduce

1
[l La (0,7, L (R)) < ChS 8)<||fh||L1((O,T);HS(R)) + [lun [e=o ||HS(R)))
Hs(R)))

< Cht™%) <||fh||L2((0,T);HS(R.)) + [lun le=o |
= Ch(sié)cj‘,

with (c;) € €2, which (as in the previous section) implies Theorem 5.1. O

6. Back to estimates for (7, )

Notice that up to now, we only proved estimates for the dyadically localized functions
Aju. In this section, we shall show how we can recover estimates for (7,), the solutions
of the water-wave system (1.4). Recall that the Besov space B[, , is defined by

u€ Bl ,(R) & Y 2" [|Au} . < +oo.
JEN

We will use the following elementary lemma.

LEMMA 6.1. — If the symbol a € T(', then the operator T, is bounded from B3, o(R)
to B3y (R).

We have the slightly stronger result (compared to Theorems 1.1, 1.2)

PROPOSITION 6.2. — Let I = [0,T]. Under the assumptions of Theorem 1.1, there exists
€ > 0 such that

6.1) (n,9) € LI, B3T3 (R) x B AT (R)).

00,2
Under the assumptions of Theorem 1.2, we have

(6.2) (n,%) € L*(I, B3 72 (R) x B3 (R)).

00,2

Proof. — For conciseness, we will only prove (6.2), the proof of (6.1) being similar (easier).
Recall that the function w is obtained from (7, ¢) through the following steps:

1. u = T, ®*, where the function g is real and satisfies d,¢g € T?_, (which implies
e € 1“2,;) . i

2. &* = x*® where (see (3.12)) & € L (I, W2 (R)).

® =T,n+ T, U, withp € E;ﬁzl is an elliptic symbol and ¢; = (1 + (52:77)2)_%-

4. U =+ — Tgn, where B € L>°(I, H*~}(R)) is defined in (2.7).

hed
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Step 1. Starting from Theorem 5.1, we have

] +00

-1 <
LY(I,B,, 3 (R))
According to the symbolic calculus, since e € I'), we have

u="T,,® = & =T,—iyu+ R_(®*)

where R_; is of order —1 (i.e. bounded from HS(R) to HS*!(R)) . Since
Ht3(R) C B3, »(R) it follows from Lemma 6.1, the boundedness of ®* in L>°(I, H*(R)),
that

17

s 1 < +o0.
LY(I,B_, § (R))
Step 2: We have
P =KD Dok =D+ Ty, pork.

Notice that 8,® o k € L*(I x R) and 9,x € L°(I,H*"2). As a consequence,
Ty, pork € L (I, H2) C L>°(I, BS, 5). We deduce from Step 1
|® o k| o1 < +00.
L*(I,B._ 5 (R))
We conclude that
00,

C
(1,B §(R))

1

by using the following lemma (with x = k™', r =s— 1 andr < 0 < s).

LEMMA 6.3. — Let o > 1. Consider x such that 8,x € W°~1°(R). Then, for any
0 <r <o, themap u — w o x is continuous on B .

Indeed, a simple calculation shows that for any p < o, the map u — w o x is continuous
on W#>° and we conclude by choosing r; < r < ry < o withr; ¢ N (notice that this implies
Wriee = Bl ) and using the real interpolation result (see [9, Theorem 6.4.5 (1)])

[B’r‘l B’r‘2 ]9’2 — B’I‘

00,00 00,00 00,2

r=(1-0)r;+ 6rs.

Step 3: Separating real and imaginary parts, we obtain

el , HITU +oo

s—1 s— 1 <
L*(1,B__ 8 (R L“(LBOQ,S (R))

00,2

1
and the same proof as in Step 1 (using that p is elliptic, s — % >1=p?tel,? andfor
fixed t, ¢ (t,.) € WH(R) C T')) gives

”77”L4(1,B;§+%(R)) + ||U||L4(I7B;§ ®y ST®
Step 4: We have 1» = U + Tyn. So using the boundedness of n in L>° (I, Hs+s (R)), of B
in L>(I, HS"Y(R)) C L>=(I x R) and Sobolev injections, we obtain,
90, 3, <+

00,2

which completes the proof of Proposition 6.2 and consequently of Theorems 1.1 and 1.2. O
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7. Appendix

In this section we give a proof of (4.18) to (4.22).
Leta € C§°(R) withsuppa C {|{| < Cp},b € C(R) and ¢ € C*°(R) real valued such
that sup |2 (z)| < Co. Let us set

(7.1) [ = e #@q(hD) (be%“”) ().
We have
I= (k) / / F(a=wEre )=o) g (£)b(y)dyde.

Moreover we can write

@) = o) = (o~ Dol o) = [ P20w (1= )i

We have |p| < Cj so, setting n = £ — p(x, y) we obtain,

I=(2rh)"~ // #@=0n50 (n)a(n + p((z, y))b(y) dydn

where ko € C§°(R) is such that kq(n) = 1if || < 2C).
Using the Taylor expansion of the function a at the point p(z,y) we obtain I = I; + R
where,
M—-1 1 ;
a) Y o [ [ ket ()a® ot )bty
k=0
and,

1
i(z—y) _
Ry =0Mh‘1//nMe z "ﬁo(n)/ (1 =XM1 (An + p((z, y))b(y)dAdydn.
0

Now we have nke% (=y)n = (- %@,)ke% (z=¥)n 50 integrating by parts in the integrals I; and
R, we obtain,

S

-1 5k _
% / / e @50 ()% [a™ (p(z, y))b(y)]dydn

Il = (27Th) L
7

EM

E

n=G Y g [ Aol (ol )b,

7

e
Il
o

Ry= i ff / ST ko (m) (1 — MMM 0 (A + p((w, ) b(y)ldAdydn.
0
Let us set
f(z,y) = 95[a™ (p(x,y))b(y)]-
Now we set in the integral, z — y = hz and we write,

M-1

f(z,xz —hz) = Z

J=0

(= hZ)

05 f)(z,)

—hz M 1
" ((Mh—)l)'/o (1= NM710)" f) (@, @ — Ahz)d.
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Then we use the following equality, which reflects the fact that «( is equal to one near the
origin. For j € N we have,

/Zj,‘%o(z)dz = 271'5%0,

where d; o is the Kronecker symbol. It follows that,

M-1

k
h= 3 S0k o))
k=0 ’

where Ry = S ! e b+ My with

+ Ro,

y=z

r = / /O 2Mo(2) (1= WM 10 @™ (p(a, )b |, _, s, ANz

Thus we obtain (4.18) to (4.22).
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